
AN14597
RT Series Memory Relocation in Zephyr
Rev. 1.0 — 27 March 2025 Application note

Document information
Information Content

Keywords AN14597, i.MX RT, i.MX RT Crossover MCUs, Zephyr, Memory, Memory Management, Memory
Relocation

Abstract This document describes methods for managing memory within Zephyr on RT Series. These
methods are similar for the other Zephyr enabled devices.

https://www.nxp.com

NXP Semiconductors AN14597
RT Series Memory Relocation in Zephyr

1 Introduction

Memory relocation is necessary when there are application constraints regarding memory placement. This is
important for flashless i.MX RT Series devices to optimize performance. But, the flash-based MCUs can also
benefit from memory relocation. By default, many Zephyr Samples and Demos are placed into external QSPI
flash. Most of the applications perform well while executing from external QSPI Flash. But to achieve maximum
performance, the code and data can be in internal SRAM. For more information, see AN12437.

Zephyr OS has multiple methods to relocate the memory. This document introduces methods to relocate the
memory using an i.MX RT1060 device as an example.

AN14597 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 27 March 2025 Document feedback
2 / 30

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus:IMX-RT-SERIES
https://docs.zephyrproject.org/latest/samples/index.html
https://www.nxp.com/docs/en/application-note/AN12437.pdf
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14597

NXP Semiconductors AN14597
RT Series Memory Relocation in Zephyr

2 Hardware and software requirements

This section provides the required hardware and software information.

2.1 Hardware
In this application note, an i.MX RT1060 evaluation kit is used. But, the steps are closely aligned to the other
i.MX RT Crossover MCUs with similar memory regions. For more information, see Zephyr Supported Devices.

2.2 Software
The required list of softwares is given below:

• MCUXpresso for Visual Studio Code
• Zephyr Revision v4.0.0 - Zephyr Lab Installation and Preparation
• Zephyr Lab RT1060 Hello World

Figure 1. i.MX RT1060 evaluation kit board

AN14597 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 27 March 2025 Document feedback
3 / 30

https://www.nxp.com/design/design-center/development-boards-and-designs/MIMXRT1060-EVKB
https://docs.zephyrproject.org/latest/boards/nxp/index.html
https://www.nxp.com/design/design-center/software/embedded-software/mcuxpresso-for-visual-studio-code:MCUXPRESSO-VSC
https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Zephyr-Lab-Installation-and-Preparation
https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Zephyr-Lab-RT1060-Hello-World
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14597

NXP Semiconductors AN14597
RT Series Memory Relocation in Zephyr

3 Relocating all code and data

This section provides a method of instructions to relocate all the memory.

If relocation of all the code/data to a particular memory region is required, perform the simplest form of
relocation in Zephyr as given below:

• To relocate the code to a different region, change the chosen flash node.
• To relocate the data to a different region, change the chosen sram node.

3.1 Limitations
Some memory regions must be configured prior to relocation. In this context, the SDRAM by the ROM
bootloader, or reconfiguring the FlexRAM.

When performing the memory configuration, consider the following cases:

• In the case of SDRAM, Zephyr uses the DCD (in flash) and the boot ROM to configure SDRAM.
• If not booting from the flash, SDRAM is not initialized. By default, Zephyr places the data for RT1060 into the

SDRAM.

For more information, see SDRAM Examples on RT1060 and MCUXpresso SDK.

3.2 Relocating to TCM
The following steps explain how to perform relocation of all code (.text) and read-only data to ITCM. In
addition, the following steps demonstrate the relocation of all .data and .bss to DTCM:

1. Create a folder called boards within the hello_world folder.
Note: Some Zephyr samples will already have this folder.

Figure 2. 
2. Create an overlay file for the chosen board within the boards folder with a name that ending in overlay.

An overlay file modifies the device tree for that application. For specific information, see setting devicetree
overlays.
At the time of writing this document, the overlay for MIMXRT1060-EVKB should be named
mimxrt1060_evkb.overlay (Zephyr 4.0).
Note: After Zephyr 4.0, this filename is changed to mimxrt1060_evk_mimxrt1062_qspi_B.overlay.

Figure 3. 
3. Within the *.overlay file, place the following code:

/{
 chosen {
 zephyr,flash = &itcm;
 zephyr,sram = &dtcm;
 };

AN14597 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 27 March 2025 Document feedback
4 / 30

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/SDRAM-Examples-on-RT1060-and-MCUXpresso-SDK
https://docs.zephyrproject.org/latest/build/dts/howtos.html
https://docs.zephyrproject.org/latest/build/dts/howtos.html
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14597

NXP Semiconductors AN14597
RT Series Memory Relocation in Zephyr

};

The naming of zephyr,flash and zephyr,sram can be confusing.
• zephyr,flash points to the node the linker uses for all the code (.text) and read-only data sections.

Typically, this points to physical flash memory, but it can be in memory that is not flash.
• zephyr,sram points to the node the linker uses for all the .data and .bss sections. This should be in

RAM, but it is not required to be in SRAM.
4. Add the configuration to the configuration file provided in Step 5 and Step 6. It enables the i.MX RT device

to load from the flash memory to RAM on boot. This step allows the application to persist in nonvolatile
memory and run again after power-on-reset.
A bootloader executes from ROM and manages the boot process.
The RAM loader feature configures the bootloader to copy the application image from the flash memory to
RAM and then jumps to RAM for execution.

5. Create a configuration file for the chosen board within the boards folder with a name ending in .conf.
For more information about configuration, see Setting Kconfig configuration values.
For MIMXRT1060-EVKB, place the configuration file (mimxrt1060_evkb.conf) in the boards folder.
Note: After Zephyr 4.0, this filename is changed to mimxrt1060_evk_mimxrt1062_qspi_B.conf.

