AN13602 IFM L1 test tool for PN7462

Rev. 1.0 — 3 May 2022

Application note COMPANY PUBLIC

Document information

Information	Content
Keywords	Smart card, PN7462AU, ISO7816
Abstract	This document provides a detailed guide on how to configure the IFM L1 Test tool for PN7462 board by using ALPAR protocol. It includes a description of all supported commands.

1 Revision history

Revision history

Rev	Date	Description
1.0	20220503	First release

2 Introduction

The goal of this document is to describe the EMV IFM L1 Test tool based on NXP's PN7462, the functional elements that it is built upon and the interfaces between them. There is a special focus on the ALPAR protocol implemented between NXP's PN7462 and the host controller. It also includes a guide on how to set up the test tool and execute the EMV script for evaluation or testing purposes.

Additionally, it includes a section with results of the preliminary evaluation of the test tool against EMV IFM L1 v4.3c specifications and a reference ICS form filled out with product details.

3 IFM test tool overview

The IFM test tool contains the following components:

- PC with SCRTester tool connected through USB(UART) to PN7462 demo board.
- SCRTester tool implementing EMV Loopback application for EMV L1 contact testing.
- PN7462 SW implementing ALPAR protocol to communicate with SCRTester.

3.1 Components

Table 1. PN7462 IFM L1 Test tool compon

Name	Description
PN7462C board HW	The board used is the PNEV7462C with the PN7462AU on board, that has contactless and contact reader capabilities. It includes a contact smart card connector on the bottom side.
PN7462C board SW	The software used is based on NXP's Contact Protocol Library, with the Protocol Abstraction Layer updated for the setup. On top of that, the ALPAR protocol is implemented as an interface to call the contact functions through UART commands.
SCRTester	The SCRTester tool is a PC software that enables the communication with all NXP smart card reader demo boards through serial communication. For the communication with the PNEV7462C board, it implements the ALPAR protocol and should be connected via USART interface through a RS-232-TTL adapter. It is compatible with Windows 10 OS. Download from nxp.com (SW141410): <u>https://www.nxp.com/downloads/en/software/141410.zip</u>

4 Software implementation

The PN7462 has been developed in order to be used either in ISO/IEC 7816-3 or E.M.V. 4.3 environment.

The NXP Ct Library implements the needed functions to enable the PN7462 as a smart card reader. It comprises the Protocol Abstraction Layer (PAL) and the Hardware Abstraction Layer (HAL).

To implement the ALPAR protocol, the project PN7462AU_ex_phExCTEMVCo based on the NXP Ct Library v4.11was taken, and then the ALPAR logic into the main loop was implemented.

When the PN7462 wakes up, it enters an endless loop, where it waits for UART data. Once received data through UART, decodes the ALPAR command and checks for data integrity and structure. If the command is OK, then the corresponding ALPAR command is executed, which calls the corresponding commands from the PAL or HAL, and then sends back the response to the host via UART.

4.1 ALPAR protocol

The communication between the host controller (SCRTester) and the PN7462 board obeys to a protocol named ALPAR. This protocol encapsulates the useful data of a message in an invariant frame structure and defines a dialog structure of messages exchanges.

Data is exchanged in blocks, each made up of binary characters built in bytes. The structure is the following:

- 4 header characters
- 0 to 506 data characters (C-APDU or R-APDU)
- 1 LRC character

4 bytes	0 to 506 bytes	1 byte
HEADER	C-APDU or R-APDU	LRC
	019aab399	

The 4 header bytes include the following bytes:

			1 st	byte				2 nd byte 3 rd byte	4 th byte
Α	1	1	0	0	0	0	0		
								Data length to transmit excluding header and LRC	Command byte
A = 0: Acknowledge of the frame (1 st byte = 60) A = 1: Nack of the frame (message with a status error, 1 st byte = E0)						019225400			

The Longitudinal Redundancy Check (LRC) byte is such that the exclusive-oring of all bytes including LRC is null.

4.1.1 General dialog structure

The host controller is the master for the transmission; each command from the master is followed by an answer from the PN7462C board, including the same command byte as the input command.

However, in some cases (card insertion or extraction, a time-out detection on RX line or an automatic emergency deactivation of the card) the PN7462C board can initiate an exchange.

