AN14558

Low Power Implementation on MCX A153 MCU Series Rev. 1.0 — 14 February 2025

Application note

Document information

Information	Content
Keywords	AN14558, MCX A153 MCU series, Low power, Power consumption, Wake-up time
Abstract	This application note introduces the power domains, power modes, highlight configurations, wake up, and low power and wakeup optimization of MCXA153 series. It provides different low power and wake up configurations through demo for user reference.

Low Power Implementation on MCX A153 MCU Series

1 Introduction

MCX A153 series MCUs expand the MCX Arm Cortex-M33 product offerings with multiple high-speed connectivities, operating up to 96 MHz, serial peripherals, timers, analog, and low power consumption.

The power-efficient operating modes are as follows:

- 53 µA/MHz in the Active mode
- 0.34 mA in the Sleep mode
- 20.28 µA in the Deep Sleep mode
- 6.5 µA in the Power Down mode
- 394 nA in the Deep Power Down mode

This application note describes the following contents of the MCX A153 series:

- Power domains and power supplies
- · Power modes and low power entry
- · Power related configurations
- · Wake up source and wake up time
- · Low power and wake up optimization
- · Low power demo

2 Power domains

As shown in Figure 1, the device contains SYSTEM domain, CORE domain, SRAM domain, ANALOG domain, and USB domain. SYSTEM domain is mainly for power management, which contains SPC, HVD/LVD/POR, FRO16K, WUU, and other modules. CORE domain is mainly for digital logic, which contains CM33, NVIC, DMA, FRO192M, LPUART, and other modules. For specific modules contained in each domain, see the Power domain assignments for modules table in the Reference Manual.

Low Power Implementation on MCX A153 MCU Series

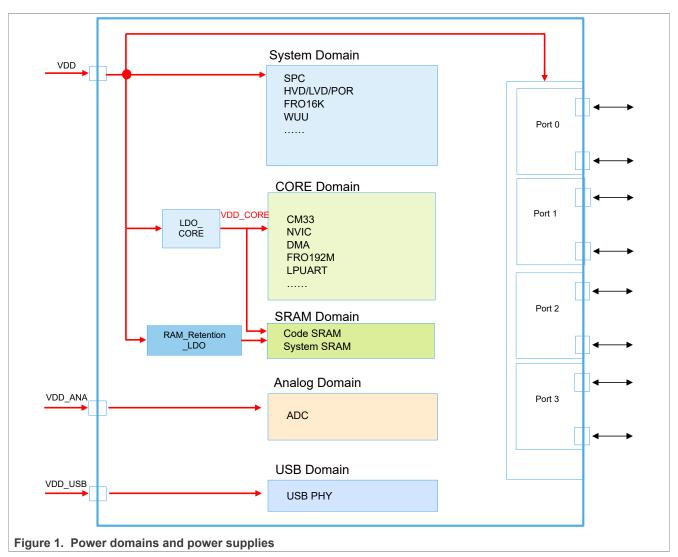


Table 1 lists the power supply and corresponding voltage range of each power domain. The power supply of the CORE domain is the output voltage VDD_CORE of CORE_LDO, which is 1.0 V and 1.1 V in active mode and can be a lower voltage in the Power Down mode. When VDD_CORE is 1.1 V, the core can reach up to 96 MHz. When VDD_CORE is 1.0 V, the core can reach up to 48 MHz. The power supply of the SRAM domain is the output voltage of CORE_LDO or RAM_Retention_LDO, and RAM_Retention_LDO supports SRAM retention switches in the Deep Power Down mode. For the power supply and corresponding voltage range of the remaining power domains, see Table 1.

