
AN14562
LPC553x/LPC55S3x FLASH APIs Implementation
Rev. 1.0 — 28 February 2025 Application note

Document information
Information Content

Keywords AN14562, LPC553x/LPC55S3x, API

Abstract The ROM API in LPC553x/LPC55S3x devices helps manage and program the programmable
Flash region and the Flash firewall region.

https://www.nxp.com

NXP Semiconductors AN14562
LPC553x/LPC55S3x FLASH APIs Implementation

1 Introduction

The ROM API in LPC553x/LPC55S3x devices helps manage and program two main areas:

• The programmable Flash region, which stores the application code and data.
• The Flash firewall region, which holds device configurations and settings.

It enables Serial NOR FLASH programming through the FlexSPI NOR API and supports reading and
programming One-Time Programmable (OTP) settings. The ROM API also includes built-in cryptographic
functions for secure applications.

The structure of the API includes several components:

• The FLASH API is used to update the FLASH area.
• The FLEXSPI API supports various Serial NOR devices.
• The OTP API manages critical one-time programmable parameters.
• The NBOOT APIs help generate random numbers and verify the integrity of application images.
• The In-Application Programming (IAP) API provides flexibility for programming while an application is running,

using either a unified memory interface or a dedicated secondary bootloader.

2 ROM API structure

The ROM API table locates at address 0x1302fc00.

AN14562 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 February 2025 Document feedback
2 / 13

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14562

NXP Semiconductors AN14562
LPC553x/LPC55S3x FLASH APIs Implementation

aaa-059101

iapApiDriver

otpDriver

flexNorDriver

nbootDriver

Reserved

Reserved

Reserved

Reserved

Reserved

flashDriver

Reserved

Copyright pointer

Version

runBootloader

sbloader_finalize

sbloader_pump

sbloader_init

mem_erase_all

mem_config

mem_erase

mem_flush

mem_fill

mem_write

Reserved

mem_init

api_deinit

api_init

Version

Program

Read

Init

deinit

Version

nboot_img_authenticate_cmac

nboot_img_authenticate_cmac

nboot_img_authenticate_cmac

nboot_sb3_load_manifest

nboot_context_deinit

nboot_context_init

romapi_rng_generate_random

partial_program

Reserved

Reserved

Read

get_config

erase_block

update_lut

xfer

0x0302_FC34

0x0302_FC30

0x0302_FC2C

0x0302_FC28

0x0302_FC24

0x0302_FC20

0x0302_FC1C

0x0302_FC18

0x0302_FC14

0x0302_FC10

0x0302_FC0C

0x0302_FC08

0x0302_FC04

0x0302_FC00

erase_sector

Erase

Init

Version

erase_all

page_program

flash_get_command_state

flash_earse_nonblocking

ffr_get_cust_keystore

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

flash_get_property

flash_verify_program

flash_read

ffr_get_customer_infield_data

ffr_cust_keystore_write

ffr_get_customer_data

ffr_oust_factory_page_write

ffr_get_uuid

ffr_lock

ffr_init

ffr_infield_page_write

flash_verify_erase

flash_program

flash_erase

flash_init

Version

Figure 1. ROM API structure

AN14562 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 February 2025 Document feedback
3 / 13

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14562

NXP Semiconductors AN14562
LPC553x/LPC55S3x FLASH APIs Implementation

3 FLASH APIs

The FLASH API set enables the following features:

• Initialize the FLASH controller.
• Erase and verify the specified FLASH area.
• Program and verify the specified FLASH page.
• Retrieve FLASH properties.
• Initialize or Lock the FFR.
• Program and Read CMPA.
• Program and Read CFPA.
• Non-blocking FLASH Erase/Status Check API for timing-critical use cases.