Figure 4. Configuration file
6. In the mimxrt1060_evkb.conf file, add the following configuration to enable the RAMLoader:

CONFIG_NXP_FLEXSPI_ROM_RAMLOADER=y
7. To perform a pristine build of the hello_world sample, perform the following steps:

a. Navigate to MCUXpresso Extension.
b. Under the projects tab, click the right arrow of the project. For example in this instance, click right arrow

at hellow_world Zephyr 4.0.0
c. Click to select Pristine Build/Rebuild Selected.

Figure 5. Hello world sample
To clean the project before building (instead of doing a pristine build), perform Step 38 of the Zephyr Kconfig
Lab.
The successful build displays a similar log:

Figure 6. Successful build log
8. In addition to checking the region usage percentage, it is valuable to see where the memory regions are

resolved in the *.map file (zephyr.map).
The *.map file is created in the generated build folder, which defaults to the hello_world/build/zephyr
directory.

AN14597 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 27 March 2025 Document feedback
5 / 30

https://docs.zephyrproject.org/latest/build/kconfig/setting.html
https://docs.zephyrproject.org/latest/develop/west/build-flash-debug.html
https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Zephyr-Lab-MCXN947-Kconfig
https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Zephyr-Lab-MCXN947-Kconfig
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14597

NXP Semiconductors AN14597
RT Series Memory Relocation in Zephyr

Figure 7. Memory regions in Zephyr map file
In the i.MX RT1060 Processor Reference Manual, you can find the System memory map.

Figure 8. System memory map
The text and rodata are relocated to ITCM:
• To view that the start address for text is within the ITCM, search __text_region_start in the map file

(zephyr.map).

Figure 9. Start address of text
• To view that the rodata start address is within ITCM, search the map file (zephyr.map) for
__rodata_region_start.

Figure 10. Start address of rodata
The data and bss start addresses are relocated to DTCM:
• To view that the data start addresses are relocated to DTCM, search the map file (zephyr.map) for
__data_region_start.

Figure 11. Start address of data
• To view that the bss start addresses are relocated to DTCM, search the map file (zephyr.map) for
__bss_start.

Figure 12. Start address of bss
It is evident that the relocation is successful. If desired, you can search the end addresses of text, rodata,
data, and bss in the zephyr.map file.

9. To flash and debug the device, perform the following steps:
a. Navigate to VSCode MCUXpresso Extension.

AN14597 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 27 March 2025 Document feedback
6 / 30

https://www.nxp.com/webapp/Download?colCode=IMXRT1060XRM
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14597

NXP Semiconductors AN14597
RT Series Memory Relocation in Zephyr

b. Click the debug button as shown in Figure 13.

Figure 13. Debugging the device

3.3 Relocating to SDRAM
As mentioned in Section 3.1, the SDRAM requires configuration for its usage. Typically, the ROM bootloader
initializes this memory during reset operation, but it requires the DCD programmed to the XIP header code in
flash.

This section provides the options for using the SDRAM. It also explains how to split the existing sdram0 node,
create a partition for code and data within SDRAM, and relocate all code and data to SDRAM.

3.3.1 Options for SDRAM Configuration

In Section 3.2, the configuration placed data into DTCM instead of SDRAM (default). By relocating all code to
ITCM and all data to DTCM, SDRAM is not used at all. When SDRAM is used in the application, configure it first
using an option given below:

• Using the RAMLoader is a viable option for configuring the SDRAM because the DCDs are stored in flash.
This option provides an additional functionality of allowing the image to persist after reset. Because of this,
code and data can be placed in SDRAM.

• When debugging an application in SDRAM, another option is to program a project containing the DCD into
flash. As far as the DCD data is concerned, this option is not different from using the RAMLoader option. In
this method, an image is stored in flash prior to programming the hello_world sample to RAM using the
debugger. Most Zephyr samples contain this data. The hello_world sample contains this data, but to avoid
confusion caused by having the same application running out of the flash and RAM, it is advisable to use a
different sample in the flash.

One example is the blinky sample. The DCD data is found in the dcd.c file.

If using Segger Probes, an additional debugger option *.jlinkscript file is used to initialize the SDRAM by directly
writing to the hardware registers. For example, evkbmimxrt1060_sdram_init.jlinkscript.

This script is used by the debugger to initialize the SDRAM, and then the debugger downloads the code to
SDRAM. For more information, see the GitHub page: SDRAM Examples on RT1060 and MCUXpresso SDK.

3.3.2 Relocating all code and data

To relocate all the code and data, perform the following steps:

1. This guide uses the RAMloader option. Add the following configuration, which enables the RAMLoader to
boards\mimxrt1060_evkb.conf:

CONFIG_NXP_FLEXSPI_ROM_RAMLOADER=y

2. Split the SDRAM into code and data section for the linker.
Divide SDRAM into two partitions sdram_code, and sdram_data to avoid overlap of code and data and
then add the following code in the mimxrt1060_evkb.overlay file:

&sdram0 {
 #address-cells = < 0x1 >;

AN14597 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 27 March 2025 Document feedback
7 / 30

https://docs.zephyrproject.org/latest/samples/basic/blinky/README.html
https://github.com/nxp-mcuxpresso/mcux-sdk/blob/main/boards/evkmimxrt1060/dcd.c
https://github.com/nxp-mcuxpresso/mcux-sdk-examples/blob/main/evkbmimxrt1060/demo_apps/hello_world/evkbmimxrt1060_sdram_init.jlinkscript
https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/SDRAM-Examples-on-RT1060-and-MCUXpresso-SDK
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14597

NXP Semiconductors AN14597
RT Series Memory Relocation in Zephyr

 #size-cells = < 0x1 >;
 /* Divide SDRAM into two partitions for Code and Data */
 sdram_code: memory@0 {
 device_type = "memory";
 reg = <0x00000000 DT_SIZE_M(16)>;