Table 1. Power supplies and voltage range

Power domain	Power supply	Voltage range	
CORE	LDO_CORE	Mid voltage (1.0 V), Normal voltage (1.1 V) (Active, Sleep, and Deep Sleep mode)	
		Retention voltage (Power Down mode)	
		OFF (Deep Power Down mode)	
SRAM	LDO_CORE	Mid voltage (1.0 V), Normal voltage (1.1 V)	

AN14558

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

Low Power Implementation on MCX A153 MCU Series

Table 1. Power supplies and voltage range...continued

Power domain	Power supply	Voltage range
		(Active and Sleep mode)
	RAM_Retention_LDO	Retention voltage
		(Deep Sleep, Power Down, and Deep Power Down mode)
SYSTEM	VDD	1.71 – 3.6 V
ANALOG	VDD_ANA	1.61 – 3.7 V
USB	VDD_USB	3.0 – 3.6 V

3 Power modes and low power entry

This section describes power modes and low power entry controllers.

3.1 Power modes

The device supports Active, Sleep, Deep Sleep, Power Down, and Deep Power Down. <u>Table 2</u> describes the status of Clock, CORE domain, SYSTEM domain, FLASH, SRAM, PORT, and IO in different power modes. You can use <u>Table 2</u> to compare the status of these modules in different power modes or quickly find the status of these modules in a certain power mode.

Table 2. Modules status and power modes

table 2. Inlocates states and power modes							
	CORE domain	CM33	SYSTEM domain	Flash	SRAM	PORT ^[1]	Ю
Active	ON	ON	ON	ON	ON	ON	ON
Sleep	ON	Static ^[2]	ON	ON	ON	ON	ON
Deep Sleep	Static/LP ^[3]	Static	ON	Static	Static	Static	ON
Power Down	Static	Static	ON	OFF	Static	Static	Static
Deep Power Down	OFF ^[4]	OFF	ON	OFF	Static/OFF	OFF	Static

^[1] PORT supports pad control functions.

The following sections introduce the features of different power modes.

3.1.1 Active

Default mode after RESET.

- · Clocks to CPU, memories, and peripherals are enabled.
- CPU execution is possible.
- Adjust VDD_CORE to the minimum possible value based on the required frequency to achieve optimal power consumption.

3.1.2 Sleep

- · The CPU clock is OFF.
- The System and Bus clock remains ON.

Static means that the module is in the state retention status (no clock but the data can be kept).

^[3] LP means can be active with async functional clock.

^{4]} OFF means power down.

Low Power Implementation on MCX A153 MCU Series

- Most modules can remain operational.
- Use the ACTIVE CFG register to control LDO CORE voltage level and drive strength.

3.1.3 Deep Sleep

- · CPU clock, System clock, and Bus clock are OFF.
- SRAM is in static status (SRAM cannot be accessed, but the data is retained).
- To enable SOSC, SIRC, and FIRC, configure the corresponding STEN bit.
- Some modules can remain operational with low power asynchronous clock sources.

3.1.4 Power Down

It is the lowest power mode that can retain all registers.

- The CPU clock, System clock, and Bus clock are OFF.
- · Flash memory is powered off.
- Place the CORE domain of the chip into the static state.
- SRAM is in static status (SRAM cannot be accessed, but the data is retained)
- Configure the SPC LP CFG[CORELDO VDD LVL] to 0000b (retention voltage).

3.1.5 Deep Power Down

The device wakes from the Deep Power Down mode through the Reset routine.

- The CPU clock, System clock, and Bus clock are OFF.
- The Flash memory is powered off.
- The CORE domain is powered off.
- The SYSTEM domain remains ON.
- Support four SRAM retention switches (for details, see On-chip regulators table in SPC chapter for details, and support all SRAM array powered off).

3.2 Low power entry

As shown in <u>Table 5</u>, the power mode entered is controlled by CKCTRL[CKMODE] and PMCTRLMAIN[LPMODE] bitfields.

The CKCTRL [CKMODE] field configures the amount of clock gating when the core enters a low power mode because of WFI or WFE. <u>Table 3</u> describes the functions corresponding to different CKMODE values. Configuring CKMODE > 0 requires the SLEEPDEEP field in the Arm core to become **1**. Configuring PMCTRLMAIN[LPMODE] > 0 requires writing 1111b to CKMODE.

