
AN14003
Programming the KW45 flash for Application and Radio firmware via Serial
Wire Debug during mass production
Rev. 1.1 — 14 June 2024 Application note

Document information
Information Content

Keywords AN14003, KW45 processor, KW45B41Z board, fuse programming, burning CM33 and NBU
firmware, mass production, keys preparation, debug authentication, J-Link, Secure Provisioning
Software Development Kit (SPSDK)

Abstract This application note describes an efficient method to merge programming the KW45 fuse,
burning CM33 and NBU firmware operations into one binary file during mass production. It also
describes a method for debug authentication.

https://www.nxp.com

NXP Semiconductors AN14003
Programming the KW45 flash for Application and Radio firmware via Serial Wire Debug during

mass production

1 Introduction

KW45 is a three-core platform that integrates a Cortex-M33 application core (CM33), a dedicated Cortex-M3
radio core, and an isolated EdgeLock Secure Enclave. The radio core, also called as Narrow Band Unit (NBU)
features a Bluetooth Low Energy (LE) unit with a dedicated flash. The memories integrated in the NBU consist
of Bluetooth LE controller stack and radio drivers.

On KW45, only boot ROM has access to the NBU flash. The ROM bootloader provides an in-system
programming (ISP) utility that operates over a serial connection on the microcontroller units (MCUs).

The speed of programming the image using ISP is relatively slower than SWD. During the mass production of
KW45, it is necessary to program the fuse first, download the NBU firmware and finally download the CM33
firmware. This document describes a method, which merges the fuse programming and burning CM33 and
NBU firmware operations to produce a single binary file. The method increases the production efficiency as it
requires downloading the merged binary file only once through Serial Wire Debug (SWD). The document also
describes a method to write the RoTKTH and SB3KDK fuse keys to a KW45B41Z board in which these keys
are null.

ISPxxx.sb3

SWD or ISPApplication

KW45

ISPFuse change

Application.xip

Blank

xxx.sb3
(include fuse

change cmd and
nbu image)

Blank

0x00000000

0x00100000

Binary

KW45
SWD

slow fast

Figure 1. Burning image via SWD

Note: The method of burning the fuse provided in this document cannot be reversed. The keys programmed to
fuses on KW45 cannot be changed anymore. Therefore, it is recommended to modify the fuse with caution.

AN14003 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1 — 14 June 2024 Document feedback
2 / 25

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14003
Programming the KW45 flash for Application and Radio firmware via Serial Wire Debug during

mass production

2 Prerequisites

A basic understanding of the boot process of ROM boot and security is required for implementing the steps
described in this document. For more details, refer to the KW45 Reference Manual, see Section 8 "References".

In brief, the process implements fuse programming and updates NBU in the CM33 image. Then the CM33
image and NBU image are merged to a single image. After downloading the merged image to KW45 flash
of CM33 via SWD, fuse programming is done first and then the image is burnt to NBU. The flow is shown in
Section 2 "Prerequisites".

ROM boot process

CM33 process

Update
NBU

process

Write OEM keys
on fuse

Set sb3 image
info to OTACFG

in IFR0
Reset Customer

Application

ROM boot

Verify sb3 and
Update NBU

YES

NO

OTA
CFG?

…

YES

NO

…

Jump to boot
image

Figure 2. Process flow used

There are two limitations for the method:

• The flash size of the CM33 core must be large enough to store the application and the .sb3 file.
• The lifecycle of the KW45 device must be in the OEM-OPEN state.

AN14003 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1 — 14 June 2024 Document feedback
3 / 25

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14003
Programming the KW45 flash for Application and Radio firmware via Serial Wire Debug during

mass production

3 Debug session initiation

The method to initiate a debug session varies depending on the device state and intended debug scenario.

• For a lifecycle that does not require debug authentication, the debug session can be initiated without
performing debug authentication.

• For a lifecycle that requires debug authentication, debug session can be initiated only after debug
authentication.

