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1   Introduction

The ROM API in LPC553x/LPC55S3x devices helps manage and program two main areas:

• The programmable Flash region, which stores the application code and data.
• The Flash firewall region, which holds device configurations and settings.

It enables Serial NOR FLASH programming through the FlexSPI NOR API and supports reading and
programming One-Time Programmable (OTP) settings. The ROM API also includes built-in cryptographic
functions for secure applications.

The structure of the API includes several components:

• The FLASH API is used to update the FLASH area.
• The FLEXSPI API supports various Serial NOR devices.
• The OTP API manages critical one-time programmable parameters.
• The NBOOT APIs help generate random numbers and verify the integrity of application images.
• The In-Application Programming (IAP) API provides flexibility for programming while an application is running,

using either a unified memory interface or a dedicated secondary bootloader.

2   ROM API structure

The ROM API table locates at address 0x1302fc00.
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Figure 1. ROM API structure
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3   FLASH APIs

The FLASH API set enables the following features:

• Initialize the FLASH controller.
• Erase and verify the specified FLASH area.
• Program and verify the specified FLASH page.
• Retrieve FLASH properties.
• Initialize or Lock the FFR.
• Program and Read CMPA.
• Program and Read CFPA.
• Non-blocking FLASH Erase/Status Check API for timing-critical use cases.

3.1  FLASH driver API interface
The FLASH APIs are organized in the FLASH Driver API Interface structure.

3.1.1  FLASH driver API prototypes

typedef struct FLASHDriverInterface
{
standard_version_t version; //!< flash driver API version number.
// FLASH driver
status_t (*flash_init)(flash_config_t *config);
status_t (*flash_erase)(flash_config_t *config, uint32_t start, uint32_t lengthInBytes,
 uint32_t key);
status_t (*flash_program)(flash_config_t *config, uint32_t start, uint8_t *src,uint32_t
 lengthInBytes);
status_t (*flash_verify_erase)(flash_config_t *config, uint32_t start, uint32_t
 lengthInBytes);
status_t (*flash_verify_program)(flash_config_t *config,
uint32_t start,
uint32_t lengthInBytes,
const uint8_t   *expectedData,
uint32_t *failedAddress,
uint32_t *failedData);
status_t (*flash_get_property)(flash_config_t *config, flash_property_tag_t
 whichProperty,uint32_t *value);
uint32_t reserved0[3];
// FLASH FFR driver
status_t (*ffr_init)(flash_config_t *config);
status_t (*ffr_lock)(flash_config_t *config);
status_t (*ffr_cust_factory_page_write)(flash_config_t *config, uint8_t *page_data, bool
 seal_part);
status_t (*ffr_get_uuid)(flash_config_t *config, uint8_t *uuid);
status_t (*ffr_get_customer_data)(flash_config_t *config, uint8_t *pData, uint32_t
 offset,uint32_t len);
status_t (*ffr_cust_keystore_write)(flash_config_t *config, ffr_key_store_t *pKeyStore);
status_t reserved1;
status_t reserved2;
status_t (*ffr_infield_page_write)(flash_config_t *config, uint8_t *page_data, uint32_t
 valid_len);
status_t (*ffr_get_customer_infield_data)(flash_config_t *config, uint8_t *pData,
 uint32_t offset,uint32_t len);
status_t (*flash_read)(flash_config_t *config, uint32_t start, uint8_t *dest, uint32_t
 lengthInBytes);
status_t reserved3;status_t (*flash_get_cust_keystore)(flash_config_t *config, uint8_t
 *pData, uint32_t offset,uint32_t len);
status_t (*flash_erase_non_blocking)(flash_config_t *config, uint32_t start, uint32_t
 lengthInBytes,uint32_t key);

AN14562 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 February 2025 Document feedback
4 / 13

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14562


NXP Semiconductors AN14562
LPC553x/LPC55S3x FLASH APIs Implementation

status_t (*flash_get_command_state)(flash_config_t *config);
} flash_driver_interface_t;

3.1.2  FLASH configuration structure

Each FLASH API depends on a common FLASH context structure named flash_config_t to perform the
proper FLASH operation.

