
AN13709
Linux Boot Time Optimizations for i.MX8M Family
Rev. 0 — 18 August 2022 Application note

Document information
Information Content

Keywords i.MX8MN, Reduce Boot Time, Linux, Falcon Mode

Abstract This document guides how to reduce Linux boot time for i.MX8M Nano board.

NXP Semiconductors AN13709
Linux Boot Time Optimizations for i.MX8M Family

1 Introduction

This document guides how to reduce Linux boot time for i.MX8M Nano board.

Note: The same workflow is applied to the entire i.MX8M family, but for each SoC,
specific code updates is required.

The objectives of this document are as follows:

• Measurement and evaluation of default boot time
• Bootloader optimizations
• Linux Kernel and User Space optimizations

1.1 Software environment
Linux BSP release 5.10.72-2.2.0 is used in the optimization process. The imx-image-
core Yocto image is used during the experiments.

1.2 Hardware setup and equipment
• Development kit NXP i.MX 8MN EVK LPDDR4.
• Micro SD card: SanDisk Ultra 32 GB Micro SDHC I Class 10 was used for the current

experiment.
• Micro-USB cable for debug port.
• Logic analyzer with the following minimum requirements for time measurements: Four

channels and 10 MS/s. Saleae Logic 8 is used for the current experiment.

2 General description

This section describes an overview of the typical modifications that can be done to
achieve shorter boot times.

2.1 Reducing bootloader time
• Remove the boot delay: It saves about two seconds compared to default configuration

while requiring minimal changes. It leads to U-Boot skipping the waits for key press
stage during boot.

• Implement Falcon Mode: It saves about four seconds compared to default
configuration. It enables the Second Program Loader (SPL) – part of U-Boot to load
directly the kernel, skipping the full U-Boot.

2.2 Reducing Linux kernel boot time
• Reduce console messages: It saves about three seconds. Add quiet to the Kernel

command line.
• Slim down the Kernel by removing drivers and filesystems: By default, the kernel

image contains a lot of drivers and filesystems (ex: UBIFS) in order to enable the
majority of the functionalities supported for the board. The list of included drivers and
filesystems can be trimmed according to your use case.

AN13709 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 18 August 2022
2 / 18

https://www.nxp.com/design/software/embedded-software/i-mx-software/embedded-linux-for-i-mx-applications-processors:IMXLINUX
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-nano-applications-processor:8MNANOD4-EVK

NXP Semiconductors AN13709
Linux Boot Time Optimizations for i.MX8M Family

2.3 Reducing user-space boot time
• Change running order in initialization Systemd scripts: It saves about 600 ms.

Launch PSPLASH process as soon as possible, taking into account its dependencies.

3 Measurements

The scope of the measurements is considered to be between the board POR (Power-On
Reset) and the start of the PSPLASH process.

The setup used for the following measurements is described in the Boot Time
Measurements Methodology document.

The measured intervals are as follows:

Time point Interval
between pulses Location of the pulse Boot stages

BootROM nRST -> before ddr_
init()

board/freescale/imx8mn_evk/spl.c/board_init_
f()

DDR initialization before ddr_init() ->
after ddr_init()

board/freescale/imx8mn_evk/spl.c/board_init_
f()

SPL initialization + Load
U-Boot image

after ddr_init() ->
before image_entry()

common/spl/spl.c/jump_to_image_no_args()

SPL

U-Boot initializations
(init_sequence_f)

before image_entry() -
> start init_sequence_
r

common/board_r.c/board_init_r()

U-Boot initializations
(init_sequence_r)

start init_sequence_r -
> u-boot main_loop

common/main.c

Boot sequence u-boot main_loop ->
before load_image

include/configs/imx8mn_evk.h

Kernel Image Load before loadimage ->
after loadimage

include/configs/imx8mn_evk.h

U-BOOT

Kernel Boot Until
PSPLASH Image

after loadimage ->
psplash

psplash.c Kernel

Table 1. Measured intervals

4 Bootloader optimizations

4.1 Default boot mode
Figure 1 describes the default boot sequence. After power-on or reset, i.MX8M executes
the BootROM (the primary program loader), stored in its Read Only Memory (ROM).
BootROM configures the System-on-Chip (SoC) by performing basic peripheral
initializations such as Phase Locked Loops (PLLs), clock configurations, memory
initialization (SRAM), then finds a boot device from where it loads a bootloader image,
which can include the following component: U-Boot SPL, ATF, U-Boot, and so on.

