
AN13754
Enable PXP for OpenCV
Rev. 0 — 20 October 2022 Application note

Document information
Information Content

Keywords OpenCV, MCU, PXP optimized

Abstract OpenCV (Open Source Computer Vision Library) is an open-source library
that includes several hundreds of computer vision algorithms.

NXP Semiconductors AN13754
Enable PXP for OpenCV

1 Introduction

OpenCV (Open Source Computer Vision Library: http://opencv.org) is an open-source
library that includes hundreds of computer vision algorithms.

OpenCV has a modular structure, which means that the package includes several
shared or static libraries. The following modules are available: Core functionality, Image
Processing, Video Analysis, Camera Calibration, 3D reconstruction (calib3d), 2D
Features Framework (features2D), Object Detection (objdetect), High-level GUI (highgui),
and Video I/O (videoio).

The OpenCV has integrated multiple hardware optimizations in the Hardware
Acceleration Layer (HAL), such as, SSE, NEON, OpenCL, CUDA, OpenCV4Tegra. But
it does not optimize MCU platform, especially when the MCU also has an acceleration
hardware, such as, PXP or even the 2D-GPU on the i.MX RT1170. This document
introduces how to optimize the openCV library with PXP and then run it on our RT-Series
MCU platform, such as, i.MX RT1170 EVKB board.

This article is an extension of Run openCV on Cortex-M7 MCU (document AN13725).
We assume that you have already read AN13725 and have that environment installed on
your PC.

2 PXP

The Pixel Processing Pipeline (PXP) is used to process graphics buffers or composite
video and graphics data before sending to an LCD display or TV encoder. It is used to
minimize the memory footprint required for the display pipeline and provide an area and
performance optimized to both SDRAM-less and SRAM-based systems.

The PXP integrates several independent processing stages into a cohesive strategy to
create flexible pixel pipeline.

Figure 1 shows the PXP block diagram.

Figure 1. Block diagram

By integrating multiple blocks, remove intermediate buffer operations to external memory,
reducing external memory bandwidth, power, and software control complexity. The PXP
combines the following into a single processing engine:

• Scaling
AN13754 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 20 October 2022
2 / 13

http://opencv.org/
https://www.nxp.com.cn/docs/en/application-note/AN13725.pdf

NXP Semiconductors AN13754
Enable PXP for OpenCV

• Color Space Conversion (CSC)
• Rotation

The main features of PXP include:

• BitBlit
• Multiple input/output format support, including YUV/RGB/Grayscale
• Supports both RGB/YUV scaling
• Supports overlay with Alpha blending
• Supports Rotation of 0, 90, 180, and 270 degrees with vertical and horizontal flip

options
• Color space conversion
• Image resize
• Standard 2D-DMA operation

3 Configure the OpenCV module to add PXP support

We already know that the OpenCV has a modular structure. However, who organizes
these modules and tells the compiler which module is included to the final library? The
answer is CMake.

CMake is an open-source and cross-platform family of tools, designed to build, test,
and package software. CMake is used to control the software compilation process
using simple platform and compiler independent configuration files, and generate native
makefiles and workspaces that can be used in the compiler environment of your choice.
Kitware creates the suite of CMake tools in response to the need for a powerful and
cross-platform build environment for open-source projects.

But How does it work? To store the building files, create a folder, named build for
example. And from here, open the CMake-gui (which is a GUI-tool for CMake, providing
an easy-to-use interface):

AN13754 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 20 October 2022
3 / 13

NXP Semiconductors AN13754
Enable PXP for OpenCV

Figure 2. Default configurations

The new values are in red. We can imagine that each module has a dedicated symbol
defined in a CMake file named CMakeLists.txt, which is the entry for a CMake project.
After defining the symbol, it becomes the switch to control the code. If we define or set it
as true, for example, we can find that under the build group, there are so many symbols
that seem related to a module. So at last only the checked module is compiled into the
final image. In this instance, the JPEG, PNG, and the opencv_core are compiled, but
others not.

Figure 3. The build options

So, to add the PXP, add such a symbol as a switch to control the compiling flow. First,
add the new option into CMakeLists.txt, like this:

AN13754 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 20 October 2022
4 / 13

NXP Semiconductors AN13754
Enable PXP for OpenCV

Figure 4. Add new entries

It is better to place the newline inside the Option 3rd party comments. Now we have
defined a new symbol/variable name WITH_PXP. Reopen the CMake-gui.exe to check if
it works.

