
Freescale Semiconductor
Application Note

AN1838
Rev. 1, 11/2004

CONTENTS

1 Basics of the StarCore SC140/SC1400
Architecture ...2

1.1 Using Data Registers D8–D15 and
Address Registers R8–R152

1.2 Specific Combinations of Instructions3
1.3 Predication .. 3
2 Optimizing for Maximum Speed4
3 Optimizing for Minimal Code Size4
4 Optimizing Code for a Combined Goal5
4.1 Classifying the Application’s Code Sections5
4.2 Optimizing Performance-Critical Code Sections6
4.3 Optimizing Non-Critical Sections6
5 Test Case: GSM Enhanced Full Rate Voice Codec 6
5.1 Classifying EFR Code Sections 6
5.2 Optimization Approaches7
5.3 EFR Data Points .. 7
5.4 Conclusions ...9

Speed and Code Size Trade-Offs on
StarCore™-Based DSPs
By Zvika Rozenshein, Dror Halahmi, Arnon Mordoh, and Yuval Ronen
This document discusses the architectural characteristics that
prevent the full, simultaneous realization of both execution-
speed and code-size goals. Examples are provided to show how
size is traded for speed on signal processing kernels. Other
examples show how code size can be minimized when speed
requirements are not an issue.

When implementing communication protocols specified in
C programs, especially on an architecture such as that of the
StarCore SC140/SC1400 cores, developers can efficiently use C
compilers for product development. Compilers add yet another
dimension to the necessary trade-off decisions. This dimension
is also covered in the report.
© Freescale Semiconductor, Inc., 2000–2004. All rights reserved.

Basics of the StarCore SC140/SC1400 Architecture
1 Basics of the StarCore SC140/SC1400 Architecture
On the StarCore SC140 DSP architecture, there is a trade-off between optimizing code for maximum execution
speed and optimizing code for maximum program code density. In previous-generation DSP architectures,
optimizing code for maximal speed would often also yield favorable code size. On the SC140 core, however, these
two optimization goals may result in two very different code implementations.

For any given application, one goal can rarely be pursued at the expense of the other. Instead, we must strike a
balance that meets required speed goals and acceptable code size. We present a test case (GSM EFR) to
demonstrate achievable speed and size points achieved by combining hand-coded assembly and compiled C code.
The methods and results presented can be of use in making trade-off decisions and in selecting portions of an
application to be coded in assembly (versus C) as well as portions to be optimized for speed (rather than for size).
Based on this test case, code-size estimates for other applications can be made. The accuracy of such estimates
depends on the degree of similarity between the application at hand and the test cases presented here. This section
describes the architectural properties of the SC140 core that have an impact on the speed-versus-size trade-off.

The SC140 core has four data arithmetic units and two address generation units that can operate in parallel,
providing instruction-level parallelism opportunities on embedded, power-efficient signal processors. The high
degree of parallel computation comes at a cost, however: the larger the number of operations to be performed in
parallel, the larger the number of machine words required to specify the operations for execution. At one extreme,
with only one instruction to be computed in a given cycle, a single operation can be encoded efficiently in a single
16-bit word. At the other extreme, when all computational units are employed, up to eight 16-bit words may be
required to encode these operations. Example 1 illustrates a simple case where the encoding of two instructions
specified for parallel execution consumes exactly the same number of words as the two instructions would if they
executed sequentially.

Example 1. Instructions 1 and 2 Take 4 Bytes, Regardless of Parallelism

P:00000000 51 add d0,d1,d2 ; Instr. 1
 6D
P:00000002 18 move (r0)+,d0 ; Instr. 2
 50
P:00000004 51 add d0,d1,d2 & move (r0)+,d0 ; Instr 1,2 in parallel
 2D
 18
 50

However, the size of the instruction encoding may depend on the context in which the instruction is executed, as
discussed in the following subsections.

1.1 Using Data Registers D8–D15 and Address Registers R8–R15
When one or more of data registers (D8–D15) and address registers (R8–R15) are used in an execution set (that is,
the set of instructions specified to be executed in parallel), then the addition of one or two 16-bit Prefix words is
necessary to encode the execution set.