AN13709 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 18 August 2022
3 / 18

https://www.nxp.com/docs/en/application-note/AN13369.pdf
https://www.nxp.com/docs/en/application-note/AN13369.pdf

NXP Semiconductors AN13709
Linux Boot Time Optimizations for i.MX8M Family

BootROM SPL U-BOOTATF Kernel

Figure 1. Default boot sequence

Because a typical U-Boot image does not fit inside internal SRAM, it was split into two
parts: Secondary Program Loader (SPL) and U-Boot proper.

SPL is the first stage of the bootloader, a smaller pre-loader that shares the same
sources as U-Boot, but with a minimal set of code that fits into SRAM. SPL is loaded
into SRAM. It configures and initializes some peripherals and, most importantly, DRAM.
Subsequently, it loads the ATF and U-Boot proper into the DRAM. The final step is to
jump to ATF, which will, in turn, jump to U-Boot proper.

Arm Trusted Firmware (ATF), included recently in i.MX8* families, provides a reference
trusted code base for the Armv8 architecture. It implements various ARM interface
standards, including Power State Coordination Interface (PSCI). The binary is typically
included in the bootloader binary. It starts in the early stages of U-Boot. Without ATF,
the kernel cannot setup the services which need to be executed in the Secure World
environment.

U-Boot proper is the second stage bootloader. It offers a flexible way to load and start
the Linux Kernel and provides a minimal set of tools to interact with the board’s hardware
via a command line interface. It runs from DRAM, initializing additional hardware devices
(network, USB, DSI/CSI, etc.). Then, it loads and prepares the device tree (FDT). The
main task handled by the U-Boot is the loading and starting of the kernel image itself.

Linux Kernel runs from DRAM and takes over the system completely. The U-Boot has
no longer control over the system from this point onward.

4.2 Falcon mode
Falcon mode is a feature in U-Boot that enables fast booting by allowing SPL to directly
start the Linux kernel, skipping the U-Boot loading and initialization completely, with the
effect of reducing the time spent in the bootloader.

Figure 2 shows the Falcon mode booting sequence.

BootROM SPL KernelATF

Figure 2. Falcon mode boot sequence

To implement this mode, perform the following actions:

• Activate some specific configurations for Falcon.
• Prepare the Flattened Device Tree (FDT) in advance.
• Configure ATF to jump to Kernel.
• Write the ATF, Kernel image and FDT on SD card in a raw section, outside partitions.
• Modify SPL to load the ATF and the Kernel, then jump to ATF.

4.3 Implementation
The next modifications are made on the host computer, where the Yocto environment
was installed.

Note: On Windows the dd command (from Linux) is available by installing MSYS2. It is a
collection of GNU/Linux Tools compiled for Windows.

AN13709 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 18 August 2022
4 / 18

https://www.msys2.org/

NXP Semiconductors AN13709
Linux Boot Time Optimizations for i.MX8M Family

1. Remove the SPL BootROM support from the configuration file.

Location: <yocto_build_dir>/tmp/work/imx8mn_lpddr4_evk-
poky-linux/u-boot-imx/<specified_git_folder>/git/configs/
imx8mn_evk_defconfig

CONFIG_SPL_BOOTROM_SUPPORT is not set

2. Add support for raw SD read, enable spl export command, add support for legacy
Image, and make specific configurations for Falcon mode.

Location: <yocto_build_dir>/tmp/work/imx8mn_lpddr4_evk-poky-
linux/u-boot-imx/<specified_git_folder>/git/include/configs/
imx8mn_evk.h

#define CONFIG_CMD_SPL 1 // enable spl export command
#define CONFIG_SPL_MMC_SUPPORT 1 // for reading from MMC
#define CONFIG_SPL_LEGACY_IMAGE_SUPPORT 1

/* Falcon Mode */
//#define CONFIG_SPL_OS_BOOT 1 // activate Falcon Mode
 /* (leave this line commented until you finish all the
 configurations) */

// RAM FDT address
#define CONFIG_SYS_SPL_ARGS_ADDR 0x43000000

/* Falcon Mode - MMC support */
#define CONFIG_SYS_MMCSD_RAW_MODE_ARGS_SECTOR  0x2FAF080
#define CONFIG_SYS_MMCSD_RAW_MODE_ARGS_SECTORS 0x58
#define CONFIG_SYS_MMCSD_RAW_MODE_KERNEL_SECTOR 0x2FAF0E4

3. Implement the spl_start_uboot() function that returns 0 to indicate that booting
U-Boot is not the first choice;
Location:<yocto_build_dir>/tmp/work/imx8mn_lpddr4_evk-poky-
linux/u-boot-imx/<specified_git_folder>/git/board/freescale/
imx8mn_evk/spl.c

