
Freescale Semiconductor
Application Note

AN1818
Rev. 1, 11/2004
Software SCI Routines with the
16-Bit Timer Module
by: Brad Bierschenk

MMD Applications Engineering
Austin, Texas

Introduction

Many applications that communicate to off-board devices require an asynchronous serial link. A
Freescale microcontroller unit (MCU) with a serial communications interface (SCI) module can provide
this communications functionality.

However, in many applications, an MCU that does not have an SCI module must be used. If
asynchronous communications capability is needed, it must be provided through software control of
existing modules. A bit-banged approach, as documented in HC05 MCU Software-Driven Asynchronous
Serial Communication Techniques Using the MC68HC705J1A (Freescale document order number
AN1240), is convenient, but requires dedicated software overhead while transmitting and receiving data.

Through the use of the 16-bit free-running counter, the HC05 and other MCU families can provide an
interrupt-driven software SCI with minimal software overhead.
© Freescale Semiconductor, Inc., 2004. All rights reserved.

General Information
General Information

The solution discussed here works in half-duplex mode. This means it can transmit or receive serial data,
but cannot simultaneously transmit and receive. This is enough for most applications and is much easier
to implement than a full-duplex solution.

The timing in Figure 1 shows the standard non-return-to-zero (NRZ) asynchronous transmission protocol
of an RS-232 serial transfer.

Figure 1. Serial RS-232 Timing

A complete byte transfer takes 10 bit times due to the start and stop bits. The first falling edge indicates
the beginning of the start bit, and thus the beginning of a byte transmission. After the start bit, data is sent
in eight bits. The logic-high stop bit signals the end of the byte transmission.

A 16-bit free-running timer counter with one input capture (IC), one output compare (OC), and the
associated interrupts, allows software emulation of an SCI module with only a small amount of processor
overhead (see Figure 2). In addition to the timer module, one digital input pin that can be sampled using
BRSET or BRCLR instructions is needed.

On some MCUs, including the MC68HC705P6A, the input capture pin can be read directly as a digital
input. On other MCUs, the input capture pin also should be connected to a digital input pin to allow digital
polling.

A byte variable in RAM can be used to simulate the flags of an SCI status and control register; likewise,
a RAM variable can function as a data register where transmitted and received bytes are stored (see
Figure 3).

ONE BYTE TX/RX

START BIT STOP BIT

IDLE LINE

1 2 3 4 5 6 7 8
Software SCI Routines with the 16-Bit Timer Module, Rev. 1

2 Freescale Semiconductor

Receiving Serial Data
RX — Receive In-Progress Flag

A 1 here signifies that a receive is in progress.

TX — Transmit In-Progress Flag

A 0 here indicates a transmit is in progress.

RDRF — Receive Data Register Full

A 1 here indicates that a byte has been received.

TDRE — Transmit Data Register Empty

A 1 here indicates that a byte has been transmitted.

Figure 3. Simulated Data Register in RAM Variable

Receiving Serial Data

In this application, if data is not being transmitted, the input capture (IC) function of the timer is enabled.
In this way, the user can wait for the start bit of an incoming transmission without any software overhead.
When the start bit is received, the IC interrupt is triggered. This provides both a wakeup to start receiving
and the start of a timing reference via the value in the IC registers (see Figure 4).

Figure 4. Receiving with the Timer Functions

RX TX RDRF TDRE X X X X
7 6 5 4 3 2 1 0

Figure 2. Simulated Status Register in RAM Variable

D7 D6 D5 D4 D3 D2 D1 D0
7 6 5 4 3 2 1 0

INPUT CAPTURE

IDLE LINE

FIRST OUTPUT COMPARE

SECOND OUTPUT COMPARE
Software SCI Routines with the 16-Bit Timer Module, Rev. 1

Freescale Semiconductor 3

Transmitting
The contents of the IC registers show the time of the falling edge of the start bit. The resulting timer
interrupt routine has to determine which event (IC or OC) triggered the interrupt. In the first entry, one and
a half bit times are added to the content of the capture register. The result is stored in the OC registers
and interrupts are switched from the IC to the OC. The delay of one and a half bit times will cause an
output compare event approximately in the middle of the first data bits reception.

Next, the data register is cleared, and bit 7 of the data register is set. This most significant bit (MSB) of
the data variable acts as a bit counter. In the next output compare, the data at the pin (either TCAP or port
pin) is sampled using a BRSET instruction. This brings the value of the data received into the carry bit of
the condition code register (CCR). The rotate right through carry (ROR) instruction rotates the new data
bit into the data register. It is rotated into the data register and one bit time is added to the OC register.