/*! @brief FLASH driver state information.
*
* An instance of this structure is allocated by the user of the flash driver and
* passed into each of the driver APIs.
*/
typedef struct
{
uint32_t PFlashBlockBase; /*!< A base address of the first PFlash block */
uint32_t PFlashTotalSize; /*!< The size of the combined PFlash block. */
uint32_t PFlashBlockCount; /*!< A number of PFlash blocks. */
uint32_t PFlashPageSize; /*!< The size in bytes of a page of PFlash. */
uint32_t PFlashSectorSize; /*!< The size in bytes of a sector of PFlash. */
flash_ffr_config_t ffrConfig;
flash_mode_config_t modeConfig;
uint32_t *nbootCtx;
} flash_config_t;

4   Implementing FLASH APIs in MCUXpresso

First, define the following macros to facilitate the access to ROM and flash memory APIs in a firmware context.

#define ROM_API_TREE ((uint32_t *)0x1302FC00U)
#define DO_DEINIT 0
#define FLASH_API_TREE ((flash_driver_interface_t*)ROM_API_TREE[4])

4.1  version
version field in the FLASH API table indicates the current FLASH API version in the ROM bootloader.

Prototype:

standard_version_t version;

Parameter Description

version Pointer to version structure to store current Flash driver version information

Implementation:

/*Flash version api call*/
uint32_t FlashDriverVersion = FLASH_API_TREE-> version.version;

Output: It gives the version of the Flash driver.
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4.2  ffr_lock
This API is used for initializing the FFR controller and the flash_ffr_config context. It must be called before
calling other FFR APIs.

Flash FFR initialization must be done by invoking the ffr_init API of the MCUXpresso SDK before calling
the ffr_lock.

Prototype:

status_t (*ffr_lock)(flash_config_t *config);

Parameter Description

config Pointer to flash_config_t data structure in memory to store driver runtime state.

Implementation:

/*FRR init*/
status_t (*ffr_init)(flash_config_t *config);
uint32_t status_t = FLASH_API_TREE-> ffr_init (&flashConfig);

Output: If the status is kStatus_FLASH_Success return value, it means that the FFR region has been locked.

4.3  ffr_cust_factory_page_write
The API is used for writing the CMPA data into the CMPA region, and the API should be called after the
flash_init and ffr_init.

Prototype:

status_t (*ffr_cust_factory_page_write)(flash_config_t *config, uint8_t *page_data, bool seal_part);

Parameter Description

config Pointer to flash_config_t data structure in memory to store driver runtime state.

page_data Pointer to a value address that will be written to the destination address.

seal_part If set as true or the page_data includes the non-zero CMAC data, the CMPA
CMAC will be calculated and programed into the CMPA region.

Implementation:

/*ffr_cust_factory_page write api*/
uint32_t cmpa_buffer_cust[512] = {0};
uint32_t status_cmpa = FLASH_API_TREE-> ffr_cust_factory_page_write 
(&flashConfig, (uint8_t *)cmpa_buffer_t, false);

Output: If the status is kStatus_FLASH_Success return value, it means that the cmpa_buffer data has
been programmed into the CMPA region.

4.4  ffr_get_uuid
The API is used for getting the UUID data of the device, and the API should be called after the flash_init
and ffr_init.
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Prototype:

status_t (*ffr_get_uuid)(flash_config_t *config, uint8_t *uuid);

Parameter Description

config Pointer to flash_config_t data structure in memory to store driver runtime state.

uuid Pointer to value address, the value is read back from the nmpa configuration uuid.

Implementation:

/*UUId api*/
uint32_t uuid_buffer [4];
uint32_t status_uuid = FLASH_API_TREE-> ffr_get_uuid(&flashConfig,
(uint8_t *)uuid_buffer);

Output: If the status is kStatus_FLASH_Success return value, it means that the UUID data has been got
from the UUID of the device.

4.5  ffr_get_customer_data
This API is used to read data stored in the Customer Factory page, and the API should be called after
flash_init and ffr_init.

Prototype:

status_t (*ffr_get_customer_data)(flash_config_t *config, uint8_t *pData, uint32_t
 offset, uint32_t len);

Parameter Description

config Pointer to flash_config_t data structure in memory to store driver runtime state.

pData Point to the destination buffer of date that stores data read from the Customer
Factory Page.

offset Point to the offset value based on the CMPA address (0x3e200) of the device.

len The length in bytes to be read back, and the offset + len <= 512 B.

