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How to Get the Best Performance in Applications 
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1.   Introduction
This document describes the meaning of the Data Sheet 
specifications for the Analog-to-Digital Converter (ADC), how 
they are calculated, and how they relate to real-world signal 
impairments. In addition, this note introduces simple methods for 
getting the best performance from the 56F800 ADC and gives an 
overview of the differences in ADC performance for the various 
56F800 components.

2.   ADC Transfer Function and Error 
Sources

This section describes the ideal transfer function for an ADC. The 
Data Sheet specifications provide data on how the real ADC 
transfer function strays from the ideal. 

The theoretical ideal transfer function for an ADC is a straight 
line, but this would require an infinite number of steps, and 
therefore an infinite number of bits to represent. A practical 
theoretical transfer function is a uniform linear staircase function,
which is shown in Figure 2-1. The Data Sheet ADC 
specifications describe in quantitative terms how far the 
component deviates from the ideal transfer function. 
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Figure 2-1.   Transfer Function

2.1   Quantization Error
The practical ideal transfer function used to represent a continuous analog signal as a set of discrete staircase 
digital codes introduces quantization error. As Figure 2-1 shows, the width of each step is one code increment, 
or one Least Significant Bit, so a range of continuous analog inputs is represented by a single code value. The 
mapping can be represented as seen in Table 2-1.

Table 2-1.   Quantization Error

Analog input Digital Code

4.5 - 5.5 101

3.5 - 4.5 100

2.5 - 3.5 011

1.5 - 2.5 010

0.5 - 1.5 001

0 - 0.5 000
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If the value 001 represents the mid-point of the analog input range of 0.5 to 1.5, then the analog value 1.0 is 
represented by 001 with no error. But since the analog value of 0.5 is also represented by the digital value 001, 
the end points of the analog range represent the maximum error. In terms of bits, the maximum error can be 
expressed as +1/2 bit for the 0.5 endpoint and -1/2 bit for the 1.5 endpoint. Maximum physical voltage error, 
ev, can be calculated with the following equation: 

ev = (1 LSB voltage range)/2 

The voltage range of 1 LSB depends on the full-scale voltage range that the ADC is set to sample and the total 
number of digital codes present. Analog-to-Digital converters are specified in the number of bits of resolution. 
If “n” is the number of bits of resolution, then the total number of digital codes present is 2n, so the voltage 
range represented by each bit vb can be expressed as:

vb = (Full scale voltage range)/2n 

The maximum physical voltage error ev can be expressed as:

ev = (Full scale voltage range)/2n+1 

2.2   Static Errors

Static errors are characterized by offset error, gain error, integral non-linearity and differential non-linearity. 
While static errors can be fully characterized using non-varying input signals, they affect the conversion of all 
input signals, whether they are static or dynamic. 

Let us first examine gain and offset errors, shown by Figure 2-2. Looking at the actual transfer function, we 
see a DC-bias error causing the zero crossing to occur at a point other than the origin. So, the analog input that 
causes a zero code to be output in this example is 1.5 to 2.5 code instead of 0 to 0.5 code. This offset error is a 
constant across the entire analog input range. We can see the gain error reflected in the diagram in that the 
actual transfer function doesn’t have a 45 degree slope. The following equation describes the best-fit linear 
regression of the actual ADC transfer function. 

y = ( EGAIN x ) + VOFFSET 

EGAIN = Gain error value from the component Data Sheet

x = Actual analog input

VOFFSET = DC input offset voltage from the component Data Sheet

y = Apparent analog input converted by ADC 

These effects are linear over the input voltages and frequency and demonstrate that the actual analog input 
voltage can be solved for and the effects of the gain errors and offset voltages can be removed.
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Figure 2-2.   Gain and Offset Errors

In any given system, the conversion point of interest to an algorithm can be fairly far removed from the analog 
input of the ADC, as illustrated in Figure 2-3. In these cases, gain and DC voltage offsets can be introduced 
external to the ADC, so it is often important to take the entire system into account when analyzing the total 
gain and offset errors. A calibration step may be required, depending on the specific requirements of the end 
system. In the calibration, known precise and accurate signals are injected into the system and conversions are 
performed. The actual results of the conversions are compared to the expected values and the error values for 
gain and offset voltage can be determined. These errors can then be removed digitally in the processor or by 
trimming the analog circuitry before the analog input into the processor ADC.