AN14003 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1 — 14 June 2024 Document feedback
4 / 25

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14003
Programming the KW45 flash for Application and Radio firmware via Serial Wire Debug during

mass production

4 Preparing OEM keys and certificate using SPSDK

This section describes the steps for preparing OEM keys and certificate preparation using the SPSDK tool.

4.1 Setting up the SPSDK environment
Secure Provisioning SDK (SPSDK) is an open source python SDK library with its source code released
on Github and PyPI. It provides a set of API modules for custom production tool development requiring more
advanced secure provisioning flow. This document uses a Windows system as an example.

For more details, refer to SPSDK user guide on: https://spsdk.readthedocs.io/en/latest/index.html.

1. Install Python 3.7+ on a personal laptop.
2. Open the command prompt (cmd.exe). Then, run the following commands to install SPSDK:

python -m venv venv

venv\Scripts\activate
python -m pip install --upgrade pip
pip install spsdk

3. The above commands create a virtual environment on the user's laptop. Then install SPSDK also includes
dependence file on the virtual environment.

4. Jupyter Lab is a web-based interactive development environment. NXP provides examples based on
Jupyter Notebook as an easy interactive tool for user, on above virtual environment install Jupyter Lab by
using the command:

pip install jupyterlab

Jupyter Notebook examples are also provided as interactive documentation. For users with no experience
with the Jupyter environment, reading the tutorial available at the below URL is recommended:
https://docs.jupyter.org/en/latest/start/index.html

5. KW45 Jupyter notebook example file is located in path where SPSDK is released on Github.
• This path is: spsdk/examples/jupyter_examples/kw45xx_k32w1xx/
• The file extension is .ipynb, download it to personal laptop.

6. In the virtual environment, launch the Jupyter Lab using the command below:

cd C:\path of store Jupyter notebook example.ipynb
jupyter-lab

AN14003 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1 — 14 June 2024 Document feedback
5 / 25

https://github.com/nxp-mcuxpresso/spsdk
https://pypi.org/project/spsdk/
https://spsdk.readthedocs.io/en/latest/index.html
https://docs.jupyter.org/en/latest/start/index.html
https://github.com/nxp-mcuxpresso/spsdk
https://github.com/nxp-mcuxpresso/spsdk/tree/master/examples
https://github.com/nxp-mcuxpresso/spsdk/tree/master/examples/jupyter_examples
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14003
Programming the KW45 flash for Application and Radio firmware via Serial Wire Debug during

mass production

Figure 3. Jupyter Lab
Each section of Jupyter Notebook example contains an executable field and descriptions. To execute a field,
select it and then click the Execute button in the top menu icon of the window. Refer Figure 3.

4.2 Preparing the keys and certificate
Two types of keys must be written to KW45 fuse during mass production. In a factory chip, the keys in the fuse
are null. These keys are listed below:

• RoTKTH (CUST_PROD_OEMFW_AUTH_PUK): Four Roots of Trust Key pairs (RoTK) generate this key.
• SB3KDK (CUST_PROD_OEMFW_ENC_SK): It is an Advanced Encryption Standard (AES) key.

CAUTION:

The fuse is a program-once region. If the RoTKTH and SB3KDK keys are not written to the fuse or the incorrect
keys are written to the firmware, then the method described in this document would fail.

By default, RoTKTH and SB3KDK are provided for KW45B41Z-EVK board. This document describes a method
to write these default keys to a KW45B41Z board in which these keys in fuse are null. For more details on how
RoTKTH and SB3KDK keys can be generated and how they are used for secure boot, refer to the Application
Note 'Secure Boot for KW45 and K32W (AN13838). See Section 8 "References".

To execute the code to generate new keys, follow the description in the Jupyter Notebook example. Users
can change the WORKSPACE as per the actual keys and certificate file storage path, set VERBOSITY as '-v' to
observe the debug and additional information. Refer to Figure 4.

AN14003 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1 — 14 June 2024 Document feedback
6 / 25

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14003
Programming the KW45 flash for Application and Radio firmware via Serial Wire Debug during

mass production

Figure 4. Setting the workspace path and verbosity

If you want to use existing keys and/or certificate, then execute the first executable field, skip executing the key
and certificate preparation steps, and generate the SB3KDK code. Then, change the keys and certificate path
as shown in Section 5.1 "NBU image preparation".

