Freescale Semiconductor AN1935
Application Note Rev. 1, 11/2005

Programming On-Chip Flash Contents
Memorles Of 56F80X L. Introductionccceoeincineinicieen 1

DeViceS USing the 2. JTAG Port and OnCE Module 1
JTAG/ONnCE Interface 23 TTAGIONCE e

2.3 JTAG Port Architecture, Timing of

Reading and Writing Contents of Internal Flash Signals and State Machine................... 3
Memory Units of S6F80x Devices Using the ot £ -
JTAG/OnCE Interface 3.A g}())(r);tt ms for Accessing the JTAG s
. . 3.1 Primitives for Accessing the ITAG
Daniel Malik PiNS oo 6
3.2 Executing JTAG Instructions............... 6
1 . 3.3 Transferring Data To and From the
. Introduction JTAG POMterrsssere g

. 3.4 Preparing for OnCE Module Access....9
This Application Note describes the internal structure of the

JTAG port and OnCE module and their functionality with respect | 4. Algorithms for Communication with the

to accessing the on-chip Flash memory units. The following ONCE Moduleooooooeeerrre 10

sections describe algorithms which must be implemented and 4.1 Executing One-Word Instructions 11

their implementation using C programming language. 4.2 Execution Two-Word Instructions..... 11
4.3 Instruction Set Supported by the

OnCE Module........ccoceeevvieniiariennne. 12

2 . JTAG POI’t and OnCE MO dule 4.4 Reading Data Out of the Device Core 12

4.5 Instruction Execution - Examples...... 12

2.1 General Description 5. Algorithms for Accessing the Flash

The 56800 series of components provides board and chip-level Memory 13
testing capability through two on-chip modules, both accessed 3.1 Timing of Flash Program/Erase 13

: . 5.2 Mass Erasing the Flash Memory........ 14
through the JTAG port/OnCE module interface: 53 Programming the Flash Memory ... 15

e On-chip emulation (OnCE) module

- Test access port (TAP) and 16-state controller, also 6. ConcluSioncccoevveevieeuieeeiieiieeeeeeenes 16

known as the JTAG port

Presence of the JTAG Port/OnCE module interface permits
insertion of the chip into a target system while retaining debug
control. This capability is especially important for devices
without an external bus, because it eliminates the need for a
costly cable to bring out the footprint of the chip required by a
traditional emulator system.

7. REfErencescoovvvevveeiieieieieeeceeeeeeeee 17

© Freescale Semiconductor, Inc., 2002, 2005. All rights reserved.

freescale"

semiconductor

J1AG Port and OnCE Module

The JTAG port is a dedicated user-accessible TAP, compatible with the /EEE 1149.1a-1993 Standard Test
Access Port and Boundary Scan Architecture. Problems associated with testing high-density circuit boards
have led to the development of this proposed standard under the sponsorship of the Test Technology
Committee of IEEE and JTAG. The 56800 series of components supports circuit board test strategies based on
this standard.

Five dedicated pins interface to the TAP, which contains a 16-state controller. The TAP uses a boundary scan
technique to test the interconnections between integrated circuits after they are assembled onto a printed circuit
board (PCB). Boundary scans allow a tester to observe and control signal levels at each component pin through
a shift register placed next to each pin. This is important for testing continuity and determining if pins are stuck
at the one or zero level.
Features of the TAP port include:

* Perform boundary scan operations to test circuit board electrical continuity

* Bypass the device for a given circuit board test by replacing the boundary scan register (BSR) with a
single-bit register

* Sample the device system pins during operation and transparently shift out the result in the CSR;
pre-load values to output pins prior to invoking the EXTEST instruction

* Disable the output drive to pins during circuit board testing
* Provide a means of accessing the OnCE module controller and circuits to control a target system
* Query identification information, manufacturer, part number, and version from a chip

» Force test data onto the outputs of a device IC while replacing its BSR in the serial data path with a
single bit register

* Enable a weak pull-up current device on all input signals of a device IC, helping to assure deterministic
test results in the presence of continuity fault during interconnect testing

The OnCE module is a Freescale-designed module used in Digital Signal Controller (DSC) chips to debug
application software employed with the chip. The port is a separate on-chip block allowing non-intrusive
device interaction with accessibility through the pins of the JTAG interface. The OnCE module makes it
possible to examine registers, memory, or on-chip peripherals’ contents in a special debug environment. This
avoids sacrificing any user-accessible on-chip resources to perform debugging procedures. Additionally, on
the 56F80x, the JTAG/OnCE port can be used to program the internal Flash memory OnCE module.
The capabilities of the OnCE module include the ability to:

* Interrupt or break into Debug Mode on a program memory address: fetch, read, write, or access

* Interrupt or break into Debug mode on a data memory address: read, write, or access

* Interrupt or break into Debug Mode on an on-chip peripheral register access: read, write, or access