 };
 sdram_data: memory@1000000 {
 device_type = "memory";
 reg = <0x01000000 DT_SIZE_M(16)>;
 };
};

3. Place the code and data in the sdram_code and sdram_data respectively by changing the
zephyr,flash and zephyr,sram nodes:

 chosen {
 zephyr,flash = &sdram_code;
 zephyr,sram = &sdram_data;
 };

4. After steps 2 and 3, the entirety of the *.overlay file is as follows:

/{
 chosen {
 zephyr,flash = &sdram_code;
 zephyr,sram = &sdram_data;
 };

};
&sdram0 {
 #address-cells = < 0x1 >;
 #size-cells = < 0x1 >;
 /* Divide SDRAM into two partitions for Code and Data */
 sdram_code: memory@0 {
 device_type = "memory";
 reg = <0x00000000 DT_SIZE_M(16)>;
 };
 sdram_data: memory@1000000 {
 device_type = "memory";
 reg = <0x01000000 DT_SIZE_M(16)>;
 };
};

5. After a pristine build, both the FLASH (code, rodata), and RAM (data, bss) regions show a 16MB size with a
small amount of usage:

Figure 14. FLASH and RAM regions
6. For confirmation about the placement of code, rodata, data, and bss, look into the *.map file (build/zephyr/

zephyr.map).
• The text region starts and ends in the partition allotted for sdram_code as shown below:

AN14597 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 27 March 2025 Document feedback
8 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14597

NXP Semiconductors AN14597
RT Series Memory Relocation in Zephyr

Figure 15. Text start region

Figure 16. Text end region
• The data region starts and ends in the partition allotted for sdram_data as shown below:

Figure 17. Data start region

Figure 18. Data end region
Therefore, it provides an adequate information that relocation is successful.

AN14597 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 27 March 2025 Document feedback
9 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14597

NXP Semiconductors AN14597
RT Series Memory Relocation in Zephyr

4 Zephyr code relocation usage

Compared to the previous method of code/data relocation explained in Section 3, the Zephyr code relocation
feature allows greater flexibility at the cost of adding additional complexity. For more information, see Zephyr
Code and Data Relocation.

Zephyr code relocation feature is useful for relocating specific files or libraries to the desired memory region.
It is also useful for relocating the text, rodata, data, and bss sections from specific files or libraries. For more
information on this feature, see Zephyr project.

The following steps start from the unmodified Hello World Sample. They demonstrate using the Zephyr code
relocation feature to relocate the files and libraries. Also, they demonstrate relocating specific memory sections
from the files and libraries.

4.1 Limitations
The usage of Zephyr feature in relocating the code, and data has the following limitations:

• Zephyr startup code performs the relocation of code, and data. Therefore, any code, and data used before the
Zephyr relocation process cannot be relocated.

• Some code in the kernel files and libraries can be relocated. However, some code cannot be relocated since it
executes before relocation.

• If relocating to memory has to be configured, then it must be configured before relocation. For example,
SDRAM by the ROM bootloader, or reconfiguring FlexRAM (Section 6).

• Code relocation can only be used to move memory to regions which have been defined for the linker. For
information on adding the custom memory regions see Section 4.4.

4.2 Enabling configuration file to use code and data relocation feature
To use the code, and data relocation feature, perform the following steps:

1. Enable CONFIG_CODE_DATA_RELOCATION in the configuration file prj.conf file.
2. Edit the prj.conf file and add CONFIG_CODE_DATA_RELOCATION=y.

Figure 19. Configuration file

Note: After enabling this feature, add some relocation to the CMakeLists.txt file. Otherwise, an error occurs
when trying to build.

Figure 20. 

4.3 Relocating files
This section demonstrates the relocation of files to ITCM.

AN14597 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 27 March 2025 Document feedback
10 / 30

https://docs.zephyrproject.org/latest/kernel/code-relocation.html#details
https://docs.zephyrproject.org/latest/kernel/code-relocation.html#details
https://docs.zephyrproject.org/latest/kernel/code-relocation.html
https://docs.zephyrproject.org/latest/samples/hello_world/README.html
https://docs.zephyrproject.org/latest/kconfig.html
https://github.com/zephyrproject-rtos/zephyr/blob/main/samples/hello_world/CMakeLists.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14597

NXP Semiconductors AN14597
RT Series Memory Relocation in Zephyr

4.3.1 Relocating code and data files

To relocate the code and data from files, perform the following steps:

1. To relocate the main.c file (text, rodata, data, and bss) to ITCM, add the following line to CMakeLists.txt::
zephyr_code_relocate(FILES src/main.c LOCATION ITCM)

Figure 21. Relocating files
When added to CMakeLists.txt, it should appear as given below:

SPDX-License-Identifier: Apache-2.0
cmake_minimum_required(VERSION 3.20.0)
find_package(Zephyr REQUIRED HINTS $ENV{ZEPHYR_BASE})
project(hello_world)
add this line to relocate main.c to ITCM
zephyr_code_relocate(FILES src/main.c LOCATION ITCM)
target_sources(app PRIVATE src/main.c)

2. After completing a pristine build, the ITCM usage should increase from 0.00% (from the default
Hello_World Sample) to ~0.10%.

Figure 22. ITCM usage
The main.c file has been successfully relocated to ITCM.

4.3.2 Relocate selected memory section from files

This option specifies the section of memory to be relocated in addition to the location.

To add the text section from the chosen file, perform the following steps:

1. Add the following line in the CMakeLists.txt file to relocate only the text section from the chosen file:

zephyr_code_relocate(FILES src/main.c LOCATION ITCM_TEXT)

2. After a pristine build, usage of ITCM should change to ~0.02%:

Figure 23. 