#ifdef CONFIG_SPL_OS_BOOT
int spl_start_uboot(void) {
 return 0;
}
#endif

4. Modify the calculation mode of the Kernel load address in the
spl_parse_legacy_header() function, in the else statement (when the load
includes the header).
Location: <yocto_build_dir>/tmp/work/imx8mn_lpddr4_evk-poky-
linux/u-boot-imx/<specified_git_folder>/git/common/spl/
spl_legacy.c
Replace the following line:

spl_image->load_addr = image_get_load(header) -
header_size;

AN13709 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 18 August 2022
5 / 18

NXP Semiconductors AN13709
Linux Boot Time Optimizations for i.MX8M Family

With this:

spl_image->load_addr = image_get_ep(header) -
header_size;

5. In the mmc_load_legacy() function, add the following line after the existing code,
to load the AFT.
Location: <yocto_build_dir>/tmp/work/imx8mn_lpddr4_evk-poky-
linux/u-boot-imx/<specified_git_folder>/git/common/spl/
spl_mmc.c

/* existing code */
count = blk_dread(mmc_get_blk_desc(mmc), sector,
 image_size_sectors,

(void *)(ulong)spl_image->load_addr);
/* end of existing code */
unsigned long count1 = blk_dread(mmc_get_blk_desc(mmc),
 0x2FBDAE0, 0x71,
(void*)(ulong)0x00960000);  //write ATF from SD to RAM

6. In the board_init_r() function, modify the SPL to jump to ATF (in jump to Linux
case).
Location: <yocto_build_dir>/tmp/work/imx8mn_lpddr4_evk-poky-
linux/u-boot-imx/<specified_git_folder>/git/common/spl/spl.c

#ifdef CONFIG_SPL_OS_BOOT
 case IH_OS_LINUX:
 debug("Jumping to Linux\n");
#if defined(CONFIG_SYS_SPL_ARGS_ADDR)
 spl_fixup_fdt((void *)CONFIG_SYS_SPL_ARGS_ADDR);
#endif
 spl_board_prepare_for_linux();
 typedef void __noreturn (*image_entry_noargs_t)
(void);

 image_entry_noargs_t image_entry =
 (image_entry_noargs_t)0x00960000;

 image_entry();
#endif

Note: When CONFIG_SPL_OS_BOOT is defined, SPL calls the
dram_init_banksize() function which causes an error resulting in a CPU
reset. This is happening due to the usage of uninitialized functions, which can
be avoided by allocating memory for the gd->bd structure before using it, in the
<yocto_build_dir>/tmp/work/imx8mn_lpddr4_evk-poky-linux/u-boot-
imx/<specified_git_folder>/git/arch/arm/mach-imx/imx8m/soc.c)
source file.

 gd->bd = (struct bd_info*)malloc(sizeof(struct bd_info));

7. To bring it up in the operational state in which Ethernet MAC can interact with PHY,
reset the Ethernet PHY in U-boot SPL or Linux. The following instructions detail how
to reset the PHY from U-Boot SPL:
a. Check at which pin is connected the FEC device. This is described in the

associated DTS file of i.MX8MN EVK board.

AN13709 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 18 August 2022
6 / 18

NXP Semiconductors AN13709
Linux Boot Time Optimizations for i.MX8M Family

Location: <yocto_build_dir>/tmp/work/imx8mn_lpddr4_evk-poky-
linux/u-boot-imx<specified_git_folder>/git/arch/arm/dts/
imx8mn-evk.dtsi

According to board Schematics, the reset pin of Ethernet PHY is connected to
group 4, pin 22 (marked in red).

b. Declare a macro containing the pair of GPIO group and GPIO pin in the file. Add
a macro to use a pad as a GPIO.
Location: <yocto_build_dir>/tmp/work/imx8mn_lpddr4_evk-poky-
linux/u-boot-imx/<specified_git_folder>/git/common/spl/
spl.c

#define RESET_ETH_GPIO IMX_GPIO_NR(4,22)
#define USDHC_GPIO_PAD_CTRL (PAD_CTL_HYS | PAD_CTL_DSE1)

c. Reset the Ethernet PHY by adding the following lines in the board_init_r()
function.
Location: <yocto_build_dir>/tmp/work/imx8mn_lpddr4_evk-poky-
linux/u-boot-imx/<specified_git_folder>/git/common/spl/
spl.c

 /*reset eth*/
 gpio_request(RESET_ETH_GPIO, "reset_eth_gpio");
 gpio_direction_output(RESET_ETH_GPIO, 0);
 mdelay(1);
 gpio_direction_output(RESET_ETH_GPIO, 1);
 mdelay(1);