Example 2. Instruction That Uses r8 Instead of r0 Is Larger by 4 Bytes

P:00000016 18 move (r0)+,d0 ; Instruction uses r0
 50
P:00000018 80 move (r8)+,d0 ; Instruction uses r8
 34
 00
 A0

18
 50
Speed and Code Size Trade-Offs on StarCore™-Based DSPs, Rev. 1

2 Freescale Semiconductor

Basics of the StarCore SC140/SC1400 Architecture
Using these 16 registers greatly boosts performance, since the registers reduce the bottleneck created if all
execution units process data using only 8 data registers and 8 address registers. The prefix words required by the
use of these registers make it obvious that optimizing code to improve speed (by using the registers) comes at the
expense of code size.

1.2 Specific Combinations of Instructions
Placing two instructions in a single execution set for parallel execution often results in an encoding that is the same
size as the encoding for the instructions when they are placed sequentially. This property does not hold true for all
combinations of instructions. For other combinations, prefix words are needed to place these instructions in the
same execution set, as shown in Example 3.

Example 3. Instructions 1 and 2 Take 6 Bytes When Sequential and 8 Bytes When Parallelized

P:00000000 08 move var,d0 ; Instr. 1
 10
 00
 80
P:00000004 18 adda r0,r1 ; Instr. 2
 E9
P:00000006 C0 move var,d0 & adda r0,r1 ; Instr 1,2 in parallel
 96
 18
 E9
 08
 10
 00
 80

Parallelizing such instruction combinations naturally increases application performance, but the prefix words
required to encode this parallelism expand the code size .

1.3 Predication
Predication enables the conditional execution of instructions without the use of branch instructions, which are
costly because of their effects on the execution pipeline. Predication is used in SC140 code to specify conditions
within the execution set. The entire execution set can execute conditionally based on a previously computed
condition. Part of the execution set can execute conditionally, while the rest of the execution set executes regardless
of the condition.

Example 4. Making an Instruction Conditional Increases Its Size by 2 Bytes

P:00000000 51 add d0,d1,d2
 6D
P:00000002 C2 ift add d0,d1,d2
 92
 51
 6D

Using predication in an execution set requires adding Prefix words to the execution set. In some cases, predicated
code would be no larger than code that uses branches, but in some cases predication results in larger code size.

Note: The maximum number of prefix words in an execution does not exceed two (for a total of
32 bits added). This rule applies regardless of the number of preceding cases that may
apply to the execution set.
Speed and Code Size Trade-Offs on StarCore™-Based DSPs, Rev. 1

Freescale Semiconductor 3

Optimizing for Maximum Speed
2 Optimizing for Maximum Speed
Programs coded to use all SC140 units (four data arithmetic units and two address generation units) can achieve
high execution speeds. The SC140 core can speed up execution by a factor of four or more. Speed-ups of over four
times are possible because of the rich instruction set and a high degree of orthogonality in the programming model.
Table 1 presents speed-ups for various DSP kernels. The kernels are optimized for execution speed, minimizing
the number of cycles required to perform the computation.

The SC140 core can process these kernels approximately three to seven times faster than the DSP56600, but such
high speeds increase the code size by 40– 600 percent. Notice that the degree of speed-up is a relatively weak
predictor of code-size increase, as is demonstrated by the complex FIR and the Biquad IIR results. In practical
applications, such kernels often consume a large percentage of execution time, but do not dominate the size of the
application. Thus, typical speed-ups for full applications are lower than those achieved for the kernels, and typical
code size increases are much lower than those in Table 1.

3 Optimizing for Minimal Code Size
When code is optimized to minimize its size, a combination of SC140 architectural properties result in code that is
significantly smaller than is achievable on comparable DSPs. Among the properties that contribute to code-size
efficiency are the basic 16-bit instruction word, the orthogonality of the instruction set, the wealth of addressing
modes, and the ability to perform arithmetic operations in the address generation units. Table 2 compares the code
size obtained by compiling a set of code-size benchmarks for various DSPs. The code in these benchmarks is
characterized by the following:

• Data types. All arithmetic is performed on integers. Fixed-point (saturating) and floating-point types
are not used.

• Control flow. Most of the code enforces sequential computation. Chains of if-then-else statements are
frequently used, while loops are used infrequently. Calls to subroutines are embedded in the code.

• Memory accesses. Most accesses are random. Relatively few of the accesses (compared to DSP
kernels) are part of progressions through arrays. Accesses to memory are with a variety of data widths
(8-, 16-, and 32-bit accesses) in addition to numerous bit-field operations.