The RoTKTH and SB3KDK keys can be observed during Sb3.1 generation when VERBOSITY is set to “-v” as
shown in Figure 5.

Figure 5. Observing keys

AN14003 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1 — 14 June 2024 Document feedback
7 / 25

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14003
Programming the KW45 flash for Application and Radio firmware via Serial Wire Debug during

mass production

5 Mass processing and image preparation

5.1 NBU image preparation
NBU firmware file (.xip) is provided in the SDK path:

SDK store path\middleware\wireless\ble_controller\bin\

Note: If the user burns the fuse using EVK default keys, the .sb3 file located in the above path can be used.
Otherwise, the user must first generate the .sb3 file for the customer using the .xip file.

5.1.1 SB3 file generation

An Sb3 file can be generated by executing the “Prepare SB3.1 configuration file” code in the Jupyter Notebook
example. For this purpose, provide the following in the fields:

• The path of the keys (SB3KDK_KEY_PATH, ROTK0_PRIVATE_KEY_PATH)
• The certificate path (ROOT_0_CERT_PATH, ROOT_1_CERT_PATH, ROOT_2_CERT_PATH,
ROOT_3_CERT_PATH) The path is defined and filled to the above parameters if the user executes all
executable fields on the Jupyter notebook example.

To use the existing keys and/or certificate, you must define the path of existing keys and/or certificate in the
above parameters as shown in Figure 6.

Figure 6. sb3 file generation configuration

AN14003 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1 — 14 June 2024 Document feedback
8 / 25

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14003
Programming the KW45 flash for Application and Radio firmware via Serial Wire Debug during

mass production

5.1.2 Changing the lifecycle (optional)

The KW45 lifecycle can be changed by adding a programFuse command in the SB3 file generation code (refer
to Figure 7). However, If you do not want to change the lifecycle, then do not add this command.

Figure 7. Program Fuse command

Note:

• If the board lifecycle is changed to an after OEM-OPEN state (for example, ... 0x0F) by adding the
programFuse command, the secure boot is enabled after update of NBU. This implies that the CM33 image
must be signed by the keys generated. Refer to Section 4.2 "Preparing the keys and certificate" for generating
keys.

• The programFuse command can be added to change the board lifecycle to any after OEM-OPEN state
(for example, ... 0x0F). In such a case, the flash of CM33 cannot be accessed via SWD, unless debug
authentication is enabled by using the steps mentioned in Section 6 "Debug authentication".

AN14003 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1 — 14 June 2024 Document feedback
9 / 25

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14003
Programming the KW45 flash for Application and Radio firmware via Serial Wire Debug during

mass production

5.2 CM33 image preparation
Take the SDK project otac_att as example, set the gEraseNVMLink_d linker symbol to 0 while generating
the binary file.

If the flash of NBU is empty, the Bluetooth Low Energy example code is stacked when initializing NBU. Also an
issue would occur when the Bluetooth Low Energy host stack is initialized. So, use a flag stored in a non-volatile
memory to indicate whether to perform the normal Bluetooth Low Energy process, or perform burn NBU image
process. For the process described in this document, this flag stores a reserve variable in HWParameters as
shown in Figure 8.

Figure 8. Burning NBU flag

5.2.1 Default OEM keys on KW45B41Z board

For the KW45B41Z-EVK board, NXP provides the default keys in fuse and these are shown in Figure 9.
However, for the KW45 chip received from the factory, by default, the SBKDK and RoTKTH keys in the fuse are
null. Therefore, writing these two keys to fuse is essential. Otherwise, the sb3 update would fail.