Figure 5. The new symbol

The new variable works. But this is not the end. The variable is only visible to CMake,
and the source code cannot see it. It means that we can only use this symbol outside the
code, but not as macro to do the pre-compile. So we must add another line:

if(WITH_PXP)
 add_definitions(-DHAVE_PXP)
endif()

With the add_definitions function of CMake, we can pass the new symbol, HAVE_PXP, to
the compiler as a pre-defined macro which is visible inside a code. We use it like this:

#if HAVE_PXP
…
#else
…
#endif Now we have defined a new symbol

And the if(WITH_PXP) checks whether the WITH_PXP symbol is checked through the
CMake-gui. If not, the macro is not defined.

Now we can rebuild the OpenCV library with the WITH_PXP option checked.

AN13754 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 20 October 2022
5 / 13

NXP Semiconductors AN13754
Enable PXP for OpenCV

4 Write the code to enable the PXP

Step 3 told us a way to add the pxp-symbol into the Cmake build-system. This section
takes the Resize function as an example to show how to write some code to integrate the
PXP.

Consider that the PXP driver has many NXP’s headers and files. So we do not include
the PXP drivers into OpenCV, and leave this to users. For who want to use the PXP, they
must import the PXP drivers and also the PXP-HAL into the project. Inside the OpenCV,
it only uses the API as a external symbol. As a result, only one thing is left. Find the
resize function and insert the function call to the PXP. The resize of OpenCV is inside the
resize.cpp:

void cv::resize(InputArray _src, OutputArray _dst, Size dsize,
 double inv_scale_x, double inv_scale_y, int
 interpolation)

After checking the code, we saw that there is already an OCL optimized code with a
macro to call the real-function API:

CV_OCL_RUN(_src.dims() <= 2 && _dst.isUMat() && _src.cols() >
 10 && _src.rows() > 10,
 ocl_resize(_src, _dst, dsize, inv_scale_x, inv_scale_y,
 interpolation))

So we can take it as a reference and write our code:

CV_PXP_RUN(_src.dims() <= 2 && _dst.isMat() && (interpolation
 == INTER_LINEAR),
 resize_pxp(_src, _dst, dsize, inv_scale_x, inv_scale_y))

Please note that, our PXP can only do the resize with a specified interpolation:
INTER_LINEAR. So we do a check about that. Otherwise, it calls the default function
without any optimized.

The Macro is defined in the private.hpp, and like this:

#ifdef HAVE_PXP
int resize_pxp(cv::InputArray _src, cv::OutputArray _dst,
 cv::Size dsize, float fx=0, float fy=0, int rotateCode=-1, int
 flipCode=-2);
#define CV_PXP_RUN_(condition, func, ...)
 \
try \
{ \
 if ((condition) && func) \
 {
 \
 return __VA_ARGS__;
 \
 } \
} \
catch (const cv::Exception& e) \
{ \
 CV_UNUSED(e); /* TODO: Add some logging here */ \
}

AN13754 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 20 October 2022
6 / 13

NXP Semiconductors AN13754
Enable PXP for OpenCV

#else
#define CV_PXP_RUN_(condition, func, ...)
#endif
#define CV_PXP_RUN(condition, func) CV_PXP_RUN_(condition,
 func)

Now the OpenCV side is done. Once you check the WITH_PXP, the OpenCV has a
chance to call PXP. The next step is to write the PXP_HAL, including initialize the PXP
and the function resize_pxp, create a file named nxp_pxp.cpp for example, and edit the
file:

1. Define a PXP class:

#include “opencv2/opencv.hpp”
using namespace cv;
/
**
 construct the pxp class
**/
class pxp_handler{
 public:
 pxp_handler();
 int resize(cv::InputArray _src, cv::OutputArray
 _dst, cv::Size dsize, float fx=0, float fy=0, int
 rotate_code=-1, int flip_code=-2);
};

2. Function implementation

pxp_handler::pxp_handler(){
 pxp_init();
}
static inline void* get_pxp_handler(){
 static pxp_handler s_pxp_handler;
 return (void*)(&s_pxp_handler);
}
int resize_pxp(cv::InputArray _src, cv::OutputArray _dst,
 cv::Size dsize, float fx=0, float fy=0, int rotate_code=-1,
 int flip_code=-2){
 pxp_handler* handler = (pxp_handler*)get_pxp_handler();
 return handler-->resize(_src, _dst, dsize, fx, fy,
 rotate_code, flip_code);
}

Here we define a static class instance. Once it is used, the construct function is
called directly.
And as a result, we finish the preparation for the PXP. Make sure that the pxp_init()
only calls once.

