
AN14411
Enabling eIQ Core NPU Delegates for i.MX Android Applications
Rev. 1.0 — 23 September 2024 Application note

Document information
Information Content

Keywords AN14411, i.MX 8MP and i.MX 95 application processors, Neural Networks API (NNAPI), Android
OS, Android Native Development Kit (NDK), board support package (BSP), eIQ Core NPU
Delegates, i.MX Android applications

Abstract This document describes the deployment of the TensorFlow Lite inference engine and related
delegates for on-chip Machine learning (ML) accelerators (NPU and GPU) available on i.MX 8MP
and i.MX 95 application processors.

https://www.nxp.com

NXP Semiconductors AN14411
Enabling eIQ Core NPU Delegates for i.MX Android Applications

1 Introduction

This application note describes how to deploy part of the eIQ
®
 Core into the NXP Android board support

package (BSP). It specifically describes the deployment of the TensorFlow Lite inference engine and related
delegates for on-chip Machine learning (ML) accelerators (NPU and GPU) available on i.MX 8MP and i.MX 95
application processors.

The primary objective is to enable the use of ML hardware accelerators to achieve performance comparable to
that on NXP Yocto Linux. The following hardware accelerators are addressed in this application note:

• NPU on the i.MX 8MP platform using the VX Delegate,
• eIQ Neutron NPU using Neutron Delegate on the i.MX 95 platform.

This document is divided as follows:

Section 2 "NNAPI versus dedicated delegates" compares the dedicated delegates with the standard Android
mean for accessing ML HW Accelerators.

Section 3 "Building the Android platform" and Section 4 "Building eIQ Core using the NDK" describe the steps
to:

• Configure Android BSP
• Build the eIQ Core packages using Android's Native Development Kit (NDK)
• Package the eIQ Core components into the Android Application Package and its deployment on the platform.

Section 5 "App installation and execution" shows a demo application running the inference on the HW
accelerator.

The requirements to follow this application note are:

• i.MX 8M Plus or i.MX 95 Evaluation Kit
• Build Host machine with Linux OS and +450 GB free disk space, +16 GB RAM
• Debug/Deployment Host machine to push/pull data to/from the i.MX target: Linux or Windows machine.

Note: This Application Note describes the deployment on Android 14.0.0_2.0.0 BSP and eIQ Core LF
6.6.23_2.0.0 releases.

AN14411 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
2 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14411

NXP Semiconductors AN14411
Enabling eIQ Core NPU Delegates for i.MX Android Applications

2 NNAPI versus dedicated delegates

Android provides the Neural Networks API (NNAPI) to access the ML accelerators. For instance, the NNAPI
Delegate in the TensorFlow Lite inference engine uses this API.

The NNAPI is a software layer defined by Android OS that enables execution of compute-intensive operations.
For this purpose, it uses the available hardware such as the CPU, GPU, and other ML HW Accelerators. It is
a part of the Android public API since level 27 and adds new features with every Android release. Different
inference engines can use the NNAPI. For example, the API can be accessed through the NNAPI delegate in
TensorFlow Lite or NNAPI provider in ONNX Runtime.

As Android governs the NNAPI definition, misalignments between NNAPI, the supported capabilities of the
acceleration hardware (device manufacturer), and the inference engines (third-party organization) are expected.
For instance, in i.MX platforms, TensorFlow Lite operator definition and NPU supported operators are heavily
aligned. On the other hand, NNAPI must support multiple hardware backends (CPU, GPU, and custom
accelerators) from multiple manufacturers and multiple inference engines. These requirements force NNAPI to
allocate best effort definitions for all stakeholders. Therefore, the NNAPI delegate might allocate operators that
could run on NPU to CPU, which impacts overall inference performance.

Compared to NNAPI, the dedicated delegates for specific HW accelerators such as VX Delegate for i.MX
8MP and Neutron Delegate for i.MX 95 platforms, are fully aligned with NPU capabilities. The NPU delegates
(VX Delegate and Neutron Delegate) are key components of the eIQ SW enablement stack to apply the HW
acceleration on the ML workload. They are already supported in NXP Embedded Linux for i.MX Applications
Processors, with proven acceleration of embedded ML models. The following sections of this document explain
how to use the NPU delegates in TensorFlow Lite Android applications.

AN14411 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
3 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14411

NXP Semiconductors AN14411
Enabling eIQ Core NPU Delegates for i.MX Android Applications

3 Building the Android platform

The details of how to build the Android platform for i.MX, can be found in https://www.nxp.com/docs/en/user-
guide/ANDROID_USERS_GUIDE.pdf. The chapter aims to describe how to modify Android sources to support
eIQ Core.

For other documents related to Android platform, refer https://www.nxp.com/design/design-center/software/
embedded-software/i-mx-software/android-os-for-i-mx-applications-processors:IMXANDROID#documentation

3.1 Android setup
This section describes the procedure to build the Android platform.

• Download the Android 14.0.0_2.0.0 release from the URL https://www.nxp.com/design/design-center/
software/embedded-software/i-mx-software/android-os-for-i-mx-applications-processors:IMXANDROID and
unzip it in a convenient directory.

$ tar -xzvf imx-android-14.0.0_2.0.0.tar.gz

• Install the repo utility using the command below (perform this step only once):

$ mkdir ~/bin
$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo
$ export PATH=${PATH}:~/bin

• Set up the i.MX Android root path using the command below:

$ source <Path_to_unziped_package>/imx_android_setup.sh
$ export ANDROID_ROOT=`pwd`

After sourcing the setup script, the working directory points to the root where all required sources have been
unrolled (from now onwards referred as ANDROID_ROOT). This working directory contains the following relevant
resources:

• ${ANDROID_ROOT}/vendor/nxp/fsl-proprietary/gpu-viv: contains GPU/NPU drivers.
• ${ANDROID_ROOT}/vendor/nxp/fsl-proprietary/include: contains GPU/NPU drivers headers.
• ${ANDROID_ROOT}/device/nxp/: contains Android build and configuration files for NXP platforms. These

include primarily Kati.mk files and configurations for specific devices, including Security-Enhanced Linux
(SELinux) policy descriptions.

3.2 Access to additional native libraries
Starting from Android 7 onwards, AOSP (Android Open Source Project) allows to provide access to additional
native libraries accessible to applications.

To support this feature, the libraries are put into specific library folders and explicitly listed in a .txt file.

This feature is relevant as both VX Delegate and Neutron Delegate have dynamic dependencies on TIM-VX
and Neutron Driver libraries, respectively.