• Practicality. Most of the benchmarks are real, functional applications.

These benchmarks are representative of sections in communication protocols that are not performance sensitive.
These sections are sometimes referred to as control code.

Table 1. DSP Kernel Speed-ups

Kernel Parameters

Ratio of DSP56600 to
StarCore SC140

StarCore SC140 DSP56600

Speed Size Cycles Bytes Cycles Bytes

FIR N=12, T=12 1:5.33 1:5.05 46 106 245 21

Complex FIR N=12, T=12 1:3.38 1:1.39 204 46 689 33

Lattice FIR N=12, T=12 1:5.92 1:3.09 92 102 545 33

Lattice IIR N=12, T=10 1:6.92 1:5.71 84 240 581 42

Biquad IIR N=12, B=3 1:3.35 1:3.39 91 122 305 36

FFT 256 points 1:6.76 1:2.83 1614 348 10907 123
Speed and Code Size Trade-Offs on StarCore™-Based DSPs, Rev. 1

4 Freescale Semiconductor

Optimizing Code for a Combined Goal
All benchmarks were compiled to minimize code size. As Table 2 shows, the SC140 architecture implements
control code at a code size that is significantly smaller than for other DSPs. DSP applications are rarely composed
only of code that exhibits the characteristics in our benchmarks. Rather, they are a combination of such code with
signal processing code that heavily relies on fixed-point arithmetic, loop structures, systematic progressions
through memory arrays, and mostly 16- and 32-bit accesses to memory. Consequently, for a full DSP application,
the ratios between the SC140 code size and the code size for implementing the same application on a DSP with a
single arithmetic unit is lower than ratios presented here.

4 Optimizing Code for a Combined Goal
Applications are not often optimized for a single goal. Rather, they are optimized to meet specific performance
(speed) goals while also minimizing the code size required to reach those goals. This section discusses approaches
to optimizing applications for a combination of both speed and size goals.

4.1 Classifying the Application’s Code Sections
In many DSP applications, 20 percent of the application code contributes as much as 80 percent to the overall
execution time of the application, and the remaining 80 percent of the code consumes only 20 percent of the total
execution time. This observation leads to the following approach to porting an application from its standard
implementation in C to the StarCore SC140 architecture:

1. Profile the application. Identify the time-consuming performance-critical code sections.

2. Optimize the performance-critical sections for maximum speed. Refine the classification in Step 1, if
needed.

3. Optimize the remaining, non-critical sections for minimal size.

Table 2. Code-Size Benchmarks

Benchmark

StarCore
SC140

320C62XX Ratio of
SC140 to
320C62xx

DSP16000 Ratio of
SC140 to

DSP 16000

320C54x Ratio of
SC140 to
320C54x Bytes Bytes Bytes Bytes

auto 5926 8572 1:1.45 8438 1:1.42 6904 1:1.17

blit 452 1368 1:3.03 592 1:1.31 1032 1:2.28

compress 3154 5028 1:1.59 3670 1:1.16 3480 1:1.10

des 2188 4036 1:1.84 2342 1:1.07 2970 1:1.36

dhry21 1378 2000 1:1.45 1818 1:1.32 1492 1:1.08

engine 772 1264 1:1.64 1606 1:2.08 606 1:0.78

eval2 1914 3340 1:1.75 4548 1:2.38 1784 1:0.93

fir_int 356 564 1:1.58 748 1:2.10 386 1:1.08

g3fax 676 1208 1:1.79 794 1:1.17 790 1:1.17

jpeg 1890 2672 1:1.41 2264 1:1.20 1724 1:0.91

pocsag 1492 3040 1:2.04 1778 1:1.19 1766 1:1.18

summin 440 668 1:1.52 674 1:1.53 410 1:0.93

ucbqsort 958 1712 1:1.79 1656 1:1.73 1126 1:1.18

v42bis 2216 4604 1:2.08 3056 1:1.38 2488 1:1.12

Total 23812 40076 1:1.68 33984 1:1.43 26958 1:1.13
Speed and Code Size Trade-Offs on StarCore™-Based DSPs, Rev. 1

Freescale Semiconductor 5

Test Case: GSM Enhanced Full Rate Voice Codec
In systems concerned only with performance, when code size does not present a real constraint, both sections of the
code can be optimized for speed. The classification of code as performance-critical should therefore be based on
both the application algorithm and the system requirements.

