
AN13730
How to Develop LVGL GUI Demo on Memory-constrained
MCU with GUI Guider
Rev. 0 — 9 September 2022 Application note

Document information
Information Content

Keywords GUI Guider 1.3.1, LVGL, LPC55S06

Abstract This application note introduces the use of the LVGL file system mechanism
to support external SPI Flash and the use of the LVGL input device
mechanism to support hardware buttons for screen switching.

NXP Semiconductors AN13730
How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

1 Introduction

An attractive GUI is reliant upon well designed images and fonts. The more complex
the GUI demo is, the more of these assets are required, leading to greater memory
resources being consumed. If the MCU selected for a design does not have abundant
on-chip Flash and on-chip RAM to store images and fonts, it means that you have to use
off-chip Flash and off-chip RAM.

Fortunately, LVGL provides file system mechanism to support external storage device
like SD card or serial Flash. This application note uses LPC55S06 as the target MCU.
It takes the implementation of an E-Bike UI as an example to introduce how to use the
LVGL file system to support a low-cost external serial Flash. The external serial flash
used in this application note is a Winbond W25Q64.

In addition to providing graphic functionality, LVGL supports an input device mechanism.
This application note introduces how to use hardware buttons as LVGL input devices to
achieve screen switching.

2 LPC55S06 overview

LPC55S0x/LPC550x is a family of highly cost effective Arm Cortex-M33-based micro-
controllers for embedded applications and includes the following features:

• Running at a frequency of up to 96 MHz
• TrustZone option for isolation of secure and non-secure code
• Floating Point Unit (FPU) and Memory Protection Unit (MPU)
• Up to 96 kB of on-chip RAM
• Up to 256 kB of on-chip Flash
• CAN-FD
• Five general-purpose timers
• SCTimer/PWM
• RTC/alarm timer
• 24-bit Multi-Rate Timer (MRT)
• Windowed Watchdog Timer (WWDT)
• Code Watchdog
• High-speed SPI (50 MHz)
• Eight flexible serial communication peripherals (each of which can be a USART, SPI,

I2C, or I2S interface)
• 16-bit 2.0 M samples/sec ADC capable of simultaneous conversions
• Temperature sensor.

The MCU features listed above are closely related to display performance include system
frequency, Flash capacity, RAM capacity, and SPI communication rate. This demo uses
high-speed SPI to connect to external serial Flash.

3 LVGL overview

LVGL is an open-source graphics library providing everything that you need to create
embedded GUI with easy-to-use graphical elements, beautiful visual effects, and low
memory footprint.

Key features:

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022
2 / 28

NXP Semiconductors AN13730
How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

• Open source and free to use under MIT license
• Written in C (C++ compatible) and hosted on GitHub
• More than 30 powerful, fully customizable widgets, such as, button, image button,

checkbox, switch, slider, label, arc, bar, line, canvas, image, roller, slider, meter, table,
text area, animation, calendar, chart, list, menu, message box, tabview

• Display of any resolution, GPU support, Multi display support
• Supports multiple types of input devices, such as:

– Pointer-like input device like touchpad or mouse
– Keypads like a normal keyboard or simple numeric keypad
– Encoders with left/right turn and push options
– External hardware buttons which are assigned to specific points on the screen

• Drawing features, such as:
– anti-aliasing
– shadow
– line, arc, polygon
– mask

• Text features, such as;
– UTF-8 support
– Kerning
– word wrap and auto texts scrolling
– Arabic and Persian support
– font compression
– subpixel rendering
– online and offline font converter
– interface for custom font engine
– FreeType integration example
– multi-language support

• Image features, such as:
– various color formats: RGB, ARGB, Chroma keyed, indexed, alpha only
– Real-time recoloring of images
– Real-time zoom and rotation
– Images can be stored in flash or files (such as, SD card)
– Online and offline image converter
– Image decoder interface for caching
– PNG integration example

• Styles, such as:
– Cascade styles (like in CSS)
– Reuse the styles in multiple widgets
– Local styles for simple changes
– Themes to give a default appearance
– Transitions (animations) on state change

• Micropython support
• Rich demo examples and documents
• Supported by GUI Guider, free UI design tool of NXP

For more details, see the LVGL page.

LVGL version used in this application note is 8.0.2.