Because the data register was cleared prior to reception, and bit 7 was set, a 0 is always rotated into the
carry bit until the eighth data bit is received. The setting of the carry bit after a rotate indicates that the
eighth bit has been received. When this happens, the receive data full flag is set and the interrupt
capability is switched back to input capture.

Transmitting

To transmit a byte, a mechanism is needed that can trigger at a given rate and allow changing of the bit
level of an output. The OC function of the 16-bit timer module allows this (see Figure 5).

Figure 5. Transmitting with the Output Compare Function

The routine SCISend in the software listing provides the transmit function. Before calling SCISend, the
user places the byte to be transmitted into the SCIData location. Transmission starts by setting the I bit
in the condition code register (CCR) to ensure proper timing, and reading the contents of the free-running
counter. An offset is then added to that value, and the result is stored into the output compare registers.
This defines the time the transmission will begin. The OLVL bit is set to 0 to produce the required falling
edge for the start bit at the time of the next compare. The OC interrupt is enabled, and the user can now
wait for the predefined OC event to drive the TCMP pin low to start the transmission.

When running through the timer interrupt service routine, distinguishing between an IC or an OC event
(they both use the same interrupt) is a must. In this way, the user can arbitrate between the beginning of
a byte reception and a reception/transmission in progress.

FIRST COMPARE

IDLE LINE

SECOND COMPARE

THIRD COMPARE
Software SCI Routines with the 16-Bit Timer Module, Rev. 1

4 Freescale Semiconductor

Baud Rates
Just as with the receiving code, the transmission of a byte uses the propagation of a logic 1 from the carry
to provide a bit counter. When all bits have been transmitted, a logic 1 will be rotated into the carry bit,
and OC can be set up to transmit the logic high stop bit.

Baud Rates

To change the baud rate, adjust the values of BITHI and BITLO to represent one bit time at the frequency
of the timer module. Likewise, BIT1HI and BIT1LO should be changed to represent one and a half bit
times at the frequency of the timer module.

The internal frequency of operation and the latency of the timer interrupt define the maximum baud rate
that can be achieved. The rate of the timer interrupts should not be programmed to be faster than the
latency of the interrupt service routine. If this happens, one might miss OC or IC events (see Figure 6).

The frequency of the 16-bit timer counter is four times slower than the internal operating frequency. The
formula to determine what number to add to the timer value to cause a specific delay is:

fBus ÷ [(baud rate) × 4]

For example:

Internal
Frequency

Timer
Frequency

9600
Baud

4800
Baud

2400
Baud

1200
Baud

2 MHz 500 kHz $0034 $0068 $00D0 $01A0
Software SCI Routines with the 16-Bit Timer Module, Rev. 1

Freescale Semiconductor 5

6 B
au

d
 R

ates

Set OLVL Bit to
define next output

value

Is SCIData
Empty?

Yes

d 1 bit time to OC
nd store into OC
bale OC interrupts
able IC interrupts
et TX and TDRE

flags

No

RTI

Add 1 bit time to
OC and store

into OC

terrupt
e

S
o

ftw
are S

C
I R

o
u

tin
es w

ith
 th

e 16-B
it T

im
er M

o
d

u
le, R

ev. 1

F
reescale S

em
iconductor

Figure 6. Flowchart for Timer Interrupt Service

Is ICIE = 1 ?
(IC interrupts

enabled)

Timer Interrupt
T_Int

Clear TSR Flags

Is RX = 1 ?

Is Carry Bit
Clear ?

Yes

No No

No

Add 1.5 bit times to
IC registers, and

store into OC
registers

Set RX flag
Disable IC
interrupts

Enable OC
interrupts

Clear data register
Set bit 7 of data
register as a bit

counter

Yes

"RX_End"

Put received bit
value into C bit of
CCR via BRSET

instruction

Rotate C bit into
data register with
ROR instruction

Check new C bit

Is Carry Bit
Set?

Clear TSR flags
Disable OC
interrupts
Enable IC
interrupts

Set RDRF flag
Clear RX flag

Yes

No

Add 1 bit time
offset to OC

registers and store
back to OC

registers

BRCLR
TX,SCIFlag

Sets C bit to 1 if a
new transmission

Clear TX if a new
transmission

ROR rotates next data bit
into C bit

C bit value goes into MSb,
1 if new transmission (for

bit counter)

Yes

Clear OLVL bit
To define next
output value

RTI

Ad
a

Dis
En
S

Add 1 bit time to
OC and store

into OC

Flowchart for Timer In
Service Routin

"T_Int"

New byte reception

Software Example
Software Example

The code listing that follows illustrates reading and writing serial data through the timer interface. This
simple software loop waits for data to be received and echoes the value back to the sending device.