3.1 FLASH driver API interface
The FLASH APIs are organized in the FLASH Driver API Interface structure.

3.1.1 FLASH driver API prototypes

typedef struct FLASHDriverInterface
{
standard_version_t version; //!< flash driver API version number.
// FLASH driver
status_t (*flash_init)(flash_config_t *config);
status_t (*flash_erase)(flash_config_t *config, uint32_t start, uint32_t lengthInBytes,
 uint32_t key);
status_t (*flash_program)(flash_config_t *config, uint32_t start, uint8_t *src,uint32_t
 lengthInBytes);
status_t (*flash_verify_erase)(flash_config_t *config, uint32_t start, uint32_t
 lengthInBytes);
status_t (*flash_verify_program)(flash_config_t *config,
uint32_t start,
uint32_t lengthInBytes,
const uint8_t *expectedData,
uint32_t *failedAddress,
uint32_t *failedData);
status_t (*flash_get_property)(flash_config_t *config, flash_property_tag_t
 whichProperty,uint32_t *value);
uint32_t reserved0[3];
// FLASH FFR driver
status_t (*ffr_init)(flash_config_t *config);
status_t (*ffr_lock)(flash_config_t *config);
status_t (*ffr_cust_factory_page_write)(flash_config_t *config, uint8_t *page_data, bool
 seal_part);
status_t (*ffr_get_uuid)(flash_config_t *config, uint8_t *uuid);
status_t (*ffr_get_customer_data)(flash_config_t *config, uint8_t *pData, uint32_t
 offset,uint32_t len);
status_t (*ffr_cust_keystore_write)(flash_config_t *config, ffr_key_store_t *pKeyStore);
status_t reserved1;
status_t reserved2;
status_t (*ffr_infield_page_write)(flash_config_t *config, uint8_t *page_data, uint32_t
 valid_len);
status_t (*ffr_get_customer_infield_data)(flash_config_t *config, uint8_t *pData,
 uint32_t offset,uint32_t len);
status_t (*flash_read)(flash_config_t *config, uint32_t start, uint8_t *dest, uint32_t
 lengthInBytes);
status_t reserved3;status_t (*flash_get_cust_keystore)(flash_config_t *config, uint8_t
 *pData, uint32_t offset,uint32_t len);
status_t (*flash_erase_non_blocking)(flash_config_t *config, uint32_t start, uint32_t
 lengthInBytes,uint32_t key);

AN14562 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 February 2025 Document feedback
4 / 13

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14562

NXP Semiconductors AN14562
LPC553x/LPC55S3x FLASH APIs Implementation

status_t (*flash_get_command_state)(flash_config_t *config);
} flash_driver_interface_t;

3.1.2 FLASH configuration structure

Each FLASH API depends on a common FLASH context structure named flash_config_t to perform the
proper FLASH operation.

/*! @brief FLASH driver state information.
*
* An instance of this structure is allocated by the user of the flash driver and
* passed into each of the driver APIs.
*/
typedef struct
{
uint32_t PFlashBlockBase; /*!< A base address of the first PFlash block */
uint32_t PFlashTotalSize; /*!< The size of the combined PFlash block. */
uint32_t PFlashBlockCount; /*!< A number of PFlash blocks. */
uint32_t PFlashPageSize; /*!< The size in bytes of a page of PFlash. */
uint32_t PFlashSectorSize; /*!< The size in bytes of a sector of PFlash. */
flash_ffr_config_t ffrConfig;
flash_mode_config_t modeConfig;
uint32_t *nbootCtx;
} flash_config_t;

4 Implementing FLASH APIs in MCUXpresso

First, define the following macros to facilitate the access to ROM and flash memory APIs in a firmware context.

#define ROM_API_TREE ((uint32_t *)0x1302FC00U)
#define DO_DEINIT 0
#define FLASH_API_TREE ((flash_driver_interface_t*)ROM_API_TREE[4])

4.1 version
version field in the FLASH API table indicates the current FLASH API version in the ROM bootloader.

Prototype:

standard_version_t version;

Parameter Description

version Pointer to version structure to store current Flash driver version information

Implementation:

/*Flash version api call*/
uint32_t FlashDriverVersion = FLASH_API_TREE-> version.version;

Output: It gives the version of the Flash driver.

AN14562 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 February 2025 Document feedback
5 / 13

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14562

NXP Semiconductors AN14562
LPC553x/LPC55S3x FLASH APIs Implementation

4.2 ffr_lock
This API is used for initializing the FFR controller and the flash_ffr_config context. It must be called before
calling other FFR APIs.

Flash FFR initialization must be done by invoking the ffr_init API of the MCUXpresso SDK before calling
the ffr_lock.

Prototype:

status_t (*ffr_lock)(flash_config_t *config);

Parameter Description

config Pointer to flash_config_t data structure in memory to store driver runtime state.

Implementation:

/*FRR init*/
status_t (*ffr_init)(flash_config_t *config);
uint32_t status_t = FLASH_API_TREE-> ffr_init (&flashConfig);

Output: If the status is kStatus_FLASH_Success return value, it means that the FFR region has been locked.

4.3 ffr_cust_factory_page_write
The API is used for writing the CMPA data into the CMPA region, and the API should be called after the
flash_init and ffr_init.