4.4 Relocating libraries
This section demonstrates the relocation of a library to specific memory region and how to move a particular
type of memory from a library to specific memory region.

4.4.1 Relocating to specific memory region

To relocate a library to specific memory region, perform the following steps:

1. Adding the following code in the CMakeLists.txt file relocates the serial drivers to ITCM:
zephyr_code_relocate(LIBRARY drivers__serial LOCATION ITCM)

2. Find the driver name. The name of the driver can be found in the zephyr.map file. The driver libraries within
the *.map file are commonly named as libdrivers__x.a.

AN14597 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 27 March 2025 Document feedback
11 / 30

https://github.com/zephyrproject-rtos/zephyr/blob/main/samples/hello_world/CMakeLists.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14597

NXP Semiconductors AN14597
RT Series Memory Relocation in Zephyr

Where, x is the name of the driver.
In this context, the library name is libdrivers__serial.a. To find the library name, open the
zephyr.map file and search for serial.
An alternate method to find the library name is by searching the name of a source file in the *.map file. For
example, the line below shows the source file uart_mcux_lpuart.c is part of the drivers__serial library.

Figure 24. Relocating to specific memory region
Prior to relocation, the*.map file shows the text elements of this driver library in the flash.

3. In the CMakeLists.txt file, the CMake driver name is used. After conversion, the CMake driver name is
changed to drivers__serial.
The CMakeLists.txt file should appear as given below:

SPDX-License-Identifier: Apache-2.0

cmake_minimum_required(VERSION 3.20.0)

find_package(Zephyr REQUIRED HINTS $ENV{ZEPHYR_BASE})
project(hello_world)

#add this line to relocate main.c TEXT to ITCM
zephyr_code_relocate(FILES src/main.c LOCATION ITCM_TEXT)

#add this line to relocate serial drivers to ITCM
zephyr_code_relocate(LIBRARY drivers__serial LOCATION ITCM)

target_sources(app PRIVATE src/main.c)

4. Now, the ITCM usage should be ~0.79%, as we have relocated TEXT from main.c and the
drivers__serial library to this region.

Figure 25. ITCM usage

4.4.2 Relocating a specific memory section of the library

For performance optimization, it is best to place code and rodata into ITCM, while placing data and bss to
DTCM.

To relocate the code, perform the following steps:

1. Change the following line:

zephyr_code_relocate(LIBRARY drivers__serial LOCATION ITCM)

By changing the above line to the line given below moves only the TEXT and RODATA to ITCM:

zephyr_code_relocate(LIBRARY drivers__serial LOCATION ITCM_TEXT_RODATA)

2. Add the following line to move DATA and BSS to DTCM:

zephyr_code_relocate(LIBRARY drivers__serial LOCATION DTCM_DATA_BSS)

With these two lines added to CMakeLists.txt, the code and rodata from the serial drivers library are placed
into ITCM, while the data and bss from the serial drivers library are placed into DTCM.

3. With this change. ITCM usage will be at ~0.78%, while DTCM usage should change from 0.00% to ~0.01%
(after rebuilding).

AN14597 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 27 March 2025 Document feedback
12 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14597

NXP Semiconductors AN14597
RT Series Memory Relocation in Zephyr

Figure 26. ITCM and DTCM usage
4. Confirm relocation. You can take steps to ensure that the relocation is successful. A successful relocation

can be confirmed by ensuring that the text from main.c, the text and rodata from the serial driver library, and
the data and bss from the serial driver library are relocated.
In the zephyr.map file, search for .itcm_text_reloc. Within this section of the MAP file, all the text that
is relocated to ITCM is displayed.
Notably, the text from main.c is relocated as shown below:

Figure 27. relocation confirmation
In addition, the text from the serial driver library is placed as shown below:

Figure 28. Text relocation
To confirm whether the relocation is successful, search the MAP file as given below:
• .itcm_rodata_reloc: rodata relocated to itcm
• dtcm_bss_reloc: bss relocated to dtcm
• dtcm_bss_reloc: bss relocated to dtcm
Note: This driver library does not have anything in its data section to relocate.

4.5 Relocating to custom memory region
This section explains how to create a custom memory region. This is useful if the default linker file does not
contain the memory region we need to relocate using the code relocation feature. The example in this section
relocates some code and data from files and libraries to SDRAM. This involves modifying the *.overlay file to
split SDRAM into partitions for code and data. It also involves adding additional properties to the memory nodes
to enable a custom linker section.

To relocate files and libraries to a custom memory region, perform the following steps:

1. Partition SDRAM for Code and Data
This step is like Section 3.3.2, and the following steps start from the unmodified Hello World Sample.
zephyr,flash is not relocated, so most of the application remains in flash. zephyr,sram is changed,
as sdram0 is the default for zephyr,sram. Here, zephyr,sram is changed to dtcm. Therefore, any data
that is not relocated using Code relocation exists in dtcm.

AN14597 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 27 March 2025 Document feedback
13 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14597

NXP Semiconductors AN14597
RT Series Memory Relocation in Zephyr

Partition SDRAM by changing the *.overlay file (mimxrt1060_evkb.overlay) as given below:

&sdram0 {
 #address-cells = < 0x1 >;
 #size-cells = < 0x1 >;
 /* Divide SDRAM into two partitions for Code and Data */
 sdram_code: memory@0 {
 device_type = "memory";
 reg = <0x00000000 DT_SIZE_M(16)>;

 };
 sdram_data: memory@1000000 {
 device_type = "memory";
 reg = <0x01000000 DT_SIZE_M(16)>;
 };
};

2. Add additional properties to both the subnodes (sdram_code, and sdram_data) as given below:

compatible = "zephyr,memory-region";
zephyr,memory-region = "CUSTOMNAME";