Signal of interest56F800 device
Buffering/

Isolation/Gain
stage

Buffering/
Isolation/Gain

stage

Figure 2-3.   System Gain and Offset Errors

The 56F800 devices have been characterized and most of the gain and offset errors have been removed by 
internal compensation in the chip. Designers should analyze the gain and offset errors stated in the Data Sheet 
for the device being implemented and the requirements for the algorithm they are to perform, because it is 
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possible that no adjustment is required for proper operation. If it is determined that the gain and offset errors 
must be compensated for, this is a relatively straightforward proposition because these errors are linear, stable 
over frequency, and easily characterized.

Integral (INL) and differential non-linearity (DNL) are errors introduced by all ADC units. They are quite 
difficult to compensate and characterize. In general, a designer will need to determine the required linearity for 
a particular algorithm and choose the system components accordingly. As with gain and offset errors, integral 
and differential non-linearity errors can be introduced at any part of the system and are not limited to the ADC. 

The integral and differential non-linearity errors are closely related to one another. As shown in Figure 2-4, the 
width of each conversion step of the output code sequence is not the same. This non-uniformity in step width is 
the source of the differential and integral non-linearity. The differential non-linearity is the difference in width 
from the ideal case in each step and is measured in LSBs. In the specific case shown in Figure 2-4, the net 
result of the non-linearities is an under-representation of the code sequences 011 and 101, which have a 
negative differential non-linearity because the width is less than the ideal 1 LSB bit width. The sequence 100 
will be over-represented and has a positive differential non-linearity because the step width is greater than 1 
LSB. It is possible in some ADCs that the differential non-linearity will cause output codes to be missing 
completely or repeated. An ADC’s Monotonicity is guaranteed when the digital output codes increase, or 
remain the same, with increasing analog input voltage. Monotonicity is guaranteed in the 56F800 components.
A maximum differential non-linearity of one 1 LSB or less also ensures a monotonic transfer function with no 
missing or repeated codes. All 56F800 components have a maximum differential non-linearity of 1 LSB or 
less.
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Figure 2-4.   Non-linear Static Errors
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Integral non-linearity is the summation of the previous differential non-linearity errors at any given point. In 
the 56F800 devices, integral non-linearity is specified by using test equipment to determine the actual transfer 
function of the ADC, then performing a linear regression to produce a best-fit straight line for the actual 
transfer function. When the integral non-linearity is measured, the gain and offset errors are nullified. The 
integral non-linearity is specified in LSBs of the conversion code outputs, so a specification of +/- 3 LSBs 
means that at any given analog input, the summation of previous differential errors produces an output code 
where the error from the ideal is within the range of +/- 3 output codes. The maximum specification for the 
integral non-linearity is the point of greatest distance of the best-fit straight line transfer function from the ideal 
transfer function and is again expressed in LSBs. 
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Figure 2-5.   Integral Non-linearity

2.3   Dynamic Errors
In addition to the static error specifications, other specifications are commonly given that take into account 
dynamic error sources. This section reviews a few that are specified in the 56F800 Data Sheets.

In the Data Sheet, the dynamic errors are characterized by the Total Harmonic Distortion (THD), the 
Signal-to-Noise plus Distortion (SINAD), the Spurious Free Dynamic Range (SFDR), and the Effective 
Number Of Bits (ENOB).

THD is the rms power in the harmonics of the signal of interest. 

SINAD is the ratio of the rms signal power to the noise floor power plus the harmonic distortion.