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022
3 / 28

https://www.nxp.com/gui-guider
https://www.nxp.com/design/software/embedded-software/lvgl-open-source-graphics-library:LITTLEVGL-OPEN-SOURCE-GRAPHICS-LIBRARY

NXP Semiconductors AN13730
How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

4 GUI Guider overview

GUI Guider is a user-friendly graphical user interface development tool from NXP that
enables the rapid development of high-quality displays with the open-source LVGL
graphics library. The drag-and-drop editor of GUI Guider makes it easy to utilize the many
features of LVGL, such as, widgets, animations, and styles to create a GUI with minimal
or no coding at all.

With the click of a button, you can run your application in a simulated environment or
export it to a target project. Generated code from GUI Guider can easily be added to an
MCUXpresso IDE, IAR Embedded Workbench, or Keil uVision project. It accelerats the
development process and allows you to seamlessly add an embedded user interface to
your application.

GUI Guider is free to use with general purpose and crossover MCUs of NXP. It includes
built-in project templates for several supported platforms.

For more details, refer to GUI Guider.

GUI Guider version used in this application note is 1.3.1.

5 E-bike demo overview

The E-Bike demo is a GUI application with three screens which are named as Overview,
Ride 1 and Ride 2 respectively, as shown in Figure 2, Figure 3, and Figure 4. At the
bottom of these screens, three buttons with labels <, >, and ^ are used to switch the
current screen to the previous, next, and home screen respectively. Overview is the first
screen displayed after the system reboot, so it is referred to the home screen from here
on.

Figure 1 shows the hardware platform. It is specially customized for the E-Bike demo.

Figure 1. Hardware platform

The Home button is used to switch back to the home screen from another active screen.
The Down button is used to switch to the next screen, and the Up button is used to
switch to the previous screen.

For example, assuming that the current active screen is Ride 1,

• if the Down button is pressed, it switches to the Ride 2 screen.
• if the Home button or Up button is pressed, it switches to the home screen.

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022
4 / 28

https://www.nxp.com/design/software/development-software/gui-guider:GUI-GUIDER?

NXP Semiconductors AN13730
How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

Figure 2. Overview (home) screen

Figure 3. Ride 1 screen

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022
5 / 28

NXP Semiconductors AN13730
How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

Figure 4. Ride 2 screen

To learn how to use GUI Guider to perform GUI design, including creating projects,
adding widgets, setting widget properties, adding events, simulating, generating code
and downloading to the target board and running, see Smart Home Demo on GUI Guider
for LPC546xx (document AN13694).

6 External serial flash support

As mentioned above, the on-chip Flash on LPC55S06 is 256 kB, which is not enough to
store the image resources used in this demo. The rest of this section describes how to
set up the design to use the external flash, step by step.

1. Setup the pins for the alternate function related to the high-speed SPI interface, as
shown in Table 1 and Figure 5.

SPI Pin Alternate Function

MOSI PIO0_26 9

SSEL1 PIO1_1 5

SCK PIO1_2 6

MISO PIO1_3 6

Table 1. Alternative function for IOs connected to external serial flash

2. Initialize the high-speed SPI interface with HS_SPI_Init function shown in Figure 5.

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022
6 / 28

https://www.nxp.com.cn/docs/en/application-note/AN13694.pdf

NXP Semiconductors AN13730
How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

Figure 5. High-speed SPI initialization
3. Add source file and header file for driving external serial flash to the generated code

project. Here we assume that you have used GUI Guider to complete the GUI page
design and have generated a code project based on the Keil IDE. Figure 6 shows the
directory where the driver files are stored in the code project folder. Figure 7 shows
the group where the driver files are located in a Keil project.

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022
7 / 28

NXP Semiconductors AN13730
How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

Figure 6. External serial flash driver directory

Figure 7. Keil group for external serial flash driver
4. Add a call to the initialization function for driving external serial flash to the main()

function, as shown in Figure 8.

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022
8 / 28

NXP Semiconductors AN13730
How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

Figure 8. Call initialization function to main() function

7 External storage for image resources

This demo uses a separate and external operation for loading the images into flash. To
download the image resources used in this demo to the external serial flash, prepare the
image files and then download them using a debug probe (SEGGER J-Link).

1. Convert BMP, JPG, or PNG images to binary format using online image converter.
The image converter is available at Online image converter - BMP, JPG or PNG to C
array or binary.

