
AN13699
Enabling TensorFlow Operators in TensorFlow Lite Runtime
for i.MX 8 Linux Platform
Rev. 0 — 16 August 2022 Application note

Document information
Information Content

Keywords

Abstract

NXP Semiconductors AN13699
Enabling TensorFlow Operators in TensorFlow Lite Runtime for i.MX 8 Linux Platform

1 Introduction

TensorFlow Lite is a popular open-source inference engine for mobile and edge devices.
It comes with rich set of supported operators.

The TensorFlow Lite Operator Set counts more than a hundred of frequently used
operators and layers and the majority of ML models can fit into it. The TensorFlow Lite
Op Set is only a subset of the TensorFlow Operator Set, counting more than 10000
operators, layers, and algorithms. By building the ML model, you can easily come to
a model with excellent performance, which goes beyond the TensorFlow Lite Op Set.
In such a case, engineers are either requested to adjust the model, which can harm
the performance, or to extend the TensorFlow Lite Runtime Op Set by unsupported
operators.

TensorFlow Lite helps with two approaches. There is an option to implement and embed
a custom operator to TensorFlow Lite or leverage the already available operator from
TensorFlow Runtime.

This document presents the later approach and provide a guideline of how the
TensorFlow Lite runtime with the TensorFlow operator can be built and deployed for NXP
i.MX 8 devices.

The solution is demonstrated on two examples. The first example demonstrates a simple
model with the TensorFlow operator inside of the TensorFlow Lite runtime. The second
example shows a more complex model, which leverages the TensorFlow operators and
functions for model training directly with the TensorFlow Lite runtime on an edge device.

The TensorFlow Lite is part of the NXP eIQ
®
 ML Software Development Environment,

which is available on Yocto Linux and Android platforms for i.MX 8 devices. For more
information, see the ML User’s Guide for Yocto Linux.

2 TensorFlow and TensorFlow Lite Operator Set

If the designed model exceeds the TensorFlow Lite Operator Set, the TensorFlow Lite
converter raises an error, describing which operator is not supported in TensorFlow Lite:

Some operators are not supported by the native TFLite runtime,
 but you can enable the TF kernels fallback using TF Select.
 The instructions are at https://www.tensorflow.org/lite/guide/
ops_select.
TF Select ops: Roll
Details: tf.Roll(tensor<?x10xf32>, tensor<i32>, tensor<i32>) ->
 (tensor<?x10xf32>) : {device = ""}

To convert such a model, the Select TensorFlow Operator feature must be enabled in the
converter by allowing the TensorFlow Operator Set as follows:

 converter.target_spec.supported_ops = [
 tf.lite.OpsSet.SELECT_TF_OPS # enable TensorFlow ops.
]

The model converted with SELECT_TF_OPS enabled needs the corresponding
TensorFlow Operators support in the TensorFlow Lite runtime. This is supported via the
FLEX Delegate. The FLEX Delegate is the TensorFlow Lite counterpart for the Select
TensorFlow Operators and bridges the TensorFlow Lite and TensorFlow Runtimes.

Enabling TensorFlow Ops in TensorFlow Lite Runtime All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note Rev. 0 — 16 August 2022
2 / 14

https://www.tensorflow.org/lite/guide/ops_select
https://www.tensorflow.org/lite/guide/ops_select

NXP Semiconductors AN13699
Enabling TensorFlow Operators in TensorFlow Lite Runtime for i.MX 8 Linux Platform

3 Building the TensorFlow Lite Library with the Flex Delegate for i.MX 8
platforms

The build of the TensorFlow Lite with Flex Delegate is only supported in the Bazel build
system.

3.1 Building TensorFlow Lite Library with Flex Delegate support for i.MX
8
The library can be built directly by Bazel on any supported host or inside of the Docker
container, which is available for TensorFlow. We recommend to use Docker, because the
environment is ready for TensorFlow compilation. A compilation outside the Docker may
fail for unknown reasons.

To build the library outside the Docker image, install the Bazel build system on the
machine. TensorFlow requires the exact version of Bazel, which is specific to the
particular TensorFlow version. We recommend to use Bazelisk to handle the Bazel
version management. The Bazelisk tool is available on its GitHub space https://github.
com/bazelbuild/bazelisk with pre-built executables for multiple platforms available.