4.1.1.1 Successful command

System to PN7462C board

System to T	TDA8029:			
60	XX XX	YY	որ	ZZ
ACK	length	code	Data (C-APDU)	LRC
TDA8029 to	o System:			
60	UU UU	YY ⁽¹⁾	mmmmmmmmmmmm	Π
ACK	length	code	Data (R-APDU)	LRC 019aab401

PN7462C board to system

System to T	DA8029:			
60	XX XX	YY	որ	ZZ
ACK	length	code	Data (C-APDU)	LRC
TDA8029 to	System:			
60	ບບບບ	YY ⁽¹⁾	mmmmmmmmmmmmm	Π
ACK	length	code	Data (R-APDU)	LRC 019aab401

1. The same command byte YY is returned in the answer from TDA8029

4.1.1.2 Unsuccessful command

System to PN7462C board

System to	TDA8029:					
60	XX XX	YY	nnr	nnnnnnnn	Innnnnn	ZZ
ACK	length	code	Data (C-APDU)			LRC
TDA8 029 t	o System:				_	
E0	UU UU	YY	SS ⁽¹⁾	Π		
NACK	length	code	Status	LRC	-	019aab402

PN7462C board to system

IFM L1 test tool for PN7462

System to	TDA8029:					
60	XX XX	YY	nnr	ทุกทุกทุกทุกทุก	nnnnnn	ZZ
ACK	length	code		Data (C-AP	DU)	LRC
TDA8029 t	o System:				_	
E0	UU UU	YY	SS ⁽¹⁾	П		
NACK	length	code	Status	LRC	-	010
						019aaD402

(1) In this case, the status contains the error code information.

4.1.1.3 Answer with and acknowledge

System to PN7462C board

System to TDA8029 (example: power_off):

60	00 00	4D	2D				
ACK	length	code	LRC				
TDA8029 to System:							

60	00 00	4D	2D					
ACK	length	code	LRC 019aab403					

PN7462C board to system

System to TDA8029 (example: power_off):								
60	60 00 00 4D 2D							
ACK length		code	LRC					
TDA8029 to System:								

60	00 00	4D	2D
ACK	length	code	LRC 019aab403

(1) In the case where the answer is an acknowledge of the command, the board sends back a frame with the same content of the command.

4.2 Supported commands

4.2.1 General commands

The following command bytes are available (listed in numerical order):

Command	Code	Description
card_command (APDU)	00 _H	Sends an APDU to the activated smart card
check_pres_card	09 _H	Check the card presence
get_fw_version	0A _H	Reads the firmware version
set_card_baud_rate	0B _H	Changes the baud rate for host communication
set_serial_baud_rate	0D _H	Changes the baud rate for host communication
show_fidi	0E _H	Displays the current FiDi
negotiate (PPS)	10 _H	Initiates a parameter change for T=0
set_clock_card	11 _H	Selects the division for the smart card clock
start_EMV_loopback	2F _H	Launch the EMV loopback process. Blocking function that does not return
power_off	4D _H	Deactivates the current smart card
power_up_1.8V	68 _H	Activates the card with VCC=1.8 V
power_up_3V	6D _H	Activates the card with VCC=3 V
power_up_5V	6E _H	Activates the card with VCC=5 V
set_nad	A5 _H	Sets the NAD parameter for T=1 communication
idle_mode	A9 _H	Sets the smart card in idle mode (activated with lower consumption)
get_reader_status	AA _H	Displays information about the current state of the reader

Table 2. List of implemented ALPAR commands

Additional outgoing commands:

Table 3. Implemented ALPAR outgoing commands

Command	Code	Param	Description
Card_extraction	A0 _H	00 _H	These commands are sent as soon as a card is
Card_insertion	A0 _H	01 _H	from the system. These commands use the same operating code, but the extra parameter gives the additional information.

4.2.2 Error list

The error list gives the status code identification and a brief description of the status error code.