* Enter Debug Mode using a device microprocessor instruction

* Display or modify the contents of any device core register

* Display or modify the contents of peripheral memory-mapped registers

» Display or modify any desired sections of program or data memory

» Trace one, single stepping, or as many as 256 instructions

* Save or restore the current state of the chip’s pipeline

» Display the contents of the real-time instruction trace buffer, whether in Debug Mode or not

e Return to user mode from Debug Mode

* Set up breakpoints without being in Debug Mode

* Set hardware breakpoints, software breakpoints, and trace occurrences (OnCE events), possibly
forcing the chip into Debug Mode; force a vectored interrupt; force the real-time instruction buffer to
halt; or toggle a pin, based on the user’s needs

Programming On-Chip Flash Memories with JTAG/OnCE, Rev. 1

2 Freescale Semiconductor
Preliminary

JTAG Port Architecture, Timing of Signals and State Machine

2.2 JTAG/OnCE Pins

As described in the IEEE 1149.1a-1993 specification, the JTAG port requires a minimum of four pins to
support TDI, TDO, TCK, and TMS signals. The 56F80x also uses the optional test reset (TRST) input signal
and a DE pin used for debug event monitoring. The pins and their functions are described in Table 2-1.

Table 2-1. Description of JTAG/OnCE Pins

Pin Description

TDI Test Data Input — This input provides a serial data stream to the JTAG and the OnCE
module. It is sampled on the rising edge of TCK and has an on-chip pull-up resistor.

TDO Test Data Output — This tri-stateable output provides a serial data stream from the
JTAG and the OnCE module. It is driven in the Shift-IR and Shift-DR controller states of
the JTAG state machine and changes on the falling edge of TCK.

TMS Test Mode Select Input — This input sequences the TAP controller's state machine. It
is sampled on the rising edge of TCK and has an on-chip pull-up resistor.

TCK Test Clock Input — This input proves a gated clock to synchronize the test logic and
shift serial data through the JTAG/OnCE port. The maximum frequency for TCK is 1/8
the maximum frequency of the 56F80x (i.e., 5SMHz if the IP Bus clock is 40MHz). The

TCK pin has an on-chip pull-down resistor.

TRST Test Reset — This input provides a reset signal to the TAP controller. This pin has an
on-chip pull-up resistor.

DE Debug Event — Assertion of this output signals that the OnCE event has occurred

2.3 JTAG Port Architecture, Timing of Signals and State Machine
The TAP controller is a simple 16-state machine used to sequence the JTAG port through its valid operations:

e Serially shift JTAG port instructions in or out and decode them
» Serially input or output a data value
* Update a JTAG port (or OnCE module) register

The block diagram of the JTAG port is shown in Figure 2-1. The JTAG port has four read/write registers: the
Instruction Register, the Boundary Scan Register, the Device Identification Register, and the Bypass Register.
The JTAG port also provides a path for accessing the OnCE module.

Programming On-Chip Flash Memories with JTAG/OnCE, Rev. 1

Freescale Semiconductor 3
Preliminary

J1AG Port and OnCE Module

input MUX OnCE output MUX
Module

/o- ID Register -0\
. e s

TDI
—{_Boundary Scan }—
* e
t v T
Instruction
Decoder
TMS e
TAP
TCK*—I— Controller
TRST
TDO

* TRST signal is not required for JTAG/OnCE access
Figure 2-1. Block Diagram of the JTAG Port

Timing of the JTAG signals is shown in Figure 2-2. The TDO pin remains in the high impedance state except
during the shift-DR or shift-IR controller states. In these controller states, TDO is updated on the falling edge
of TCK. TDI and TMS are sampled on the rising edge of TCK.

TCK | /

TDO "X output data valid

TDI & TDS (__input data valid

Figure 2-2. Timing of Signals on JTAG Port Pins

The TAP controller is a synchronous finite-state machine containing sixteen states, as illustrated in Figure 2-3.
The TAP controller responds to changes at the TMS and TCK signals. Transitions from one state to another
occur on the rising edge of TCK. The value shown adjacent to each state transition in this figure represents the
signal present at TMS at the time of a rising edge at TCK.

There are two paths through the 16-state TAP machine. The Instruction path captures and loads JTAG
instructions into the Instruction Register. The Data path captures and loads data into the other JTAG registers
and also provides a path for communicating with the OnCE module. The TAP controller executes the last
instruction decoded until a new instruction is entered at the Update-IR state, or until the Test-Logic-Reset state
is entered. When using the JTAG port to access OnCE module registers, accesses are first enabled by shifting
the ENABLE ONCE instruction into the JTAGIR. After this is selected, the OnCE module registers and
commands are read and written through the JTAG pins using the Data path. Asserting the JTAG’s TRST pin
asynchronously forces the JTAG state machine into the Test-Logic-Reset state.

Programming On-Chip Flash Memories with JTAG/OnCE, Rev. 1

4 Freescale Semiconductor
Preliminary

Primitives for Accessing the JTAG Pins

Test-Logic-Reset

Instructions

Select-IR-Scan

v

Figure 2-3. Description of the TAP State Machine

3. Algorithms for Accessing the JTAG Port

Algorithms in the following sections represent one of the possible approaches for accessing the Flash memory
units. They do not explore the full capabilities of the JTAG port and the OnCE module and were created solely
for the purpose of programming the on-chip Flash memories of the target processor. Very little speed
optimization was done for educational purposes and these algorithms may prove to be too slow for a
high-volume production environment.