The compatible property is used to mark the node as a memory region. The name given to
zephyr,memory-region is used to generate a linker region of the given name. For this document,
SDRAMCODE, and SDRAMDATA are used.
The full *.overlay file displays as given below:

/{
 chosen {
 zephyr,sram = &dtcm;
 };

};
&sdram0 {
 #address-cells = < 0x1 >;
 #size-cells = < 0x1 >;
 /* Divide SDRAM into two partitions for Code and Data */
 sdram_code: memory@0 {
 device_type = "memory";
 reg = <0x00000000 DT_SIZE_M(16)>;
 compatible = "zephyr,memory-region";
 zephyr,memory-region = "SDRAMCODE";
 };
 sdram_data: memory@1000000 {
 device_type = "memory";
 reg = <0x01000000 DT_SIZE_M(16)>;
 compatible = "zephyr,memory-region";
 zephyr,memory-region = "SDRAMDATA";
 };
};

3. Enable CONFIG_CODE_DATA_RELOCATION in the prj.conf file.
Edit the prj.conf file and add CONFIG_CODE_DATA_RELOCATION=y.

Figure 29. Configuration file

AN14597 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 27 March 2025 Document feedback
14 / 30

https://docs.zephyrproject.org/latest/kconfig.html
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14597

NXP Semiconductors AN14597
RT Series Memory Relocation in Zephyr

4. Use Code Relocation APIs to Move Objects Into SDRAM.
This step uses the previously covered Code Relocation APIs. We can use them to relocate to the newly
created memory regions in the CMakeLists.txt file.

SPDX-License-Identifier: Apache-2.0

cmake_minimum_required(VERSION 3.20.0)

find_package(Zephyr REQUIRED HINTS $ENV{ZEPHYR_BASE})
project(hello_world)
#add this line to relocate main.c text and rodata to SDRAM_CODE
zephyr_code_relocate(FILES src/main.c LOCATION SDRAMCODE_TEXT_RODATA)

#add this line to relocate main.c data and bss to SDRAM_DATA
zephyr_code_relocate(FILES src/main.c LOCATION SDRAMDATA_DATA_BSS)

#add this line to relocate serial drivers text and rodata to SDRAM_CODE
zephyr_code_relocate(LIBRARY drivers__serial LOCATION SDRAMCODE_TEXT_RODATA)

#add this line to relocate data and bss to SDRAM_DATA
zephyr_code_relocate(LIBRARY drivers__serial LOCATION SDRAMDATA_DATA_BSS)

target_sources(app PRIVATE src/main.c)

5. Confirm relocation.
The output from the build looks like Figure 30.

Figure 30. Build output
The RAM region is DTCM, and it is the default memory region for data and bss that was not relocated.
Note: The SDRAMDATA region contains data and bss from main.c and the serial library.
The Flash region is an external flash and it is the default memory region for text and rodata that was not
relocated.
Note: The SDRAMCODE region contains text and rodata from main.c and the serial library.
Navigate to build/zephyr/zephyr.map.
To confirm that the text from main.c has been relocated to SDRAMCODE, search for
sdramcode_text_reloc:
• The .sdramcode_text_reloc section contains text that has been relocated to SDRAMCODE.
• The .sdramcode_rodata_reloc section contains rodata that has been relocated to SDRAMCODE.
• The .sdramdata_bss_reloc section contains bss that has been relocated to SDRAMDATA.
• The .sdramdata_data_reloc section is not generated as there is no data to relocate.

AN14597 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 27 March 2025 Document feedback
15 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14597

NXP Semiconductors AN14597
RT Series Memory Relocation in Zephyr

Figure 31. Relocation confirmation

4.6 Relocating Using KConfigs
Some Zephyr samples, such as the Zperf Sample, use a combination of Kconfigs and Code Relocation APIs to
achieve memory relocation.

In the case of the Zperf Sample, Kconfigs are placed in the application Kconfig file, which selects
CODE_DATA_RELOCATION if NET_SAMPLE_CODE_RELOCATE is enabled.

config NET_SAMPLE_CODE_RELOCATE
 bool "Relocate networking code into RAM"
 select CODE_DATA_RELOCATION
 help
 Relocate networking code into RAM when running the zperf
 sample. Can improve performance on platforms with fast code
 RAM.

If NET_SAMPLE_CODE_RELOCATE is enabled in this sample, it also enables usage of
NET_SAMPLE_CODE_RAM_NAME to specify the region to relocate to.

if NET_SAMPLE_CODE_RELOCATE

config NET_SAMPLE_CODE_RAM_NAME
 string "Networking code RAM location"
 default "RAM"
 help
 Region to relocate networking code to

endif # NET_SAMPLE_CODE_RELOCATE

Both configs (NET_SAMPLE_CODE_RELOCATE, and NET_SAMPLE_CODE_RAM_NAME) are placed into the board
specific .config file for the application. (Zephyr v4.0.0 included the board-specific file mimxrt1060_evk.conf).

CONFIG_NET_SAMPLE_CODE_RELOCATE=y
CONFIG_NET_SAMPLE_CODE_RAM_NAME="ITCM"

Within the , these configurations are used with code relocation APIs to relocate specific code to ITCM:

if (CONCMakeLists.txt fileFIG_NET_SAMPLE_CODE_RELOCATE)
 # Relocate key networking stack components and L2 layer to RAM
 zephyr_code_relocate(LIBRARY subsys__net__ip
 LOCATION "${CONFIG_NET_SAMPLE_CODE_RAM_NAME}_TEXT" NOKEEP)
 zephyr_code_relocate(LIBRARY subsys__net
 LOCATION "${CONFIG_NET_SAMPLE_CODE_RAM_NAME}_TEXT" NOKEEP)
if (CONFIG_NET_L2_ETHERNET)
 zephyr_code_relocate(LIBRARY drivers__ethernet