8. Before creating a patch, make sure that all the new modifications are correct. Rebuild
the U-Boot image using the following bitbake commands on the host:

$ bitbake -f -c configure u-boot-imx
$ bitbake -f -c compile u-boot-imx
$ bitbake u-boot-imx imx-boot

9. After the setup is done, create a patch which contains the U-Boot modifications:

$ git add –-all
$ git commit –s

AN13709 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 18 August 2022
7 / 18

NXP Semiconductors AN13709
Linux Boot Time Optimizations for i.MX8M Family

$ git format-patch HEAD~1

Copy the resulting patch to the following location: imx-yocto-bsp/sources/
meta-imx/meta-bsp/recipes-bsp/u-boot/u-boot-imx, then add the name
of the patch into the source location identifier in the Yocto recipe for U-Boot (imx-
yocto-bsp/sources/meta-imx/meta-bsp/recipes-bsp/u-boot/u-boot-
imx_2021.04.bb):

SRC_URI = "... \
 file://<patch_name>.patch \
 "

To check that the patch works after the modifications, apply the following commands.
Then, the files should contain the latest changes.

$ bitbake -f -c cleansstate u-boot-imx
$ bitbake u-boot-imx imx-boot

10. Generate the bootloader image with SPL only.
Create a new target for building the new image, in the <yocto_build_dir>/
tmp/work/imx8mn_lpddr4_evk-poky-linux/imx-boot/
<specified_git_folder>/git/iMX8M/soc.mak file.
If the board is configured with HDMI, add these lines in ifeq($(HDMI),yes)
condition.

flash_evk_falcon: $(MKIMG) signed_hdmi_imx8m.bin u-boot-spl-
ddr.bin
 ./mkimage_imx8 -fit -signed_hdmi
 signed_hdmi_imx8m.bin -loader u-boot-spl-ddr.bin
 $(SPL_LOAD_ADDR) -out $(OUTIMG)

Else, make a new target that will not include HDMI and implement it:

flash_evk_falcon: flash_evk_falcon_no_hdmi

flash_evk_falcon_no_hdmi: $(MKIMG) u-boot-spl-ddr.bin
 ./mkimage_imx8 -version $(VERSION) -loader u-boot-spl-
ddr.bin
$(SPL_LOAD_ADDR) -out $(OUTIMG)

To regenerate flash.bin (imx-boot image), run make SOC=iMX8MN
flash_evk_falcon.

11. Create a patch that will include the modifications above:

$ git add soc.mak
$ git commit –s
$ git format-patch HEAD~1

Copy the resulted patch to ~/imx-yocto-bsp/sources/meta-imx/meta-
bsp/recipes-bsp/imx-mkimage/files, and then add the name of the patch
into the source location identifier in the Yocto recipe for imx-mkimage (~/imx-
yocto-bsp/sources/meta-imx/meta-bsp/recipes-bsp/imx-mkimage/
imx-mkimage_git.inc):

SRC_URI = "... \
 file://<patch_name>.patch \
 "

AN13709 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 18 August 2022
8 / 18

NXP Semiconductors AN13709
Linux Boot Time Optimizations for i.MX8M Family

To check that the patch works after the modifications, apply the following commands.
Then, the file should contain the latest changes:

$ bitbake –f –c cleansstate imx-boot
$ bitbake imx-boot
$ make SOC=iMX8MN flash_evk_falcon

12. Write the bootloader image on SD card.
Note: Storage location may vary. Adjust the of parameter to point to the SD card
location.

dd if=flash.bin of=/dev/sdb bs=1k seek=32 conv=fsync

13. Configure the ATF to jump to Kernel image.
In the bl31_early_platform_setup2() function, set the program counter
member of bl33_image_ep_info structure to kernel address and give the address
of the FDT as an argument.
Location: <yocto_build_dir>/tmp/work/cortexa53-crypto-mx8mn-poky-
linux/imx-atf/<specified_git_folder>/git/plat/imx/imx8m/imx8mn/
imx8mn_bl31_setup.c

 //bl33_image_ep_info.pc = PLAT_NS_IMAGE_OFFSET;
bl33_image_ep_info.pc = 0x40400000; // RAM kernel address
bl33_image_ep_info.spsr = get_spsr_for_bl33_entry();
// RAM FDT address
bl33_image_ep_info.args.arg0 = (u_register_t)0x43000000;
bl33_image_ep_info.args.arg1 = 0U;
bl33_image_ep_info.args.arg2 = 0U;
bl33_image_ep_info.args.arg3 = 0U;
SET_SECURITY_STATE(bl33_image_ep_info.h.attr, NON_SECURE);

14. Recompile the ATF sources.
Before making a patch, make sure that the sources compile.

$ bitbake imx-atf

You can find the ATF binary (bl31.bin) in the build/imx8mn/release
directory.
Create a patch which includes the new modifications.