SFDR is the decibel distance of the largest spur or harmonic noise in comparison to the signal of interest. For 
example, in the measurement of the specification, a signal is injected into the ADC at a frequency of 8KHz and 
a Fourier transformation is performed on the samples to yield the energy level as a function of frequency. The 
signal of interest will form the largest decibel (dB) spike. Below this will be a noise floor with several spikes or 
spurs occurring at specific frequencies. The SFDR is the distance in dB of the signal of interest to the largest 
spur.
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A good overall figure of merit that takes into account the effects of the overall noise and the distortion of the 
signal is the Effective Number Of Bits, or ENOB. The ENOB takes into account the noise floor of the 
component and reflects the best achievable dynamic accuracy of the ADC. The ENOB reflects the best-case 
achievable noise-free number of bits. The ENOB number specifically does not include the static gain, offset, 
and linearity errors.

The dynamic range of an ADC refers to the decibel ratio of the smallest to the largest value that can be 
represented. The dynamic range of an ADC is fully dependent on the bits of resolution. The following equation 
calculates the dynamic range of an ADC:

Dynamic Range = 20log10(2n)

“n” is the number of bits of resolution

2.4   Measurement Methods 
Each 56F800 component’s ADC is characterized, in accordance with IEEE Std 1241-2000, for gain, offset, 
DNL, INL, SNR, THD, SFDR, SINAD and ENOB.

The Gain, offset, INL and DNL are performed using the code density method, which uses a noise-free sine 
wave. Gain and offset are calculated doing a least-squared fit from the histogram data obtained from the 
digitized sine wave.

3.   Using the 56F800 ADC
This section explores some of the issues that must be considered to get the best performance from the ADC in 
your system and how to choose an appropriate 56F800 component in terms of ADC performance.

3.1   Input Impedance
An equivalent circuit for an analog input is shown in Figure 3-1.

1 2

3

4

ADC analog input

Figure 3-1.   Equivalent Analog Input Circuit

1. Parasitic capacitance due to package, pin-to-pin, and pin-to-package base coupling.  . . . . . . 1.8pf

2. Parasitic capacitance due to the chip bond pad, ESD protection devices and signal routing. 2.04pf

3. Equivalent resistance for the ESD isolation resistor and the channel select mux.. . . . . . . 500 ohms 

4. Sampling capacitor at the sample and hold circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1pf
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When interfacing to the ADC, one must be concerned with the ADC clock rate and the size of the sampling 
capacitor, which is 1pf and depicted in Figure 3-1 as “4”. This capacitor is charged to the sampling voltage and 
discharged to VDD / 2 during each ADC clock cycle. This effectively creates a switched cap implementation of 
a resistor that is dependent on clock rate and voltage level at the input. This switched cap equivalent resistance 
is effectively the input impedance to the ADC. The equivalent circuit shown in Figure 3-1 is valid for realistic 
operating conditions and ADC clock rates. The circuit in Figure 3-1 is present at any specific analog input 
during the time that the analog input is being converted and the analog mux is feeding the input into the 
appropriate sample and hold circuitry. During periods when another input is being muxed into the sample and 
hold circuitry and converted, or if no conversion occurs, the external circuitry will see a very high input 
resistance at the analog input pin. As an example, if the input voltage is 1 volt greater than VREF / 2 and the 
ADC clock rate is 5 MHz, then the ADC input impedance is:

i = C dv/dt, so i dt = C dv

Where:

dt = 1/5e+6

dv = 1 volt

C = 1e-12

So:

i = (5e+6) (1e-12) (1) = 5e-6

R = V/I

So:

R = 1 / 5e-6 = 200K ohms

The input impedance at the ADC clock rate of 5MHz can be as low as 200K ohms A typical input 
configuration for driving the ADC is depicted in Figure 3-2. Using this input configuration, if one wants to 
maintain the signal amplitude to within 10 bits or more of its original amplitude, at the anti-aliasing capacitor 
Ca, then the source impedance of what's driving the ADC must be less than:

Rs / (Rs + Ri) = 1 / (2+10)

Source resistance of the driver = Rs

Input resistance of the ADC = Ri

Where:

Ri = 200K ohms

1 / (2+10) = .0009766

Solving for Rs results in:

Rs = 200 ohms

If the ADC clock rate were changed to 1MHz, then the source impedance of what's driving the ADC must be 
less than 1K ohms to maintain an effective input signal that's within 10 bit of its original amplitude.