Figure 9. Default keys on KW45B41Z-EVK board

AN14003 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1 — 14 June 2024 Document feedback
10 / 25

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14003
Programming the KW45 flash for Application and Radio firmware via Serial Wire Debug during

mass production

5.2.2 Writing OEM keys in application code by nboot API

The KW45 ROM bootloader provides the nboot API that can program the fuse. Follow the below steps to enable
the nboot API:

1. In the BLE example project, add the driver files fsl_romapi.c and fsl_nboot.h to the project.
2. Open the file fsl_romapi.c and remove the API related to the flash operation. This step is required to

prevent duplicate definitions error that might appear while compiling the project.
3. In otap_client_att.c, add:

#include "fsl_nboot.h"

Then, define the SB3KDK and RoTKTH array as shown in Figure 9.
The function code shown below shows how to program the SBKDK and RoTKTH to the fuse:
int JiaTest_Set_LifeCycleAndKeys_Secure(uint8_t * pSB3KDK, uint8_t * pRoTKTH)
{
 static spc_active_mode_sys_ldo_option_t SysLdoOption;
 status_t TestSta;
 uint32_t RegPrimask;
 uint8_t TestTempBuff[32] = {0};
 nboot_status_t TestSta1, TestSta2, TestSta3, TestSta4;

 PRINTF("\r\n------------- Test read and wirte fuse ---------------\r\n");

 /* When select System LDO voltage level to Over Drive voltage, The HVD of System
 LDO must be disabled. */

 SPC_EnableActiveModeSystemHighVoltageDetect(SPC0, false);
 while(SPC_GetBusyStatusFlag(SPC0)); //wait here for a while, to let HW complete
 operation
 PRINTF("\r\nSet SYS LDO VDD Regulator regulate to Over Drive Voltage(2.5V)\r\n");

 /* Set SYS LDO VDD Regulator regulate to Over Drive Voltage(2.5V) */
 SysLdoOption.SysLDOVoltage = kSPC_SysLDO_OverDriveVoltage;
 SysLdoOption.SysLDODriveStrength = kSPC_SysLDO_NormalDriveStrength;

 // SPC use default configuration,so we just set sys Ldo option
 TestSta = SPC_SetActiveModeSystemLDORegulatorConfig(SPC0, &SysLdoOption);
 OSA_TimeDelay(10); //just delay to let volitage reach the target level
 if(kStatus_Success == TestSta)
 {
 /* Disabling the interrupts before making any ROM API call is suggested,
 since API code does not deal with interrupts */
 RegPrimask = DisableGlobalIRQ();

 /* Set/read keys in fuse */
 TestSta1 = NBOOT_ContextInit(&TestContextForWriteLC);
 TestSta2 = NBOOT_FuseProgram(&TestContextForWriteLC,
 NBOOT_FUSEID_CUST_PROD_OEMFW_AUTH_PUK, (uint32_t *)pRoTKTH, 32);
 TestSta3 = NBOOT_FuseRead(&TestContextForWriteLC,
 NBOOT_FUSEID_CUST_PROD_OEMFW_AUTH_PUK, (uint32_t *)TestTempBuff, 32);
 TestSta4 = NBOOT_FuseProgram(&TestContextForWriteLC,
 NBOOT_FUSEID_CUST_PROD_OEMFW_ENC_SK, (uint32_t *)pSB3KDK, 32);

 NBOOT_ContextFree(&TestContextForWriteLC);

 /* Enable the interrupts after rom api calls */
 EnableGlobalIRQ(RegPrimask);

 /* Set SYS LDO VDD Regulator regulate to Normal Voltage(1.8V) */
 SysLdoOption.SysLDOVoltage = kSPC_SysLDO_NormalVoltage;
 SysLdoOption.SysLDODriveStrength = kSPC_SysLDO_NormalDriveStrength;
 TestSta = SPC_SetActiveModeSystemLDORegulatorConfig(SPC0, &SysLdoOption);
 OSA_TimeDelay(10); //just delay to let volitage reach the target level

AN14003 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1 — 14 June 2024 Document feedback
11 / 25