Prototype:

status_t (*ffr_cust_factory_page_write)(flash_config_t *config, uint8_t *page_data, bool seal_part);

Parameter Description

config Pointer to flash_config_t data structure in memory to store driver runtime state.

page_data Pointer to a value address that will be written to the destination address.

seal_part If set as true or the page_data includes the non-zero CMAC data, the CMPA
CMAC will be calculated and programed into the CMPA region.

Implementation:

/*ffr_cust_factory_page write api*/
uint32_t cmpa_buffer_cust[512] = {0};
uint32_t status_cmpa = FLASH_API_TREE-> ffr_cust_factory_page_write
(&flashConfig, (uint8_t *)cmpa_buffer_t, false);

Output: If the status is kStatus_FLASH_Success return value, it means that the cmpa_buffer data has
been programmed into the CMPA region.

4.4 ffr_get_uuid
The API is used for getting the UUID data of the device, and the API should be called after the flash_init
and ffr_init.

AN14562 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 February 2025 Document feedback
6 / 13

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14562

NXP Semiconductors AN14562
LPC553x/LPC55S3x FLASH APIs Implementation

Prototype:

status_t (*ffr_get_uuid)(flash_config_t *config, uint8_t *uuid);

Parameter Description

config Pointer to flash_config_t data structure in memory to store driver runtime state.

uuid Pointer to value address, the value is read back from the nmpa configuration uuid.

Implementation:

/*UUId api*/
uint32_t uuid_buffer [4];
uint32_t status_uuid = FLASH_API_TREE-> ffr_get_uuid(&flashConfig,
(uint8_t *)uuid_buffer);

Output: If the status is kStatus_FLASH_Success return value, it means that the UUID data has been got
from the UUID of the device.

4.5 ffr_get_customer_data
This API is used to read data stored in the Customer Factory page, and the API should be called after
flash_init and ffr_init.

Prototype:

status_t (*ffr_get_customer_data)(flash_config_t *config, uint8_t *pData, uint32_t
 offset, uint32_t len);

Parameter Description

config Pointer to flash_config_t data structure in memory to store driver runtime state.

pData Point to the destination buffer of date that stores data read from the Customer
Factory Page.

offset Point to the offset value based on the CMPA address (0x3e200) of the device.

len The length in bytes to be read back, and the offset + len <= 512 B.

Implementation:

/*ffr_get_customer_data api*/
uint32_t cmpa_buffer[4];
uint32_t offset = 0;
uint32_t status_custdata = FLASH_API_TREE->ffr_get_customer_data
(&flashConfig, (uint8_t *)cmpa_buffer, offset, sizeof(cmpa_buffer));

Output: If the status is kStatus_FLASH_Success return value, it means that the CMPA data has been
successfully read from the CMPA region and stored into the cmpa_buffer.

4.6 ffr_cust_keystore_write
The API is used for programing the customer key store data into the customer key store region (from 0x3e400
to 0x3e600), and the API should be called after flash_init and ffr_init.

AN14562 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 February 2025 Document feedback
7 / 13

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14562

NXP Semiconductors AN14562
LPC553x/LPC55S3x FLASH APIs Implementation

Prototype:

status_t (*ffr_cust_keystore_write)(flash_config_t *config, ffr_key_store_t *pKeyStore);

Parameter Description

config Pointer to flash_config_t data structure in memory to store driver runtime state.

pKeyStore Pointer to the customer key store data buffer, which will be programed into the
customer key store region.

Implementation:

/*ffr_cust_keystore_write api*/
uint32_t cust_keystore_buffer={4};
uint32_t status_custkeywrite = FLASH_API_TREE->ffr_cust_keystore_write
(&flashConfig, (ffr_key_store_t *) cust_keystore_buffer);

Output: If the status is kStatus_FLASH_Success return value, it means that the customer key store data has
been programmed into the customer key store region.

4.7 flash_read
The API is used for getting internal flash data, including the FLASH and FFR data, and the API should be called
after the flash_init.

Prototype:

status_t (*flash_read)(flash_config_t *config, uint32_t start, uint8_t *dest, uint32_t
 lengthInBytes);

Parameter Description

config Pointer to flash_config_t data structure in memory to store driver runtime state.

start Point to the start address where will be read.

dest Pointer to the buffer used for storing the read data.

lengthInBytes Point to the read data length

Implementation:

/*Flash read api call*/
uint32_t start_addr = 0x1000;
uint8_t read_buffer[512] = {0};
uint32_t length_b = 512;
uint32_t status_flashread = FLASH_API_TREE-> flash_read(&flashConfig,
start_addr, (uint8_t *) read_buffer, length);

Output: If the status is kStatus_FLASH_Success return value, it means that the expected read region has
been loaded into the read_buffer.