The .txt file is not generated by default. Therefore, it must be added into the vendor partition of the Android
image by using the below steps:

1. Create an empty public.libraries.txt file in the device config directory:

AN14411 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
4 / 26

https://www.nxp.com/docs/en/user-guide/ANDROID_USERS_GUIDE.pdf
https://www.nxp.com/docs/en/user-guide/ANDROID_USERS_GUIDE.pdf
https://www.nxp.com/design/design-center/software/embedded-software/i-mx-software/android-os-for-i-mx-applications-processors:IMXANDROID#documentation
https://www.nxp.com/design/design-center/software/embedded-software/i-mx-software/android-os-for-i-mx-applications-processors:IMXANDROID#documentation
https://www.nxp.com/design/design-center/software/embedded-software/i-mx-software/android-os-for-i-mx-applications-processors:IMXANDROID
https://www.nxp.com/design/design-center/software/embedded-software/i-mx-software/android-os-for-i-mx-applications-processors:IMXANDROID
https://storage.googleapis.com/git-repo-downloads/repo
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14411

NXP Semiconductors AN14411
Enabling eIQ Core NPU Delegates for i.MX Android Applications

${ANDROID_ROOT}/device/nxp/<family>/<board>
2. Add the following shared object names listed to the public.libraries.txt (each one in a line):

• For i.MX 8MP: (${ANDROID_ROOT}/device/nxp/imx8m/evk_8mp/public.libraries.txt):

libtim-vx.so

• For i.MX 95: (${ANDROID_ROOT}/device/nxp/imx9/evk_95/public.libraries.txt):

libNeutronDriver.so

Additionally, to enable the GPU Delegate for the i.MX 95 target, include the libOpenCL.so filename to the
public.libraries.txt file.

3. To copy the updated public.libraries.txt file to the target device image, add it in the list of artifacts.
The patch below is for the i.MX 8MP platform. For i.MX 95 platform, modify the imx9/evk_95/evk_95.mk
file in the same manner.

diff --git a/imx8m/evk_8mp/evk_8mp.mk b/imx8m/evk_8mp/evk_8mp.mk
index eb5d3056..6f51d1a0 100644
--- a/imx8m/evk_8mp/evk_8mp.mk
+++ b/imx8m/evk_8mp/evk_8mp.mk
@@ -594,6 +594,9 @@ PRODUCT_COPY_FILES += \
 PRODUCT_COPY_FILES += \
 frameworks/native/data/etc/android.software.device_id_attestation.xml:
$(TARGET_COPY_OUT_VENDOR)/etc/permissions/
android.software.device_id_attestation.xml

+# public vendor libs
+PRODUCT_COPY_FILES += \
+ $(IMX_DEVICE_PATH)/public.libraries.txt:$(TARGET_COPY_OUT_VENDOR)/etc/
public.libraries.txt
+
 # Included GMS package
 ifeq ($(filter TRUE true 1,$(IMX_BUILD_32BIT_ROOTFS)
 $(IMX_BUILD_32BIT_64BIT_ROOTFS)),)
 $(call inherit-product-if-exists, vendor/partner_gms/products/
gms_64bit_only.mk)

AN14411 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
5 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14411

NXP Semiconductors AN14411
Enabling eIQ Core NPU Delegates for i.MX Android Applications

3.3 Configuring SE Linux labels for native libraries
Android uses SELinux to enforce mandatory access control over all processes. SELinux works in 2 modes:
permissive and enforcing. In both modes, permission denials are logged, but in the enforcing case, the kernel
ensures that the access is not granted. Since Android 7, there were major native symbol restrictions for linking
and loading, including dlopen related operations. These restrictions are relevant to the VX Delegate enablement
for i.MX 8MP.1

To update the policy and therefore enable applications using VX Delegate to run in restrictive mode, a set of
vendor shared libraries must be labeled as vendor_app_file:

For the i.MX 8MP, modify the /imx8m/sepolicy/file_contexts b/imx8m/sepolicy/ file as shown in
the patch below:

diff --git a/imx8m/sepolicy/file_contexts b/imx8m/sepolicy/file_contexts
index 8c160239..ba7fa202 100644
--- a/imx8m/sepolicy/file_contexts
+++ b/imx8m/sepolicy/file_contexts
@@ -39,6 +39,14 @@
 /vendor/lib(64)?/libGLSLC\.so u:object_r:same_process_hal_file:s0
 /vendor/lib(64)?/libVSC\.so u:object_r:same_process_hal_file:s0
 /vendor/lib(64)?/libGAL\.so u:object_r:same_process_hal_file:s0
+/vendor/lib(64)?/libOpenVX\.so u:object_r:vendor_app_file:s0
+/vendor/lib(64)?/libOpenVXU\.so u:object_r:vendor_app_file:s0
+/vendor/lib(64)?/libarchmodelSw\.so u:object_r:vendor_app_file:s0
+/vendor/lib(64)?/libNNArchPerf\.so u:object_r:vendor_app_file:s0
+/vendor/lib(64)?/libNNVXCBinary-evis2\.so u:object_r:vendor_app_file:s0
+/vendor/lib(64)?/libOvx12VXCBinary-evis2\.so u:object_r:vendor_app_file:s0
+/vendor/lib(64)?/libNNGPUBinary-evis2\.so u:object_r:vendor_app_file:s0
+/vendor/lib(64)?/libtim-vx\.so u:object_r:vendor_app_file:s0
+
 /vendor/lib(64)?/hw/vulkan\.imx\.so u:object_r:same_process_hal_file:s0
 /vendor/lib(64)?/hw/gralloc_viv\.imx\.so u:object_r:same_process_hal_file:s0

For the i.MX 95 target, add only the libNeutronDriver.so to the file context:

+/vendor/lib(64)?/libNeutronDriver\.so u:object_r:vendor_app_file:s0

3.4 Building the Android image
For details about how to build the Android image, check the Android User's Guide. Ensure to prepare the build
environment for U-Boot and Linux kernel as described in Chapter 3.2. of the Android User's Guide. After the
environment is prepared, build the image using the below commands. These commands show an example for
the User debug mode:

1. Set up the environment variables using the commands below:

$ cd ${ANDROID_ROOT}
$ source build/envsetup.sh
$ export CLANG_PATH=<Path_to_Android_toolchain>/prebuilt-android-clang
$ export ARMGCC_DIR=<Path_to_Android_toolchain>/arm-gnu-toolchain-12.3.rel1-
x86_64-arm-none-eabi
$ export AARCH32_GCC_CROSS_COMPILE=<Path_to_Android_toolchain>/arm-gnu-
toolchain-12.3.rel1-x86_64-arm-none-eabi/bin/arm-none-eabi-
$ export AARCH64_GCC_CROSS_COMPILE=<Path_to_Android_toolchain>/arm-gnu-
toolchain-12.3.rel1-x86_64-aarch64-none-linux-gnu/bin/aarch64-none-linux-gnu-