These algorithms are not platform-specific. They can be used to create an application running on a PC, a tester
machine, a microprocesor system or any other platform which is convenient to use. Almost any platform with
enough I/O pins connecting it to the JTAG environment can be turned into a device Flash programmer.

An application for the PC Windows enviroment was created based on an optimized version of the algorithms to
achieve minimum programming time and to support situations where the device shares the JTAG chain with
other devices and other features. For additional information, see References, item [2].

3.1 Primitives for Accessing the JTAG Pins

All algorithms presented here rely on primitives which access the JTAG port pins. These macros or functions
are platform specific and their implementation is up to the user. Signals TDI, TMS and TCK are considered
outputs and signal TDO is considered input. Use of the TRST and DE signals is not required for accessing the

Programming On-Chip Flash Memories with JTAG/OnCE, Rev. 1

Freescale Semiconductor 5
Preliminary

Aigorithms for Accessing the JTAG Port

JTAG/OnCE and these signals are not used in the algorithms. The user is expected to reset the JTAG TAP state
machine to Test-Logic-Reset state at power-up by asserting the TRST pin as indicated in the chip datasheet.
Where hardware measures are provided on the proprietary target platform for asserting the TRST pin, external
connection to this pin is not required.

The primitives are:

« JTAG TCK SET

« JTAG TCK RESET
« JTAG TMS SET

» JTAG TMS RESET
 JTAG TDI SET

« JTAG TDI RESET
« JTAG TDO VALUE

The JTAG XXX SET primitives assert the respective signal (logical Hi). The JTAG XXX RESET
primitives deassert the respective signal (logical Lo). The JTAG TDO_VALUE primitive returns a value of 0
or 1 when the TDO pin is in logical Hi or Lo state, respectively.

Based on TDI-related primitives, it’s possible to define one more:
#define JTAG TDI ASSIGN(i)if (i&0x0001) JTAG TDI SET; else JTAG TDI RESET

This primitive asserts the TDI signal for all odd arguments and deasserts it for all even arguments.

3.2 Executing JTAG Instructions

The JTAG port contains a 4-bit wide Instruction Register. Instructions are transferred into this register during
the Shift-IR state of the TAP state machine and are decoded by entering the Update-IR state of the TAP. The
JTAG controller executes the last decoded instruction until a new one is entered and decoded. The instructions
as well as data are entered serially through the TDI pin, LSB first.

The JTAG instructions and their binary codes are shown in Table 3-1. Only a subset of these JTAG
instructions will be required for programming the on-chip Flash memories as described later in this
Application Note.

Table 3-1. JTAG Instructions

Code (binary) Instruction
0000 EXTEST
0001 SAMPLE/PRELOAD
0010 IDCODE
0011 EXTEST_PULLUP
0100 HIGHZ
0101 CLAMP
0110 ENABLE_ONCE
0111 DEBUG_REQUEST

Programming On-Chip Flash Memories with JTAG/OnCE, Rev. 1

6 Freescale Semiconductor
Preliminary

Executing JTAG Instructions

Table 3-1. JTAG Instructions (Continued)

Code (binary) Instruction

1111 BYPASS

While a new instruction is shifted in through the TDI pin, the TDO pin outputs status information. The status
has the following 4-bit format:

0s1 | 0S0 0 1

The LSB is shifted out first. The OS0 and OS1 bits indicate the current state of the device; see Table 3-2.

Table 3-2. JTAG Status

0S1 | 0SO Description
0 0 Normal operation: device core executing instructions or in reset
0 1 Stop/Wait: device core in Stop or Wait Mode
1 0 Busy: device is performing external or peripheral access (wait states)
1 1 Debug: device core halted and in Debug Mode
IDCODE Instruction

The IDCODE instruction enables the 32-bit wide ID Register between TDI and TDO. It is provided as a public
instruction that allows the determination of the manufacturer, part number, and version of a component
through the TAP.

The instruction is not really necessary for accessing the Flash memories, but is useful for determining the part
number and version of the attached chip.

DEBUG_REQUEST Instruction

The DEBUG REQUEST instruction asserts a request to halt the core for entry to Debug Mode. It is typically
used in conjunction with ENABLE ONCE to perform system debug functions. It is provided as a public
instruction. When the DEBUG_REQUEST instruction is invoked, the TDI and TDO pins are connected to the
bypass register.

ENABLE_ ONCE Instruction

The ENABLE ONCE instruction enables the JTAG port to communicate with the OnCE state machine and
registers. It is provided to allow the user to perform system debug functions. When the ENABLE ONCE
instruction is invoked, the TDI and TDO pins are connected directly to the OnCE registers. The particular
OnCE register connected between TDI and TDO is selected by the OnCE state machine and the OnCE
instruction being executed. All communication with the OnCE instruction controller is done through the Data
path of the JTAG state machine.

To execute the JTAG instruction, bring the TAP state machine to the Shift-IR phase, shift in the new
instruction and bring the TAP state machine to the Update-IR state to decode the new instruction.
Implementation of this algorithm is demonstrated in Code Example 3-1.