Practical ADC Calibration

56F800 ADC, Rev. 2

Freescale Semiconductor 9 

Increasing the source impedance introduces gain error, not a loss, in accuracy. As the source impedance of the 
driver goes up, the overall transfer gain from the buffer to the output of the ADC will go down. As shown in 
the previous example, this is also dependent on the ADC clock rate. In other words, with a fixed source 
resistance as the ADC clock rate goes up, the overall transfer gain from the buffer to the output of the ADC 
will go down.

Figure 3-2 shows a typical circuit for the input of the ADC analog input. 

Rs = Ro + Ra
Ro= Output resistance of input buffer 

Ra= Anti-aliasing circuit resistance
Ca= Anti-aliasing circuit capacitance

The value of the anti-aliasing capacitor, Ca, does not affect the transfer gain or accuracy of the ADC. However, 
it does limit the bandwidth of the input signal for anti-aliasing considerations.

Ra 

Ca 
Ro Input

Buffer

To input of
ADC

Figure 3-2.   Typical Input Configuration

3.2   Practical ADC Calibration
It's recommended that a user implements an auto-calibration network on his board, so that he can find the gain 
and offset for the specific ADC that's used, in addition to the errors introduced by the aliasing and buffering 
circuitry. A simple calibration network consists of an array of matched precision resistors, as shown in 
Figure 3-3. 

VREF

Node A Node B

0.6666(VREF) 0.3333(VREF)

Figure 3-3.   Example Calibration Circuitry
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Calibration is typically used to remove the effects of gain and offset from a specific reading. The transfer 
function relating an ideal code to a measured code that has gain and offset is shown in the following equation:

Y = (X - b)/m

Where:

Y is the measured code corresponding to a specific input voltage

m is the transfer gain of the ADC

X is the ideal code corresponding to this input voltage 

b is the code offset.

The transfer equations for the resulting conversion code for node A and node B are:

Ya = mXa +b 

and 

Yb = mXb + b

Using these two equations, the ADC transfer gain is:

m = (Ya - Yb) / (Xa - Xb)

The offset code is:

b = Ya - mXa 

or

b = Yb - mXb

Note: Using either equation should result in the same answer.

Finally, the resulting code that's been corrected for gain and offset error, for any input voltage, is:

X = (Y-b)/m

To obtain an acceptable level of accuracy when converting the calibration node voltages, make multiple 
measurements, then average the result. Also, the resistor values in the calibration network should be 200 ohms 
or less when operating the ADC at 5MHz. The resistor values can double in size when the ADC clock 
frequency is halved, so for an ADC clock frequency of 1MHz during calibration, the resistor value in the 
calibration network could be as large as 1K ohms.

Example:

The voltages at nodes A and B were converted by the ADC and found to be 2570 and 1273, respectively. The 
ideal codes that should have resulted from the conversion of the voltage at nodes A and B are:

Xa = (2/3) * 4095 = 2730 

and

Xb = (1/3) * 4095 = 1365

Therefore, the transfer gain "m" is:

m = (Ya - Yb)/(Xa - Xb) = (2570 - 1273)/(2730 - 1365) = 1297/1365 = .95

The code offset "b" is: 2570 - (2730) * .95 = -23.5



Using the ADC’s Operational Modes

56F800 ADC, Rev. 2

Freescale Semiconductor 11 

When this ADC is converting an input signal that's at mid-scale, VREF / 2, it produces a code of 1922. 
Correcting this result using the offset and gain derived previously yields:

X = (Y - b)/m = (1922 - (-23.5))/.95 = 2048

Using this calibration method corrects for the effects of gain and offset.

3.3   Optimizing Linearity and ENOB
In order to achieve optimal results in ENOB terms, all sources of coupled noise should be minimized. These 
can be from sources internal or external to the chip. 

The ADC has operational sweet spots where the digital noise from its internal environment has a minimal 
coupling effect. These sweet spots occur when the ADC clock prescaler is set to values of 4, 9 or 14. If not 
operating at one of these sweet spots, the accuracy of the ADC typically drops by 1/2 of a bit.