1 https://developer.android.com/about/versions/nougat/android-7.0-changes.html#ndk.
AN14411 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
6 / 26

https://developer.android.com/about/versions/nougat/android-7.0-changes.html
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14411

NXP Semiconductors AN14411
Enabling eIQ Core NPU Delegates for i.MX Android Applications

$ export PATH=<Path_to_Android_toolchain>/prebuilt-android-kernel-build-
tools/linux-x86/bin:$PATH

2. Run the lunch command:2:
a. For i.MX 8MP:

$ lunch evk_8mp-trunk_staging-userdebug

b. For i.MX 95:

$ lunch evk_95-trunk_staging-userdebug

3. Trigger the build:

$./imx-make.sh -j16

The output Android image can be found in ${ANDROID_ROOT}/out/target/product/evk_8mp (for the
i.MX8MP) or ${ANDROID_ROOT}/out/target/product/evk_95 (for the i.MX 95). Now, the image is
ready for VX Delegate or Neutron Delegate deployment. Download the image with UUU into a target device.
See the Android Quick Start Guide (AQSUG) for a detailed description of UUU. See Section 7 "References".

2 For details of the 'lunch' command, refer to the URL:https://source.android.com/docs/setup/build/building.
AN14411 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
7 / 26

https://source.android.com/docs/setup/build/building
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14411

NXP Semiconductors AN14411
Enabling eIQ Core NPU Delegates for i.MX Android Applications

4 Building eIQ Core using the NDK

This chapter describes the process for building eIQ core components for Android. The source code for the
software components is fetched from NXP's GitHub repo. It requires applying a set of patches to enable
compilation for Android and building the components with CMake and Android's NDK.

The NDK is a set of tools that enables the use of C/C++ (native) code within Android OS and exposes public
platform libraries to manage activities and operate low level components. NDK will be used to build the ML
inference engines, as most of the existing code is written in C or C++. Focusing on native code through the
NDK, enables a separation of concerns between the Java/Kotlin code used in typical Android applications
and the inference runtime. The Java Native Interface (JNI) acts as a bridge between these two spaces. More
information can be found in https://developer.android.com/training/articles/perf-jni.

AN14411 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
8 / 26

https://developer.android.com/training/articles/perf-jni
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14411

NXP Semiconductors AN14411
Enabling eIQ Core NPU Delegates for i.MX Android Applications

4.1 Tools setup
Along with the NDK, there are a few other Android tools required to build the components (for example, build-
tools and platforms). To manage to download the proper tool version and environment setup, Android
provides the sdkmanager tool as part of the command-line toolset.

These Android tools have some restrictions related to directory placement. Figure 1 shows a valid directory
structure (including AOSP tools):

Figure 1. Directory structure for the tools setup

Download the command-line tools for Linux from the URL: https://developer.android.com/studio (lower part of
the webpage). Unzip into a convenient directory (for example: check previous structure listing). To use this tool,
ensure that the host system has a valid JDK installed (https://www.oracle.com/java/technologies/downloads/
#jdk21-linux).

Use sdkmanager to install the required packages. Use NDK version 26c, build-tools version 34.0.0, and
platforms version 34. The 25b NDK must be used for TensorFlow 2.15.0, because it does not support the
newest 26 NDK. All available packages can be listed using the command, sdkmanager –list.

$ <path_to_sdkmanager>/sdkmanager --install "ndk;25.1.8937393"
$ <path_to_sdkmanager>/sdkmanager --install "ndk;26.2.11394342"
$ <path_to_sdkmanager>/sdkmanager --install "build-tools;34.0.0"
$ <path_to_sdkmanager>/sdkmanager --install "platforms;android-34"

AN14411 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
9 / 26

https://developer.android.com/studio
https://www.oracle.com/java/technologies/downloads/
https://www.oracle.com/java/technologies/downloads/
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14411

NXP Semiconductors AN14411
Enabling eIQ Core NPU Delegates for i.MX Android Applications

To set up CMake with NDK information, the NDK includes a CMake toolchain file. Export a variable pointing to
the android.toolchain.cmake file by using the command below:

$ export NDK_TOOLCHAIN_FILE=<PATH_TO_NDK>/build/cmake/android.toolchain.cmake

4.2 Fetching and preparing the code
The code for TensorFlow, and NPU Delegates (VX and Neutron) is available on https://github.com/nxp-imx:

1. Create the folder for eIQ core and clone the TensorFlow Lite repo:

$ mkdir imx-eiq-core-android && cd imx-eiq-core-android && export
 EIQ_CORE_ROOT=`pwd`
$ git clone --recurse-submodules https://github.com/nxp-imx/tensorflow-
imx.git --branch lf-6.6.23_2.0.0-android

2. For i.MX 8MP only:
Clone the VX Delegate repo using the command below:

$ git clone https://github.com/nxp-imx/tflite-vx-delegate-imx.git --branch
 lf-6.6.23_2.0.0-android

3. For i.MX 95 only:
Clone the Neutron Delegate repo using the command below:

$ git clone https://github.com/nxp-imx/tflite-neutron-delegate.git --branch
 lf-6.6.23_2.0.0-android

AN14411 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
10 / 26

https://github.com/nxp-imx
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14411

NXP Semiconductors AN14411
Enabling eIQ Core NPU Delegates for i.MX Android Applications

4.3 Building NPU Delegate

4.3.1 VX Delegate for i.MX 8MP

The component is built using CMake with a set of arguments. For this component, the TensorFlow source path
is needed. The TIM-VX library is a part of the Android build. Ensure that the ANDROID_ROOT variable is set as
described in the section, Section 3.1 "Android setup".

1. Export the environment variables using the commands below:

$ export VX_DELEGATE_PATH=${EIQ_CORE_ROOT}/tflite-vx-delegate-imx
$ export TF_PATH=${EIQ_CORE_ROOT}/tensorflow-imx

2. Use the 'cmake' and 'build' commands as shown below:

$ cmake -S ${VX_DELEGATE_PATH} -B ${VX_DELEGATE_PATH}/_build \
-DFETCHCONTENT_SOURCE_DIR_TENSORFLOW=${TF_PATH} \
-DCMAKE_TOOLCHAIN_FILE=${NDK_TOOLCHAIN_FILE} \
-DANDROID_ABI=arm64-v8a \
-DANDROID_PLATFORM=34 \
-DTFLITE_ENABLE_GPU=on \
-DANDROID_ROOT=${ANDROID_ROOT}
$ cmake --build ${VX_DELEGATE_PATH}/_build -- -j16

4.3.2 Neutron Delegate for i.MX 95

The component is build using CMake with a set of arguments. For this component, TensorFlow source path and
Neutron Driver prebuilt library path are needed. Neutron Driver prebuilt library can be found in Android sources
in the vendor/nxp folder.