Programming On-Chip Flash Memories with JTAG/OnCE, Rev. 1

Freescale Semiconductor 7
Preliminary

3
4

y
A

Aigorithms for Accessing the JTAG Port

Code Example 3-1. Execution of JTAG Instruction

/* Execution of Jtag instruction */
/* expects Test-Logic-Reset or Run-Test-Idle state on entry */
/* leaves the TAP in Run-Test-Idle on exit */
/* returns Jtag status */
int jtag instruction exec(int instruction) {
int 1i,status=0;
JTAG _TCK_SET;
JTAG_TMS_RESET; /* Go to Run-Test-Idle */
JTAG_TCK RESET;
JTAG_TCK SET;
JTAG _TMS_SET; /* Go to Select-DR-Scan */
JTAG _TCK RESET;
JTAG _TCK_SET;
JTAG _TCK_RESET;
JTAG _TCK_ SET; /* Go to Select-IR-Scan */
JTAG_TMS_RESET; /* Go to Capture-IR */
JTAG_TCK_RESET;
JTAG TCK_SET;
JTAG _TCK_RESET;
JTAG_TCK_SET; /* Go to Shift-IR */
JTAG_TCK_ RESET; /* TAP is now in Shift-IR state */
for (i=0;i<4;i++) {
JTAG_TDI_ASSIGN(instruction);
instruction>>=1;
if (i==3) JTAG_TMS_ SET; /* Go to Exitl-IR */
JTAG_TCK_SET;
status>>=1;
status|=JTAG TDO VALUE<<3;
JTAG TCK RESET;
}
JTAG_TCK_SET; /* Go to Update-IR */
JTAG_TMS_RESET; /* Go to Run-Test-Idle */
JTAG_TCK RESET;
JTAG_TCK SET;
return (status) ;

}
3.3 Transferring Data To and From the JTAG Port

After storing a JTAG instruction in the IR register and executing it, it’s usually necessary to transfer data
associated with the instruction. Data is shifted in and out of the selected JTAG register or OnCE module in the
Shift-DR state of the TAP state machine. The data is then captured in the selected register by entering the
Update-DR state of the TAP. The length of the data register depends on the JTAG instruction being executed.
The function in Code Example 3-2 enables transfer of variable length data.

Code Example 3-2. Transfer of Data In and Out of the JTAG Data Registers

/* Shifts up to 32 bits in and out of the jtag DR path */
/* expects Test-Logic-Reset or Run-Test-Idle state on entry */
/* and leaves the TAP in Run-Test-Idle on exit */
unsigned long jtag data shift (unsigned long data, int bit count) {
int i; unsigned long result=0;
JTAG TCK_SET;
JTAG_TMS_RESET; /* Go to Run-Test-Idle */
JTAG _TCK_RESET;
JTAG_TCK_SET;
JTAG _TMS_SET; /* Go to Select-DR-Scan */

Programming On-Chip Flash Memories with JTAG/OnCE, Rev. 1

8 Freescale Semiconductor
Preliminary

Preparing for OnCE Module Access

JTAG_TCK RESET;
JTAG_TCK_ SET;
JTAG_TMS_RESET; /* Go to Capture-DR */
JTAG_TCK_RESET;
JTAG_TCK SET;
JTAG_TCK RESET;
JTAG_TCK_ SET; /* Go to Shift-DR */
JTAG_TCK RESET; /* TAP is now in Shift-DR state */
for (i=0;i<bit count;i++) {
JTAG_TDI_ASSIGN (data) ;
data>>=1;
if (i==(bit_count-1)) JTAG TMS_SET; /* Go to Exitl1-DR */
JTAG _TCK_SET;
result>>=1;
result|=((unsigned long int)JTAG TDO VALUE) << (bit count-1);
JTAG_TCK_RESET;
}
JTAG _TCK SET; /* Go to Update-DR */
JTAG_TMS RESET; /* Go to Run-Test-Idle */
JTAG_TCK RESET;
JTAG_TCK SET;
return (result) ;

}

3.4 Preparing for OnCE Module Access

The algorithms needed to operate the JTAG port have now been created. The function in Code Example 3-3
reads the JTAG ID of the target device, issues the DEBUG _REQUEST and ENABLE ONCE commands and
waits until the core enters the Debug Mode. After execution of the ENABLE ONCE command,
communication with the OnCE module can begin.

Code Example 3-3. Preparation for OnCE Access

/* Brings target into the Debug mode and enables the OnCE interface */
void init target (void) {

int status,i;

unsigned long int result;

status=jtag instruction exec (0x2); /* IDCODE */

printf ("IDCode status: $#x\r\n",status);

result=jtag data shift(0,32);

printf ("Jtag ID: $#1lx\r\n",result);

status=jtag instruction exec (0x7) ; /* Debug Request */
printf ("Debug Request status: %$#x\r\n", status);
while (jtag instruction exec(0x6) !=0xd); /* Enable OnCE, wait */

4. Algorithms for Communication with the OnCE Module

While the JTAG port provides board test capability, the OnCE module provides emulation and debug
capabilities. The OnCE module permits full-speed, non-intrusive emulation on a target system.