$ git add plat/imx/imx8m/imx8mn/imx8mn_bl31_setup.c
$ git commit –s
$ git format-patch HEAD~1

Copy the resulting patch to the following location: imx-yocto-bsp/sources/
meta-imx/meta-bsp/recipes-bsp/imx-atf/files, append a new recipe to
the existing one (create imx-atf_2.4.bbappend file), and add these lines in imx-
yocto-bsp/sources/meta-imx/meta-bsp/recipes-bsp/imx-atf/imx-
atf_2.4.bbappend.

FILESEXTRAPATHS_prepend := "${THISDIR}/files:"
SRC_URI += "file://0001-jump-to-kernel.patch \
 "

To check that the patch works after the modifications, apply the following commands.
Then, the file should contain the new changes:

$ bitbake –f –c cleansstate imx-atf

AN13709 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 18 August 2022
9 / 18

NXP Semiconductors AN13709
Linux Boot Time Optimizations for i.MX8M Family

$ bitbake imx-atf

Note: To build the ATF manually, use the Yocto meta-toolchain.

$ bitbake meta-toolchain
$ cd imx-yocto-bsp/build-wayland/tmp/deploy/sdk
$./fsl-imx-wayland-glibc-x86_64-meta-toolchain-cortexa53-
crypto-imx8mn-lpddr4-evk-toolchain-5.10-hardknott.sh
$ source /opt/fsl-imx-wayland/5.10-hardknott/environment-
setup-cortexa53-crypto-poky-linux; unset LDFLAGS
$ cd <yocto_build_dir>/tmp/work/cortexa53-crypto-mx8mn-poky-
linux/imx-atf/<specified_git_folder>/git
$ make PLAT=imx8mn bl31

15. Write the ATF on SD card.
Note: Storage location may vary. To point to the SD card location, adjust the of
parameter.

dd if=bl31.bin of=/dev/sdb bs=512 seek=50060000 conv=fsync

16. Choose the entry point and load addresses of the Kernel image.
Before booting the kernel, U-Boot relocates the kernel image to an address which is
multiple of 2 MB. To bypass this relocation, the entry point address has to be set in
advance using the same criteria (address has to be a multiple of 2 MB). The address
from where the kernel will be executed is 0x40400000. Considering that the uImage
has a 64-byte header, the load address will be 0x403fffc0.

17. Build the Kernel legacy uImage file from Image.
uImage is a special image file that adds a 64-byte header before Image, where
loader information is specified (load address, entry point, OS type, and so on).
a. Change the directory where the Kernel image is deployed after build.

$ cd <yocto_build_dir>/tmp/work/imx8mn_lpddr4_evk-poky-
linux/linux-imx/<specified_git_folder>/build/arch/arm64/
boot

b. Generate uImage using U-Boot’s mkimage command:

$ mkimage -A arm -O linux -T kernel -C none -a 0x403FFFC0
 -e 0x40400000 -n "Linux kernel" -d Image uImage
Image Name: Linux kernel
Created: Wed May 4 11:02:52 2022
Image Type: ARM Linux Kernel Image (uncompressed)
Data Size: 30118400 Bytes = 29412.50 KiB = 28.72 MiB
Load Address: 403fffc0
Entry Point: 40400000

Where:
• A [architecture]: To set architecture.
• O [os]: To set operating system.
• T [image type]: To set image type.
• C [compression type]: To set compression type.
• n [image name]: To set image name to image name.
• d [image data file]: To use image data from image data file.
• a [load address]: To set load address with a hex number.
• e [entry point]: To set entry point with a hex number.

AN13709 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 18 August 2022
10 / 18