Table 3. Function of CKMODE field

CKCTRL[CKMODE]	Function
0000b	No clock gating
0001b	Core clock gated
	Core, platform, and peripheral clocks are gated, and the core enters the low power mode.

The PMCTRLMAIN[LPMODE] selects the desired low power mode when a core executes WFI or WFE instruction. If you haven't enabled the protection level using Power Mode Protection (PMPROT), writing to this field is blocked. Table 4 shows the functions corresponding to different LPMODE values.

Low Power Implementation on MCX A153 MCU Series

Table 4. Function of LPMODE field

PMCTRLMAIN[LPMODE]	Function
0000b	Active/Sleep
0001b	Deep Sleep
0011b	Power Down
1111b	Deep Power Down

<u>Table 5</u> shows all the configurations of the device to enter low power mode.

Table 5. Power mode entry

Power mode	CKCTRL[CKMODE]	PMPROT[LPMODE]	PMCTRLMAIN[LPMODE]	
Active	0000b	0000b	0000b	
0000b 0000b		0000b	d0000b	
Sieep	0001b	30000	00000	
Deep Sleep	1111b	0001b	0001b	
Power Down	1111b	0011b	0011b	
Deep Power Down	1111b	1111b	1111b	

4 Power configurations

4.1 Regulator and voltage detectors configurations

<u>Table 6</u> shows the power-related hardware configurations. ACTIVE_CFG and ACTIVE_CFG1 registers configure the hardware in Active and Sleep mode, such as LDO_CORE voltage level and drive strength. Autonomous change to use LP_CFG and LP_CFG1 when in low power mode (Deep Sleep, Power Down, and Deep Power Down).

Table 6. Power-related hardware configurations

ACTIVE_CFG	Configures
LP_CFG	LDO_CORE voltage level
	LDO_CORE drive strength
	Enables
	HVDs, LVDs
	Bandgap, BG buffer
	VDD voltage detect
	Low power current reference IREF
ACTIVE_CFG1	Enables
LP_CFG1	CMPs and CMP DACs
	USB 3 V detect

4.2 Low Power Request (LPREQ) pin

The LPREQ pin asserts after low power entry and negates after low power wake up.

Low Power Implementation on MCX A153 MCU Series

SPC controls the state of the LPREQ pin based on how you configure Low Power Request Configuration (LPREQ_CFG). You control the LPREQ pin in the Active mode. SPC controls the pin when the chip transitions from Active to a Low Power mode, and after wakeup from these Low Power modes.

To use the LPREQ pin:

- 1. Specify the pin polarity (LPREQ CFG[LPREQPOL]).
- 2. Enable the pin output (LPREQ CFG[LPREQOE]).
- 3. Configure the pin mux for the desired pin using the PORT PCR registers.

Figure 2 shows the waveform of LPREQ pin, and the explanation of the waveform is listed below:

- CTIMER MATCH: Hardware toggle IO to indicate the wake up event.
- LPREQ_PIN: LPREQ_CFG[LPREQPOL]=1b, LPREQ_CFG[LPREQOE]=1b, which means that the pin is low
 after the low power entry and high after wake up.

4.3 Async DMA

Deep Sleep mode and Power Down mode support use async DMA to partially wake up, and the device automatically re-enters the low power mode after DMA finishes its task.

The following is the introduction to async DMA:

- The async DMA does not require CPU involvement, but does require a Bus clock, which wakes up the MCU from Deep Sleep or Power Down to Sleep mode.
- When the async DMA needs to access the register of a peripheral, enable the Bus clock of the peripheral before entering low power mode by MRCC_GLB_CCx and MRCC_GLB_ACCx registers. When async DMA needs to access SRAM, do not set the SRAM to retention state in Sleep mode.
- When the async DMA is completed, that is, CHx_CSR[DONE] is set, the MCU automatically enters the original low power mode.
- Set CHX CSR[ERQ] and CHX CSR[EARQ].
- <u>Table 7</u> lists all the hardware trig source of async DMA and corresponding slot number. Only modules in LP status not Static status under Deep Sleep or Power Down modes support async DMA. For example, FlexPWM is in Static under Deep Sleep mode, so it cannot support the async DMA.