Code Listing

* -=-
* SWSCI.ASM
* -=-
* A software-driven SCI simulation for the 705P6A MCU,
* using the timer's input capture and output compare
* functions.
*
* Brad Bierschenk, MMD Applications Engineering
* Oak Hill, Austin, Texas
* 08/06/99
* -=-
* NOTES:
* a) The "SCI" subroutine sets up the transmit routine
* so to send a byte, you have to load it into SCI data
* variable, and JSR to SCI
* b) The "simulated" SCI status and data register are held
* in RAM, and the "simulated" SCI interrupt is really the
* timer interrupt.
* c) Limitation is half-duplex only.
* d) To transmit, use the SCI routine. But you will not
* be able to receive until the transmission is complete.
* e) This requires a part that can digitally read its
* TCAP pin (P6A). Otherwise, a separate input pin should
* be tied to the TCAP pin for polling.
* 4) The P6A REQUIRES a pullup on TCAP to VDD for this
* application.
* -=-
* ---
* Needed P6A bits and bytes
* ---
RAMSPACE EQU $0050
ROMSPACE EQU $0100

PORTB EQU $01
PORTC EQU $02
PORTD EQU $03
DDRB EQU $05
DDRC EQU $06
DDRD EQU $07
TCR EQU $12
TSR EQU $13
IC1HI EQU $14
IC1LO EQU $15
OC1HI EQU $16
OC1LO EQU $17
TCNTHI EQU $18
TCNTLO EQU $19
OLVL EQU 0
Software SCI Routines with the 16-Bit Timer Module, Rev. 1

Freescale Semiconductor 7

Software Example
IEDG EQU 1
OCF EQU 6
ICF EQU 7
OCIE EQU 6
ICIE EQU 7

* Software SCI equates for RAM variable SCIFlag
TDRE EQU 4
RDRF EQU 5
TX EQU 6
RX EQU 7

;BIT1HI+BIT1LO define the timer delay for 1.5 bit times at given
;baud rate.
;-=-
;9600 baud
BITHI EQU $00
BITLO EQU $34
BIT1HI EQU $00
BIT1LO EQU $48

;4800 baud
;BITHI EQU $00
;BITLO EQU $68
;BIT1HI EQU $00
;BIT1LO EQU $9C

;2400 baud
;BITHI EQU $00
;BITLO EQU $D0
;BIT1HI EQU $01
;BIT1LO EQU $38

;1200 baud
;BITHI EQU $01
;BITLO EQU $A0
;BIT1HI EQU $02
;BIT1LO EQU $70

* --
* RAM Variables
* --
 ORG RAMSPACE
SCIFlag RMB 1 ;Simulated Status register
SCIData RMB 1 ;Simulated Data register
* ---
* Start of program code
* ---
 ORG ROMSPACE
Begin LDA #$10
 STA PORTB ;Set OC pin to high ==> idle line
 LDA #$F7
 STA DDRB

 CLR SCIFlag ;Clear SCI status register
 CLR SCIData ;Clear SCI data register
 LDA TSR ;Clear possibly set OC & IC flags
 LDA IC1LO
 LDA OC1LO
Software SCI Routines with the 16-Bit Timer Module, Rev. 1

8 Freescale Semiconductor

Software Example
 ;Initialize timer system to OCLevel High (idle)
 ;IC falling edge (detect start bit), disable OCI
 ;enable ICI (SCI ready to receive)
 LDA #$81
 STA TCR

 BSET TX,SCIFlag ;Clear first-entry-to-transmit
 ;flag
 CLI ;Globally enable interrupts

Main BRCLR RDRF,SCIFlag,* ;Wait for a byte to be received

 ;Allow ~2 bit times for rest of last bit and stop bit
 ;~210 µs ~= 55 cycles
 LDA #$09 ;2
DelayLoop DECA ;3
 BNE DelayLoop ;3

 ;Echo back the received byte...
 BCLR RDRF,SCIFlag
 JSR SCISend

 ;Wait for next received byte
 BRA Main

* ---
* SCISend sets up the timer module to transmit a byte.
* Uses the OC function to transmit data. Can't receive
* while transmitting (limitation is half-duplex)
* --
SCISend SEI ;Disable interrupts to ensure
 ;timing
 LDX TCNTHI ;Read current timer value
 LDA TCNTLO
 ADD #$15 ;Add offset
 STA OC1LO ;Store new value
 TXA
 ADC #$00 ;Accommodate carry if needed
 STA OC1HI
 LDA TSR
 LDA OC1LO
 STA OC1LO
 LDA #%01000000 ;Generate start bit by setting OLVL
 STA TCR ;bit to falling edge, disable ICI,
 ;enable OCI
 CLI ;Globally enable interrupts again
 RTS