NXP Semiconductors AN13709
Linux Boot Time Optimizations for i.MX8M Family

18. Prepare the Flattened Device Tree and write it on SD card.
When booting in Falcon Mode, an important step is to prepare the device tree.
Usually, U-Boot does FDT fixups when booting Linux. It means that to the initial
device tree, U-Boot adds Kernel arguments.
These arguments can be found in one of the configuration files:
<yocto_build_dir>/tmp/work/imx8mn_lpddr4_evk-poky-linux/u-boot-
imx/<specified_git_folder>/git/include/configs/imx8mn_evk.h,
under the name bootargs, where the console parameters are specified and whichh
tells the kernel where to find the root file system.
To skip U-Boot, the FDT has to be prepared in advance by using spl export
command. It should be called under the normal boot. The command it is equivalent
to go through bootm until device tree fixup is done. The device tree in memory is
the one needed for falcon mode. This image has to be saved to SD at the location
pointed by macro CONFIG_SYS_MMCSD_RAW_MODE_ARGS_SECTOR, with maximum
size specified by macro CONFIG_SYS_MMCSD_RAW_MODE_ARGS_SECTORS.
Steps to prepare the FTD:
• Boot the board into U-Boot and stop it right before entering in autoboot sequence.
• Load the FDT into RAM;

u-boot=> run loadfdt
41608 bytes read in 2 ms (19.8 MiB/s)

• Load the Kernel uImage into RAM.

u-boot=> fatload mmc ${mmcdev}:${mmcpart} ${loadaddr}
 uImage
30118464 bytes read in 320 ms (89.8 MiB/s)

• Write the Kernel Image to SDHC at the specified offset sector;

u-boot=> mmc write ${loadaddr} 0x2FAF0E4 0xe5c9
MMC write: dev # 1, block # 50000100, count 58825 ... 58825
 blocks written: OK

• Prepare FDT

u-boot=> spl export fdt ${loadaddr} - ${fdt_addr_r}
Booting kernel from Legacy Image at 40400000 ...
 Image Name: Linux kernel
 Created: 2022-04-08 13:08:28 UTC
 Image Type: ARM Linux Kernel Image (uncompressed)
 Data Size: 30118400 Bytes = 28.7 MiB
 Load Address: 403fffc0
 Entry Point: 40400000
 Verifying Checksum ... OK
Flattened Device Tree blob at 43000000
 Booting using the fdt blob at 0x43000000
 Loading Kernel Image
 Using Device Tree in place at 0000000043000000, end
 000000004300d287
subcommand not supported
subcommand not supported
 Using Device Tree in place at 0000000043000000, end
 0000000043010287
Argument image is now in RAM: 0x0000000043000000

AN13709 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 18 August 2022
11 / 18

NXP Semiconductors AN13709
Linux Boot Time Optimizations for i.MX8M Family

• Write the prepared FDT to SD card.

u-boot=> mmc write 0x43000000 0x2FAF080 0x58

Note:
It is possible to rewrite the FDT on SD card. To save it locally on PC, use the
following command:

dd if=/dev/sdb of=imx8mn-evk.dtb bs=512 skip=50000000
 count=88 conv=fsync

Note: Storage location may vary. To point to the SD card location, adjust the of
parameter.
After the modifications, the resulted SD card looks like Figure 3.

Reserved FAT32 Linux RootFS FDT Kernel Image ATF

8MB 83MB 1.5GB 45KB

30MB 58KB

0x
0

0x
40

00

0x
30

00
0

0x
2F

AF
08

0

0x
2F

AF
0E

4

0x
2F

B
D

AE
0

0x
3B

9A
C

A0

Figure 3. SD card structure

19. Uncomment the definition of CONFIG_SPL_OS_BOOT from Step 2.

20. Recompile and write the bootloader on SD card.

$ bitbake -f -c configure u-boot-imx
$ bitbake -f -c compile u-boot-imx
$ cd <yocto_build_dir>/tmp/work/imx8mn_lpddr4_evk-poky-linux/
imx-boot/<specified_git_folder>/git/
$ make SOC=iMX8MN flash_evk_falcon

Write the U-Boot image on SD card.
Note: Storage location may vary. To point to the SD card location, adjust the of
parameter.

dd if=flash.bin of=/dev/sdb bs=1k seek=32 conv=fsync

4.4 Improve raw MMC read performance in SPL
After implementing Falcon mode, it can be observed that the time spent in SPL increased
significantly. It is due to the fact that the kernel image is loaded into memory slowly (large
size ~30 MB). To increase the speed transfer in SPL, add support for high speed (UHS/
SD):

Location: <yocto_build_dir>/tmp/work/imx8mn_lpddr4_evk-poky-linux/u-
boot-imx/<specified_git_folder>/git/configs/imx8mn_evk_defconfig

CONFIG_SPL_MMC_UHS_SUPPORT=y
CONFIG_SPL_MMC_IO_VOLTAGE=y

Note: You can see all the configurations available in <yocto_build_dir>/
tmp/work/imx8mn_lpddr4_evk-poky-linux/u-boot-imx/
<specified_git_folder>/git/Kconfig file.

AN13709 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 18 August 2022
12 / 18

NXP Semiconductors AN13709
Linux Boot Time Optimizations for i.MX8M Family

Recompile the bootloader with these modifications and write it as in Step 20.