 Table 4. Implemented ALPAR error commands

Code	Description
20 _H	Wrong APDU
21 _H	Too short APDU
22 _H	Card muted now (during T=1 exchange)
24 _H	Bad NAD
25 _H	Bad LRC
26 _H	Resynchronized
27 _H	Chain aborted
29 _H	Overflow from card
30 _H	Non-negotiable mode (TA2 present)
31 _H	Protocol is neither T=0 nor T=1 (negotiate command)
33 _H	PPS answer is different from PPS request
35 _H	Bad parameter in command
39 _H	PPS not accepted (no answer from card)
3B _H	Early answer of the card during the activation
40 _H	Card deactivated
55 _H	Unknown command
80 _H	Card muted (after power-on)
81 _H	Time out (waiting time exceeded)
83 _H	4 parity errors in reception or in transmission
86 _H	Bad FiDi
88 _H	ATR duration greater than 19200 etus (E.M.V.)
8D _H	Parity error during ATR
A0 _H	Procedure byte error
C0 _H	Card absent
C6 _H	ATR not supported
E1 _H	Card clock frequency not accepted (after a set_clock_card command)
E3 _H	Supply voltage drop-off
E4 _H	Temperature alarm
E9 _H	Framing error
F0 _H	Serial LRC error

4.3 Commands description

4.3.1 Card_command (APDU)

This command is used to transmit card commands under APDU format from system to PN7462 whatever T=0 or T=1 protocol is used.

An answer to such command is also made in APDU format from PN7462 to the system. Example:

System to PN7462	60 00 07 00 00 A4 00 00 02 4F 00 8E
PN7462 to System	60 00 02 00 90 00 F2

4.3.2 Check_pres_card

This command is used to check the presence of a card.

System to PN7462	60 00 09 69
PN7462 to System	60 00 01 09 PRES 68

PRES byte indicates the presence of the card in the main slot (00 if there is no card, 01 if a card is present).

4.3.3 Get_fw_version

This command is used to identify the software version which is flashed in the PN7462 MCU.

For example, the current software can be coded in ASCI as "7462 100"

System to PN7462	60 00 00 0A 6A
PN7462 to System	60 00 08 0A 37 34 36 32 20 31 30 30 74

4.3.4 Set_card_baud_rate

This command is used mainly for cards which are not fully ISO 7816-3 compliant with specific and negotiable modes. As a matter of fact, some cards are in specific mode, but they do not give TA2 parameter in their answer to reset. So, the card has to be set to the right baud rate by means of this specific command which programs the baud rate.

Example:

System to PN7462	60 00 01 0B FD LRC
PN7462 to System	60 00 00 0B 6B

Where FD is the value of FiDi:

Table 5. Supported FiDi values

TA1	ETU	TA1	ETU	TA1	ETU	TA1	ETU	TA1	ETU	TA1	ETU
0x01	372	0x21	558	0x41	1116	0x61	1860	0xA1	768	0xC1	1536
0x02	186	0x22	279	0x42	558	0x62	930	0xA2	384	0xC2	768

IFM L1 test tool for PN7462

Table 5.	Table 5. Supported FIDI valuescontinued										
TA1	ETU	TA1	ETU	TA1	ETU	TA1	ETU	TA1	ETU	TA1	ETU
0x03	93	0x23	139.5	0x43	279	0x63	465	0xA3	192	0xC3	384
0x04	46.5	0x24	69.8	0x44	139.5	0x64	232.5	0xA4	96	0xC4	192
0x05	23.3	0x25	34.9	0x45	69.8	0x65	116.3	0xA5	48	0xC5	96
0x06	11.6	0x26	17.4	0x46	34.9	0x66	58.1	0xA6	24	0xC6	48
0x07	5.8	0x27	8.7	0x47	17.4	0x67	29.1	0xA7	12	0xC7	24
0x08	31	0x28	46.5	0x48	93	0x68	155	0xA8	64	0xC8	128
0x11	372	0x31	744	0x51	1488	0x91	512	0xB1	1024	0xD1	2048
0x12	186	0x32	372	0x52	744	0x92	256	0xB2	512	0xD2	1024
0x13	93	0x33	186	0x53	372	0x93	128	0xB3	256	0xD3	512
0x14	46.5	0x34	93	0x54	186	0x94	64	0xB4	128	0xD4	256
0x15	23.3	0x35	46.5	0x55	93	0x95	32	0xB5	64	0xD5	128
0x16	11.6	0x36	23.3	0x56	46.5	0x96	16	0xB6	32	0xD6	64
0x17	5.8	0x37	11.6	0x57	23.3	0x97	8	0xB7	16	0xD7	32
0x18	31	0x38	62	0x58	124	0x98	42.7	0xB8	85.3	0xD8	170.7

Table 5. Supported FiDi values...continued

4.3.5 Set_serial_baud_rate

This command is used for changing the baud rate onto the serial link between the system and the PN7462. The default value is set to 115200 baud.