Figure 9. URL for LVGL online image converter
One key point is to select the correct color format and output format for the image
converter. GUI Guider version 1.3.1 supports two color formats, as shown in
Figure 10. Here, this demo selects True Color Alpha.

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022
9 / 28

https://lvgl.io/tools/imageconverter
https://lvgl.io/tools/imageconverter

NXP Semiconductors AN13730
How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

Figure 10. Color formats supported by GUI Guider
For the output format, see the configuration file called lv_conf.h in the code project.
Here, this demo selects 16-bit color depth without swap.

Figure 11. Color depth supported by GUI Guider

Figure 12. Color format and output format configuration for image converter

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022
10 / 28

NXP Semiconductors AN13730
How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

Figure 13. Dither and endian configuration for image converter
2. Merge the binary image files generated in Step 1 into a single binary file called

mergeBinFile.bin, using binary merge tool called MultipleBinFileMergeTool.cpp,
as shown in Figure 14.

Figure 14. Merging of binary image files
3. Download the merged binary image file generated in Step 2 to the external serial

Flash. To achieve this operation, create a flash driver for the J-Link and the J-Flash
utility used to perform the programming operation, as described below.
a. To program the flash memory in our design with J-Link probe, a driver or an

algorithm file (called an FLM file) is required. Place the programming algorithm
file for the external serial flash to the specific file directory for NXP devices in the
SEGGER driver installation, as shown in Figure 15.

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022
11 / 28

NXP Semiconductors AN13730
How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

Figure 15. External serial flash programming algorithm file directory
b. Locate the JLinkDevices.xml within the J-Link installation directory. For example,

the JLinkDevices.xml is placed at the directory shown in Figure 16. This file is
used by the J-Link driver to identify all supported flash devices and to find their
associated drivers.

Figure 16. JLinkDevices.xml directory
Add the algorithm index entry shown below for the external serial flash that we
are using at the end of the JLinkDevices.xml file, as shown in Figure 17. The
index entry is shown below:

<Device>
 <ChipInfo Vendor="NXP" Name="LPC55S06_SPIFlash_W25Q64"
 WorkRAMAddr="0x20000000" WorkRAMSize="0x8000"
 Core="JLINK_CORE_CORTEX_M33" />
 <!-- MCU does not have memory mapped flash area, instead
 a virtuell address is used. -->
 <FlashBankInfo Name="EXTSPI" BaseAddr="0xC0000000"
 MaxSize="0x400000" Loader="Devices/NXP/
LPC55S06_W25Q64.FLM"
 LoaderType="FLASH_ALGO_TYPE_CMSIS" />
<Device>

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022
12 / 28

NXP Semiconductors AN13730
How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

Figure 17. External flash programming algorithm index location
Note: Loader="Devices/NXP/LPC55S06_W25Q64.FLM" indicates the file path
of the flash programming algorithm file. Users can modify the file name and file
path according to your needs, but ensure that they are synchronized with the
actual file name and file directory.

c. Start up J-Flash.exe located in the directory, as shown in Figure 18. After J-Flash
is started, the main interface is as shown in Figure 19.

Figure 18. J-Flash directory

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022
13 / 28

NXP Semiconductors AN13730
How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

Figure 19. J-Flash main interface
d. Click File -> New project, and the Create New Project dialog box pops up, as

shown in Figure 20. Select Target interface and Speed according to the actual
situation. Here, we select SWD and 4000 kHz.

Figure 20. Create New Project dialog box
e. Click … button and the Target Device Settings dialog box pops up, as shown in

Figure 21. Since the target device is LPC55S06, use LPC55S06 as key word to
search the desired target device.

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022
14 / 28

NXP Semiconductors AN13730
How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

Figure 21. Target Device Settings dialog box
Select LPC55S06_SPIFlash_W25Q64, and it is exactly the flash programming
algorithm index added in the JLinkDevices.xml in Step b.

f. In Figure 21, click OK to return Figure 20. In Figure 20, click OK to complete
project creation, as shown in Figure 22.

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022
15 / 28

NXP Semiconductors AN13730
How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

Figure 22. Created J-Flash project
g. Click Options -> Project settings, and the Project settings dialog box

pops up, as shown in Figure 23. Click MCU, enable Use J-Link script file,
and select script file for LPC55S06. This script file used in this demo is
LPC55S06.JLinkScript and its contents are as shown in Figure 24.