To build the TensorFlow Lite library, download the following TensorFlow sources:

Clone the TensorFlow repository from https://github.com/NXPmicro/tensorflow and check
out the imx-ODT-example branch:

$ git clone https://github.com/NXPmicro/tensorflow.git
$ cd tensorflow
$ git checkout imx-ODT-example

If you prefer to use the Docker image for building, setup the docker VM:

Note: Depending on the host, the Docker may require administrative privileges to run
(For example, "sudo" in Linux). Alternatively, the docker daemon can run as a non-root
user (rootless mode), as described at https://docs.docker.com/engine/security/rootless/.

1. Download the "tensorflow/tensorflow:devel" docker image. This image contains the
Bazel and other required tooling for TensorFlow compilation:

$ docker pull tensorflow/tensorflow:devel

2. Run the Docker VM. During the build process, Bazel downloads various packages
from the internet. Internet access inside the Docker image is required. At least,
initialize the "http_proxy and https_proxy" environmental variables inside the Docker
image. The particular steps depend on your host configuration:

$ docker run -e "http_proxy=<your-http-proxy>" \
 -e "https_proxy=<your-https-proxy>" \
 -e "no_proxy=localhost,127.0.0.1" \
 -it -w /tensorflow -v /<path-to-tensorflow-
sources>:/tensorflow \
 -e HOST_PERMS="\\((id -u):\\)(id -g)" \
 tensorflow/tensorflow:devel bash

At this point, we obtained the TensorFlow sources and initialized the build
environment. We are ready to build the TensorFlow Lite with Flex Delegate support.
NXP i.MX 8 platforms use Arm CPUs (aarch64) and we intend the build for the Linux

Enabling TensorFlow Ops in TensorFlow Lite Runtime All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note Rev. 0 — 16 August 2022
3 / 14

https://github.com/bazelbuild/bazelisk
https://github.com/bazelbuild/bazelisk
https://github.com/NXPmicro/tensorflow
https://docs.docker.com/engine/security/rootless/

NXP Semiconductors AN13699
Enabling TensorFlow Operators in TensorFlow Lite Runtime for i.MX 8 Linux Platform

environment. We leverage the "elinux_aarch64" configuration, which is available for
TensorFlow.

3. Configure the project using the "configure" script:

$./configure

4. Now we can proceed with the build. The Flex Delegate sources and Bazel build
recipes are in the /tensorflow/lite/delegates/flex folder. The following two libraries are
defined:
• "tensorflowlite_flex" – TensorFlow Lite Flex Delegate shared library

(tensorflowlite_flex.so)
• "delegate" – a special target for static linking of the TensorFlow Lite Flex Delegate.

It is similar to the object library concept in CMake.
• To build the shared library (tensorflowlite_flex.so), use the following command:

$ bazel --output_base=/tensorflow/docker-build/ build
 --config=monolithic --config=elinux_aarch64 -c opt //
tensorflow/lite/delegates/flex:tensorflowlite_flex

Note: If the Docker is used for the build, it is useful to preserve Bazel’s cache. Use the
"--output_base" switch to override the default output base. For building outside of the
Docker, this switch can be omitted. The directory must be available before running the
Bazel build.

The compiled library can be used with any build systems. Such approach still requires
significant effort to include all the required sources and include files for the target
application. The bazel target is more useful as a dependency for target application
inside of the Bazel build system. We demonstrate the later approach on the well-known
"benchmark_model" tool build.

To build the "benchmark model" tool with the Flex Delegate, there is a designated target
in //tensorflow/lite/tools/benchmark:benchmark_model_plus_flex.

You can build it as follows:

$ bazel --output_base=/tensorflow/docker-build/ build --
config=monolithic --config=elinux_aarch64 -c opt //tensorflow/
lite/tools/benchmark:benchmark_model_plus_flex

The output of this is the "benchmark_model_plus_flex" binary with statically linked Flex
Delegate. Use it directly on the i.MX 8 platform.