1. Adjust the neutron driver folder structure for Android build:

$ mkdir -p ${ANDROID_ROOT}/vendor/nxp/neutron-software-stack/imx95/include/
neutron
$ cp file ${ANDROID_ROOT}/vendor/nxp/neutron-software-stack/imx95/include/*.h
 $_

2. Export the environment variables using the commands below:

$ export NEUTRON_DELEGATE_PATH=${EIQ_CORE_ROOT}/tflite-neutron-delegate
$ export TF_PATH=${EIQ_CORE_ROOT}/tensorflow-imx
$ export NEUTRON_DRIVER_PATH=${ANDROID_ROOT}/vendor/nxp/neutron-software-
stack/imx95

3. Cmake and build

$ cmake -S ${NEUTRON_DELEGATE_PATH} -B ${NEUTRON_DELEGATE_PATH}/_build \
-DFETCHCONTENT_SOURCE_DIR_TENSORFLOW=${TF_PATH} \
-DCMAKE_TOOLCHAIN_FILE=${NDK_TOOLCHAIN_FILE} \
-DANDROID_ABI=arm64-v8a \
-DANDROID_PLATFORM=34 \
-DNEUTRON_DRIVER_PATH=${NEUTRON_DRIVER_PATH}
$ cmake --build ${NEUTRON_DELEGATE_PATH}/_build -- -j16

AN14411 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
11 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14411

NXP Semiconductors AN14411
Enabling eIQ Core NPU Delegates for i.MX Android Applications

4.4 Building the TensorFlow Lite Demo Application
This section describes how to build a demo Android application package provided by TensorFlow and
containing the NPU Delegate shared library. The demo application code is in ${EIQ_CORE_ROOT}/
tensorflow-imx/tensorflow/lite/tools/benchmark/android. The benchmark_model measures
the performance of the selected model and supports the use of different delegates. It is useful to compare the
performance difference among the delegates. The application is built with Bazel (6.1.0 installation instructions
for Ubuntu).

The Android application for Benchmark Model (benchmark_model.apk), implements an Android activity in
Java, uses the JNI to run the inference in native code. The native code contains the logic to include external
delegates (for example, the VX or Neutron Delegate).

Follow the below steps to build the benchmark_model.apk with NPU Delegate:

1. Create a directory available to the Bazel file that creates the application, to copy the previously built eIQ
components.

 $ mkdir ${EIQ_CORE_ROOT}/tensorflow-imx/tensorflow/lite/tools/benchmark/
android/shared_libs

2. For i.MX 8MP, copy the VX Delegate library into shared_libs folder:

$ cp ${EIQ_CORE_ROOT}/tflite-vx-delegate-imx/_build/libvx_delegate.so
 ${EIQ_CORE_ROOT}/tensorflow-imx/tensorflow/lite/tools/benchmark/android/
shared_libs/

3. For i.MX 95, copy the Neutron Delegate and the Neutron Converter libraries into the shared_libs folder:

$ cp ${ EIQ_CORE_ROOT}/tflite-neutron-delegate/_build/libneutron_delegate.so
 ${EIQ_CORE_ROOT}/tensorflow-imx/tensorflow/lite/tools/benchmark/android/
shared_libs/
$ cp ${ ANDROID_ROOT}/vendor/nxp/neutron-software-stack/imx95/library/
libNeutronConverter.so ${EIQ_CORE_ROOT}/tensorflow-imx/tensorflow/lite/tools/
benchmark/android/shared_libs/

4. Configure the environment by running the ./configure file. Also ensure that the following bazel
environment variables are set in .bazelrc file that is located in the tensorflow-imx folder. The
configuration step also asks for local python interpreter and library paths. These paths are not mandatory
for following this application note but might be useful for additional features. Other required variables can be
defaulted.

$ cd ${EIQ_CORE_ROOT}/tensorflow-imx && ./configure
build --action_env ANDROID_NDK_HOME="<PATH_TO_NDK_25.1.8937393>"
build --action_env ANDROID_NDK_VERSION="25"
build --action_env ANDROID_NDK_API_LEVEL="26"
build --action_env ANDROID_BUILD_TOOLS_VERSION="34.0.0"
build --action_env ANDROID_SDK_API_LEVEL="34"
build --action_env ANDROID_SDK_HOME="<PATH_TO_SDK>"

5. Finally, build the application using Bazel (for TensorFlow 2.15, Bazel 6.1.0 is expected).

$ cd ${EIQ_CORE_ROOT}/tensorflow-imx
$ bazel build -c opt --config=android_arm64 tensorflow/lite/tools/benchmark/
android:benchmark_model

If build is successful, the output is generated in the path below:

${EIQ_CORE_ROOT}/bazel-bin/tensorflow/lite/tools/benchmark/android/benchmark_
model.apk

The .apk file can be unzipped to inspect if all expected components are present.

AN14411 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
12 / 26

https://bazel.build/install/ubuntu
https://bazel.build/install/ubuntu
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14411

NXP Semiconductors AN14411
Enabling eIQ Core NPU Delegates for i.MX Android Applications

5 App installation and execution

This section describes the procedure for application installation, test modeling, execution, and results obtained.

5.1 Installation
Application installation and interaction with the i.MX application processors running Android is done using the
Android Debug Bridge (ADB), which is part of the platform-tools. Platform tools must be present in the host
connected to the target platform deploying the example package. For more information, refer to the URL:

https://developer.android.com/tools/releases/platform-tools.

With ADB, the benchmark_model.apk can be installed by using the following command (ensure that Android
is booted up and running):

$ adb install -r -d -g <Path_to_the_apk>/benchmark_model.apk

Where:

-r: Reinstalls the app, keeping the data.

-d: Allows version code downgrade.

-g: Grants all permissions defined in the app manifest file.

If the installation succeeds, it is possible to inspect installation path using adb shell commands, which provides
most of the usual Unix command-line tools. Using ls-based commands, the base path for the application can
be found in the directory /data/app/<gen_string_1>/org.tensorflow.lite.benchmark-<gen_
string_2>/. Inside this path, lib/arm64 contains a delegate library - VX Delegate for i.MX 8MP or Neutron
Delegate for i.MX 95.