3. There is one thing to be considered first before we start writing the
pxp_handler::resize. There is a limitation of the PXP to handle the input image. It
can support both ARGB32, RGB565 or the YUV data, except the RGB24:

/*! @brief PXP process surface buffer pixel format. */
typedef enum _pxp_ps_pixel_format
{
 kPXP_PsPixelFormatRGB888 = 0x4, /*!< 32-bit pixels
 without alpha (unpacked 24-bit format) */
 kPXP_PsPixelFormatRGB555 = 0xC, /*!< 16-bit pixels
 without alpha. */

AN13754 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 20 October 2022
7 / 13

NXP Semiconductors AN13754
Enable PXP for OpenCV

 kPXP_PsPixelFormatRGB444 = 0xD, /*!< 16-bit pixels
 without alpha. */
 kPXP_PsPixelFormatRGB565 = 0xE, /*!< 16-bit pixels
 without alpha. */
 kPXP_PsPixelFormatYUV1P444 = 0x10, /*!< 32-bit pixels (1-
plane XYUV unpacked). */
 kPXP_PsPixelFormatUYVY1P422 = 0x12, /*!< 16-bit pixels (1-
plane U0,Y0,V0,Y1 interleaved bytes) */
 kPXP_PsPixelFormatVYUY1P422 = 0x13, /*!< 16-bit pixels (1-
plane V0,Y0,U0,Y1 interleaved bytes) */
 kPXP_PsPixelFormatY8 = 0x14, /*!< 8-bit monochrome
 pixels (1-plane Y luma output) */
 kPXP_PsPixelFormatY4 = 0x15, /*!< 4-bit monochrome
 pixels (1-plane Y luma, 4 bit truncation) */
 kPXP_PsPixelFormatYUV2P422 = 0x18, /*!< 16-bit pixels (2-
plane UV interleaved bytes) */
 kPXP_PsPixelFormatYUV2P420 = 0x19, /*!< 16-bit pixels (2-
plane UV) */
 kPXP_PsPixelFormatYVU2P422 = 0x1A, /*!< 16-bit pixels (2-
plane VU interleaved bytes) */
 kPXP_PsPixelFormatYVU2P420 = 0x1B, /*!< 16-bit pixels (2-
plane VU) */
 kPXP_PsPixelFormatYVU422 = 0x1E, /*!< 16-bit pixels (3-
plane) */
 kPXP_PsPixelFormatYVU420 = 0x1F, /*!< 16-bit pixels (3-
plane) */
} pxp_ps_pixel_format_t;

The news is bad. The common pixel format of the OpenCV is RGB24. Each pixel has
three bytes. If we want to use the PXP, a function used to convert RGB24 to RGB565
is necessary. But the challenge is that we must design the logic of the algorithm
carefully to guarantee the efficiency, to avoid that the algorithm becomes a bottleneck
against the PXP.After several attempts. We got the below code:

#define zip_v(v, bits, shift_l) ((v >> (8 - bits)) <<
 shift_l)
#define RGB2RGB565(r, g, b) \
 (zip_v(r, 5, 11) | zip_v(g, 6, 5) | zip_v(b, 5, 0))
typedef struct{
 union{
 rgb_clip_t rgb_clip[4];
 uint8_t rgb[12];
 uint32_t rgbx4[3];
 }rgb_rgb565;
}color_t;
int RGB888toRGB565_struct(uint32_t *prgb888, uint32_t
 *prgb565, uint32_t pixCnt) {
 color_t color;
 uint32_t rgb565x2[2];
 while (pixCnt >= 4) {
 memcpy(color.rgb_rgb565.rgbx4, prgb888, 12);
 prgb888 += 3;
 rgb565x2[0] = RGB2RGB565(color.rgb_rgb565.rgb[2],
 color.rgb_rgb565.rgb[1],
 color.rgb_rgb565.rgb[0]) |
 RGB2RGB565(color.rgb_rgb565.rgb[5],
 color.rgb_rgb565.rgb[4],
 color.rgb_rgb565.rgb[3]) << 16 ;

AN13754 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 20 October 2022
8 / 13