Let’s review the dependencies of the following target:

deps = [
 ":benchmark_tflite_model_lib",
 "//tensorflow/lite/delegates/flex:delegate",
 "//tensorflow/lite/testing:init_tensorflow",
 "//tensorflow/lite/tools:logging",
],

The ":benchmark_tflite_model_lib" and "//tensorflow/lite/tools:logging" encapsulate the
benchmark model source files and the logging tools. The "//tensorflow/lite/delegates/
flex:delegate" is the Flex Delegate library and "//tensorflow/lite/testing:init_tensorflow" are
additional dependencies to initialize the TensorFlow Runtime.

Enabling TensorFlow Ops in TensorFlow Lite Runtime All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note Rev. 0 — 16 August 2022
4 / 14

NXP Semiconductors AN13699
Enabling TensorFlow Operators in TensorFlow Lite Runtime for i.MX 8 Linux Platform

To create a binary with a dynamically linked Flex Delegate, create the
"benchmark_model_plus_flex_dynamic" target in tensorflow/lite/tools/benchmark/BUILD
as follows:

cc_import(
 name = "libtensorflowlite_flex",
 shared_library = "//tensorflow/lite/delegates/
flex:tensorflowlite_flex",
)

tf_cc_binary(
 name = "benchmark_model_plus_flex_dynamic",
 srcs = [
 "benchmark_plus_flex_main.cc",
],
 copts = common_copts,
 linkopts = tflite_linkopts() + select({
 "//tensorflow:android": [
 "-pie", # Android 5.0 and later supports only PIE
 "-lm", # some builtin ops, e.g., tanh, need -lm
],
 "//conditions:default": [],
 }),
 deps = [
 ":benchmark_tflite_model_lib",
 "//tensorflow/lite/testing:init_tensorflow",
 "//tensorflow/lite/tools:logging",
 ":libtensorflowlite_flex",
"//tensorflow/lite/delegates/flex:tensorflowlite_flex",
],
)

In the TensorFlow release 2.8.0, update the "tensorflowlite_flex" target in //tensorflow/lite/
delegates/flex/BUILD file and mark it visible to other modules as follows:

tflite_flex_shared_library(
 name = "tensorflowlite_flex",
 visibility = ["//visibility:public"],
)

Update the "tflite_flex_shared_library" macro in the /tensorflow/lite/delegates/flex/build_
def.bzl file:

def tflite_flex_shared_library(
 ...
 tflite_cc_shared_object(
 name = name,
 visibility = visibility,
 linkopts = select({
 ...

By building the //tensorflow/lite/tools/benchmark:benchmark_model_plus_flex_dynamic
target, note that "libtensorflowlite_flex.so" and "benchmark_model_plus_flex_dynamic"
are both built.

Enabling TensorFlow Ops in TensorFlow Lite Runtime All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note Rev. 0 — 16 August 2022
5 / 14

NXP Semiconductors AN13699
Enabling TensorFlow Operators in TensorFlow Lite Runtime for i.MX 8 Linux Platform

3.2 Flex Delegate deployment on i.MX 8 Linux platform
All the build products mentioned in the previous chapter are ready for deployment
on the i.MX 8 Linux platform. For the statically linked binary (in our case
"benchmark_model_plus_flex") copy the binary to the target device root file system.

For the dynamically linked binary (in our case "benchmark_model_plus_flex_dynamic"),
copy both the "libtensorflowlite_flex.so" and the binary to the target device "rootfs". Copy
"libtensorflowlite_flex.so" to /usr/lib/ or set the LD_LIBRARY_PATH to load the library by
the dynamic linker/loader.

3.3 Using hardware accelerators
The TF Operators are not part of the TFLite Operators Set, so the hardware accelerator
on i.MX platforms does not support these operators. The acceleration of the TensorFlow
Lite operators in this model is supported.