If navigation with ls is restricted, adb root can be used to access restricted file systems. Returning to non-
root mode can be done using adb unroot. Note that these commands affect the adb daemon (adbd) in the
platform, meaning that theroot session might outlast the terminal lifecycle.

5.2 Test model
Download and unpack the mobilenet_v1_1.0_224_quant model:

$ wget download.tensorflow.org/models/mobilenet_v1_2018_08_02/
mobilenet_v1_1.0_224_quant.tgz
$ tar -xzvf mobilenet_v1_1.0_224_quant.tgz

For the i.MX 8MP target, no further conversion of the test model is required. Put the model onto the board with
the adb tool:

$ adb push <Path_to_the_model>/mobilenet_v1_1.0_224_quant.tflite /data/local/
tmp/

For the i.MX 95 target, the model can be executed with the Neutron Delegate. The Neutron Delegate converts
the model for the NPU.

Another option to convert the model before inference is by using the an offline conversion tool that is a part of
eIQ Toolkit. For more information about the offline conversion tool, refer to the eIQ Toolkit User Guide. The user
guide is a part of eIQ Toolkit installation. The installer can be found on the nxp.com.

AN14411 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
13 / 26

https://developer.android.com/tools/releases/platform-tools
https://www.nxp.com/design/design-center/software/eiq-ml-development-environment/eiq-toolkit-for-end-to-end-model-development-and-deployment:EIQ-TOOLKIT
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14411

NXP Semiconductors AN14411
Enabling eIQ Core NPU Delegates for i.MX Android Applications

The conversion in eIQ Toolkit can be run using the below command:

$./neutron-converter --input=mobilenet_v1_1.0_224_quant.tflite --target=imx95

After conversion, the model is named as: mobilenet_v1_1.0_224_quant_converted.tflite.

The converted model can be run only on the Neutron NPU. To run the model on CPU or GPU, use the original
unconverted version.

5.3 Execution
The following ADB commands execute the application, using different backends. To check the output, the adb
logcat command can be used in an extra terminal. The application logs are tagged with the keyword “tflite”.

1. Execution with CPU (for both target platforms – i.MX 8MP and i.MX 95):
$ adb shell am start -S -n
 org.tensorflow.lite.benchmark/.BenchmarkModelActivity --es args '" \
--graph=/data/local/tmp/mobilenet_v1_1.0_224_quant.tflite "'

There is a known issue with benchmark_model run on CPU with multiply threads on Android. The app
performance for multiple threads significantly drops after board rebooting.

2. Execution with Delegates on i.MX 8MP
• Execution with NNAPI delegate (only for i.MX 8MP):

$ adb shell am start -S -n
 org.tensorflow.lite.benchmark/.BenchmarkModelActivity --es args '" \
--graph=/data/local/tmp/mobilenet_v1_1.0_224_quant.tflite \
--use_nnapi=true "'

• Execution with VX Delegate (only for i.MX 8MP):

$ adb shell am start -S -n
 org.tensorflow.lite.benchmark/.BenchmarkModelActivity --es args '" \
--graph=/data/local/tmp/mobilenet_v1_1.0_224_quant.tflite \
--external_delegate=libvx_delegate.so "'

3. Execution with Delegates on i.MX 95
• Execution with GPU Delegate:

$ adb shell am start -S -n
 org.tensorflow.lite.benchmark/.BenchmarkModelActivity --es args '" \
--graph=/data/local/tmp/mobilenet_v1_1.0_224_quant.tflite \
--use_gpu=true "'

• Execution with Neutron Delegate:

$ adb shell am start -S -n
org.tensorflow.lite.benchmark/.BenchmarkModelActivity --es args '" \
--graph=/data/local/tmp/mobilenet_v1_1.0_224_quant.tflite \
--external_delegate=libneutron_delegate.so "'

AN14411 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
14 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14411

NXP Semiconductors AN14411
Enabling eIQ Core NPU Delegates for i.MX Android Applications

5.4 Results
Filter logcat output for tflite (use adb.exe logcat | findstr "tflite" for Windows hosts).

5.4.1 Execution logs for i.MX 8MP

The average inference time can be compared for the mobilenet_v1_1.0_224_quant.tflite model on i.MX 8MP
with Android 14 in the Table 1.

i.MX 8MP CPU NNAPI VX Delegate

Inference average, us 201151 3868 3299

Table 1. Average inference time for the mobilenet_v1_1.0_224_quant.tflite model on i.MX 8MP with Android
14

1. TensorFlow Lite XNNPACK delegate for CPU:

tflite_BenchmarkModelActivity: Running TensorFlow Lite benchmark with args:
 --graph=/data/local/tmp/mobilenet_v1_1.0_224_quant.tflite
tflite: Log parameter values verbosely: [0]
tflite: Graph: [/data/local/tmp/mobilenet_v1_1.0_224_quant.tflite]
tflite: Loaded model /data/local/tmp/mobilenet_v1_1.0_224_quant.tflite
tflite: Initialized TensorFlow Lite runtime.
tflite: Created TensorFlow Lite XNNPACK delegate for CPU.
tflite: Replacing 29 out of 31 node(s) with delegate (TfLiteXNNPackDelegate)
 node, yielding 4 partitions for the whole graph.
tflite: The input model file size (MB): 4.27635
tflite: Initialized session in 240.783ms.
tflite: Running benchmark for at least 1 iterations and at least 0.5 seconds
 but terminate if exceeding 150 seconds.
tflite: count=3 first=228116 curr=200867 min=198790 max=228116 avg=209258
 std=13361
tflite: Running benchmark for at least 50 iterations and at least 1 seconds
 but terminate if exceeding 150 seconds.
tflite: count=50 first=200313 curr=214059 min=180116 max=236908 avg=201151
 std=9509
tflite: Inference timings in us: Init: 240783, First inference: 228116,
 Warmup (avg): 209258, Inference (avg): 201151
tflite: Note: as the benchmark tool itself affects memory footprint, the
 following is only APPROXIMATE to the actual memory footprint of the model at
 runtime. Take the information at your discretion.
tflite: Memory footprint delta from the start of the tool (MB): init=11.375
 overall=21.4922

2. TensorFlow Lite delegate for NNAPI:

tflite_BenchmarkModelActivity: Running TensorFlow Lite benchmark with args:
 --graph=/data/local/tmp/mobilenet_v1_1.0_224_quant.tflite --use_nnapi=true
tflite: Log parameter values verbosely: [0]
tflite: Graph: [/data/local/tmp/mobilenet_v1_1.0_224_quant.tflite]
tflite: Use NNAPI: [1]
tflite: NNAPI accelerators available: [nnapi-imx_sl,nnapi-reference]
tflite: Loaded model /data/local/tmp/mobilenet_v1_1.0_224_quant.tflite
tflite: Initialized TensorFlow Lite runtime.
tflite: Created TensorFlow Lite delegate for NNAPI.
tflite: NNAPI delegate created.
tflite: NNAPI SL driver did not implement
 SL_ANeuralNetworksDiagnostic_registerCallbacks!