NXP Semiconductors AN13754
Enable PXP for OpenCV

 rgb565x2[1] = RGB2RGB565(color.rgb_rgb565.rgb[8],
 color.rgb_rgb565.rgb[7],
 color.rgb_rgb565.rgb[6]) |
 RGB2RGB565(color.rgb_rgb565.rgb[11],
 color.rgb_rgb565.rgb[10],
 color.rgb_rgb565.rgb[9]) << 16 ;

 memcpy(prgb565, rgb565x2, 8);
 prgb565 += 2;
 pixCnt -= 4;
 }
 return 0;
}
void bgr2rgb565(cv::InputArray _src, cv::OutputArray _dst,
 uint32_t image_len){
 Mat src = _src.getMat();
 _dst.create(src.size(), CV_16U);
 Mat dst = _dst.getMat();
 uint16_t *dst_rgb16 = (uint16_t*)dst.data;
 uint8_t *src_rgb8 = src.data;
 RGB888toRGB565_struct((uint32_t*)src_rgb8, (uint32_t
 *)dst_rgb16, image_len);
}

Now the final code of the pxp_handler::resize is here:

int pxp_handler::resize(cv::InputArray _src, cv::OutputArray
 _dst, cv::Size dsize, float fx, float fy, int rotate_code,
 int flip_code){
 Mat src = _src.getMat();
 Mat dst = _dst.getMat();
 if(src.data == dst.data || dst.data == nullptr){
 // only 90/270 need create new one
 if((rotate_code == ROTATE_90_CLOCKWISE) ||
 (rotate_code == ROTATE_90_COUNTERCLOCKWISE))
 _dst.create(Size(dsize.height, dsize.width),
 src.type());
 else
 _dst.create(Size(dsize.width, dsize.height),
 src.type());
 dst = _dst.getMat();
 }
 uint32_t src_w = src.cols, src_h = src.rows, src_c =
 src.channels(), src_ptr = (uint32_t)src.data;
 uint32_t dst_w = dst.cols, dst_h = dst.rows, dst_c =
 dst.channels(), dst_ptr = (uint32_t)dst.data;
 Mat tmp(src);
 if(src_c != 2){
 bgr2rgb565(src, tmp, src_w * src_h);
 src_ptr = (uint32_t)tmp.data;
 }
 PXP_CFG(dsize.width, dsize.height);
 PXP_SetProcessSurfaceScaler(PXP, src_w, src_h,
 dsize.width, dsize.height);
 WAIT_PXP_DONE();
 return 1;
}

For more details, see AN13754SW.
Now we have both the OpenCV code which has integrated the PXP acceleration and
the PXP_HAL. The next step is to create a project to invalidate the new code.

AN13754 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 20 October 2022
9 / 13

NXP Semiconductors AN13754
Enable PXP for OpenCV

5 Deploy the optimized OpenCV on MIMXRT1170 EVK

Next step is to deploy the new library on the board. We make an example to show that
the library can work on our board. You can find the project from the attachment. Copy
all the libraries into the “source/library” folder within the project and test images into
the “source/data” folder at the same time. Here we also use the famous lena.jpg as the
input:

Figure 6. The famous Lena as test data

The picture is a decoded jpg image with a shape (512, 512). Then we call the function
to resize the image to a new shape (320, 240) with different OpenCV library. One is the
default and the other is optimized with PXP. After building and downloading the project
into board, boot up the EVK board and start debugging.

Figure 7 shows the resize time of the default CV.

Figure 7. Default time

AN13754 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 20 October 2022
10 / 13

NXP Semiconductors AN13754
Enable PXP for OpenCV

Figure 8 shows the resize time of the optimized CV.

Figure 8. Time after optimized

With the PXP, the optimized function can save 21 ms each in this test case (from a (512,
512) to (320, 240)), and the performance boosts about 58 %.

6 Reference

The file mentioned in the article is shipped in the attachments.

7 Revision history

Rev. Date Description
0 20 October 2022 Initial release

AN13754 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 20 October 2022
11 / 13

NXP Semiconductors AN13754
Enable PXP for OpenCV

8 Legal information

8.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

8.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

8.3 Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AN13754 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 20 October 2022
12 / 13

mailto:PSIRT@nxp.com

NXP Semiconductors AN13754
Enable PXP for OpenCV

Contents
1 Introduction ... 2
2 PXP ... 2
3 Configure the OpenCV module to add PXP

support ...3
4 Write the code to enable the PXP6
5 Deploy the optimized OpenCV on

MIMXRT1170 EVK ..10
6 Reference ... 11
7 Revision history .. 11
8 Legal information ..12

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© NXP B.V. 2022. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 20 October 2022
Document identifier: AN13754

	1 Introduction
	2 PXP
	3 Configure the OpenCV module to add PXP support
	4 Write the code to enable the PXP
	5 Deploy the optimized OpenCV on MIMXRT1170 EVK
	6 Reference
	7 Revision history
	8 Legal information
	Contents