In addition to minimizing the internal noise sources, care must be taken in design of the external noise 
coupling. To achieve optimal results, the board should have separate analog and digital power and ground 
planes and very clean VREF signals. Using these methods, the best practically achievable ENOB will be as 
stated in the Data Sheet. 

Since noise is modeled as a Gaussian distribution, the noise power can be lowered through a scheme of 
oversampling the input and averaging the samples. In the averaging process, noise spikes will tend to cancel 
each other out, lowering the overall noise power and thus increasing the ENOB. SNR improvement is 
proportional to the amount oversampling and averaging performed. 

The INL peaks at the minimum or maximum codes and is minimized between the 10% to 90% code range. If
the user wishes to maximize accuracy, he should limit the input swing to be within the 10% to 90% range from 
ground to VREF. The INL measurement in the Data Sheets is measured using the 10% to 90% range.

3.4   Choosing the Right Device
The ADC is a System-on-Chip (SoC) peripheral that is on the IPBus of the chip. The ADC peripheral is 
identical in all 56F800 components, but the performance of the ADC is different across the components. The 
ADC’s performance is affected by the physical location of the peripheral in the silicon. These layout 
considerations affect the amount of coupled noise and resistive loads that directly impact the noise figures, DC 
offsets, gain errors, and the linearity. 

The 56F803/805/807 have significantly better performance than the 56F801/802. So if you are considering the 
56F801/802, but find they do not have the required ADC performance, then you should move your design to 
the 56F803. The ADC performance in the areas of gain and voltage offsets was improved over the various 
revisions of the components as the ADC circuitry was tuned. The Data Sheets specify the current revision of 
the silicon, so if you see markedly different voltage and gain offsets, verify that you are do not have an old 
revision of the silicon.

The 56F827 has the best ADC performance of the 56F800 series. Its ADC has been modified slightly to 
achieve gains in linearity and noise performance. To achieve these results, the maximum ADC internal clock 
frequency has been lowered from 5MHz to 2.5MHz. 

3.5   Using the ADC’s Operational Modes
This section is not intended to replace the data published in the DSP56F800 User Manual, but to add 
clarification. The reader must use the information located in the manual to fully understand this section. 
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First, consider samples in the ADC and how they relate to the scan modes. ADC Inputs can be configured for 
either single-ended or differential mode and a user can mix single-ended and differential inputs. Samples may 
be taken either one at a time (sequential mode) or two at a time (simultaneous mode). The mapping of input pin 
to sample number is arbitrary, with one exception: the same input pin cannot be used for both sides of a 
simultaneous sample pair. For example: AN2/AN5 is a valid sample pair, but not AN2/AN2.

The ADC captures/converts up to eight samples at a time in a "scan". There are several different scan modes: 

1) Once (single): The ADC starts to sample just one time using the START bit or by a sync pulse. This mode 
must be re-armed by writing to the ADCR1 register again before capturing another scan. 

2) Triggered: Sampling begins with every recognized START command or sync pulse

3) Loop: The ADC continuously take samples as long as power is on and the STOP bit has not been set.

Each of the preceding sequences can be coupled with sequential or simultaneous modes, enabling a total of six 
scan modes: 

• Once Sequential
• Once Simultaneous
• Loop Sequential
• Loop Simultaneous
• Triggered Sequential
• Triggered Simultaneous

One of these six configurations is coded in the ADC Mode Control bits (SMODE[2:0]) of the ADC Control 
Register 1 (ADCR1). 

The scan modes can be triggered in several ways:

• Directly under software control
• By the output of a quadrature timer
• By a PWM reload event

The PWM reload event is first routed through a Quadrature Timer that can be used to provide an arbitrary 
delay before causing the ADC convert command. This is discussed in greater detail in application note 
AN1933, Synchronization of on-Chip Analog-to-Digital Converter on DSP56F80x DSPs.
To set up a periodic conversion at a specific rate, the triggered mode can be used in conjunction with one of the 
timers to provide the conversion start or sync pulse. An interrupt can be generated at the conclusion of the 
conversion. At this point, the samples can be and should be read from the ADC result registers. These registers 
are not buffered, so the samples must be read before the next conversion writes out to the result registers. 