5 Kernel space optimizations

5.1 Adding quiet
To reduce the Kernel time by about a half, add quiet argument in Kernel bootargs. It
suppresses some messages during the Linux start-up sequence.

The device tree have to be regenerated with the new bootargs, using the spl export
command.

1. Reboot in default boot mode.

a. Comment the definition of CONFIG_SPL_OS_BOOT from <yocto_build_dir>/

tmp/work/imx8mn_lpddr4_evk-poky-linux/u-boot-imx/
<specified_git_folder>/git/include/configs/imx8mn_evk.h.

b. Recompile & rewrite the bootloader as in Step 20.
2. Enter U-Boot and edit the bootargs parameter by adding quiet.

u-boot=> edit bootargs
edit: console=ttymxc1,115200 root=/dev/mmcblk1p2 rootwait rw
 quiet
u-boot=> saveenv
Saving Environment to MMC... Writing to MMC(1)... OK

3. Regenerate and load the device tree to SDHC as in Step 18.
4. Reenter in Falcon mode following Step 19 and Step 20.

5.2 Removing unnecessary drivers and file systems
Depending on your use case, you can slim down the Kernel by removing unnecessary
drivers and file systems. You can analyze Kernel functions during boot with bootgraph, a
Kernel feature that allows to graph what happens in Kernel during initializations.

To create a bootgraph, perform the following steps:

1. Add initcall_debug to Kernel bootargs.
a. Reboot in default boot mode as in Step 1.
b. Enter U-Boot and edit the bootargs parameter by adding initcall_debug.

u-boot=> edit bootargs
edit: console=ttymxc1,115200 root=/dev/mmcblk1p2 rootwait
 rw quiet initcall_debug
u-boot=> saveenv
Saving Environment to MMC... Writing to MMC(1)... OK

2. Regenerate and load the device tree to SDHC as in Step 18.
3. Reenter in Falcon Mode following the Step 19 and Step 20.
4. Boot the board and get the Kernel log.

root@imx8mn-lpddr4-evk:~# dmesg > boot.log

5. Go back on the host and create the graph using the following commands:

$ cd <yocto_build_dir>/tmp/work-shared/imx8mn-lpddr4-evk/
kernel-source/scripts

AN13709 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 18 August 2022
13 / 18

NXP Semiconductors AN13709
Linux Boot Time Optimizations for i.MX8M Family

$./bootgraph.pl boot.log > boot.svg

You will obtain something like this and can analyze how the Kernel boot time is used.

Figure 4. Function timeline during kernel boot
6. To disable a driver or a feature, update the Kernel configuration.

For example, we disabled the debug from Kernel (that reduce the size of the image)
and the UBI file system.
a. In sources/meta-imx/meta-bsp/recipies-kernel/linux/files,

create a fragment configuration file frag.cfg in which you include these lines:

CONFIG_UBIFS_FS is not set
CONFIG_DEBUG_KERNEL is not set

b. For this to be merged with the default configuration file, we have to append a new
recipe. Create linux-imx_5.10.bbappend in sources/meta-imx/meta-
bsp/recipies-kernel/linux and add these lines:

FILESEXTRAPATHS_prepend := "${THISDIR}/files:"
SRC_URI += "file://frag.cfg \
 "
DELTA_KERNEL_DEFCONFIG = "frag.cfg"

c. Recompile the Kernel with the new configuration, convert into uImage with
mkimage and write it to SD.

$ bitbake -c cleansstate virtual/kernel
$ bitbake -f -c compile virtual/kernel

d. Convert the Kernel image into uImage as in Step 17.
e. Write the uImage Kernel to SD card.

Note: Storage location may vary. To point to the SD card location, adjust the of
parameter.

dd if=uImage of=/dev/sdb bs=512 seek=50000100 conv=fsync

6 User space optimizations

The easiest way to reduce the time spent in user-space is to reorder the sequence
in which applications are run. To start the psplash service earlier, change the
dependencies with which Systemd operates.

On board, open /lib/systemd/system/psplash-start.service file and change
the unit dependencies by making psplash started before local-fs-pre.target.

[Unit]
Description=Start Psplash Boot Screen
#Wants=systemd-vconsole-setup.service
#After=systemd-vconsole-setup.service systemd-udev-
trigger.service systemd-udevd.service
Before=local-fs-pre.target
DefaultDependencies=no

AN13709 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 18 August 2022
14 / 18

NXP Semiconductors AN13709
Linux Boot Time Optimizations for i.MX8M Family

If the command system-analyze is called with blame argument, Systemd also provides a
utility called systemd-analyze which prints the services and their starting time.