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14003
Programming the KW45 flash for Application and Radio firmware via Serial Wire Debug during

mass production

 PRINTF("\r\n Set SYS LDO VDD Regulator to Normal Voltage(1.8V)\r\n");
 PRINTF("\r\nTestSta1: %X, TestSta2: %X, TestSta3: %X, TestSta4: %X \r\n",
 TestSta1, TestSta2, TestSta3, TestSta4);
 for(uint8_t i=0; i < 32; i++)
 {
 PRINTF("%X", TestTempBuff[i]);
 }
 SPC_EnableActiveModeSystemHighVoltageDetect(SPC0,true);
 while(SPC_GetBusyStatusFlag(SPC0)); //wait here for a while, to let HW
 complete operation
 PRINTF("\r\n------------- End test ---------------\r\n");
 }
 else
 {
 PRINTF("\r\n Failed sta is %d \r\n", TestSta);
 }
 return 0;
}
#endif

The fuse programming steps are listed below:

• The SYS LDO VDD Regulator level must be regulated to Over Drive Voltage level (2.5 V) while trying to
program the fuse. The default SYS LDO VDD Regulator level is regulated to normal voltage 1.8 V.

• The nboot API does not deal with any interrupts. Therefore, you must disable the interrupts before making any
nboot API calls.

• The fuse is a program-once region. Therefore, if the key region in fuse already has some values, then fuse
programming fails except for the same keys.

• After the fuse is programmed, enable the interrupts.
• The SYS LDO VDD can only operate at the overdrive voltage for a limited amount of time for the life of the

chip. Therefore, after programming the fuse, set the SYS LDO VDD to normal voltage.

The program keys to fuse operation must be done prior to modifying the OTA update configurations mentioned
in Section 5.2.3 "Updating OTA update configurations".

5.2.3 Updating OTA update configurations

KW45 Boot ROM has a firmware update feature that can be used for updating both CM33 and NBU firmware.
For example, it indicates and provides metadata information for update to be performed in KW45 IFR0 OTACFG
page. (Refer to OTA update configuration in KW45 RM). The target image is the NBU image prepared as
mentioned in NBU image preparation. The NBU image is placed in the address 0x7A000 as shown in the code
below.

void BluetoothLEHost_AppInit(void)
{
 /*Install callback for button*/
#if (defined(gAppButtonCnt_c) && (gAppButtonCnt_c > 0))
 (void)BUTTON_InstallCallback((button_handle_t)g_buttonHandle[0],
 (button_callback_t)BleApp_HandleKeys0, NULL);
#endif
#if TEST_UPDATE_NBU_FROM_APP_IN_SECURE_LIFECYCLE
 if(pTestHWParams->reserved[62] != 0xFF)
 {
#endif
 /* Initialize Bluetooth Host Stack */
 BluetoothLEHost_SetGenericCallback(BluetoothLEHost_GenericCallback);
 BluetoothLEHost_Init(BluetoothLEHost_Initialized);
 #if TEST_UPDATE_NBU_FROM_APP_IN_SECURE_LIFECYCLE
 }

AN14003 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1 — 14 June 2024 Document feedback
12 / 25

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14003
Programming the KW45 flash for Application and Radio firmware via Serial Wire Debug during

mass production

 else
 {
 int res = -1;
 int st;
 OtaLoaderInfo_t loader_info;
 res = PLATFORM_OtaClearBootFlags();
 if(res == 0)
 {
 //OTA successful, OTA update configuration will be cleared
 PRINTF("\r\nFirmware update sucessful.\r\n");
 pTestHWParams->reserved[62] = 'S';
 NV_WriteHWParameters();
 PRINTF("\r\nSet HWParameter->reserved[62] as 'S' as a flag, recover
 the flag by long press button SW2\r\n");
 PRINTF("\r\nReset MCU again for running normal application\r\n");

 HAL_ResetMCU();
 }
 else if (res == 1)
 {
 PRINTF("\r\nTest for update nbu firmware, NBU firmware is null,
 start nbu firmware update.\r\n");
 PRINTF("\r\nSet new image flag to IFR0 -> OTACFG\r\n");