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022
16 / 28

NXP Semiconductors AN13730
How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

Figure 23. Use script to configure J-Flash project

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022
17 / 28

NXP Semiconductors AN13730
How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

Figure 24. Script file for J-Flash project setting
h. To save the created project, click File -> Save project as….
i. To load the merged binary image file, mergeBinFile.bin, to J-Flash, click File ->

Open data file….
j. To establish connection between J-Flash tool on PC and the debugger on the E-

Bike hardware platform, click Target -> Connect.
k. To erase the entire external serial flash, click Target -> Manual Programming ->

Erase Chip.
l. To program the merged binary image file, mergeBinFile.bin, to the external

serial flash on the E-Bike hardware platform, click Target -> Manual
Programming -> Program.

8 SRAM3 enablement

When developing a GUI application, you may encounter errors shown in Figure 25.

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022
18 / 28

NXP Semiconductors AN13730
How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

Figure 25. No space error

To solve this error, first understand the root cause of the error. The root cause of the no
space error is that the Flash and/or RAM is not large enough to store the GUI application.
There are two reasons for the lack of Flash and/or RAM:

• The first is that the memory resources of the MCU are not fully utilized.
• The second is that although the memory resources of the MCU are fully utilized, they

are not enough to store the entire GUI application due to the small storage capacity of
the selected MCU.

To judge whether a GUI application fully utilizes memory resources or not, check the
files describing the allocation of memory resources, such as, scatter-loading (or linker)
file of Keil IDE. This document takes LPC55S06 as an example to explain how to judge
whether the memory resources are fully utilized.

To obtain the memory resources of LPC55S06, see LPC55S0x/LPC550x User Manual
(document UM11424), as shown in Figure 26. LPC55S06 has a total of 256 kB on-chip
Flash, of which the system reserves 12 kB and user applications use the remaining
244 kB. LPC55S06 has a total of 96 kB on-chip RAM, including 16 kB SRAMX, 32 kB
SRAM 0, 16 kB SRAM 1, 16 kB SRAM 2, and 16 kB SRAM 3.

To create a GUI application using GUI Guider, generate a code project based on
Keil IDE and then open the scatter-loading file to view the memory allocation, as
shown in Figure 27. For RAM, the scatter-loading file specifies the RAM address
space from 0x20000000 to 0x2000FFFF as the data section, excluding SRAM3
(0x20010000-0x20013FFF). The RAM address space is not fully utilized. As for Flash,
all 244 kB on-chip flash are used for code section whose size is 0x0003CE00 plus
0x00000200. Therefore, the Flash address space is fully utilized.

Since we have found that the RAM is not fully utilized, we can enable SRAM 3 together
with SRAM 0, 1, 2 as the data section. The available RAM space is increased from 64
kB to 80 kB. For how to enable SRAM 3, see SRAM3 Usage in LPC55(s)06 (document
AN13628).

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022
19 / 28

https://www.nxp.com/docs/en/user-guide/UM11424.pdf
https://www.nxp.com.cn/docs/en/application-note/AN13628.pdf

NXP Semiconductors AN13730
How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

Figure 26. LPC55S06 memory resources

Figure 27. Scatter-loading file for LPC55S06

9 Hardware button control for screen switching

This section describes how to implement screen switching using hardware buttons. LVGL
supports the following types of input devices:

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022
20 / 28

NXP Semiconductors AN13730
How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

• Pointer-like input device, such as touchpad or mouse
• Keypads, such as, a normal keyboard or a simple numeric keypad
• Encoders with left/right turn and push options
• External hardware buttons which are assigned to specific points on the screen

To implement screen switching using hardware buttons, follow the steps below:

1. To register an input device, initialize an lv_indev_drv_t variable, as shown in
Figure 28.

Figure 28. Register an input device
2. Implement button reading related functions, including button_read,

button_get_pressed_id, and button_is_pressed, as shown in Figure 29,
Figure 31, and Figure 32.

Figure 29. Implementation of button_read

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022
21 / 28

NXP Semiconductors AN13730
How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

Figure 30. Set button quantity

Figure 31. Implementation of button_get_pressed_id

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022
22 / 28

NXP Semiconductors AN13730
How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

Figure 32. Implementation of button_is_pressed

For more details for inputting device, see input device in LVGL.