$ systemd-analyze blame

To disable a service, you can use the systemctl disable command. Some services
(especially the ones provided by systemd) might need the systemctl mask command
to disable them. However, take care when disabling services since the system may
depend on them to operate properly.

7 Results

SPL U-BOOT KERNEL

No. BOOTROM DDR
initialization

SPL
initializations

+ Load U-
Boot image

U-Boot
initializations

(init_
sequence_f)

U-Boot
initializations

(init_
sequence_r)

Boot
sequence

Kernel
image
load

Kernel
boot until
PSPLASH

image

Total
time

(ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms)
1 260 253 285 594 906 3651 329 5768 12046
2 299 253 285 594 1016 3852 328 5920 12547
3 258 252 284 587 901 3730 328 5902 12242
4 257 253 284 587 896 3726 328 5846 12177
5 261 253 284 587 896 3726 328 5975 12310

Average
time
(ms)

805 5579 5883 12264

Table 2. Initial Linux boot time measurements

SPL KERNEL

No. BOOTROM DDR initialization SPL initializations Kernel
Image Load

Kernel Boot Until
PSPLASH Image

Total
time

(ms) (ms) (ms) (ms) (ms) (ms)
1 262 252 128 460 2661 3763
2 264 253 130 461 2772 3880
3 249 252 129 460 2924 4014
4 255 252 129 460 2717 3813
5 253 253 131 461 2594 3692

Average
time (ms) 1099 2734 3832

Table 3. Optimized Linux boot time measurements

8 References

• i.MX 8M Nano Applications Processor Reference Manual (document IMX8MNRM)
• Presentation: Understanding U-Boot Falcon Mode, Michael Opdenacker, June 3rd

2021
• U-Boot Source Code - Falcon README

AN13709 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 18 August 2022
15 / 18

https://man7.org/linux/man-pages/man1/systemd-analyze.1.html
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-processors/i-mx-8m-nano-family-arm-cortex-a53-cortex-m7:i.MX8MNANO
https://bootlin.com/pub/conferences/2021/lee/opdenacker-understanding-u-boot-falcon-mode/opdenacker-understanding-u-boot-falcon-mode.pdf
https://bootlin.com/pub/conferences/2021/lee/opdenacker-understanding-u-boot-falcon-mode/opdenacker-understanding-u-boot-falcon-mode.pdf
https://source.codeaurora.org/external/afd4400/u-boot/tree/doc/README.falcon?h=git.denx.de/WIP/31Mar2022-next

NXP Semiconductors AN13709
Linux Boot Time Optimizations for i.MX8M Family

9 Revision history

Rev. Date Description
0 18 August 2022 Initial release

AN13709 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 18 August 2022
16 / 18

NXP Semiconductors AN13709
Linux Boot Time Optimizations for i.MX8M Family

10 Legal information

10.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

10.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

10.3 Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AN13709 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 18 August 2022
17 / 18

mailto:PSIRT@nxp.com

NXP Semiconductors AN13709
Linux Boot Time Optimizations for i.MX8M Family

Contents
1 Introduction .. 2
1.1 Software environment 2
1.2 Hardware setup and equipment 2
2 General description ... 2
2.1 Reducing bootloader time 2
2.2 Reducing Linux kernel boot time 2
2.3 Reducing user-space boot time 3
3 Measurements ..3
4 Bootloader optimizations 3
4.1 Default boot mode ..3
4.2 Falcon mode  .. 4
4.3 Implementation .. 4
4.4 Improve raw MMC read performance in

SPL ...12
5 Kernel space optimizations 13
5.1 Adding quiet ... 13
5.2 Removing unnecessary drivers and file

systems .. 13
6 User space optimizations 14
7 Results ..15
8 References ..15
9 Revision history .. 16
10 Legal information ..17

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© NXP B.V. 2022. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 18 August 2022
Document identifier: AN13709

	1 Introduction
	1.1 Software environment
	1.2 Hardware setup and equipment

	2 General description
	2.1 Reducing bootloader time
	2.2 Reducing Linux kernel boot time
	2.3 Reducing user-space boot time

	3 Measurements
	4 Bootloader optimizations
	4.1 Default boot mode
	4.2 Falcon mode 
	4.3 Implementation
	4.4 Improve raw MMC read performance in SPL

	5 Kernel space optimizations
	5.1 Adding quiet
	5.2 Removing unnecessary drivers and file systems

	6 User space optimizations
	7 Results
	8 References
	9 Revision history
	10 Legal information
	Contents