The ADC can also be set up in a continuous loop mode, where a trigger to start conversion is not required. But 
the end of conversion cannot be set to cause an interrupt in this mode, so the software must poll the ADC status 
register to know when the conversion has been completed.

Because the ADC peripheral has an internal pipeline, the first conversion requires 8.5 ADC clock cycles and 
each additional conversion requires 6 ADC clock cycles. The 2.5 clock cycle difference is the time required to 
fill the pipeline. In the triggered modes or the once mode, the pipeline must be filled whenever a sync pulse or 
START command is issued. In the loop mode, the pipeline is filled only once at the very beginning of the 
process. 
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For example, the ADC is set up in sequential triggered mode with only the first four samples enabled. The 
number of clock cycles required for the conversion follows:

Nclk = (Sample0 conversion) + (Sample1 conversion) + (Sample2 conversion) + (Sample3 conversion) 
= (8.5) + (6.0) + (6.0) + (6.0) = 26.5 ADC clock cycles

The samples which are not to be converted must be disabled in the ADC sample disable register. Any samples 
that are not disabled will be converted and will add to the total ADC conversion time. 

The ADC conversion time calculated previously is only the amount of time the ADC requires to perform the 
conversion. But in a real system, the samples must be removed from the result registers using software, 
typically run from an ISR associated with the end of conversion interrupt. 

As an example of this constraint, assume a system running on a 56F800 component, with the ADC in a 
simultaneous triggered mode using a timer set to provide start pulses at a 100k sample rate (10µs interval), the 
ADC clock set for 5MHz; the processor running at 40 MIPS from internal Flash; and an ISR at the end of 
conversion interrupt takes the samples and buffers them. 

The time to perform the conversion is:

Tconv = Time to perform conversion

= (8.5 ADC clock cycles) * (time per cycle) = (8.5) * (0.2e-6) 

= 1.7µs

Tget samples = Time available to get samples

= Ttrig rate- Tconv + (Time for 6 ADC clock cycles)

= 10µs - 1.7µs + (6 * 0.2e-6)

= 10µs - 1.7µs + 1.2µs

= 9.5µs

At the beginning of the second conversion, the result registers still contain the previous data, which will not be 
overwritten for at least 6 ADC clock cycles.

Ninstr = Number of instructions cycles left for software to retrieve samples

= (Tget samples) / (Tinstr)

= 9.5µs / (1 / 40MHz) = 380 instructions

This example indicates that for high sampling rates, the processor may have difficulty keeping up with the 
ADC samples, especially if there is a significant processing load in handling this data and/or there are other 
peripherals that must also be serviced. A thorough system analysis is recommended to make sure real-time 
issues are not encountered.

4.   Conclusion
The 56F800 family includes parts with a very powerful and accurate on-board ADC peripheral. This document 
has discussed in detail the Data Sheet parameters, what they measure, and how they are measured. It has 
discussed at a high level the performance characteristics across the family of components, but the reader should 
consult the Data Sheet for the component being implemented to find the latest performance characteristics. 
Additionally, it has explored ways to achieve optimal performance out of the ADC, as well as some of the 
modes of operation and performance items to consider.
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Appendix A  56F800 ADC Internal Structure
This appendix describes the internal structure of the 56F800 ADC peripheral. The cyclic ADC designed for the 
56F800 components consists of a dual-cyclic ADC core, dual interface function and an analog input select 
mux. The input select mux routes the analog inputs of choice to either ADC#1 or ADC#2. While in the 
simultaneous mode, both converters are used in a synchronous fashion for converting two signals at the same 
time. The interface function that follows the input select mux samples the single-ended or differential input 
signal and converts it to a scaled differential within the operational range of the ADC. The ADC coreconsists 
of two Redundant Signed Digit (RSD) sections that resolve one bit of the Analog-to-Digital conversion during 
each half ADC sample clock cycle. Figure A-1 depicts a top-level block diagram of the 56F800 components’
cyclic converter.