10 File system support for external serial Flash

LVGL has a File system abstraction module that enables you to attach any type of file
system. Here, we build a simple file system for external serial flash, which makes it
possible to operate image files stored on external serial Flash through file API functions.
For more details about file system in LVGL, see File System in LVGL.

10.1 Get file system template file and add them to the code project
For fast file system porting, LVGL provides a file system template file. First, clone the
LVGL graphics library located on Git hub. The Git hub link for the LVGL graphics library is
here.

The LVGL file system template file is lv_port_fs_template.c and the corresponding
header file is lv_port_fs_template.h. The directory of these two files is shown in
Figure 33.

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022
23 / 28

https://docs.lvgl.io/master/porting/indev.html
https://docs.lvgl.io/master/overview/file-system.html
https://github.com/lvgl/lvgl

NXP Semiconductors AN13730
How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

Figure 33. File system template file directory

Copy these two files to the code project directory and rename them to lv_port_fs.c
and lv_port_fs.h, as shown in Figure 34.

Figure 34. File system porting files directory

Add lv_port_fs.c and lv_port_fs.h to the source group of the Keil project, as
shown in Figure 35.

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022
24 / 28

NXP Semiconductors AN13730
How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

Figure 35. Add File system porting files to Keil project

10.2 Implement file operation functions
To implement file operation functions, see the lv_port_fs.c file in the attached code
project. Noteworthy file operation functions include lv_port_fs_init, fs_init, fs_open,
fs_close, fs_read, fs_seek, fs_tell, and fs_size.

Here we focus on the fs_open function. The fs_open function consists of several if
statements, each if statement corresponds to a binary image file, as shown in Figure 36.

Figure 36. Part of implementation of fs_open

As shown in Figure 36, ebike_gps_arrow.bin is the binary image file used in this demo.
The base_addr and offset are the base address and address offset in the external
serial flash which stores ebike_gps_arrow.bin. Here, ebike_gps_arrow.bin is stored at
address 534248, so we can specify the base_addr as 534248 and the offset as 0. The
size is the file size of ebike_gps_arrow.bin. Here, it is 4036 bytes.

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022
25 / 28

NXP Semiconductors AN13730
How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

That means, if you want to add a new image to the GUI application, convert the image
file to binary format, download it to the external serial flash, and add an if statement. In
this if statement, specify the base address, the offset, and the file size.

To display the image file which has been stored in external serial flash, use the code
shown in Figure 37 to load image data from the external flash to LVGL.

Figure 37. Load image data in external serial flash to LVGL

11 Summary

This application note focuses on the application of LVGL and GUI Guider on memory-
constrained MCU, including external serial flash support, storing images to external serial
flash, making full use of memory resources, using hardware buttons to switch screen,
and file system support.

The information related to this demo, including code, images, and image merging tools,
are available together with this application note.

Note: The J-Link loading is same for IAR and MCUXpresso IDE except for differences
around linker file. For MCUXpresso IDE, linker file can be a little more difficult, and for
IAR, it should be straightforward though.

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022
26 / 28

NXP Semiconductors AN13730
How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

12 Legal information

12.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

12.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

12.3 Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AN13730 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 9 September 2022
27 / 28

mailto:PSIRT@nxp.com

NXP Semiconductors AN13730
How to Develop LVGL GUI Demo on Memory-constrained MCU with GUI Guider

Contents
1 Introduction ... 2
2 LPC55S06 overview .. 2
3 LVGL overview .. 2
4 GUI Guider overview ...4
5 E-bike demo overview .. 4
6 External serial flash support6
7 External storage for image resources9
8 SRAM3 enablement ...18
9 Hardware button control for screen

switching ..20
10 File system support for external serial

Flash ...23
10.1 Get file system template file and add them

to the code project ...23
10.2 Implement file operation functions 25
11 Summary .. 26
12 Legal information ..27

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© NXP B.V. 2022. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 9 September 2022
Document identifier: AN13730

	1 Introduction
	2 LPC55S06 overview
	3 LVGL overview
	4 GUI Guider overview
	5 E-bike demo overview
	6 External serial flash support
	7 External storage for image resources
	8 SRAM3 enablement
	9 Hardware button control for screen switching
	10 File system support for external serial Flash
	10.1 Get file system template file and add them to the code project
	10.2 Implement file operation functions

	11 Summary
	12 Legal information
	Contents