4.2 Optimizing Performance-Critical Code Sections
Focusing the development effort on the performance-critical sections of an application can yield very high
performance. You can optimize the code in C or directly in SC140 assembly. Optimizing the code in C usually
requires restructuring the C code to expose higher levels of parallelism than are expressed in the original C code.
Based on the amount of effort this requires and on the level of optimization the compiler is able to extract from the
C code, the developer may choose to optimize the code in assembly. The SC140 core has a simple execution
pipeline and an orthogonal programming model so that programming in SC140 assembly code is a reasonably
straightforward and practical undertaking.

When C code is optimized for maximum performance, the compiler attempts to use the full sets of data and address
registers. It groups instructions into execution sets and uses predication to reduce costly branches. The compiler
also applies techniques, such as software pipelining and loop unrolling, to reduce the cycle count. As the
optimization of the performance-critical sections progresses, the classification of code sections can be fine-tuned.

4.3 Optimizing Non-Critical Sections
The contribution of the non-critical sections of the code to application speed is relatively small. However, since
these sections comprise most of the code, it is beneficial to keep them as small as possible. When C code is
optimized for minimal code size, the compiler uses only eight data registers and eight address registers and refrains
from grouping instructions into execution sets if such grouping incurs prefix words. The compiler attempts to use
predication only when the resulting code has no larger branches. All this is done in addition to applying
architecture-independent optimization techniques that are widely used by compilers for embedded
microcontrollers.

5 Test Case: GSM Enhanced Full Rate Voice Codec
The examples discussed so far deal with DSP kernels and code that is not performance-sensitive in isolation. This
section presents speed and code-size trade-offs for the GSM enhanced full rate (EFR) speech codec. This test case
applies the approaches presented thus far to show possible performance and size points that may be achieved when
you are implementing such an application on the SC140 core.

5.1 Classifying EFR Code Sections
Based on a profiling of the application, a specific section of the EFR code was selected. For the purpose of the
following presentation, the following terms are used:

• G1: the set of subroutines that are performance critical, contributing about 80 percent of the theoretical
computational requirements

• G2: the remaining code of EFR
Speed and Code Size Trade-Offs on StarCore™-Based DSPs, Rev. 1

6 Freescale Semiconductor

Test Case: GSM Enhanced Full Rate Voice Codec
5.2 Optimization Approaches
A number of different optimization approaches are considered. These approaches differ in the methods used for
developing the optimized code (programming in assembly versus programming in C) and in the goals set for
optimizing each section. Some of the data points measured and presented in this section are not optimal in any
sense. Rather, they provide a more complete picture of the capabilities at the time they were measured, or they
represent theoretical minimums that indicate lower bounds on possible implementations.

5.3 EFR Data Points
Table 3 describes the various data points that have been measured for the GSM EFR.

Table 4 presents the measurements obtained for these data points.

Table 3. GSM EFT Data Points

Data Point G1 G2 Description

All-C-SPD C, optimized for
speed

C, optimized for
speed

StarCore SC140 compiler, version 0.95.

All-C-SPC C, optimized for size C, optimized for size StarCore SC140 compiler, version 0.95.

All-C-SPC+ C, optimized for size C, optimized for size Code-size figures represent projected results based on
additional optimizations to be implemented by the compiler.
Performance figures are not available.

G2-SPD Assembly, optimized
for speed

C, optimized for
speed

StarCore SC140 compiler, version 0.95.

G2-SPC Assembly, optimized
for speed

C, optimized for size StarCore SC140 compiler, version 0.95.

G2-SPC+ Assembly, optimized
for speed

C, optimized for size Compiled code size figures are projected based on
additional optimizations to be implemented by the compiler.
Performance figures are not available.

G2-proj Assembly, optimized
for speed

Assembly, optimized
for size

The figures presented are based on the estimation
technique presented in Appendix A, “Projecting SC140
Code Size from DSP56600 Code,” which allows projecting
the performance and size of StarCore SC140 code based
on the dynamic measurement of optimized DSP56600
code for the same application.

All-proj Assembly, optimized
for size

Assembly, optimized
for size

The figures presented are based on the estimation
technique presented in Appendix A, “Projecting SC140
Code Size from DSP56600 Code,”which allows projecting
the performance and size of StarCore SC140 code based
on the dynamic measurement of optimized DSP56600
code for the same application.
These figures represent the theoretical minimal size of EFR
for the StarCore SC140. Note that this theoretical minimum
goes hand in hand with performance that is equivalent to
that of the DSP56600.