 /* Program Keys to fuse, this must before update NBU*/
 JiaTest_Set_LifeCycleAndKeys_Secure(user_SB3KDK, user_RoTKTH);

 loader_info.image_addr = 0x7a000; //this is sb3 file address
 that store in internal flash, align with 8Kb
 //The OTA SelectedFlash-
>base_offset is 0x7a000, I also use it.
 loader_info.image_sz = 194240; //fill sb3 file size
 loader_info.pBitMap = NULL;
 //use internal flash
 loader_info.partition_desc = &Test_ota_partition;
// loader_info.sb_arch_in_ext_flash = false;
// loader_info.spi_baudrate = 0;

 st = PLATFORM_OtaNotifyNewImageReady(&loader_info);

 PRINTF("\r\nUpdate OTACFG status is %d \r\n", st);
 PRINTF("\r\nReset MCU \r\n");
 HAL_ResetMCU();
 }
 else if (res == 2)
 {//OTA failed, OTA update configuration will be cleared
 PRINTF("\r\nFirmware update failed.\r\n");
 }
 else
 {//unknow OTA firmware update status
 PRINTF("\r\nUnknow firmware update status\r\n");
 }
 }
#endif
}

AN14003 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1 — 14 June 2024 Document feedback
13 / 25

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14003
Programming the KW45 flash for Application and Radio firmware via Serial Wire Debug during

mass production

5.3 CM33 signed image generation (optional)
If the device lifecycle is changed to OEM secure world closed via a command in the .sb3 file generated
earlier, it signifies that after ROM boot processes the .sb3 file, the NBU image is burnt and the lifecycle is also
changed. Therefore, the application image must also be signed because the secure boot feature is enabled in
that lifecycle. If this step is not done, a command must be added to change the board lifecycle to an after OEM-
OPEN state in the .sb3 file. In such a case, the signed image is not required.

Note:

The signed image feature is not provided in SPSDK for KW45 devices currently. However, the signed image can
be generated by using the Over The Air Programming tool. Follow the steps described in Bluetooth Low Energy
Demo Applications User's Guide.pdf to generate the .sb3 file. Refer to the step show in Figure 10. The signed
image can be found in the path below:

tool install path\Over The Air Programming 1.0.6.4\Secured\signedcm33.bin

• Use the Keys and Certificate files generated using the steps mentioned in Section 4.2 "Preparing the keys
and certificate"” for signed image generation.

Figure 10. SB3 JSON configuration

AN14003 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1 — 14 June 2024 Document feedback
14 / 25

https://cache.nxp.com.cn/secured/assets/downloads/en/application-software/Over_The_Air_Programming_Tool.exe?fileExt=.exe
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14003
Programming the KW45 flash for Application and Radio firmware via Serial Wire Debug during

mass production

5.4 Merging CM33 image and NBU image
Open the signed image file and .sb3 file using a Hex file editor tool. Copy the contents of .sb3 file
to signedcm33.bin file, located in the address 0x7A000. Add a padding of 0x00 between the valid
signedcm33.bin to 0x7A000 as shown in Figure 11.

Copy the contents of .sb3 file to
signed cm33.bin file,
located in the address 0x7A000

Figure 11. Merging the images

After merging CM33 image and NBU image, the merged image can be burnt to KW45 via SWD for mass
production.

AN14003 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1 — 14 June 2024 Document feedback
15 / 25

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14003
Programming the KW45 flash for Application and Radio firmware via Serial Wire Debug during

mass production

6 Debug authentication

Debug authentication scheme is a challenge-response scheme and assures that only a debugger, which
has possession of the required debug credentials can successfully authenticate over debug interface. Such
a debugger can also access restricted parts of the device. The below sections describe steps for debug
authentication.

6.1 Preparing keys and certificates for debug
Prior to generating debug credentials, it is necessary to generate an EC keypair (secp256r1 or secp384r1) for
the debugger known as Debug Credential Key (DCK).

The method of generating DCK is the same as RoTKs generation in SPSDK Jupyter mentioned in Section 4.2
"Preparing the keys and certificate", shown in Figure 12. Users can use the same code and change the
filename of the keypair. They can use the same syntax for generating the keypair.