The JTAG and OnCE blocks are tightly coupled. The JTAG port is the master and must enable the OnCE
module before the OnCE module can be accessed.

Programming On-Chip Flash Memories with JTAG/OnCE, Rev. 1

Freescale Semiconductor 9
Preliminary

Aigorithms for Communication with the OnCE Module

The OnCE module has its own instruction register (OCMDR) and instruction decoder. After a command is
latched into the OCMDR, the command decoder implements the instruction through the OnCE state machine
and control block. There are two types of commands:

1. Read commands, causing the chip to deliver required data

2. Write commands, transferring data into the chip, then writing it in one of the on-chip resources

The commands are eight bits long and have the format displayed in Table 4-1. The lowest five bits, RSO - RS4,
identify the source for the operation, described in Table 4-2. Bits 5, 6, and 7 contain the exit bit, EX, the
execute bit, GO, and the read/write bit, R/W.

Table 4-1. OnCE Command Format

7 6 5 4 3 2 1 0

RIW GO EX RS4 RS3 RS2 RS1 RSO

Table 4-2. OnCE Register Selection Encoding

RS4 - RS0 Register or Action Selected Available in Type of Access
Mode Allowed
00000 No register selected All N/A
00001 OnCE Breakpoint and Trace Counter (OCNTR) All Read/Write
00010 OnCE Debug Control Register (OCR) All Read/Write
00100 OnCE Breakpoint Address Register (OBAR) All Write
01000 OnCE PGDB Bus Transfer Register (OPGDBR) Debug Read
01001 OnCE Program Data Bus Register (OPDBR) Debug Read/Write
01010 OnCE Program Address Register—Fetch cycle (OPABFR) FIFO halted Read
01100 Clear OCNTR All N/A
10000 OnCE Program Address Register—Execute cycle (OPABER) FIFO halted Read
10001 OnCE Program address FIFO (OPFIFO) FIFO halted Read
10011 OnCE Program Address Register—Decode cycle (OPABDR) FIFO halted Read

When the exit bit, EX, is set, the device core will exit the Debug processing state after the command is
executed; otherwise, the Debug state is preserved. The execute bit, GO, signals that the device core instruction
should be executed. The read/write bit, R/W, indicates whether a read or write operation should be performed
with the register selected by the RS bits.

It is possible to define a new macro for executing OnCE commands:

Programming On-Chip Flash Memories with JTAG/OnCE, Rev. 1

10 Freescale Semiconductor
Preliminary

Instruction Set Supported by the OnCE Module

#define once instruction exec(instruction, rw, go, ex)
jtag data shift (instruction| (ex<<5) | (go<<6) | (rw<<7), 8)

Once the command is transferred into the OnCE module, it’s necessary to read or write contents of the selected
register. As with the JTAG instructions, only a subset of OnCE commands is needed when programming the
on-chip Flash memories. In fact, only two OnCE commands will be used: Write to Program Data Bus Register
(OPDBR) and Read from OnCE PGDB Bus Transfer Register (OPGDBR). The first command executes
individual instructions on the device core and the second command transfers data out of the device core. As
only access to a 16-bit register is required, use very simple macros:

#define once data write(data)jtag data shift (data,16)
#define once data read()jtag data shift(0,16)

4.1 Executing One-Word Instructions

To force execution of a one-word instruction from the Debug Mode, write the OPDBR with the opcode of the
instruction to be executed and set GO = 1 and EX = 0. The instruction is then executed. During instruction
execution, the OS status bits in the JTAG status equal 00. Upon completion, OS1:0S0 = 11, the Debug Mode.
Typically, the period of time OS1:0S0 = 00 is unnoticeably small.

To define a new macro for executing one-word instructions:

#define once execute instructionl (opcode)
once instruction exec(0x09,0,1,0); once data write (opcode)

4.2 Execution Two-Word Instructions

To force execution of a two-word instruction from the Debug Mode, write the OPDBR with the opcode of the
instruction to be executed and set GO = EX = 0. Next, write OPDBR with the operand with GO =1 and EX =
0; the instruction then executes. As in the one-word case, JTAG status can be polled to examine the execution.

#define once execute instruction2 (opcode, operand)
once_ instruction exec(0x09,0,0,0);
once data write (opcode) ;
once_ instruction exec(0x09,0,1,0);
once data write (operand)

4.3 Instruction Set Supported by the OnCE Module
The set of supported instructions for execution from the Debug Mode, GO, but not EX, is:

* JMP #xxxx

* MOVE #xxxx,register

* MOVE register,x:0xFFFF

* MOVE register,register

* MOVE register,x:(Rx)+

* MOVE x:(Rx)+,register

* MOVE register,p:(Rx)+

* MOVE p:(Rx)+,register
Execution of other device instructions is possible, but only the preceding set are specified and supported.
Three-word instructions cannot be executed from Debug Mode.

Programming On-Chip Flash Memories with JTAG/OnCE, Rev. 1

Freescale Semiconductor 11
Preliminary

3
4

'
A

Aigorithms for Accessing the Flash Memory

4.4 Reading Data Out of the Device Core

As indicated in the set of supported instructions, it is possible from Debug Mode to write into the OPGDB
Register located at address x:0xFFFF. Contents of this register can be then transferred out of the device using
the Read from OnCE PGDB Bus Transfer Register command.