PAR byte indicates the selected baud rate according to Table 6.

System to PN7462	60 00 01 0D PAR LRC
PN7462 to System	60 00 00 0D 6D

Table 6. Baud rate parameter

Baud rate (Baud)	Parameter	Baud rate (Baud)	Parameter
9600	00 _H	921600	07 _H
19200	01 _H	1288000	08 _H
38400	02 _H	2400000	09 _H
57600	03 _H	3500000	0A _H
115200	04 _H	3750000	0B _H
230400	05 _H	4000000	0C _H
460800	06 _H	500000	0D _H

After a baud rate change, the new value takes place for the next command sent by the system.

4.3.6 Show_fidi

This command displays the current FiDi of the card in use.

Example:

System to PN7462	60 00 00 0E 6E
PN7462 to System	60 00 01 0E FiDi LRC

Where FiDi gives the current FiDi.

4.3.7 Negotiate (PPS)

This command is used to make a PPS (Protocol and Parameter Selection) to the card. This could be triggered if the card ATR proposed a different Fi/Di or two different protocols. By using this command, a PPS will be made to the card with the Fi or Di and protocol type entered as a parameter (PP). It is up to the host to make the correct Fi/Di submission to the card.

Example:

System to PN7462	60 00 02 10 PP FD LRC
PN7462 to System	60 00 00 10 70

Where FD is the ratio Fi/Di given by TA1 parameter of the ATR and PP is the protocol to be used.

If the command is acknowledged, any subsequent exchanges between the card and PN7462 will be made by using new parameters.

4.3.8 Set_clock_card

This command is used for changing the card clock frequency. The default value is set to FXTAL/6 which is 4.52 MHz.

A parameter has to be transmitted in order to choose the card clock frequency:

System to PN7462	60 00 01 11 PAR LRC
PN7462 to System	60 00 00 11 71

Based on a crystal with a frequency equal to 27.12 MHz

Table 7. set_clock_card parameter

Frequency	Parameter
Fxtal = 27.12 MHz	00 _H
Fxtal/2 = 13.56 MHz	01 _H
Fxtal/3 = 9.04 MHz	02 _H
Fxtal/4 = 6.78 MHz	03 _H
Fxtal/5 = 5.42 MHz	04 _H
Fxtal/6 = 4.52 MHz	05 _H
Fxtal/8 = 3.39 MHz	06 _H
Fxtal/16 = 1.69 MHz	07 _H

After a card clock frequency change, all the waiting times are internally set to the new value.

Before applying the requested clock, the compatibility of the frequency with the current Fi used by the card is checked as described in ISO/IEC 7816-3. For example, if the card has answered in its ATR a Fi parameter of 372 or 558 (fmax \leq 6 MHz), a change of the card clock frequency to Fxtal (27.12 Mz) or Fxtal/2 (13.56 MHz) will not be processed and an error status will be sent to the application.

4.3.9 Start_EMV_Loopback

This command launches the EMV Loopback mechanism. This is a loop which tries to activate the smart card (main slot) every 2 seconds. If the card activation is a success, then the EMV loopback starts and the full test is performed automatically.

At the end, the loop restarts, trying to activate the smart card again.

This command never returns and works by itself. It allows passing a full EMV protocol certification without any action from the user.

System to PN7462	60 00 00 2F 4F

4.3.10 Power_off

This command is used to deactivate whatever has been activated for 3 V or 5 V operation. A deactivation sequence is processed following the ISO 7816-3 normalization.

System to PN7462	60 00 00 4D 2D
PN7462 to system	60 00 00 4D 2D

4.3.11 Power_up commands

There are three different power-up commands (5 V, 3 V, 1.8 V). Two of them (power_up_3V and power_up_5V) have to be followed by a parameter:

- $00_{\rm H}$ indicates that all the parameters of the ATR of the card compliant with ISO/IEC 7816-3 will be taken into account.
- 01_H indicates that only the ATR of cards whose parameters are inside the E.M.V. 4.3. specification scope will be taken into account; cards having an ATR which does not comply with E.M.V. 4.3 requirements will be rejected.

4.3.12 Power_up_1.8V

This command allows the user to activate the card at a VCC of 1.8 V. Every signal going to the card will be referenced to this VCC. See power_up_5V for the other characteristics.