Figure 12. Key pair generation

6.2 Debugging credentials
In the SPSDK virtual environment, use the syntax below for generating a Configuration template:

nxpdebugmbox get-template -f C:\XXXX\...\XXXX\test.yml

After successful creation, the message shown below is displayed:

The configuration template file has been created.

Figure 13. Configuration template generation

Open the Configuration template file and modify the content accordingly. For details, refer to the comment
mentioned in the Configuration template file.

socc: 0x0005
uuid: "00000000000000000000000000000000"
cc_socu: 0xFFFF
cc_vu: 0
cc_beacon: 0
rot_meta: path of RoTKs public part, should same as keys used by .sb3
generation(e.g.. ./secp384r1_private_key0.pub)

AN14003 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1 — 14 June 2024 Document feedback
16 / 25

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14003
Programming the KW45 flash for Application and Radio firmware via Serial Wire Debug during

mass production

rot_id: 0
dck: path of public part of the DCK(e.g.. ./secp384r1_private_dck.pub)
rotk: path of RoTK private part for the rot_meta chosen by rot_id, should be the
 same as keys
used by .sb3 generation (e.g.. ./secp384r1_private_key0.pem)
socc: 0x0005

Use the syntax shown below for Debug Credential generation by using the Configuration template:

 nxpdebugmbox -p 2.1 gendc -c C: \XXXX\...\XXXX\test1.yml C: \YYYY\...\YYYY
\test.cert1

where

• <XXXX> denotes the user directory path and
• <YYYY> denotes the path of test.cert1 file

Figure 14. Debug credential generation

6.3 Initiating debug authentication
1. In the virtual environment, start the NXP debug box tool by using the command:

nxpdebugmbox start

Refer Figure 15.
2. Then, select J-Link as the debug probe.

Figure 15. Initiating debug using the 'nxpdebugmbox start' command
3. Use the command below to initiate debug authentication (refer Figure 16):

nxpdebugmbox -v -p 2.1 -i jlink auth -b 0x0 -c C: \YYYY\...\YYYY\test.cert -k
 C:\ZZZZ\...\ZZZZ\secp384r1_private_dck.pem

C:\ZZZZ\...\ZZZZ\secp384r1_private_dck.pem is the private key generated using the steps
described in Section 6.1 "Preparing keys and certificates for debug".

AN14003 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1 — 14 June 2024 Document feedback
17 / 25

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14003
Programming the KW45 flash for Application and Radio firmware via Serial Wire Debug during

mass production

Figure 16. Debug authentication
Starting debug
After debug authentication ends successfully, the device enables access to the debug domains permitted
in the DC. Do not reset KW45, use J-Link Commander to connect to the device directly. The log is shown in
Figure 17.

AN14003 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1 — 14 June 2024 Document feedback
18 / 25

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14003
Programming the KW45 flash for Application and Radio firmware via Serial Wire Debug during

mass production

Figure 17. Secure Debug enabled
Note:
Access is disabled when the KW45 device is reset. Therefore, if KW45 is reset, debug authentication must
be performed again. In such a case, do not use the IDE to perform debug authentication. This is because
the reset KW45 operation might be embedded in the IDE.

AN14003 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1 — 14 June 2024 Document feedback
19 / 25

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14003
Programming the KW45 flash for Application and Radio firmware via Serial Wire Debug during

mass production

7 Acronyms and abbreviations

Table 1 lists the acronyms used in this document.

Acronym Description

AES Advanced Encryption Standard

Bluetooth LE Bluetooth Low Energy

DCK Debug Credential Key

IDE Integrated Design Environment

ISP In-System Programming

NBU Narrow Band Unit

OEM Original Equipment Manufacturer

RoTKTH Root of Trust Key Table Hash

SB3KDK SB3 Key Derivation Key

SDK Software Development Kit

SPSDK Secure Provisioning SDK

SWD Serial Wire Debug

XIP Execute-In-Place

Table 1. Acronyms and abbreviations

AN14003 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1 — 14 June 2024 Document feedback
20 / 25

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14003
Programming the KW45 flash for Application and Radio firmware via Serial Wire Debug during

mass production

8 References

Refer to the below documents for more information:

• Managing Lifecycles on KW45 and K32W148 (AN13931)
• Secure Boot for KW45 and K32W (AN13838)
• KW45 Reference Manual (KW45RM)
• Bluetooth Low Energy Demo Applications User's Guide.pdf. Contact your local NXP field applications

engineer (FAE) or sales representative for obtaining this document.