The hardware accelerators on the i.MX 8 Linux platforms are accessible
via the VX Delegate, which is an external delegate for TensorFlow Lite. The
"benchmark_model_plus_flex" already includes support for external delegates, so we can
use the "–external_delegate_path" switch for inference acceleration:

$./benchmark_model_plus_flex_dynamic --
graph=/usr/bin/tensorflow-lite-2.8.0/examples/
mobilenet_v1_1.0_224_quant.tflite --enable_op_profiling=true --
external_delegate_path=/usr/lib/libvx_delegate.so

The support for external delegate in our "benchmark_model_plus_flex" binary is enabled
by the following dependency chain in Bazel:

benchmark_model_plus_flex -->
:benchmark_model_lib -->
//tensorflow/lite/tools/delegate:tflite_execution_providers --
>
//tensorflow/lite/tools/delegate:external_delegate_providers --
>
//tensorflow/lite/delegates/external:external_delegate

The last two are the important ones. The //tensorflow/lite/tools/delegate:external_
delegate_providers, which registers the external delegate provider to the binary and
exposes the "--external_delegate_path" command-line argument and the //tensorflow/
lite/delegates/external:external_delegate contains the implementation of the external
delegate itself.

4 Simple model with Flex Operator example

Here we demonstrate the inference with a simple model containing a TensorFlow
operator. The example model is a simple CNN with the "tensorflow.roll()" operator, which
is not present in the TensorFlow Lite 2.8.0 Operator Set:

import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Dense, Conv2D,
 Softmax, Flatten
import os

Enabling TensorFlow Ops in TensorFlow Lite Runtime All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note Rev. 0 — 16 August 2022
6 / 14

NXP Semiconductors AN13699
Enabling TensorFlow Operators in TensorFlow Lite Runtime for i.MX 8 Linux Platform

import numpy as np

def make_simple_keras_model(input_shape, num_classes):
 inputs = Input(shape=input_shape, name="x")
 x = Conv2D(32,3,padding='valid', activation="relu")(inputs)
 x = Conv2D(64,3, padding='valid', activation='relu')(x)
 x = Flatten()(x)
 x = Dense(num_classes, activation='relu')(x)
 x = tf.roll(x,1,1)
 outputs = Softmax()(x)
 return Model(inputs, outputs)

We convert this model to TensorFlow Lite and quantize it. The usage of TensorFlow
operators must be explicitly enabled by the SELECT_TF_OPS switch:

def convert_and_quantize_model_to_tflite(saved_model_dir,
 representative_data_gen):

 converter =
 tf.lite.TFLiteConverter.from_saved_model(saved_model_dir);
 converter.optimizations = [tf.lite.Optimize.DEFAULT]
 converter.representative_dataset = representative_data_gen
 converter.target_spec.supported_ops = [
 tf.lite.OpsSet.TFLITE_BUILTINS_INT8,
 tf.lite.OpsSet.SELECT_TF_OPS # enable TensorFlow ops.
]
 converter.inference_input_type = tf.int8
 converter.inference_output_type = tf.int8

 converter.experimental_new_converter = True
 converter.experimental_new_quantizer = True

 tflite_model_quant_int8 = converter.convert()
 return tflite_model_quant_int8;

def save_tflite_model(tflite_model, path, name):
 name += ".tflite"
 full_path = os.path.join(path, name)
 open(full_path, "wb").write(tflite_model)
 print("Model saved to: ", full_path)

if __name__ == "__main__":
 print("TF version:", tf.__version__)
 model = make_simple_keras_model((28,28,1), 10)
 model.summary()

 mnist = tf.keras.datasets.mnist
 (train_images, train_labels), (test_images, test_labels) =
 mnist.load_data()
 train_images = train_images / 255.0
 test_images = test_images / 255.0

 train_labels = tf.keras.utils.to_categorical(train_labels)
 test_labels = tf.keras.utils.to_categorical(test_labels)

 model.compile(
 optimizer='adam',
 loss='categorical_crossentropy',
 metrics=['accuracy']
)

Enabling TensorFlow Ops in TensorFlow Lite Runtime All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note Rev. 0 — 16 August 2022
7 / 14

NXP Semiconductors AN13699
Enabling TensorFlow Operators in TensorFlow Lite Runtime for i.MX 8 Linux Platform

 model.fit(train_images, train_labels, 32, 1)

 DIRECTORY = "SimpleFlexModel/"
 tf.saved_model.save(model, DIRECTORY)

 def representative_dataset_gen():
 counter = 0
 for i in train_images[1:100]:
 yield {"x" :
 i.astype(np.single).reshape(1,28,28,1)}

 tflite_model_int8 =
 convert_and_quantize_model_to_tflite(DIRECTORY,
 representative_dataset_gen)
 save_tflite_model(tflite_model_int8, DIRECTORY,
 "simple_flex_model_int8")