AN14411 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
15 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14411

NXP Semiconductors AN14411
Enabling eIQ Core NPU Delegates for i.MX Android Applications

tflite: Replacing 31 out of 31 node(s) with delegate (TfLiteNnapiDelegate)
 node, yielding 1 partitions for the whole graph.
tflite: Explicitly applied NNAPI delegate, and the model graph will be
 completely executed by the delegate.
tflite: The input model file size (MB): 4.27635
tflite: Initialized session in 680.547ms.
tflite: Running benchmark for at least 1 iterations and at least 0.5 seconds
 but terminate if exceeding 150 seconds.
tflite: count=1 curr=4988406
tflite: Running benchmark for at least 50 iterations and at least 1 seconds
 but terminate if exceeding 150 seconds.
tflite: count=254 first=4201 curr=3791 min=3554 max=5198 avg=3868.09 std=297
tflite: Inference timings in us: Init: 680547, First inference: 4988406,
 Warmup (avg): 4.98841e+06, Inference (avg): 3868.09
tflite: Note: as the benchmark tool itself affects memory footprint, the
 following is only APPROXIMATE to the actual memory footprint of the model at
 runtime. Take the information at your discretion.
tflite: Memory footprint delta from the start of the tool (MB): init=17.125
 overall=19.625

3. EXTERNAL (Vx Delegate) delegate:

tflite_BenchmarkModelActivity: Running TensorFlow Lite benchmark with
 args: --graph=/data/local/tmp/mobilenet_v1_1.0_224_quant.tflite --
use_vx_delegate=true --external_delegate_path=/data/app/<...>/lib/arm64/
libvx_delegate.so
tflite: Unconsumed cmdline flags: --use_vx_delegate=true
tflite: Log parameter values verbosely: [0]
tflite: Graph: [/data/local/tmp/mobilenet_v1_1.0_224_quant.tflite]
tflite: External delegate path: [/data/app/<...>/lib/arm64/libvx_delegate.so]
tflite: Loaded model /data/local/tmp/mobilenet_v1_1.0_224_quant.tflite
tflite: Initialized TensorFlow Lite runtime.
tflite: Vx delegate: allowed_cache_mode set to 0.
tflite: Vx delegate: device num set to 0.
tflite: Vx delegate: allowed_builtin_code set to 0.
tflite: Vx delegate: error_during_init set to 0.
tflite: Vx delegate: error_during_prepare set to 0.
tflite: Vx delegate: error_during_invoke set to 0.
tflite: EXTERNAL delegate created.
tflite: Replacing 31 out of 31 node(s) with delegate (Vx Delegate) node,
 yielding 1 partitions for the whole graph.
tflite: Explicitly applied EXTERNAL delegate, and the model graph will be
 completely executed by the delegate.
tflite: The input model file size (MB): 4.27635
tflite: Initialized session in 286.832ms.
tflite: Running benchmark for at least 1 iterations and at least 0.5 seconds
 but terminate if exceeding 150 seconds.
tflite: count=1 curr=7882997
tflite: Running benchmark for at least 50 iterations and at least 1 seconds
 but terminate if exceeding 150 seconds.
tflite: count=298 first=3963 curr=5542 min=3098 max=8828 avg=3298.88 std=473
tflite: Inference timings in us: Init: 286832, First inference: 7882997,
 Warmup (avg): 7.883e+06, Inference (avg): 3298.88
tflite: Note: as the benchmark tool itself affects memory footprint, the
 following is only APPROXIMATE to the actual memory footprint of the model at
 runtime. Take the information at your discretion.
tflite: Memory footprint delta from the start of the tool (MB): init=8.72656
 overall=114.73

AN14411 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
16 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14411

NXP Semiconductors AN14411
Enabling eIQ Core NPU Delegates for i.MX Android Applications

5.4.2 Execution logs for i.MX 95 platform

Using the execution logs to compare the average inference time for the
mobilenet_v1_1.0_224_quant.tflite model on i.MX 95 with Android 14. Table 2 shows the comparison
of average inference time for the model.

i.MX 95 CPU GPU Delegate Neutron Delegate

Inference average, µs 66731 25341 1842

Table 2. Comparison of average inference time for the mobilenet_v1_1.0_224_quant.tflite model on i.MX 95 with
Android 14

1. TensorFlow Lite XNNPACK delegate for CPU:
tflite_BenchmarkModelActivity: Running TensorFlow Lite benchmark with args:
 --graph=/data/local/tmp/mobilenet_v1_1.0_224_quant.tflite
tflite: Log parameter values verbosely: [0]
tflite: Graph: [/data/local/tmp/mobilenet_v1_1.0_224_quant.tflite]
tflite: Loaded model /data/local/tmp/mobilenet_v1_1.0_224_quant.tflite
tflite: Initialized TensorFlow Lite runtime.
tflite: Created TensorFlow Lite XNNPACK delegate for CPU.
tflite: Replacing 29 out of 31 node(s) with delegate (TfLiteXNNPackDelegate)
 node, yielding 4 partitions for the whole graph.
tflite: The input model file size (MB): 4.27635
tflite: Initialized session in 58.863ms.
tflite: Running benchmark for at least 1 iterations and at least 0.5 seconds
 but terminate if exceeding 150 seconds.
tflite: count=8 first=73840 curr=64899 min=64860 max=73840 avg=67422.8
 std=2774
tflite: Running benchmark for at least 50 iterations and at least 1 seconds
 but terminate if exceeding 150 seconds.
tflite: count=50 first=68311 curr=65812 min=62794 max=70290 avg=66731.2
 std=1599
tflite: Inference timings in us: Init: 58863, First inference: 73840, Warmup
 (avg): 67422.8, Inference (avg): 66731.2
tflite: Note: as the benchmark tool itself affects memory footprint, the
 following is only APPROXIMATE to the actual memory footprint of the model at
 runtime. Take the information at your discretion.
tflite: Memory footprint delta from the start of the tool (MB): init=10.875
 overall=18.2344

2. TensorFlow Lite GPU delegate (OpenCL-based API):
tflite_BenchmarkModelActivity: Running TensorFlow Lite benchmark with args:
 --graph=/data/local/tmp/mobilenet_v1_1.0_224_quant.tflite --use_gpu=true
tflite: Log parameter values verbosely: [0]
tflite: Graph: [/data/local/tmp/mobilenet_v1_1.0_224_quant.tflite]
tflite: Use gpu: [1]
tflite: Loaded model /data/local/tmp/mobilenet_v1_1.0_224_quant.tflite
tflite: Initialized TensorFlow Lite runtime.
tflite: Created TensorFlow Lite delegate for GPU.
tflite: GPU delegate created.
tflite: Replacing 31 out of 31 node(s) with delegate (TfLiteGpuDelegateV2)
 node, yielding 1 partitions for the whole graph.
tflite: Initialized OpenCL-based API.
tflite: Created 1 GPU delegate kernels.
tflite: Explicitly applied GPU delegate, and the model graph will be
 completely executed by the delegate.
tflite: The input model file size (MB): 4.27635
tflite: Initialized session in 1473.09ms.