#define once opgdbr read()
(once_instruction exec(0x08,1,1,0), once data read())

4.5 Instruction Execution - Examples

Because there is such a high number of possible register combinations, only a subset of all instructions
supported in Debug Mode are listed here:

/* NOP */
#define once nop () once_execute instructionl (0xe040)
/* MOVE <datas>,Y0 */
#define once move data to yO(data) once execute instruction2 (0x87cl,data)
/* MOVE <datas>,R0 */
#define once move data to r0(data) once execute instruction2 (0x87d0,data)
/* MOVE YO0,x:address */ /* NOTE: only address OxFFFF is supported */
#define once move y0 to xmem(address)

once_ execute instruction2 (0xdl54,address)
/* MOVE x: (RO)+,Y0 */

#define once move xr0 inc to yO() once_execute instructionl (0x£100)
/* MOVE YO, x: (RO)+ */

#define once move y0 to xr0 inc() once_execute instructionl (0xd100)
/* MOVE RO,YO */

#define once move r0 to yO0() once_execute instructionl (0x8110)
/* MOVE OMR,YO */

#define once move omr to yO0() once_execute instructionl (0x8118)
/* MOVE YO,OMR */

#define once move y0 to omr () once_execute instructionl (0x8881)
/* MOVE YO,p: (RO)+ */

#define once move y0 to pr0 inc() once_execute instructionl (0xel00)
/* MOVE p: (RO)+,Y0 */

#define once move prO0 inc to yO0() once_execute instructionl (0xel20)

5. Algorithms for Accessing the Flash Memory

The Flash memory blocks present on the 56F80x devices are erased and programmed using dedicated Flash
Interface Units (FIU). Each of the Flash memories has its own FIU; placement of the respective FIUs in the
device’s memory map can be found in References, item [1]. The algorithms presented in this section use
“intelligent”, rather than “dumb”, erase and programing; see References, item [1] for details.

The FIUs are accessed by executing instructions on the device core in Debug Mode.

5.1 Timing of Flash Program/Erase

Timing of the Flash program and erase cycles is governed by a set of timing registers which are part of the FIU.
The timebase for all the timings is created by the IPBus Clock of the chip, which is dependent on the On-Chip
Clock Synthesis (OCCS) block set-up. After chip Reset or power-up, the IPBus Clock receives half of the
frequency present on the XTAL pin of the chip. In the usual set-up, the chip is provided with an SMHz crystal
and therefore the IPBus Clock equals 4MHz after power-up or Reset.

Programming On-Chip Flash Memories with JTAG/OnCE, Rev. 1

12

Freescale Semiconductor
Preliminary

Timing of Flash Program/Erase

The reset values of the FIU timing registers are optimized for full-speed operation of the chip when the IP Bus
Clock receives 40MHz. To prevent overstress and possible permanent damage of the Flash memories, either
the OCCS unit must be reprogrammed to supply 40MHz to the IP Bus Clock, or the timing registers need to be
reprogrammed with new values suitable for the lower IP Bus Clock frequencies.

The algorithm for initialization of the FIU timing registers is shown in Code Example 5-1.

Code Example 5-1. Initialization of FIU Timing Registers

/* initialises the FIU Timing registers */

void once init flash iface(unsigned int fiu address) {
unsigned int 1i;
printf ("Initialising FIU at address: %#x\r\n",address);

once move data to r2(address) ; /* MOVE #<base address>,R2 */
once move data_ to_y0(0); /* MOVE #0,Y0 */
once move y0 to xr2 inc(); /* clear FIU CNTL register */
once move yO0 to xr2 inc(); /* clear FIU PE register */
once move y0 to xr2 inc(); /* clear FIU EE register */
once move data to r0(fiu address+8);/* MOVE #<fiu address+8>,R0*/
once move data to yO(FIU CLKDIVISOR);/* f£ill timing regs */

once move y0 to xr0 inc();
once_move data to y0(FIU TERASEL) ;
once move y0 to xr0 inc();

once move data to yO0(FIU TMEL) ;
once move y0 to xr0 inc();

once move data to yO0(FIU TNVSL) ;
once move y0 to xr0 inc();

once _move data to yO0(FIU TPGSL) ;
once move y0 to xr0 inc();

once move data to yO0(FIU TPROGL) ;
once move y0 to xr0 inc();

once move data to yO0(FIU TNVHL) ;
once move y0 to xr0 inc();

once _move data to yO0(FIU TNVHL1) ;
once move y0 to xr0 inc();

once move data to yO0(FIU TRCVL) ;
once move y0 to xr0O inc();

printf ("FIU (%#x) initialisation done.\r\n", fiu address);

Values for the timing registers at 40MHz and 4MHz of IPBus Clock frequencies are shown in Table 5-1.