DSP56600 EFR fully coded in assembly, and optimized for both speed and size, for DSP56600. Provided for
reference.
Speed and Code Size Trade-Offs on StarCore™-Based DSPs, Rev. 1

Freescale Semiconductor 7

Test Case: GSM Enhanced Full Rate Voice Codec
The results shown in Table 4 were measured on a single-channel implementation of EFR. A multi-channel
implementation is expected to require slightly larger program code and require slightly more MCPS. The results of
the EFR test case are graphically presented in Figure 1.

Figure 1. EFR Test Results

Table 4. Performance Measurements

Data Point Code Size (Bytes)
Size Ratio of
DSP56600 to

StarCore SC140

Performance
(MCPS)

Performance Ratio
of DSP56000 to
StarCore SC140

All-C-SPD 44492 1:1.73 15.5 1:1.15

All-C-SPC 35884 1:1.39 27.5 1:0.65

All-C-SPC+ 30204 1:1.17 — —

G2-SPD 45776 1:1.78 7.17 1:2.49

G2-SPC 41676 1:1.62 8.73 1:2.04

G2-SPC+ 36644 1:1.42 — —

G2-proj 30784 1:1.19 6.84 1:2.61

All-proj 22937 1:0.89 17.84 1:1.00

DSP56600 25788 — 17.84 —

KB

MCPS

20 30 40 50

5

10

15

20

25

all-proj DSP56600

All-C-SPC

All-C-SPD

G2-proj

G2-SPC

G2-SPC+

G2-SPD

All-C-SPC+
Speed and Code Size Trade-Offs on StarCore™-Based DSPs, Rev. 1

8 Freescale Semiconductor

Test Case: GSM Enhanced Full Rate Voice Codec
5.4 Conclusions
The data points All-proj and G2-proj represent the theoretical minimums for the StarCore SC140. Additional
optimizations and improvements planned for the StarCore SC140 compiler are geared toward attaining compiled
sizes that are as close as possible to these theoretical minimums. The various data points on the chart delineate the
fact that a range of performance and size points are possible. To be able to estimate the required code size for an
implementation, you should first set specific performance goals. Once the performance goals are set, it is possible
to define splits between compiled code and assembled code, and between code optimized for speed and code
optimized for size.
Speed and Code Size Trade-Offs on StarCore™-Based DSPs, Rev. 1

Freescale Semiconductor 9

Test Case: GSM Enhanced Full Rate Voice Codec
NOTES:
Speed and Code Size Trade-Offs on StarCore™-Based DSPs, Rev. 1

10 Freescale Semiconductor

Test Case: GSM Enhanced Full Rate Voice Codec
NOTES:
Speed and Code Size Trade-Offs on StarCore™-Based DSPs, Rev. 1

Freescale Semiconductor 11

AN1838

Information in this document is provided solely to enable system and software implementers to
use Freescale Semiconductor products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or integrated circuits based on
the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale
Semiconductor assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any and all liability, including without limitation consequential
or incidental damages. “Typical” parameters which may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different applications and
actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the
Freescale Semiconductor product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Freescale Semiconductor products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. StarCore
is a trademark of StarCore LLC. All other product or service names are the property of their
respective owners.

© Freescale Semiconductor, Inc. 2004.

How to Reach Us:
Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations not listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GMBH
Technical Information Center
Schatzbogen 7
81829 München, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
+800 2666 8080

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com
Rev. 1
11/2004

	1 Basics of the StarCore SC140/SC1400 Architecture
	1.1 Using Data Registers D8-D15 and Address Registers R8-R15
	1.2 Specific Combinations of Instructions
	1.3 Predication

	2 Optimizing for Maximum Speed
	3 Optimizing for Minimal Code Size
	4 Optimizing Code for a Combined Goal
	4.1 Classifying the Application’s Code Sections
	4.2 Optimizing Performance-Critical Code Sections
	4.3 Optimizing Non-Critical Sections

	5 Test Case: GSM Enhanced Full Rate Voice Codec
	5.1 Classifying EFR Code Sections
	5.2 Optimization Approaches
	5.3 EFR Data Points
	5.4 Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

