Application Note

AN1806
Rev. 1.2, 12/2003

Initializing Blank Flash
Devices on Embedded
Platforms

Gary Milliorn
CPD Applications
risc10@email.mot.com

Freescale Semiconductor, Inc.

This application note describes a design method for an embedded system that easily alows
loading the contents of a (potentialy blank) flash from the PCI bus. A secondary benefit is
that when the switches are reset, different boot images can be selected.

This application note covers the following topics:
Topic Page
Section 1, “Overview” 2
Section 2, “Hardware Implementation”
Section 3, “Local Program Software”
Section 4, “MPC8240 Restrictions”
Section 5, “Restrictions on the Tsi106 Host Bridge”
Section 6, “ Other Restrictions’
Section 7, “Conclusion”
Section 8, “Revision History” 6
The Freescale PowerPC™ integrated processor/host bridge devices, the MPC8240, MPC8241
and MPC8245, as well as the Tundra Tsi106™ and Tsi107™ PowerPC host bridge devices,
can load start-up code from a flash device called the boot flash. This flash device is typically

located on the local memory bus, but can be optionally redirected to the PCI bus. To enhance
performance or system architecture, the boot flash should be on the local bus.

a oo b~ b~ ODN

When an embedded system is manufactured, the boot flash is often completely blank and
requiresinitialization from amaster image. If a boot-sector flash (pre-loaded with appropriate
software) is not appropriate or not available, the local memory bus flash can be programmed
in place only with special tools such as in-circuit programmers or JTAG tools.

All of the PowerPC memory controller devices listed above share acommon architecture, and
the same restrictions that prevent the most obvious solutions from working affect them all.
These restrictions include the following limitations:

« Externa PCI masters cannot write to the flash/ROM addresses.

» External PCI masters cannot configure the target system sufficiently to forceit to boot
into aconfigured and downloaded DRAM. Thetarget must initialize its own memory,
which requiresit to run a program, which in turn requires a non-blank flash.

* Whenthecontroller is configured to boot from a PCI-hosted ROM, it loses the access
to the local boot ROM space that RCS0 controls.

freescale”

semiconductor

For More Information On This Product,
Go to: www.freescale.com

rxzb30
freescalecolorjpeg

h -

Freescale Semiconductor, Inc.
Jdverview

* When the controller is configured to boot from local ROM, it loses access to the PCl boot ROM
space that a PCI-to-1SA bridge usually provides.

The following sections provide a solution that works for the Tsi106 host bridge, Tsi107 host bridge, and
MPC8240 and requires only a small amount of hardware and software support.

1 Overview

The method outlined in this application note uses one of the additional chip-select lines (RCS1, RCS2 and
RCS3) that the MPC824X and the Tsi106 host bridge and Tsi107 host bridge provide. (RCS2 and RCS3 are
available only on the MPC8245 and the Tsi107 host bridge.) With a small amount of hardware, the system
can recover accessto thelocal ROM when booting from PCI by relocating thelocal boot ROM to adifferent
chip select. The system requires that the embedded controller has the following facilities:

* Accessto aPCl-hosted local ROM

* Hardwareto re-route RCS0 and one of RCS1, RCS2 or RCS3
A suitable PCI-based flash is avail able on the Freescal e Sandpoint reference platform. This system can serve
as a suitable basis for PCI access because it uses the Winbond W83C553, which translates PCI memory

accesses to OxFFFO_0100 into ROM accesses. If Sandpoint is not used, a similar facility is needed on the
target system.

2 Hardware Implementation

The hardware requirement is minimal, and can be implemented with a three-position jumper. It can fitina
PAL or tiny fraction of an ASIC, or can be implemented with discrete gates. Two different implementation
methods, which are shown in Figure 1 and Figure 2, consist of a few gates that are inserted between the
RCS0 signal and the chip select (CS) of the flash or a simple three-position jumper.