Table 7. Async DMA configuration

Slot Number	DMA request description	Module name
1	Wake up event	WUU0
11	Receive request	LPI2C0
12	Transmit request	LPI2C0
15	Receive request	LPSPI0
16	Transmit request	LPSPI0
17	Receive request	LPSPI1

Low Power Implementation on MCX A153 MCU Series

Table 7. Async DMA configuration...continued

Slot Number	DMA request description	Module name
18	Transmit request	LPSPI1
21	Receive request	LPUART0
22	Transmit request	LPUART0
23	Receive request	LPUART1
24	Transmit request	LPUART1
25	Receive request	LPUART2
26	Transmit request	LPUART2
49	Counter match event	LPTMR0
51	FIFO Request	ADC0
53	DMA_request	CMP0
54	DMA_request	CMP1
60	Pin event request 0	GPIO0
61	Pin event request 0	GPIO1
62	Pin event request 0	GPIO2
63	Pin event request 0	GPIO3

5 Wake up

<u>Table 8</u> shows normal wake up source and typical wake up time in different low power modes, where the typical wake up time is the data in the datasheet.

Table 8. Wake up information

Symbol	Description	Wake up source	Typical wake up time
tSLEEP	Sleep -> Active	All peripherals	0.21 µs
tDSLEEP	Deep Sleep -> Active	Async peripherals	7.4 µs
tPWDN	Power Down -> Active	WUU, Reset pin	17.1 µs
tDPWDN	Deep Power Down -> Active	WUU, Reset pin	2.36 ms

6 Low power and wake up optimization

This section explains various methods for optimizing power consumption and factors to consider for wake up optimization.

6.1 Power consumption optimization

Following are the different ways of performing power consumption optimization:

- Regulator
 - Configure the appropriate voltage level and drive strength.

Low Power Implementation on MCX A153 MCU Series

- In the Power Down mode, LDO CORE can provide retention voltage to the CORE domain.
- Peripherals
 - Disable unused analog peripherals by ACTIVE CFG1 and LP CFG1 registers.
- Memories
 - Flash
 - Configure the FLASHCR register to place the Flash memory in the Low Power state.
 - SRAM
 - Auto clock gating by the RAM CTRL register of SYSCON.
 - SRAM can be individually retained or powered down by software in Deep Power Down mode.
- Clocks
 - Select and configure the appropriate CPU CLK/SYSTEM CLK.
 - Disable unused clock source.
 - Configure the MRCC_GLB_CC0/MRCC_GLB_CC1/MRCC_GLB_ACC0/MRCC_GLB_ACC1 to disable or automatic clock gating the clocks to modules.
- Monitors
 - Disable unused voltage monitors (HVDs/LVDs).
- I/O pins
 - For unused I/O pins, use the default configuration (floating input), in which case the leakage current is minimized. With the default configuration, the input buffer and the internal pull resistor are disabled.
 - During the use of I/O pins, reduce the power consumption by appropriately increasing the resistance of the external resistor.

6.2 Wake up time consideration

Here are some points to consider with wake up time:

- SLOW CLK frequency
 - The wake up process is implemented through CMC. SLOW_CLK is the clock source of CMC and its frequency is equal to ¼ SYSTEM CLK.
- Different VDD CORE level
 - Recovery time required for different voltage levels. For details, see the Low Power Wake up delay table in the Reference Manual.
- The longer time of clock recovery time and Flash recovery time.
- · Interrupt latency.

7 Demo operation

7.1 Hardware requirement

- FRDM-MCXA153 board.
- One Type-C USB cable.