AN14411 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
17 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14411

NXP Semiconductors AN14411
Enabling eIQ Core NPU Delegates for i.MX Android Applications

tflite: Running benchmark for at least 1 iterations and at least 0.5 seconds
 but terminate if exceeding 150 seconds.
tflite: count=20 first=26847 curr=25453 min=25278 max=26847 avg=25408.6
 std=331
tflite: Running benchmark for at least 50 iterations and at least 1 seconds
 but terminate if exceeding 150 seconds.
tflite: count=50 first=25441 curr=25314 min=25253 max=25630 avg=25341.4
 std=59
tflite: Inference timings in us: Init: 1473090, First inference: 26847,
 Warmup (avg): 25408.6, Inference (avg): 25341.4
tflite: Note: as the benchmark tool itself affects memory footprint, the
 following is only APPROXIMATE to the actual memory footprint of the model at
 runtime. Take the information at your discretion.
tflite: Memory footprint delta from the start of the tool (MB): init=96.3438
 overall=96.3438

3. EXTERNAL (Neutron Delegate) delegate:
tflite_BenchmarkModelActivity: Running TensorFlow Lite benchmark
 with args: --graph=/data/local/tmp/mobilenet_v1_1.0_224_quant.tflite
 --external_delegate_path=/data/app/~~7hqIBPzxsbmWkxgebRwn5w==/
org.tensorflow.lite.benchmark-xCpR4AIP1XFOyYtCDvZG3A==/lib/arm64/
libneutron_delegate.so
tflite: Log parameter values verbosely: [0]
tflite: Graph: [/data/local/tmp/mobilenet_v1_1.0_224_quant.tflite]
tflite: External delegate path: [/data/app/~~7hqIBPzxsbmWkxgebRwn5w==/
org.tensorflow.lite.benchmark-xCpR4AIP1XFOyYtCDvZG3A==/lib/arm64/
libneutron_delegate.so]
tflite: Loaded model /data/local/tmp/mobilenet_v1_1.0_224_quant.tflite
tflite: Initialized TensorFlow Lite runtime.
tflite: EXTERNAL delegate created.
tflite: NeutronDelegate delegate: 30 nodes delegated out of 31 nodes with 1
 partitions.
tflite: Replacing 30 out of 31 node(s) with delegate (NeutronDelegate) node,
 yielding 2 partitions for the whole graph.
tflite: Explicitly applied EXTERNAL delegate, and the model graph will be
 partially executed by the delegate w/ 1 delegate kernels.
tflite: Created TensorFlow Lite XNNPACK delegate for CPU.
tflite: The input model file size (MB): 4.27635
tflite: Initialized session in 164623ms.
tflite: Running benchmark for at least 1 iterations and at least 0.5 seconds
 but terminate if exceeding 150 seconds.
tflite: count=267 first=2093 curr=1873 min=1665 max=2093 avg=1840.1 std=43
tflite: Running benchmark for at least 50 iterations and at least 1 seconds
 but terminate if exceeding 150 seconds.
tflite: count=532 first=1857 curr=1840 min=1760 max=2221 avg=1842 std=43
tflite: Inference timings in us: Init: 164622883, First inference: 2093,
 Warmup (avg): 1840.1, Inference (avg): 1842
tflite: Note: as the benchmark tool itself affects memory footprint, the
 following is only APPROXIMATE to the actual memory footprint of the model at
 runtime. Take the information at your discretion.
tflite: Memory footprint delta from the start of the tool (MB): init=84.1523
 overall=84.1523

AN14411 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
18 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14411

NXP Semiconductors AN14411
Enabling eIQ Core NPU Delegates for i.MX Android Applications

5.5 Per Channel Quantized (PCQ) model enablement for i.MX 8MP
To enable optimal execution of per channel quantized (PCQ) models, additional configuration is required by the
NPU on i.MX 8MP. From an adb shell, run the commands below:

$ setprop vendor.VIV_VX_ENABLE_GRAPH_TRANSFORM -pcq:1
$ setprop vendor.VIV_VX_SET_PER_CHANNEL_ENTROPY 0.35

It is possible to validate the properties by using getprop. Without these properties, a significant performance
degradation is expected.

5.6 Hardware accelerators warmup time for i.MX 8MP
For TensorFlow Lite, the initial execution of model inference takes longer time, because of the model graph
initialization needed by the GPU/NPU hardware accelerator. The initialization phase is known as warmup.
This time duration can be decreased for a subsequent application that runs on the i.MX 8MP target. This is
achieved by storing on disk the information resulting from the initial OpenVX graph processing. Set the following
environment variables for this purpose:

$ setprop vendor.VIV_VX_ENABLE_CACHE_GRAPH_BINARY 1
$ setprop vendor.VIV_VX_CACHE_BINARY_GRAPH_DIR `pwd`

By setting up these variables, the result of the OpenVX graph compilation is stored on disk as network binary
graph files (*.nb). The runtime performs a quick hash check on the network and if it matches the *.nb file hash, it
loads it into the NPU memory directly.

AN14411 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
19 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14411

NXP Semiconductors AN14411
Enabling eIQ Core NPU Delegates for i.MX Android Applications

6 Acronyms

Table 3 lists the acronyms used in this document.