Now we obtained a simple TensorFlow Lite model with the TensorFlow operator. We
can run this model with the "benchmark_model_plus_flex" binary, which we built in the
previous chapter. Both the FlexDelegate and VX Delegate are invoked:

$ benchmark_model_plus_flex_dynamic --graph=./
simple_flex_model_int8.tflite --enable_op_profiling=true --
external_delegate_path=/usr/lib/libvx_delegate.so
STARTING!
Log parameter values verbosely: [0]
Graph: [/test_files/ML_ODT/simple_flex_model_int8.tflite]
Enable op profiling: [1]
External delegate path: [/usr/lib/libvx_delegate.so]
Loaded model /test_files/ML_ODT/simple_flex_model_int8.tflite
INFO: Created TensorFlow Lite delegate for select TF ops.
INFO: TfLiteFlexDelegate delegate: 1 nodes delegated out of 8
 nodes with 1 partitions.
...
Operator-wise Profiling Info for Regular Benchmark Runs:
============================== Run Order
 ==============================
 [node type] [start] [first] [avg ms] [times
 called] [Name]
 Vx Delegate 0.089 0.460 0.444 1
 [tfl.dequantize]:9
 TfLiteFlexDelegate 0.533 0.251 0.332 1
 [model/tf.roll/Roll]:8
 Vx Delegate 0.865 0.119 0.157 1
 [StatefulPartitionedCall:0]:10
...

5 On-device training example

In this example, we present the on-device training example available on https://
www.tensorflow.org/lite/examples/on_device_training/overview and run it on the i.MX
8 Linux platform. This example demonstrates another usage of the Flex Delegate.
The example pulls the operators and functions required for model training, such as
"GradientTape" and loss functions, and makes them available in the TensorFlow Lite
runtime on an embedded device.

Enabling TensorFlow Ops in TensorFlow Lite Runtime All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note Rev. 0 — 16 August 2022
8 / 14

https://www.tensorflow.org/lite/examples/on_device_training/overview
https://www.tensorflow.org/lite/examples/on_device_training/overview

NXP Semiconductors AN13699
Enabling TensorFlow Operators in TensorFlow Lite Runtime for i.MX 8 Linux Platform

As a starting point, build the model and convert it to the TFLite format using the Jupyter
notebook at https://www.tensorflow.org/lite/examples/on_device_training/overview. The
model can be also trained, but we will skip the model training for this demo, use a non-
trained model, and perform the training procedure directly on the embedded device to
make the (re-)training evident.

The model is available in "tflite_model". We must save it to a file:

open("./odt-model-empty.tflite", "wb").write(tflite_model)

The C++ code for the example is available at https://github.com/NXPmicro/tensorflow/
tree/imx-ODT-example/tensorflow/lite/examples/label_image_odt.

Compile it with the Bazel for the "aarch64" platform:

$ bazel --output_base=/tensorflow/docker-build/ build --
config=monolithic --config=elinux_aarch64 -c opt //tensorflow/
lite/examples/label_image_odt:label_image_odt

For simplicity reasons, the "label_image_odt" binary is statically linked with the Flex
Delegate.

To perform the training in the TFLite runtime, export the dataset to bitmap images:

import tensorflow as tf
import os
import pathlib
import PIL

def save_mnist(path, images, labels):
 p = pathlib.Path(path)
 p.mkdir(parents=True, exist_ok=True)
 # prep 10 dirs
 for l in range(10): (p / str(l)).mkdir(parents=True,
 exist_ok=True)
 for i, (im, l) in enumerate(zip(images, labels)):
 # print(i, im, l)
 dest = p / str(l) / f"{i}.bmp"
 im = im.reshape(28, 28)
 im = PIL.Image.fromarray(im, mode='L')
 with dest.open(mode='wb') as f: im.save(f)

PATH="./dataset/fashion_mnist/"

fashion_mnist = tf.keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) =
 fashion_mnist.load_data()

save_mnist(os.path.join(PATH, "train"), train_images,
 train_labels)
save_mnist(os.path.join(PATH, "test"), test_images,
 test_labels)

Copy the required artefacts to the i.MX 8 Linux platform into the ~/odt_demo folder:

• The "fashion_mnist" folder
• The "label_image_odt" binary
• The "odt_model_empty.tflite" model file

Enabling TensorFlow Ops in TensorFlow Lite Runtime All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note Rev. 0 — 16 August 2022
9 / 14

https://www.tensorflow.org/lite/examples/on_device_training/overview
https://github.com/NXPmicro/tensorflow/tree/imx-ODT-example/tensorflow/lite/examples/label_image_odt
https://github.com/NXPmicro/tensorflow/tree/imx-ODT-example/tensorflow/lite/examples/label_image_odt

NXP Semiconductors AN13699
Enabling TensorFlow Operators in TensorFlow Lite Runtime for i.MX 8 Linux Platform

Run the demo:

$ cd odt_demo
$./label_image_odt --train_dataset ./fashion_mnist/train
 --test_dataset ./fashion_mnist/test/ -m ./odt-model-
empty.tflite --num_epochs 5 --batch_size 1000 --save_path ./
tmp/checkpoint.ckpt

Let’s walk through the key part of the On-Device Training C++. The signatures allow a
single model to support multiple entry points and outputs, usually connected with its own
subgraph [https://www.tensorflow.org/lite/guide/signatures]. The signature can be invoked
to perform the computation represented by its subgraph:

auto signatures = interpreter->signature_keys();
for(auto& s : signatures) {
 LOG(INFO) << "\t" << *s;
}
auto trIn = interpreter->signature_inputs("train");
for (auto& s : trIn) {
 LOG(INFO) << "\t\t"<<s.first << " : " << s.second;
}
auto trOut = interpreter->signature_outputs("train");
for (auto& s : trOut) {
 LOG(INFO) << "\t\t" << s.first << " : " << s.second;
}

The signatures and the subgraph’s inputs and outputs are addressed by their names:

auto trainSig = interpreter->GetSignatureRunner("train");
trainSig->input_tensor("x")

To perform the learning on batches, resize the "train" subgraph to fit the batch size. This
is achieved by resizing the "train" signature inputs and performing the (re)allocation of
tensors. All the tensors' dimensions in the signature subgraph are adjusted:

trainSig->ResizeInputTensor(INPUT_X, {settings->batch_size,
 IMG_WIDTH, IMG_HEIGHT});
trainSig->ResizeInputTensor(INPUT_Y, {settings->batch_size,
 10});
trainSig->AllocateTensors();

The training step (adjusting the weights based on particular batch of training data) is
performed by the signature invocation:

trainSig->Invoke();

The original TFLite model does not change by the (re-)training process. The new weights
are kept in the "tflite::interpreter" object in the memory. To preserve the training output,
the weights must be stored to a checkpoint file. The model contains the "save" signature
for these purposes:

auto saveSig = interpreter->GetSignatureRunner("save");
TfLiteTensor* saveSigInputTensor = saveSig-
>input_tensor(saveSig->input_names()[0]);
if (saveSig->AllocateTensors() != kTfLiteOk) {

Enabling TensorFlow Ops in TensorFlow Lite Runtime All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note Rev. 0 — 16 August 2022
10 / 14

https://www.tensorflow.org/lite/guide/signatures

NXP Semiconductors AN13699
Enabling TensorFlow Operators in TensorFlow Lite Runtime for i.MX 8 Linux Platform

 LOG(ERROR) << "Failed to allocate tensors for saveSig
 Runner";
 exit(-1);
}
DynamicBuffer buf;
buf.AddString(settings->save_path.c_str(), settings-
>save_path.size());
buf.WriteToTensor(saveSigInputTensor, nullptr);
saveSig->Invoke();
 LOG(INFO) << "Weights saved.";

6 Flex Delegate limitations

This chapter summarizes some Flex Delegate limitations.

TFLite runtime size with Flex Delegate

Reducing the TFLite binary size based on model requirements (as described at https://
www.tensorflow.org/lite/guide/reduce_binary_size) is not supported for Linux platforms
as of the time of writing this document (v2.8.0 release). These features are currently
supported only for mobile platforms (Android and iOS).

The TensorFlow Flex Delegate for the Linux platform is built with all the supported TF
operators. The stripped Flex Delegate library size is about 120 MB.