Table 5-1. Values of FIU Timing Registers

Register Reset Values Values for Time Corresponding
(40MHz) 4MHz to the Reset Value
FIU_CLKDIVISOR 15 15 N/A
FIU_TERASEL 15 2 26.2ms
FIU_TMEL 31 6 52.4ms
FIU_TNVSL 255 26 6.4ps
FIU_TPGSL 511 51 12.8us

Programming On-Chip Flash Memories with JTAG/OnCE, Rev. 1

Freescale Semiconductor 13
Preliminary

Aigorithms for Accessing the Flash Memory

Table 5-1. Values of FIU Timing Registers

Register Reset Values Values for Time Corresponding
(40MHz) 4MHz to the Reset Value
FIU_TPROGL 1023 102 25.6ps
FIU_TNVHL 255 26 6.4us
FIU_TNVHL1 4095 410 102.4ps
FIU_TRCVL 63 6 1.6us

5.2 Mass Erasing the Flash Memory

The unprogrammed (erased) state of any Flash memory bit is 1. Individual bits can be programmed to the 0
state at any time; however, in order to return even a single bit to the erased state, the whole memory page
containing the bit and consisting of 256 memory words must be erased. Instead of erasing only one memory
page, the FIU offers the possibility of erasing the whole memory in a single erase operation, called mass erase.

To perform the Flash mass erase operation, follow these steps:

* Enable erasing by setting the IEE bit and set the page number in the FIU EE register to 0 Exception:
when mass erasing bootflash of the 56F807, set the page to 0x78.

* Set the MASI bit in the FIU_CNTL register

* While the IEE bit is set, write any value to an address into the page 0 (0x78). This write to the Flash
memory map will start the FIU internal state machine, running the Flash through its erase process

* Do not attempt to access Flash again until the BUSY signal clears in the FIU _CNTL register
* Ensure that the FIU CNTL and FIU_EE registers are cleared when finished

The algorithm for performing the mass erase operation is shown in Code Example 5-2.

Code Example 5-2. Flash Memory Mass Erase

/* Performs mass erase */
void once flash mass erase (unsigned int fiu address, unsigned int addr) {
once_move data to ro0(addr) ;

/* MOVE #<address>,R0
once move data to rl(fiu address+2);/* MOVE #<base address+2>,R1 */
#ifdef DSP56F807

*/

807 BFIU: see [1.] p.5—15*/
MOVE #<ee>, YO */
MOVE #<ee>, YO */
MOVE #<ee>, YO0 */
MOVE YO0,x:R1 (FIU_EE) */
MOVE #<base address>,R1 */
MOVE #<cntls>, YO */
MOVE YO, x:R1 (FIU_CNTL) */
MOVE YO0,x:R0 (wr x:addr) */
MOVE YO0,x:R0 (wr p:addr) =/

once move data to rl(fiu address);/* MOVE #<fiu address>,R1 */

if (fiu address==BFIU) /*

{once move data to y0(0x4078);} /*
else

{once move data to yO0(0x4000);} /*
#else
once move data to_y0(0x4000) ; /*
#endif
once move y0 to xrl inc(); /*
once move data to rl(fiu address); /*
once_move_data to y0(0x0002) ; /*
once move y0 to xrl inc(); /*
if (fiu_address==DFIU)

{once move y0 to xr0 inc();} /*
else

{once move y0 to pr0 inc();} /*
do {

once nop () ; /*

NOP

Programming On-Chip Flash Memories with JTAG/OnCE, Rev. 1

*/

14

Freescale Semiconductor

Preliminary

Programming the Flash Memory

once move xrl inc to yO0(); /* MOVE x:R1,YO */

once move y0 to xmem(O0xffff); /* MOVE YO, <OPGDBR> */

} while (once opgdbr read()&0x8000);/* repeat while BUSY is set */

once move data to rl(fiu address+2);/* MOVE #<base address+2>,R1 */
(

once_move_data_to_r0(fiu address); /* MOVE fi<base address>,R0 */
once move data_ to_y0(0); /* MOVE #0,Y0 */
once move y0 to xr0 inc(); /* MOVE YO,x:R0O (FIU CNTL) */
once move y0 to xrl inc(); /* MOVE YO0,x:R1 (FIU EE) */

printf ("Flash (%#x) mass erase done.\r\n", fiu address);

}
5.3 Programming the Flash Memory

The “intelligent” programming algorithm allows for only one word at a time to be programmed into the Flash
memory. The “dumb” algorithm allows for up to 32 words to be programmed at once and is therefore faster.
However, this mode is sensitive to the exact timing of all the operations and the Flash unit can easily be
overstressed.

To perform the intelligent one-word programming operation, follow these steps:

* Enable programming by setting the IPE bit and row number in the FIU PE register. To calculate the
row number, use the following algorithm:

— Target Address AND 0x7FFF divided by 0x20 equals ROW
— Or, put differently, set the MSB of the target address to zero and right shift the result five bits

* Write the value desired to the proper word in the Flash memory map. A single location in the Flash
may map to different locations in the memory map based upon the mode selected on startup; the FIU
will adjust accordingly. While the IPE bit is set, this write to the Flash memory map starts the internal
state machine to run the Flash through its programming process.