Term Description

ADB Android Debug Bridge

API Application Programming Interface

AOSP Android Open Source Project

BSP Board support package

MCU Micro Controller Unit

ML Machine Learning

NNAPI Neural Networks API

NDK Native Development Kit

NPU Neural Processing Unit

GPU Graphics Processing Unit

SELinux Secure Linux

UUU Universal Update Utility

Table 3. Acronyms

AN14411 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
20 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14411

NXP Semiconductors AN14411
Enabling eIQ Core NPU Delegates for i.MX Android Applications

7 References

Refer to the below documents for more information:

• eIQ Toolkit User Guide (https://www.nxp.com/webapp/Download?colCode=AN13838)
• Android User's Guide (https://www.nxp.com/docs/en/user-guide/AUG.pdf)
• Universal Update Utility (UUU) Tool: https://community.nxp.com/t5/Connects-Training-Material/Universal-

Update-Utility-UUU-Tool/ta-p/1110422

For more resources, refer to the below URLs:

• https://www.nxp.com/design/design-center/software/eiq-ml-development-environment/eiq-toolkit-for-end-to-
end-model-development-and-deployment:EIQ-TOOLKIT#documentation

• https://www.nxp.com/design/design-center/software/embedded-software/i-mx-software/android-os-for-i-mx-
applications-processors:IMXANDROID#documentation

• https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/
i-mx-9-processors/i-mx-95-applications-processor-family-high-performance-safety-enabled-platform-with-eiq-
neutron-npu:iMX95#documentation

• https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/
i-mx-8-applications-processors/i-mx-8m-plus-arm-cortex-a53-machine-learning-vision-multimedia-and-
industrial-iot:IMX8MPLUS

Note: Some of the documents available on these URLs might not be accessible. Contact your local NXP field
applications engineer (FAE) or sales representative for obtaining this document.

AN14411 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
21 / 26

https://www.nxp.com/webapp/Download?colCode=AN13838
https://www.nxp.com/docs/en/user-guide/AUG.pdf
https://community.nxp.com/t5/Connects-Training-Material/Universal-Update-Utility-UUU-Tool/ta-p/1110422
https://community.nxp.com/t5/Connects-Training-Material/Universal-Update-Utility-UUU-Tool/ta-p/1110422
https://www.nxp.com/design/design-center/software/eiq-ml-development-environment/eiq-toolkit-for-end-to-end-model-development-and-deployment:EIQ-TOOLKIT#documentation
https://www.nxp.com/design/design-center/software/eiq-ml-development-environment/eiq-toolkit-for-end-to-end-model-development-and-deployment:EIQ-TOOLKIT#documentation
https://www.nxp.com/design/design-center/software/embedded-software/i-mx-software/android-os-for-i-mx-applications-processors:IMXANDROID#documentation
https://www.nxp.com/design/design-center/software/embedded-software/i-mx-software/android-os-for-i-mx-applications-processors:IMXANDROID#documentation
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-9-processors/i-mx-95-applications-processor-family-high-performance-safety-enabled-platform-with-eiq-neutron-npu:iMX95#documentation
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-9-processors/i-mx-95-applications-processor-family-high-performance-safety-enabled-platform-with-eiq-neutron-npu:iMX95#documentation
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-9-processors/i-mx-95-applications-processor-family-high-performance-safety-enabled-platform-with-eiq-neutron-npu:iMX95#documentation
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-applications-processors/i-mx-8m-plus-arm-cortex-a53-machine-learning-vision-multimedia-and-industrial-iot:IMX8MPLUS
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-applications-processors/i-mx-8m-plus-arm-cortex-a53-machine-learning-vision-multimedia-and-industrial-iot:IMX8MPLUS
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-applications-processors/i-mx-8m-plus-arm-cortex-a53-machine-learning-vision-multimedia-and-industrial-iot:IMX8MPLUS
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14411

NXP Semiconductors AN14411
Enabling eIQ Core NPU Delegates for i.MX Android Applications

8 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

AN14411 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
22 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14411

NXP Semiconductors AN14411
Enabling eIQ Core NPU Delegates for i.MX Android Applications

9 Revision history

Table 4 summarizes the revisions to this document.

Document ID Release date Description

AN14411 v.1.0 23 September 2024 Initial public release

Table 4. Document revision history

AN14411 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
23 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14411

NXP Semiconductors AN14411
Enabling eIQ Core NPU Delegates for i.MX Android Applications

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.
eIQ — is a trademark of NXP B.V.

AN14411 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
24 / 26

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14411

NXP Semiconductors AN14411
Enabling eIQ Core NPU Delegates for i.MX Android Applications

TensorFlow, the TensorFlow logo and any related marks — are
trademarks of Google Inc.

AN14411 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 23 September 2024 Document feedback
25 / 26

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14411

NXP Semiconductors AN14411
Enabling eIQ Core NPU Delegates for i.MX Android Applications

Contents
1 Introduction .. 2
2 NNAPI versus dedicated delegates3
3 Building the Android platform4
3.1 Android setup .. 4
3.2 Access to additional native libraries4
3.3 Configuring SE Linux labels for native

libraries .. 6
3.4 Building the Android image 6
4 Building eIQ Core using the NDK 8
4.1 Tools setup .. 9
4.2 Fetching and preparing the code10
4.3 Building NPU Delegate11
4.3.1 VX Delegate for i.MX 8MP 11
4.3.2 Neutron Delegate for i.MX 9511
4.4 Building the TensorFlow Lite Demo

Application ... 12
5 App installation and execution13
5.1 Installation ..13
5.2 Test model ... 13
5.3 Execution ... 14
5.4 Results ...15
5.4.1 Execution logs for i.MX 8MP 15
5.4.2 Execution logs for i.MX 95 platform17
5.5 Per Channel Quantized (PCQ) model

enablement for i.MX 8MP19
5.6 Hardware accelerators warmup time for

i.MX 8MP ... 19
6 Acronyms ... 20
7 References ..21
8 Note about the source code in the

document ..22
9 Revision history ...23

Legal information ...24

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 23 September 2024
Document identifier: AN14411

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14411

	1 Introduction
	2 NNAPI versus dedicated delegates
	3 Building the Android platform
	3.1 Android setup
	3.2 Access to additional native libraries
	3.3 Configuring SE Linux labels for native libraries
	3.4 Building the Android image

	4 Building eIQ Core using the NDK
	4.1 Tools setup
	4.2 Fetching and preparing the code
	4.3 Building NPU Delegate
	4.3.1 VX Delegate for i.MX 8MP
	4.3.2 Neutron Delegate for i.MX 95

	4.4 Building the TensorFlow Lite Demo Application

	5 App installation and execution
	5.1 Installation
	5.2 Test model
	5.3 Execution
	5.4 Results
	5.4.1 Execution logs for i.MX 8MP
	5.4.2 Execution logs for i.MX 95 platform

	5.5 Per Channel Quantized (PCQ) model enablement for i.MX 8MP
	5.6 Hardware accelerators warmup time for i.MX 8MP

	6 Acronyms
	7 References
	8 Note about the source code in the document
	9 Revision history
	Legal information
	Contents