+3.3V
MPC8241 é
MPC8245 PLD or Logic
Tsi106 SrEr RCSO_IN Flash
Tsi107 RCSO — . Memory
o——<a RCS0_OUT cs
-] —
RCST RCST_IN .
——O
Flash
Memory
3; RCS1_OUT cs
._

PCI Boot O ProgMode \O

33002 330Q

Figure 1. RCS Routing Logic - PAL/FPGA Version

Initializing Blank Flash Devices on Embedded Platforms

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Local Program Software

JUMPER

RCSO_IN
RCS0_OUT

RCSX — O

Figure 2. RCS Routing Logic - Jumper Version

Whether logic, jumpers, or switches are used depends largely upon reliability and the designer’'s
access bility requirements. Any of these methods can serve for the purposes of this application note. The
following VHDL code is representative of code that a PAL or ASIC implementation uses:

rcsOo L <= ‘0 WHEN ((rcs0i L = '0' AND progmode L = '1')
OR (rcsli L = '0' AND progmode L = '0'))
ELSE '1';
rcslo L <= '0' WHEN (rcsli L = '0O' AND progmode L = '0')
ELSE '1';

The essence of the logic is that in norma mode when PROGMODE is high, the RCSO_OUT and
RCS1 OUT pinsfollow their respective RCSx_IN inputs and act as normal flash, ROM, or /O chip selects.
In program mode, when PROGMODE is asserted low, RCS1_OUT is deactivated and RCSO_OUT is
asserted whenever RCS1_IN is asserted.

Note that RCS0 appears to be asserted while booting from PCI. The memory controller does not drive the
line, and the external pull-down apparently makesit low. The logic must account for this situation, and the
board must not fail to operate when aflash deviceis present and always enabled. (Usually, when PCI boot
isenabled RCSO is not used.) The logic shown above handles this situation.

Note also that the logic is required even if RCSL1 is never used. Without PROGMODE, the flash would be
permanently enabled when PCI boot is selected. Therefore, while the logic can be simplified, it cannot be
reduced to an 'OR’ of the two signals (RCS0 and RCS1). PROGMODE must be involved.

3 Local Program Software

Hardware and a few software issues must be addressed. A custom controller program for the PCI master,
which transfers the desired program to the device to program, must be created. This image could be
embedded in the PCI boot ROM or transferred to PCI memory from disk, depending on the complexity of
the master program.

An aternate approach is to have the same code run in both the PCI and local ROM spaces. Because the
MPC824X and Tsi106 and Tsi107 devices do not treat the memory spaces differently, no programming
effort is required for the application. Instead, the code can be manually instructed to copy itself to local
ROM or can automatically detect it running on PCI and initiate the transfer automatically. Motorola’'s DINK
debugger, which has an “fupdate” command to transfer itself from PCI to local flash on PPMC cards which
have local flash attached, uses the former approach.

The general programming steps are as follows:

1. Set board to boot from PCI space with hardware jumper or switch. Use a switch enabling a
pull-down resistor on RCSO0. This step must be done in hardware.

Initializing Blank Flash Devices on Embedded Platforms

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
VIPC8240 Restrictions

Enable 'program mode' using a hardware jumper if needed.
Apply power and reset.
The board fetches instructions from PCI.

Initialization software setsthe PICR2[CF_FFO_L OCAL] bit to re-enable local accessto the RCS1
flash space.

Startup code either automatically enters program mode or waits for acommand from the user.

Software copiesitself from PCI ROM (at OxFF800000—0xFFFFFFFF or as size indicates) to local
ROM (at OxFF000000-0xFF7FFFFF) using normal flash write algorithms. With the logic above
writes to the RCS1 space are redirected to the RCSO flash space.

8. Remove program mode and PCI boot options.
9. Apply reset. The board boots from newly-programmed local flash.

a b~ D

N o

Note that the software routine must use the proper alignment of stores when writing to the RCS1 space: 32-
or 64-bits. The MPC8241, MPC8245 and the Tsi107 host bridge do not require that the write operation is
the same size of the write, but the store address must be properly adjusted. The following copy sequenceis
used:

// Enter unlock sequence for flash if needed, by doing dummy writes to
// special addresses.

lis r3,0x0010 // Set R3 = 1M

mtctr r3 // store in counter register

lis r3, 0xFFFO // R3 1is now PCI flash/ROM address

lis r4,0xFF00 // R4 is now local aliases flash address

loop: 1lbz r5,0(xr3)

// Do program enable sequence for flash, if needed.

stb r5,0(r4) // Write new byte

addi r3,1 // Next byte-aligned byte

addi r4,4 // Next word-aligned byte (see text).
bdnz loop // Until 1M done

Many flash devices, such as the AMD Am29LV 800, require write sequences to dummy addresses before
write operations can occur. This requirement is not shown in the code above, but is available in DINK
V11.0.2 or later, which is available at the Freescale web site.