CPU-only support for TensorFlow Operators

The Flex Delegate operators are not supported on i.MX 8 hardware accelerators. The TF
Operators fall back to the CPU. The acceleration of the supported TFLite Operators in
the model is not impacted. The model can freely combine TFLite and TF Operators. The
supported TFLite operators of the model are accelerated.

On-Device Training example is supported on CPU only

The On-Device Training is supported on CPU only for both the training and the inference
task, as shown at https://blog.tensorflow.org/2021/11/on-device-training-in-tensorflow-lite.
html.

Running the training on a CPU and the inference on a hardware accelerator (in floating
point) is not yet supported. The following limitations apply:

1. The hardware accelerators on i.MX 8 platforms do not support models with
dynamically-sized tensors. This means that the “infer” signature and the related
subgraph must be composed of fixed-sized tensors so that it can be accelerated on
the GPU.

2. The “train” signature and the corresponding subgraph must use dynamically-sized
tensors, because the batch size can be one of the hyperparameters influencing the
training process.

3. The TFLite Converter does not support combining the fixed-size and dynamically-
sized tensors on the level of various signatures.

Another limitation is the quantization support, where the TFLite Converter fails to produce
a valid quantized TFLite model.

Enabling TensorFlow Ops in TensorFlow Lite Runtime All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note Rev. 0 — 16 August 2022
11 / 14

https://www.tensorflow.org/lite/guide/reduce_binary_size
https://www.tensorflow.org/lite/guide/reduce_binary_size
https://blog.tensorflow.org/2021/11/on-device-training-in-tensorflow-lite.html
https://blog.tensorflow.org/2021/11/on-device-training-in-tensorflow-lite.html

NXP Semiconductors AN13699
Enabling TensorFlow Operators in TensorFlow Lite Runtime for i.MX 8 Linux Platform

7 Revision history

Revision number Date Substantive changes

0 16 August 2022 Initial release

Table 1. Revision history

Enabling TensorFlow Ops in TensorFlow Lite Runtime All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note Rev. 0 — 16 August 2022
12 / 14

NXP Semiconductors AN13699
Enabling TensorFlow Operators in TensorFlow Lite Runtime for i.MX 8 Linux Platform

8 Legal information

8.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

8.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.
In no event shall NXP Semiconductors, its affiliates or their suppliers
be liable to customer for any special, indirect, consequential, punitive
or incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.
Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors,
its affiliates and their suppliers and customer’s exclusive remedy for all of
the foregoing shall be limited to actual damages incurred by customer based
on reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

8.3 Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

Enabling TensorFlow Ops in TensorFlow Lite Runtime All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

Application note Rev. 0 — 16 August 2022
13 / 14

mailto:PSIRT@nxp.com

NXP Semiconductors AN13699
Enabling TensorFlow Operators in TensorFlow Lite Runtime for i.MX 8 Linux Platform

Contents
1 Introduction ... 2
2 TensorFlow and TensorFlow Lite Operator

Set ...2
3 Building the TensorFlow Lite Library with

the Flex Delegate for i.MX 8 platforms 3
3.1 Building TensorFlow Lite Library with Flex

Delegate support for i.MX 8 3
3.2 Flex Delegate deployment on i.MX 8 Linux

platform ..6
3.3 Using hardware accelerators6
4 Simple model with Flex Operator example 6
5 On-device training example 8
6 Flex Delegate limitations11
7 Revision history .. 12
8 Legal information ..13

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2022 NXP B.V. All rights reserved.
For more information, please visit: http://www.nxp.com

Date of release: 16 August 2022
Document identifier: Enabling TensorFlow Ops in TensorFlow Lite Runtime

	1 Introduction
	2 TensorFlow and TensorFlow Lite Operator Set
	3 Building the TensorFlow Lite Library with the Flex Delegate for i.MX 8 platforms
	3.1 Building TensorFlow Lite Library with Flex Delegate support for i.MX 8
	3.2 Flex Delegate deployment on i.MX 8 Linux platform
	3.3 Using hardware accelerators

	4 Simple model with Flex Operator example
	5 On-device training example
	6 Flex Delegate limitations
	7 Revision history
	8 Legal information
	Contents