Note:

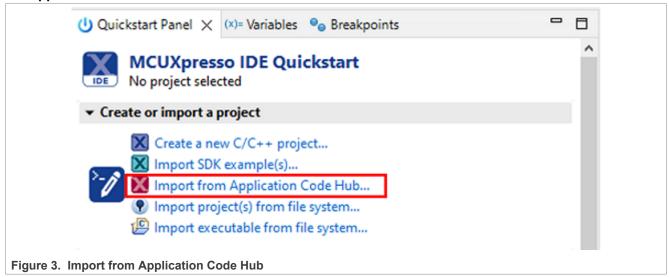
- To measure wake up time, prepare an oscilloscope.
- To measure power consumption, prepare an MCU-Link Pro or multimeter.

7.2 Software requirement

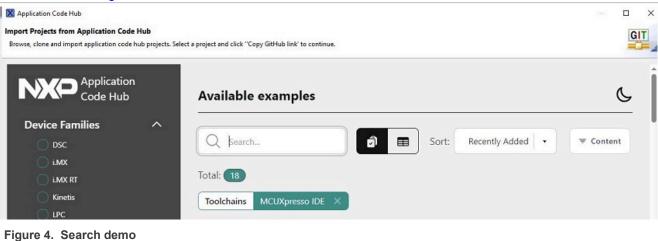
- MCUXpresso IDE v11.9.0 or later.
- SDK 2.14.0 FRDM-MCXA153.

Low Power Implementation on MCX A153 MCU Series

7.3 Setup


7.3.1 Hardware connection

Use a Type-C USB cable to connect J15 of FRDM-MCXA153 and the USB port of the personal computer.


7.3.2 Import project

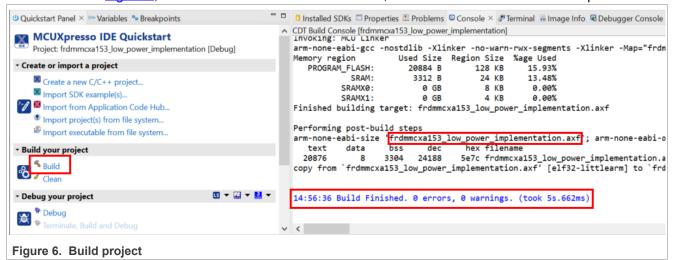
To import a project, perform the following steps:

1. As shown in Figure 3, open MCUXpresso IDE 11.9.0, on the Quickstart Panel, choose Import from Application Code Hub.

2. As shown in Figure 4, enter the demo name in the search bar.

3. As shown in Figure 5, click Copy GitHub link, MCUXpresso IDE automatically retrieves project attributes, and then click Next>.

Low Power Implementation on MCX A153 MCU Series


4. Select the **main** branch, click **Next>**, select the MCUXpresso project, and then click the **Finish** button to complete the import.

Note: Install the SDK 2.14.0 FRDM-MCXA153 on your MCUXpresso IDE.

7.3.3 Build and Flash project

To Build and Flash a project, perform the following steps:

1. As shown in Figure 6, click the **Build** button from the toolbar, and then wait for the build to complete.

2. As shown in Figure 7, select the GUI Flash Tool from the toolbar to program the executable to the board.

7.3.4 Select low power mode and wake up configurations

To select the low power mode and wake up configurations, perform the following steps:

1. Open a serial terminal.

Low Power Implementation on MCX A153 MCU Series

2. Follow the prompts in Figure 8. To enter a different Low Power mode, enter one from A to E.

- 3. Follow the prompts in Figure 9 and enter one from 1 to 3 to select the wake up mode.
 - The typical wake up mode corresponds to the typical wake up time in the data sheet.
 - The fast wake up mode corresponds to a faster wake up time and often consumes more current.
 - The slow wake up mode corresponds to a slower wake up time and often consumes less current.

```
Select the wake up mode

Press 1 to select: Typical wake up mode
Press 2 to select: Fast wake up mode
Press 3 to select: Slow wake up mode

Waiting for wake up mode select...

Figure 9. Select wake up mode
```

 Figure 10 prompts the selected low power mode and wake up mode, the corresponding wake up time and power consumption, and press SW3 on FRDM-MCXA153 to wake up the MCU.
 Note:

Press the wake up button when a prompt message appears, otherwise it results in failure to wake up!