4 MPCB8240 Restrictions

The MPC8240 does not have the additional RCS2 and RCS3 chip selects of the Tsi107 host bridge, but it
exactly implements the methods that this application note describes. The MPC8240 is limited to
programming 1 M byte without additional hardware because it supplies only 20 address bits when accessing
the RCS1 address space.

5 Restrictions on the Tsil06 Host Bridge

The Tsi106 host bridge implements the methods that this application note describes, but has a serious
limitation. The Tsi106 host bridge rejects writesto the RCS1 space unlessthey are 64-bit single-beat writes.
The only way to generate such a cycle is to use the floating-point unit to do a store. Since MPE6G0x
processors do not have floating point, they cannot implement this method at all if the Tsi106 host bridge is
used.

Initializing Blank Flash Devices on Embedded Platforms

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Other Restrictions

For others, the only difference shows up in writing to the RCS1 address (which is actually the boot ROM).
Since the write must occur in the floating-point unit, the code changes to:

align 8 // itof must be aligned
itof: bss 8 // 8 byte to hold GPR->FPR transfer

// Enter unlock sequence for flash if needed, by doing dummy writes to
// special addresses.

lis r3,0x0010 // Set R3 = 1M
mtctr r3 // store in counter register
lis r3, 0XFFFO0 // R3 is now PCI flash/ROM address
lis r4,0xFF00 // R4 is now local aliases flash address
lis r6,HI (itof)
ori r6,r6,L0 (itof) // R6 points to ‘itof’ buffer
loop: 1lbz r5,0(r3) // Move data from GPR5 to FPR5

stb r5,0(r6)
1fd £f5,0(xr6)

// Do program enable sequence for flash, if needed.

stfd £5,0(r4) // Write new byte

addi r3,1 // Next byte-aligned byte

addi r4,4 // Next word-aligned byte (see text).
bdnz loop // Until 1M done

Note that the writes that unlock and enable programming for the flash device must be done with the 64-bit
FPR registers.

6 Other Restrictions

Because the limited number of address lines that the Tsi 106 host bridge and MPC8240 supply, flash ROMs
larger than one Mbyte cannot be directly programmed. Software might be able to do bank selection to
control the high-order address pin (SDMAO/SDBA1/ARO) directly, which the Tsi106 host bridge and the
MPC8240 do not drive when writing to the RCS1 space. This functionality is beyond the scope of this
application note, but isrelatively straightforward.

The RCS0 space is often subdivided into spaces for ROM and 1/0O on embedded controllers. If so, this
application noteis till valid aslong as the software can handle the fact that the 1/0 addresses change when
in program mode. Because the change from local to PCI occurs only at reset, software should be able to
configure I/O addresses then.

7 Conclusion

With some teamwork between the software and hardware, a blank, unsocketed flash program can be
soldered directly to an embedded controller or computer system.

Initializing Blank Flash Devices on Embedded Platforms

For More Information On This Product,
Go to: www.freescale.com

h -

Freescale Semiconductor, Inc.
Revision History

8 Revision History

Table 1 shows the revision history of this document.

Table 1. Revision History

ll?\leuvrft;z? Changes
0 Initial release
1 Updates and nontechnical reformatting
1.1 Nontechnical reformatting
1.2 Nontechnical reformatting

Initializing Blank Flash Devices on Embedded Platforms

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

Initializing Blank Flash Devices on Embedded Platforms

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.

Technical Information Center
2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

-~ freescale*

semiconductor

For More Information On This Product,

Go to: www.freescale.com

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	1 Overview
	2 Hardware Implementation
	Figure�1. RCS Routing Logic - PAL/FPGA Version
	Figure�2. RCS Routing Logic - Jumper Version

	3 Local Program Software
	4 MPC8240 Restrictions
	5 Restrictions on the Tsi106 Host Bridge
	6 Other Restrictions
	7 Conclusion
	8 Revision History
	Table�1. Revision History