AN14003 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1 — 14 June 2024 Document feedback
21 / 25

https://www.nxp.com/webapp/Download?colCode=AN13931
https://www.nxp.com/webapp/Download?colCode=AN13838
https://www.nxp.com/webapp/Download?colCode=KW45RM
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14003
Programming the KW45 flash for Application and Radio firmware via Serial Wire Debug during

mass production

9 Revision history

Table 2 summarizes the revisions to this document.

Revision history

Document ID Release date Description

AN14003 v.1.1 14 June 2024 Minor updates in Section 5.2.2 "Writing OEM keys in application code by nboot API"

AN14003 v.1.0 16 August 2023 Initial public release

Document revision history

AN14003 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1 — 14 June 2024 Document feedback
22 / 25

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14003
Programming the KW45 flash for Application and Radio firmware via Serial Wire Debug during

mass production

10 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2023-2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

AN14003 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1 — 14 June 2024 Document feedback
23 / 25

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14003
Programming the KW45 flash for Application and Radio firmware via Serial Wire Debug during

mass production

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.
Bluetooth — the Bluetooth wordmark and logos are registered trademarks
owned by Bluetooth SIG, Inc. and any use of such marks by NXP
Semiconductors is under license.
EdgeLock — is a trademark of NXP B.V.
J-Link — is a trademark of SEGGER Microcontroller GmbH.

AN14003 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1 — 14 June 2024 Document feedback
24 / 25

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14003
Programming the KW45 flash for Application and Radio firmware via Serial Wire Debug during

mass production

Contents
1 Introduction .. 2
2 Prerequisites .. 3
3 Debug session initiation 4
4 Preparing OEM keys and certificate

using SPSDK ..5
4.1 Setting up the SPSDK environment5
4.2 Preparing the keys and certificate 6
5 Mass processing and image preparation 8
5.1 NBU image preparation8
5.1.1 SB3 file generation .. 8
5.1.2 Changing the lifecycle (optional) 9
5.2 CM33 image preparation 10
5.2.1 Default OEM keys on KW45B41Z board 10
5.2.2 Writing OEM keys in application code by

nboot API ...11
5.2.3 Updating OTA update configurations 12
5.3 CM33 signed image generation (optional) 14
5.4 Merging CM33 image and NBU image 15
6 Debug authentication 16
6.1 Preparing keys and certificates for debug16
6.2 Debugging credentials 16
6.3 Initiating debug authentication 17
7 Acronyms and abbreviations 20
8 References ..21
9 Revision history ...22
10 Note about the source code in the

document ..23
Legal information ...24

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 14 June 2024
Document identifier: AN14003

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

	1 Introduction
	2 Prerequisites
	3 Debug session initiation
	4 Preparing OEM keys and certificate using SPSDK
	4.1 Setting up the SPSDK environment
	4.2 Preparing the keys and certificate

	5 Mass processing and image preparation
	5.1 NBU image preparation
	5.1.1 SB3 file generation
	5.1.2 Changing the lifecycle (optional)

	5.2 CM33 image preparation
	5.2.1 Default OEM keys on KW45B41Z board
	5.2.2 Writing OEM keys in application code by nboot API
	5.2.3 Updating OTA update configurations

	5.3 CM33 signed image generation (optional)
	5.4 Merging CM33 image and NBU image

	6 Debug authentication
	6.1 Preparing keys and certificates for debug
	6.2 Debugging credentials
	6.3 Initiating debug authentication

	7 Acronyms and abbreviations
	8 References
	9 Revision history
	10 Note about the source code in the document
	Legal information
	Contents