AN14597 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 27 March 2025 Document feedback
16 / 30

https://docs.zephyrproject.org/latest/samples/net/zperf/README.html
https://github.com/zephyrproject-rtos/zephyr/blob/main/samples/net/zperf/Kconfig
https://github.com/zephyrproject-rtos/zephyr/blob/main/samples/net/zperf/boards/mimxrt1064_evk.conf
https://github.com/zephyrproject-rtos/zephyr/blob/v4.0.0/samples/net/zperf/boards/mimxrt1060_evk.conf
https://github.com/zephyrproject-rtos/zephyr/blob/main/samples/net/zperf/CMakeLists.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14597

NXP Semiconductors AN14597
RT Series Memory Relocation in Zephyr

 LOCATION "${CONFIG_NET_SAMPLE_CODE_RAM_NAME}_TEXT" NOKEEP)
 zephyr_code_relocate(LIBRARY subsys__net__l2__ethernet
 LOCATION "${CONFIG_NET_SAMPLE_CODE_RAM_NAME}_TEXT" NOKEEP)
endif()
endif()

AN14597 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 27 March 2025 Document feedback
17 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14597

NXP Semiconductors AN14597
RT Series Memory Relocation in Zephyr

5 Configuring The FlexRAM

This section provides information regarding using the FlexRAM within Zephyr.

For more information, see AN12077. It is advisable to read this application note to understand the concerns
when dynamically changing the FlexRAM configuration in the application. It is not recommended to execute
from any FlexRAM when changing the FlexRAM configuration.

5.1 Configuring FlexRAM using boot fuses
RT1060 has 16 possible configurations for OCRAM, DTCM, ITCM, available using OTP fuses. For more
information, see Table 3 in Section 2 of AN12077.

Note: Changes to fuses are permanent and cannot be undone. An example of this method is using fuse
configuration 1 instead of the default value (0).

Figure 32. FlexRAM configuration

After changing the boot fuses, the following changes need to be made in the *.overlay file:

&itcm {
 reg = < 0x0 DT_SIZE_K(64) >;
};
&dtcm {
 reg = < 0x20000000 DT_SIZE_K(128) >;
};
&ocram {
 reg = < 0x20280000 DT_SIZE_K(320) >;
};
&flexram {
 flexram,bank-spec = <FLEXRAM_OCRAM>,
 <FLEXRAM_OCRAM>,
 <FLEXRAM_OCRAM>,
 <FLEXRAM_OCRAM>,
 <FLEXRAM_DTCM>,
 <FLEXRAM_DTCM>,
 <FLEXRAM_ITCM>,
 <FLEXRAM_ITCM>,
 <FLEXRAM_DTCM>,
 <FLEXRAM_DTCM>,
 <FLEXRAM_OCRAM>,
 <FLEXRAM_OCRAM>,
 <FLEXRAM_OCRAM>,
 <FLEXRAM_OCRAM>,
 <FLEXRAM_OCRAM>,

AN14597 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 27 March 2025 Document feedback
18 / 30

https://www.nxp.com/docs/en/application-note/AN12077.pdf?_gl=1*x82l6g*_ga*MTU3NjgwMjE3NS4xNzE4NjMyNDY0*_ga_WM5LE0KMSH*MTczNjE5NDkxOC4zNy4xLjE3MzYxOTc1MzYuMC4wLjA.
https://www.nxp.com/docs/en/application-note/AN12077.pdf?_gl=1*x82l6g*_ga*MTU3NjgwMjE3NS4xNzE4NjMyNDY0*_ga_WM5LE0KMSH*MTczNjE5NDkxOC4zNy4xLjE3MzYxOTc1MzYuMC4wLjA.
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14597

NXP Semiconductors AN14597
RT Series Memory Relocation in Zephyr

 <FLEXRAM_OCRAM>;
};

These changes update the size of the itcm, dtcm, and ocram nodes. They also update the flexram, bank-spec
property of the flexram node to match the boot fuses.

Advantage of programming fuses: You can run the application entirely out of FlexRAM regions, as there is no
longer a need to configure FlexRAM within the application.

Disadvantage of writing to OTP fuses: You cannot change them after programming. The result is that the
changes made are not reversible.

5.2 Configuring FlexRAM Dynamically
Zephyr provides automatic configuration of the FlexRAM Dynamically based on the flexram,bank-spec property
of flexram node.

To perform Dynamic FlexRAM Configuration, make identical changes in the *.overlay file, similar to Section 5.1.

&itcm {
 reg = < 0x0 DT_SIZE_K(64) >;
};
&dtcm {
 reg = < 0x20000000 DT_SIZE_K(128) >;
};
&ocram {
 reg = < 0x20280000 DT_SIZE_K(320) >;
};
&flexram {
 flexram,bank-spec = <FLEXRAM_OCRAM>,
 <FLEXRAM_OCRAM>,
 <FLEXRAM_OCRAM>,
 <FLEXRAM_OCRAM>,
 <FLEXRAM_DTCM>,
 <FLEXRAM_DTCM>,
 <FLEXRAM_ITCM>,
 <FLEXRAM_ITCM>,
 <FLEXRAM_DTCM>,
 <FLEXRAM_DTCM>,
 <FLEXRAM_OCRAM>,
 <FLEXRAM_OCRAM>,
 <FLEXRAM_OCRAM>,
 <FLEXRAM_OCRAM>,
 <FLEXRAM_OCRAM>,
 <FLEXRAM_OCRAM>;
};

Advantage: The FlexRAM configuration does not need to match one of the 16 configurations available using
fuses. Banks can be freely allocated as ITCM, DTCM, or OCRAM. This allows for greater flexibility.