* ---
* T_Int is the timer interrupt service routine.
* Must arbitrate whether an IC or OC caused the interrupt,
* to determine whether receiving or transmitting a byte.
* (Timer interrupt ~= SCI Interrupt)
* OC event is either 1) byte transmitting or 2) sampling
* byte being received.
* IC event is the start bit of a received byte
* ---
T_Int LDA TSR ;Clear any flags
Software SCI Routines with the 16-Bit Timer Module, Rev. 1

Freescale Semiconductor 9

Software Example
 ;If IC interrupts are enabled, we are in receive mode
 ;and have received start bit on TCAP BRSET ICIE,TCR,Receive

 ;If OC interrupts are enabled, we are either
 ;transmitting a byte, or are sampling a byte coming in
 BRSET RX,SCIFlag,RX1
 ;Is SCI receiving?

 ;Is this a byte transmitalready-in-progress?
 ;The BRCLR instruction sets the carry bit to the value
 ;of the bit being tested.
 BRCLR TX,SCIFlag,TX1

 ;New transmission
 ;Carry bit gets set, clear the flag to indicate
 ;transmit-in-progress.
 ;C = 1 will be rotated into bit 7 of data register
 ;for use as a bit counter.
 BCLR TX,SCIFlag

 ;Transmitting
TX1 ROR SCIData ;Shift next data bit into carry
 BCC TX2 ;If low, go to TX2
 BSET OLVL,TCR ;If high, next OC level to high
 ;If Data register is zero, and Carry is set, we have
 ;just rotated out the last bit, and need to send the
 ;stop bit.
 BEQ TX_End ;If stop bit, go to TX_End
 LDA OC1LO ;Otherwise, add bit time to OC
 ADD #BITLO ;for the next bit
 TAX
 LDA OC1HI
 ADC #BITHI
 STA OC1HI
 STX OC1LO
 RTI

TX2 BCLR OLVL,TCR ;Carry was low means next data bit
 ;low
 ;so next OC level to low
 LDA OC1LO ;Add bit time to OC
 ADD #BITLO
 TAX
 LDA OC1HI
 ADC #BITHI
 STA OC1HI
 STX OC1LO
 RTI

TX_End LDA OC1LO ;Add last bit time to OC for the
 ;stop bit
ADD #BITLO
 TAX
 LDA OC1HI
 ADC #BITHI
 STA OC1HI
 STX OC1LO
 LDA TSR
 LDA IC1LO
 LDA #$81
 STA TCR ;Disable OCI, enable ICI
Software SCI Routines with the 16-Bit Timer Module, Rev. 1

10 Freescale Semiconductor

Software Example
 ;Clear first TX entry flag again,
 ;and set the TDRE bit. NOTE that even though
 ;the TDRE bit is set, the TX of the data byte
 ;is not complete, with the rest of the last bit
 ;and the stop bit to be transmitted
 LDA #$50
 STA SCIFlag
 RTI

Receive LDA IC1LO ;Start bit has been received
 ADD #BIT1LO ;add 1+1/2 bit times
 TAX ;to OC for the first bit sampling
 LDA IC1HI
 ADC #BIT1HI
 STA OC1HI
 LDA TSR
 STX OC1LO
 BSET RX,SCIFlag ;Set receive-in-progress flag
 LDA #$41 ;disable ICI, enable OCI
 STA TCR
 LDA #$80 ;Clear data register, set bit 7 as
 STA SCIData ;a bit counter
 RTI

RX1 BRSET 7,PORTD,RX2 ;get bit level from TCAP pin and
RX2 ROR SCIData ;put it into data variable
 BCS RX_End ;End if it is the last bit
 LDA OC1LO ;If not add bit time
 ADD #BITLO ;for next sample
 TAX
 LDA OC1HI
 ADC #BITHI
 STA OC1HI
 STX OC1LO
 RTI

RX_End LDA TSR ;Byte received, clear possibly set
 ;IC flag
 LDA IC1LO
 LDA #$81 ;Disable OCI, enable ICI
 STA TCR
 ;Set receive register full flag in RAM
 ;NOTE that even so, the RX byte is not complete
 ;the rest of the data bit and the stop bit are
 ;still on their way.
 BSET RDRF,SCIFlag
 BCLR RX,SCIFlag ;Clear receive-in-progress flag
 RTI

* ---
* P6A Vector definitions
* ---
 ORG $1FF8 ;Timer vector
 FDB T_Int

 ORG $1FFE ;Reset vector
 FDB Begin
Software SCI Routines with the 16-Bit Timer Module, Rev. 1

Freescale Semiconductor 11

AN1818
Rev. 1, 11/2004

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2004. All rights reserved.

	Introduction
	General Information
	Receiving Serial Data
	Transmitting
	Baud Rates
	Software Example
	Code Listing