Implementation:

/*ffr_get_customer_data api*/
uint32_t cmpa_buffer[4];
uint32_t offset = 0;
uint32_t status_custdata = FLASH_API_TREE->ffr_get_customer_data 
(&flashConfig, (uint8_t *)cmpa_buffer, offset, sizeof(cmpa_buffer));

Output: If the status is kStatus_FLASH_Success return value, it means that the CMPA data has been
successfully read from the CMPA region and stored into the cmpa_buffer.

4.6  ffr_cust_keystore_write
The API is used for programing the customer key store data into the customer key store region (from 0x3e400
to 0x3e600), and the API should be called after flash_init and ffr_init.
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Prototype:

status_t (*ffr_cust_keystore_write)(flash_config_t *config, ffr_key_store_t *pKeyStore);

Parameter Description

config Pointer to flash_config_t data structure in memory to store driver runtime state.

pKeyStore Pointer to the customer key store data buffer, which will be programed into the
customer key store region.

Implementation:

/*ffr_cust_keystore_write api*/
uint32_t cust_keystore_buffer={4};
uint32_t status_custkeywrite = FLASH_API_TREE->ffr_cust_keystore_write
(&flashConfig, (ffr_key_store_t *) cust_keystore_buffer);

Output: If the status is kStatus_FLASH_Success return value, it means that the customer key store data has
been programmed into the customer key store region.

4.7  flash_read
The API is used for getting internal flash data, including the FLASH and FFR data, and the API should be called
after the flash_init.

Prototype:

status_t (*flash_read)(flash_config_t *config, uint32_t start, uint8_t *dest, uint32_t
 lengthInBytes);

Parameter Description

config Pointer to flash_config_t data structure in memory to store driver runtime state.

start Point to the start address where will be read.

dest Pointer to the buffer used for storing the read data.

lengthInBytes Point to the read data length

Implementation:

/*Flash read api call*/
uint32_t start_addr = 0x1000;
uint8_t read_buffer[512] = {0};
uint32_t length_b = 512;
uint32_t status_flashread = FLASH_API_TREE-> flash_read(&flashConfig,   
start_addr, (uint8_t *) read_buffer, length);

Output: If the status is kStatus_FLASH_Success return value, it means that the expected read region has
been loaded into the read_buffer.

4.8  ffr_get_cust_keystore
API is used for getting the customer key store data from the customer key store region (from 0x3e400 to
0x3e600), and the API should be called after flash_init and ffr_init.
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Prototype:

status_t (*flash_get_cust_keystore)(flash_config_t *config, uint8_t *pData, uint32_t
 offset, uint32_t len);

Parameter Description

config Pointer to flash_config_t data structure in memory to store driver runtime state.

pData Pointer to the customer key store data buffer, which got from the customer key store
region.

offset Point to the offset value based on the customer key store address (0x3e400) of the
device.

len Point to the length of the expected to get customer key store data, and the offset +
len <= 512 B.

Implementation:

/*ffr_get_cust_keystore api*/
uint8_t cust_keystore_buffers[512] = {0};
uint32_t offset_b = 0;
uint32_t length = 512;
uint32_t status_get_cust_key = FLASH_API_TREE-> flash_get_cust_keystore 
(&flashConfig, (uint8_t *) cust_keystore_buffers, offset, length);

Output: If the status is kStatus_FLASH_Success return value, it means that the customer key store data has
been got from the customer key store region and stored into the cust_keystore_buffer.

5   Acronyms

Abbreviations Full Forms

ROM Read Only Memory

FlexSPI Flexible Serial Peripheral Interface

IAP In-Application Programming

OTP One Time Program

CMPA Customer Manufacturing Programming Area

CFPA Customer Factory Programming Area

UUID Universal Unique Identifier

FFR Another name for PFR (Protected Flash Region)

Table 1. Acronyms

6   References

• LPC553x Reference Manual (document LPC553xRM )
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7   Note about the source code in the document

The example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2025 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

8   Revision history

Table 2 summarizes the revisions to this document.

Document ID Release date Description

AN14562 v1.0 28 February 2025 Initial public release

Table 2. Revision history
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