Low Power Implementation on MCX A153 MCU Series

```
Normal Boot.
********************
                              Low Power Implementation Demo
                                                                ********************
    Core Clock = 48000000Hz
    Power mode: Active
Select the desired operation
        Press A to enter: Active mode
       Press B to enter: Sleep mode
       Press C to enter: DeepSleep mode
        Press D to enter: PowerDown mode
        Press E to enter: DeepPowerDown mode
Waiting for power mode select...
        Press C and select DeepSleep mode
        Deep Sleep: Core/System/Bus clock are gated off.
Select the wake up mode
        Press 1 to select: Typical wake up mode
        Press 2 to select: Fast wake up mode
        Press 3 to select: Slow wake up mode
Waiting for wake up mode select...
        Press 1 and select Typical wake up mode
        DeepSleep Typical wake up time: ~7.52us(Production Sample), ~4.6lus(Engineering Sam
ple); Power consumption: ~22.1uA
Wakeup Button Selected As Wakeup Source.
Entering Low power mode...
Please press SW3 to wakeup. (Please only press the wakeup button when this message appears,
otherwise it will result in failure to wake up!)
Figure 10. All prompts
```

7.3.5 Measure power consumption

7.3.5.1 Use MCU-Link Pro and MCUXpresso IDE to measure power consumption

To Use MCU-Link Pro and MCUXpresso IDE to measure power consumption, perform the following steps:

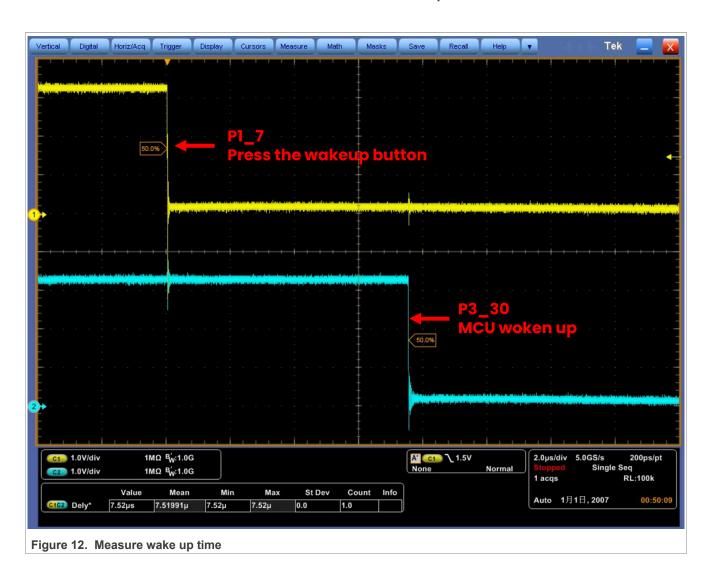
1. Connect MCU-Link Pro and FRDM-MCXA153 according to <u>Table 9</u>, and then connect MCU-Link Pro and FRDM-MCXA153 to the host personal computer.

Table 9. MCU-Link Pro and FRDM-MCXA153 connection

MCU-Link Pro	FRDM-MCXA153
J9-1	JP2-1
J9-3	JP2-2
J9-2	J3-14

2. Follow the steps in Figure 11 to measure current with MCUXpresso.

Low Power Implementation on MCX A153 MCU Series


7.3.5.2 Use multimeter to measure power consumption

You can also use a multimeter to measure the current at JP2 of the FRDM-MCXA153 board.

7.3.6 Measure wake up time

As shown in <u>Figure 12</u>, get the wake up time by measuring the delay between the falling edges of J1-1 (P1_7) and J4-12 (P3_30) using an oscilloscope.