Drawback: Unable to relocate the startup code (which performs the FlexRAM configuration) to FlexRAM
regions. This means, the methods mentioned in Section 3 to relocate code to itcm and data to dtcm are not
recommended for usage with FlexRAM reconfiguration. If the startup code which reconfigures FlexRAM lies in
a FlexRAM region, there is potential for failure. For stability, ensure that no code executes from the FlexRAM
regions until completion of reconfiguration.

The recommended method to use with dynamic FlexRAM reconfiguration is Code Relocation APIs (Section 4),
as this circumvents the potential issues with dynamic configuration.

AN14597 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 27 March 2025 Document feedback
19 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14597

NXP Semiconductors AN14597
RT Series Memory Relocation in Zephyr

A practical example of the usage of FlexRAM configuration can be found within the Facial Detect Demo.
Where, the *.overlay file includes changes to make DTCM larger, and the Code Relocation APIs are used in the
CMakeLists.txt file.

AN14597 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 27 March 2025 Document feedback
20 / 30

https://github.com/nxp-zephyr/apps_zephyr/tree/FacialDetect/apps/FacialDetect
https://github.com/nxp-zephyr/apps_zephyr/blob/FacialDetect/apps/FacialDetect/boards/mimxrt1060_evkb.overlay
https://github.com/nxp-zephyr/apps_zephyr/blob/FacialDetect/apps/FacialDetect/CMakeLists.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14597

NXP Semiconductors AN14597
RT Series Memory Relocation in Zephyr

6 Board bring-up guidelines

This section describes board bring-up in general and not for one specific board.

In the Hello World Sample, Zephyr defaults to placing the code in the external flash, and data in SDRAM on the
I.MX RT 1060 Evaluation kit.

Any other Zephyr samples which do not change the zephyr,flash or zephyr,ram node within the project’s
board/.overlay file or Code Relocation API's within the CMakeLists.txt file contains code in the external flash and
data in SDRAM for this device.

When testing a new board, it helps to avoid an external memory initially. Use a debugger to load the simple
code in the internal SRAM and confirm that the code executes. Then external memories can be enabled one at
a time to verify each memory.

The instructions from Section 3.2 highlight the process for moving all code to ITCM and all data to DTCM.
Perform this exercise as an initial sanity check to ensure that the part boots up and runs hello_world. This is
useful when using a custom board, which may not have the same external flash or SDRAM.

Note: If the MCU does not boot from flash, the Kconfig NXP_FLEXSPI_ROM_RAMLOADER should not be used.

AN14597 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 27 March 2025 Document feedback
21 / 30

https://docs.zephyrproject.org/latest/samples/hello_world/README.html
https://docs.zephyrproject.org/latest/samples/hello_world/README.html
https://www.nxp.com/design/design-center/development-boards-and-designs/MIMXRT1060-EVKB
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14597

NXP Semiconductors AN14597
RT Series Memory Relocation in Zephyr

7 Conclusion

Methods for memory relocation in Zephyr provide practical solutions for managing memory in embedded
systems. Zephyr’s framework for memory management allows developers to focus on building high-level
applications rather than dealing with low-level memory concerns. While Zephyr is constantly growing and
improving, the methods highlighted in this document have created more straightforward memory management
and they can help create more stable systems.

AN14597 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 27 March 2025 Document feedback
22 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14597

NXP Semiconductors AN14597
RT Series Memory Relocation in Zephyr

8 Related documentation

Table 1 provides documentation on the related topics and the additional information you should have before
setting up the hardware and software.

Document Document number Description

AN12437 (RT Series Performance
Optimization)

Provides details on the memory types
and performance details for each type
on i.MX RT Series Devices.

Related Application notes

AN12077 (Using the i.MX RT FlexRAM) Describes the flexible memory array
available on the i.MX RT 4-digit
crossover processors.

Zephyr Project Landing Page Zephyr project page

Zephyr™ OS for Edge Connected
Devices

Browse the NXP home page for Zephyr.

Zephyr Code and Data Relocation Provides information Code and Data
Relocation feature of Zephyr.

Zephyr documentation

Lab Guides for MCUXpresso for VS
Code

Provides importing and building Zephyr
applications, debugging, devicetree,
and Kconfig.

Table 1. Related documentation

AN14597 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 27 March 2025 Document feedback
23 / 30

https://www.nxp.com/docs/en/application-note/AN12437.pdf
https://www.nxp.com/docs/en/application-note/AN12077.pdf
https://www.zephyrproject.org/
https://www.nxp.com/design/design-center/software/embedded-software/zephyr-os-for-edge-connected-devices:ZEPHYR-OS-EDGE
https://www.nxp.com/design/design-center/software/embedded-software/zephyr-os-for-edge-connected-devices:ZEPHYR-OS-EDGE
https://docs.zephyrproject.org/latest/kernel/code-relocation.html
https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Training-Zephyr-Getting-Started
https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Training-Zephyr-Getting-Started
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14597

NXP Semiconductors AN14597
RT Series Memory Relocation in Zephyr

9 Glossary

Table 2 provides the acronyms used in this document and its description.

Acronym Abbreviation Description

ITCM Instruction Tightly Coupled Memory Tightly Coupled Memory which
is typically used to access critical
functions, exception vector tables, and
interrupt service routines.

DTCM Data Tightly Coupled Memory Tightly Coupled Memory which is
typically used to store critical variables
and frequently updated variables.

QSPI Quad Serial Peripheral Interface Peripheral designed to communicate
with flash chips that can support this
interface. The i.MX RT series can boot
and execute from external QSPI flash.

DCD Device Configuration Data Data used for initializing and configuring
peripherals on a device during the boot
process.

FlexRAM Flexible RAM Highly configurable and flexible internal
RAM memory array. This memory array
contains memory banks, independently
configured and accessed by different
types of interfaces, such as I-TCM, D-
TCM, or AXI (system). The memory
bank can act as an ITCM, DTCM, or
OCRAM memory. For more information,
see AN12077.