* Do not attempt to access the Flash again until the BUSY signal clears in the FIU _CNTL register

* When programming words has been completed, remember to clear the IPE bit in the FIU PE register

An algorithm for performing the one word programming operation and verification is shown in Code
Example 5-3.

Code Example 5-3. Flash Memory Programming

/* Programs and verifies one word of internal flash memory */
int once_flash program lword(unsigned int fiu address, unsigned int addr, unsigned
int data) {

unsigned int 1i;

once move data to rl(fiu address+1l);/* MOVE #<fiu address+1>,R1 */

once move data to r0(addr) ; /* MOVE #<address>,R0O */
once_move data to y0(0x4000 + ((addr >> 5) & 0x03ff));

/* MOVE #<pe>, Y0 */
once move y0 to xrl inc(); /* MOVE Y0,x:R1 (FIU PE) */
once move data to yo0(data) ; /* MOVE #<data>, YO0 */
if (fiu_address==DFIU)

{once move y0 to xr0 inc();} /* MOVE YO0,x:R0 (x:addr) */
else

{once move y0 to pr0 inc();} /* MOVE YO,x:R0 (p:addr) */
once _move data to_ ro0(addr) ; /* MOVE #<address>,R0O */
do {

once move data to rl(fiu address);/* MOVE #<fiu address>,R1 */

once nop () ; /* NOP */

once move xrl inc to yO0(); /* MOVE x:R1,Y0 */

Programming On-Chip Flash Memories with JTAG/OnCE, Rev. 1

Freescale Semiconductor 15
Preliminary

conclusion

once move y0 to xmem(0xffff); /* MOVE YO, <OPGDBR> */
} while (once opgdbr read()&0x8000);/* repeat while BUSY is set */
once move data to rl(fiu address+1l) ;/* MOVE #<base address+1>,R1 */

once move data to y0(0); /* MOVE #0,Y0 */
once move y0 to xrl inc(); /* MOVE YO0,x:R1 (FIU PE) */
if (fiu_address==DFIU)
{once move xr0 inc to y0();} /* MOVE x:R0,Y0 (x:addr) */
else
{once move pr0 inc to yo0();} /* MOVE YO0,x:R0 (p:addr) */
once move yO0 to xmem(Oxffff) ; /* MOVE YO, <OPGDBR> */
if ((i=once opgdbr read())!=data) { /* Read OPGDBR register */
printf ("Pgm error @ $#x, wr: $%#x, rd: $#x\r\n", addr, data, 1i);
return(1l) ;
}
return(0) ;

}

6. Conclusion

In Sections 3., 4., and 5., a whole library of functions and macros was built, which enables erasing,
programming and verifying contents of the internal Flash memories over the JTAG/OnCE interface. Since the
JTAG signals can be as fast as SMHz, programming time below 5 seconds can be achieved with the 56F805.
Therefore, the programming technique described here is suitable for even a high-volume production
environment.

]. References

[1.] 56F80x 16-bit Digital Signal Processor, User’s Manual, DSP56F801-7UM, Rev. 3.0, Freescale
Semiconductor, Inc.

[2.] 56F800 Flash Programming via JTAG/OnCE using the Parallel Command Converter, Rev. 0.4, Freescale
Semiconductor, Inc.

Programming On-Chip Flash Memories with JTAG/OnCE, Rev. 1

16 Freescale Semiconductor
Preliminary

Programming the Flash Memory

Programming On-Chip Flash Memories with JTAG/OnCE, Rev. 1

Freescale Semiconductor 17
Preliminary

-

Rrererences

Programming On-Chip Flash Memories with JTAG/OnCE, Rev. 1

18 Freescale Semiconductor
Preliminary

Programming the Flash Memory

Programming On-Chip Flash Memories with JTAG/OnCE, Rev. 1

Freescale Semiconductor 19
Preliminary

P

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center

2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong

+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center
P.O. Box 5405

Denver, Colorado 80217

1-800-441-2447 or 303-675-2140

Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

-

>~ freescale"
semiconductor

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor,
Inc. All other product or service names are the property of their respective owners.

This product incorporates SuperFlash® technology licensed from SST.
© Freescale Semiconductor, Inc. 2005. All rights reserved.

AN1935
Rev. 1
11/2005

	1. Introduction
	2. JTAG Port and OnCE Module
	2.1 General Description
	2.2 JTAG/OnCE Pins
	2.3 JTAG Port Architecture, Timing of Signals and State Machine

	3. Algorithms for Accessing the JTAG Port
	3.1 Primitives for Accessing the JTAG Pins
	3.2 Executing JTAG Instructions
	3.3 Transferring Data To and From the JTAG Port
	3.4 Preparing for OnCE Module Access

	4. Algorithms for Communication with the OnCE Module
	4.1 Executing One-Word Instructions
	4.2 Execution Two-Word Instructions
	4.3 Instruction Set Supported by the OnCE Module
	4.4 Reading Data Out of the Device Core
	4.5 Instruction Execution - Examples

	5. Algorithms for Accessing the Flash Memory
	5.1 Timing of Flash Program/Erase
	5.2 Mass Erasing the Flash Memory
	5.3 Programming the Flash Memory

	6. Conclusion
	7. References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