4.8 ffr_get_cust_keystore
API is used for getting the customer key store data from the customer key store region (from 0x3e400 to
0x3e600), and the API should be called after flash_init and ffr_init.

AN14562 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 February 2025 Document feedback
8 / 13

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14562

NXP Semiconductors AN14562
LPC553x/LPC55S3x FLASH APIs Implementation

Prototype:

status_t (*flash_get_cust_keystore)(flash_config_t *config, uint8_t *pData, uint32_t
 offset, uint32_t len);

Parameter Description

config Pointer to flash_config_t data structure in memory to store driver runtime state.

pData Pointer to the customer key store data buffer, which got from the customer key store
region.

offset Point to the offset value based on the customer key store address (0x3e400) of the
device.

len Point to the length of the expected to get customer key store data, and the offset +
len <= 512 B.

Implementation:

/*ffr_get_cust_keystore api*/
uint8_t cust_keystore_buffers[512] = {0};
uint32_t offset_b = 0;
uint32_t length = 512;
uint32_t status_get_cust_key = FLASH_API_TREE-> flash_get_cust_keystore
(&flashConfig, (uint8_t *) cust_keystore_buffers, offset, length);

Output: If the status is kStatus_FLASH_Success return value, it means that the customer key store data has
been got from the customer key store region and stored into the cust_keystore_buffer.

5 Acronyms

Abbreviations Full Forms

ROM Read Only Memory

FlexSPI Flexible Serial Peripheral Interface

IAP In-Application Programming

OTP One Time Program

CMPA Customer Manufacturing Programming Area

CFPA Customer Factory Programming Area

UUID Universal Unique Identifier

FFR Another name for PFR (Protected Flash Region)

Table 1. Acronyms

6 References

• LPC553x Reference Manual (document LPC553xRM)

AN14562 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 February 2025 Document feedback
9 / 13

https://www.nxp.com/webapp/Download?colCode=LPC553xRM&appType=license&location=null
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14562

NXP Semiconductors AN14562
LPC553x/LPC55S3x FLASH APIs Implementation

7 Note about the source code in the document

The example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2025 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

8 Revision history

Table 2 summarizes the revisions to this document.

Document ID Release date Description

AN14562 v1.0 28 February 2025 Initial public release

Table 2. Revision history

AN14562 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 February 2025 Document feedback
10 / 13

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14562

NXP Semiconductors AN14562
LPC553x/LPC55S3x FLASH APIs Implementation

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AN14562 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 February 2025 Document feedback
11 / 13

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14562

NXP Semiconductors AN14562
LPC553x/LPC55S3x FLASH APIs Implementation

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

Microsoft, Azure, and ThreadX — are trademarks of the Microsoft group of
companies.

AN14562 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 28 February 2025 Document feedback
12 / 13

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14562

NXP Semiconductors AN14562
LPC553x/LPC55S3x FLASH APIs Implementation

Contents
1 Introduction .. 2
2 ROM API structure .. 2
3 FLASH APIs ..4
3.1 FLASH driver API interface 4
3.1.1 FLASH driver API prototypes 4
3.1.2 FLASH configuration structure5
4 Implementing FLASH APIs in

MCUXpresso ...5
4.1 version ... 5
4.2 ffr_lock ... 6
4.3 ffr_cust_factory_page_write6
4.4 ffr_get_uuid .. 6
4.5 ffr_get_customer_data 7
4.6 ffr_cust_keystore_write 7
4.7 flash_read .. 8
4.8 ffr_get_cust_keystore ...8
5 Acronyms ... 9
6 References ..9
7 Note about the source code in the

document ..10
8 Revision history ...10

Legal information ...11

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2025 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 28 February 2025
Document identifier: AN14562

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14562

	1 Introduction
	2 ROM API structure
	3 FLASH APIs
	3.1 FLASH driver API interface
	3.1.1 FLASH driver API prototypes
	3.1.2 FLASH configuration structure

	4 Implementing FLASH APIs in MCUXpresso
	4.1 version
	4.2 ffr_lock
	4.3 ffr_cust_factory_page_write
	4.4 ffr_get_uuid
	4.5 ffr_get_customer_data
	4.6 ffr_cust_keystore_write
	4.7 flash_read
	4.8 ffr_get_cust_keystore

	5 Acronyms
	6 References
	7 Note about the source code in the document
	8 Revision history
	Legal information
	Contents