Interface 
Function

Mux RSD#1
θ1

RSD#2
θ2

Cyclic ADC Core

ADC#1

Interface 
Function

Mux RSD#1
θ1

RSD#2
θ2

Cyclic ADC Core

ADC#2

Analog 
Input 
Select 
Mux

AN0

AN7

Figure A-1.   Cyclic ADC Top-Level Block Diagram

In most general-purpose applications, the analog signal that’s to be converted by the ADC can have values 
ranging from ground to the supply voltage. This signal is selected via the input select mux, depicted in 
Figure A-2, sampled by the interface function and presented to the ADC core.



AN0

AN3

AN1

AN4

AN5

AN6

AN7

AN2

Swap 
Select

To Interface 
Function 
ADC #0

Single-ended 
DifferentialVREF / 2

Channel 
Select

To Interface 
Function 
ADC #1

VREF / 2
Single-ended 
Differential

Channel 
Select

Swap 
Select

Using the ADC’s Operational Modes

56F800 ADC, Rev. 2

Freescale Semiconductor 15 

Figure A-2.   Input Select Mux

For noise isolation reasons, the ADC core in turn uses differential signaling that’s within the operational range 
of its sub-functions, which is less than the supply voltage and more than ground potential. The purpose of the 
interface functions is to convert the full range, single-ended or differential signal, into a scaled differential 
signal during the sampling process of Analog-to-Digital conversion. A functional diagram of the interface 
function is depicted in Figure A-3.
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Figure A-3.   Interface Function Functional Block Diagram

The interface function depicted in Figure A-3 works on the principle of charge conservation and distribution. 
The switches labeled θ2 are closed during the first half of a clock cycle and those labeled θ1 are closed during 
the second half of a clock cycle. Also, all capacitors are of the same size, typically in the picofarad range. For a 
single-ended signal, during θ2, the input signal and VREF / 2 are sampled onto capacitors C1 and C2. During θ1, 
capacitors C1 and C2 are shorted together and charge is redistributed between C1 and C2 so that the voltage on 
C1 and C2 becomes equal. If the input signal were larger than VREF / 2, then the voltage on C1 is reduced and 
the voltage on C2 is increased during θ1. In response to this charge movement, the voltage at Out_Pos moves 
up to replace the charge being taken from C1. Likewise, the voltage at Out_Neg moves down to negate the 
charge increase that occurs on C2. Because all capacitors are of the same size, the voltage change that occurred 
at C1 and C2 is the same at Out_Pos and Out_Neg, resulting in a differential signal. A functional block 
diagram of an RSD function contained in the ADC core is depicted in Figure A-4.
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Figure A-4.   Redundant Signed Digit, RSD Functional Block Diagram
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The detailed description of how the RSD stage works can be found in reference manuals addressing the 
functionality of the cyclic Analog-to-Digital converter. A Robertson diagram, depicting the voltage in to 
residue out and data bits out, is depicted in Figure A-5.
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Figure A-5.   Robertson Diagram
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Once the chosen analog signals have been selected, the ADC conversion starts with the sync signal going high, 
as depicted in Figure A-6. The input signals to be converted are sampled onto capacitors C1 and C2, shown in 
Figure A-3, during θ2 in preparation for conversion during θ1. During θ1, the sampled signals are converted to 
scaled differential signals and passed into the first RSD block, shown in Figure A-1, where a data bit is 
extracted and its capacitors are charged in preparation for calculating the residue. The residue from the first 
RSD stage is then calculated on θ2 and passed into the second RSD stage, where another data bit is extracted 
and its capacitors are charged in preparation for calculating the residue. The residue, in the second stage, is 
then calculated and passed back into the first RSD stage, during θ1, where another bit is extracted and 
preparations are made for calculating the residue. The resulting residue continues to be passed back and forth 
between the two RSD stages until the required number of bits have been extracted. The signaling diagram, 
shown in Figure A-6, is for a 12-bit extraction.
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Figure A-6.   ADC Signaling
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