Low Power Implementation on MCX A153 MCU Series

7.4 Reference results

Table 10 provides the wake up time and power consumption as a reference.

Note:

- P represents the production sample and E represents the engineering sample.
- The typical wake up time corresponds to wake up time (**Power mode transition operating behaviors** table) in the data sheet.
- Temperature, measuring instrument, and wake up source, and so on, can affect wake up time.
- There is no special gate off all peripherals clock, and Deep Power Down mode retained all RAM, so the measured current is a little different from the data in the data sheet.

Table 10. Reference results

Table 10. Reference results						
Power mode	Wake up mode	Wake up time (P)		Power consumption (P and E)		
Sleep	Typical	0.27 µs	0.27 µs	1.72 mA		
Sleep	Fast	0.14 µs	0.14 µs	3.27 mA		
Sleep	Slow	1.04 µs	1.04 µs	0.82 mA		

AN14558

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

Low Power Implementation on MCX A153 MCU Series

Table 10. Reference results...continued

Power mode	Wake up mode	Wake up time (P)	Wake up time (E)	Power consumption (P and E)
Deep Sleep	Typical	7.52 µs	4.61 µs	22.1 µA
Deep Sleep	Fast	5.90 µs	2.65 µs	965.2 µA
Deep Sleep	Slow	14.59 µs	11.98 µs	22.0 μΑ
Power Down	Typical	17.26 µs	13.99 µs	6.2 µA
Power Down	Fast	7.79 µs	4.49 µs	202.8 μΑ
Power Down	Slow	39.74 µs	36.89 µs	6.2 µA
Deep Power Down	Typical	2.35 ms	2.76 ms	1.1 µA

8 Summary

This application note introduces the power domains, power modes, highlight configurations, wake up, and low power and wake up optimization of MCXA153 series. It provides different low power and wake up configurations through demo for user reference.

9 Note about the source code in the document

The example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2025 NXP Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials must be provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

10 Revision history

Table 11 summarizes the revisions to this document.

Table 11. Revision history

Document ID	Release date	Description
AN14558 v1.0	14 February 2025	Initial public release

Low Power Implementation on MCX A153 MCU Series

Legal information

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at https://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this document expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

HTML publications — An HTML version, if available, of this document is provided as a courtesy. Definitive information is contained in the applicable document in PDF format. If there is a discrepancy between the HTML document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AN14558

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

Low Power Implementation on MCX A153 MCU Series

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile — are trademarks and/or registered trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved.

 $\mbox{\bf Microsoft}$, $\mbox{\bf Azure}$, and $\mbox{\bf ThreadX}$ — are trademarks of the Microsoft group of companies.

Low Power Implementation on MCX A153 MCU Series

Contents

1	Introduction	2
2	Power domains	
3	Power modes and low power entry	4
3.1	Power modes	4
3.1.1	Active	4
3.1.2	Sleep	4
3.1.3	Deep Sleep	
3.1.4	Power Down	
3.1.5	Deep Power Down	5
3.2	Low power entry	5
4	Power configurations	6
4.1	Regulator and voltage detectors	
	configurations	6
4.2	Low Power Request (LPREQ) pin	6
4.3	Async DMA	7
5	Wake up	
6	Low power and wake up optimization	8
6.1	Power consumption optimization	
6.2	Wake up time consideration	9
7	Demo operation	9
7.1	Hardware requirement	
7.2	Software requirement	
7.3	Setup	
7.3.1	Hardware connection	
7.3.2	Import project	
7.3.3	Build and Flash project	
7.3.4	Select low power mode and wake up	
	configurations	11
7.3.5	Measure power consumption	
7.3.5.1	Use MCU-Link Pro and MCUXpresso IDE	
	to measure power consumption	13
7.3.5.2	Use multimeter to measure power	
	consumption	14
7.3.6	Measure wake up time	14
7.4	Reference results	
8	Summary	
9	Note about the source code in the	
	document	16
10	Revision history	
	Legal information	

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.