OTP One-Time Programmable
Fuses

Nonvolatile memory elements that
can be programmed only once and
cannot be erased or reprogrammed.
They permanently store critical device
configuration, security parameters, and
identification information.

XIP eXecute In Place A memory execution mode where
program instructions are fetched and
executed directly from non-volatile
memory rather than being copied to
RAM first.

OCRAM On-Chip RAM General purpose memory, which
is typically used for both code and
data. However, it is expected to have
worse performance when fetching
instructions from ITCM, and accessing
data compared to DTCM.

Table 2. Acronyms and description

AN14597 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 27 March 2025 Document feedback
24 / 30

https://developer.arm.com/documentation/107565/0101/Memory-system/Tightly-Coupled-Memory--TCM-
https://www.nxp.com/docs/en/application-note/AN12077.pdf
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14597

NXP Semiconductors AN14597
RT Series Memory Relocation in Zephyr

10 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2025 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

AN14597 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 27 March 2025 Document feedback
25 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14597

NXP Semiconductors AN14597
RT Series Memory Relocation in Zephyr

11 Revision history

Table 3 summarizes the revisions to this document.

Document ID Release date Description

AN14597 v.1.0 27 March 2025 Initial public release

Table 3. Revision history

AN14597 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 27 March 2025 Document feedback
26 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14597

NXP Semiconductors AN14597
RT Series Memory Relocation in Zephyr

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AN14597 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 27 March 2025 Document feedback
27 / 30

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14597

NXP Semiconductors AN14597
RT Series Memory Relocation in Zephyr

Tables
Tab. 1. Related documentation 23
Tab. 2. Acronyms and description24

Tab. 3. Revision history ...26

AN14597 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 27 March 2025 Document feedback
28 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14597

NXP Semiconductors AN14597
RT Series Memory Relocation in Zephyr

Figures
Fig. 1. i.MX RT1060 evaluation kit board 3
Fig. 2. .. 4
Fig. 3. .. 4
Fig. 4. Configuration file ... 5
Fig. 5. Hello world sample ..5
Fig. 6. Successful build log .. 5
Fig. 7. Memory regions in Zephyr map file6
Fig. 8. System memory map .. 6
Fig. 9. Start address of text ..6
Fig. 10. Start address of rodata 6
Fig. 11. Start address of data .. 6
Fig. 12. Start address of bss ..6
Fig. 13. Debugging the device 7
Fig. 14. FLASH and RAM regions8
Fig. 15. Text start region .. 9
Fig. 16. Text end region ... 9

Fig. 17. Data start region ... 9
Fig. 18. Data end region .. 9
Fig. 19. Configuration file ... 10
Fig. 20. .. 10
Fig. 21. Relocating files ..11
Fig. 22. ITCM usage ...11
Fig. 23. .. 11
Fig. 24. Relocating to specific memory region 12
Fig. 25. ITCM usage ...12
Fig. 26. ITCM and DTCM usage 13
Fig. 27. relocation confirmation 13
Fig. 28. Text relocation ... 13
Fig. 29. Configuration file ... 14
Fig. 30. Build output ... 15
Fig. 31. Relocation confirmation16
Fig. 32. FlexRAM configuration 18

AN14597 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 27 March 2025 Document feedback
29 / 30

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14597

NXP Semiconductors AN14597
RT Series Memory Relocation in Zephyr

Contents
1 Introduction .. 2
2 Hardware and software requirements3
2.1 Hardware ... 3
2.2 Software ...3
3 Relocating all code and data4
3.1 Limitations ..4
3.2 Relocating to TCM ...4
3.3 Relocating to SDRAM ..7
3.3.1 Options for SDRAM Configuration7
3.3.2 Relocating all code and data7
4 Zephyr code relocation usage10
4.1 Limitations ..10
4.2 Enabling configuration file to use code and

data relocation feature10
4.3 Relocating files .. 10
4.3.1 Relocating code and data files 11
4.3.2 Relocate selected memory section from

files ...11
4.4 Relocating libraries .. 11
4.4.1 Relocating to specific memory region11
4.4.2 Relocating a specific memory section of the

library ... 12
4.5 Relocating to custom memory region 13
4.6 Relocating Using KConfigs16
5 Configuring The FlexRAM18
5.1 Configuring FlexRAM using boot fuses18
5.2 Configuring FlexRAM Dynamically 19
6 Board bring-up guidelines 21
7 Conclusion ... 22
8 Related documentation 23
9 Glossary ..24
10 Note about the source code in the

document ..25
11 Revision history ...26

Legal information ...27

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2025 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 27 March 2025
Document identifier: AN14597

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14597

	1 Introduction
	2 Hardware and software requirements
	2.1 Hardware
	2.2 Software

	3 Relocating all code and data
	3.1 Limitations
	3.2 Relocating to TCM
	3.3 Relocating to SDRAM
	3.3.1 Options for SDRAM Configuration
	3.3.2 Relocating all code and data

	4 Zephyr code relocation usage
	4.1 Limitations
	4.2 Enabling configuration file to use code and data relocation feature
	4.3 Relocating files
	4.3.1 Relocating code and data files
	4.3.2 Relocate selected memory section from files

	4.4 Relocating libraries
	4.4.1 Relocating to specific memory region
	4.4.2 Relocating a specific memory section of the library

	4.5 Relocating to custom memory region
	4.6 Relocating Using KConfigs

	5 Configuring The FlexRAM
	5.1 Configuring FlexRAM using boot fuses
	5.2 Configuring FlexRAM Dynamically

	6 Board bring-up guidelines
	7 Conclusion
	8 Related documentation
	9 Glossary
	10 Note about the source code in the document
	11 Revision history
	Legal information
	Tables
	Figures
	Contents