4.3.13 Power_up_3V

This command allows the user to activate the card at a VCC of 3 V. Every signal going to the card will be referenced to this VCC. See power_up_5V for other characteristics.

4.3.14 Power_up_5V

This command allows activating the card at a VCC of 5 V. All the signals going to the card will be referenced to this VCC.

An activation sequence is processed following the ISO/IEC 7816-3 normalization (VCC is rising, I/O is enabled, CLK is started, and RST is processed). If the card answers to this command, the answer will include all ATR parameters. These parameters are stored in the PN7462 memory and will be taken into account during the whole card session (until the card is deactivated or until a warm reset is processed). The structure of the answer is the following:

System to PN7462C board

PN7462C board to System

60	XX XX	6E	որ	ZZ
ACK	length	code	ATR parameters	LRC
				019aab415

If the card does not answer to the reset, a status giving an error code is returned to the application.

The power_up_5V command can be used to generate a warm reset, if the card is already activated.

4.3.15 Card_take_off and card_insertion

These two commands are sent directly to the system processor as soon as a card extraction or insertion has occurred.

PN7462 to System	60 00 01 A0 10 C1	For a card extraction	
	60 00 01 A0 11 C1	For a card insertion	

4.3.16 Set_NAD

This command is used from the application layer in order to specify a SAD (source address) and a DAD) destination address) for a logical connection using T=1 protocol as defined in ISO/IEC 7816-3. The default value is 00 and will be kept until the send NAD command has been notified to the PN7462. Any NAD submission where SAD and DAD are identical (except 00) will be rejected. If bits b4 or b8 of the NAD required are set to 1 (VPP programming) the NAD will be rejected.

The NAD shall be initialized before any information exchange with the card using T=1 protocol, otherwise and error message will be generated.

Example:

System to PN7462	60 00 01 A5 NAD LRC
------------------	---------------------

© NXP B.V. 2022. All rights reserved

IFM L1 test tool for PN7462

PN7462 to System	60 00 00 A5 C5
------------------	----------------

Where NAD is the new value of NAD immediately taken into account.

4.3.17 Idle_mode

This command is used to set the controller in idle mode. The card, if activated, has its clock (CLK) set to high or low level, depending on the parameter, but is still active.

To wake up the device, the command has to be sent again with the ClockStop parameter set to 00.

Example:

System to PN7462	60 00 02 A9 CS CL LRC
PN7462 to System	60 00 00 A9 C9

Where:

- CS: Clock Stop parameter. 00 to enable the clock, and 01 to stop the clock.
- CL: Clock Level when it stops. 00 to stop at low level and 01 to stop at high level.

4.3.18 Get_reader_status

This command is used to check the status of the reader.

System to PN7462	60 00 00 AA CA
PN7462 to System	60 00 01 AA PRES LRC

PRES byte indicates main slot card presence.

5 How to set up IFM L1 test tool

The IFM consists of 2 elements: the PNEV7462C board and the host PC, and they are connected through serial communication via RS232-TTL adapter.

In this section, we explain how to set up and program the PNEV7462C board, how to set the connection between the board and the PC, and how to send ALPAR commands to the board with the SCRTester.

5.1 Set up the PNEV7462C board

For proper jumper setup and power-up of the PNEV7462C board, see the PN7462 family quick start guide (<u>UM10883</u>).

The PNEV7462C can be powered either from an external off-board power supply on the DC power connector P4 or from the USB port on connector X3. Jumper setting JP2 needs to be done to select the power source, see <u>Figure 2</u>.

(1) External power supply selected (2) USB power supply selected

Figure 2. PNEV7462C board power source configuration

After setting the JP2 jumper, connect either the DC power connector on P4 or the USB connector on X3. When powering from external DC power supply, the board needs to be supplied with a voltage of 7.5 V.

5.2 Connect PC and PNEV7462C board

The communication between the PNEV7462C board and the host PC is done through serial communication. For that, we need to connect a PC serial port with the USART interface of the PNEV7462C. An FTDI 3V3 RS232-TTL adapter is used in this example.

The USART interface can be accessed at pins JP32. Connect the FTDI cable to the JP32 pins as detailed in <u>Table 8</u> and shown in <u>Figure 3</u>. Also connect the USB end of the FTDI cable to a USB port of the PC.

Table 8. FTDI connections to PNEV7462C

FTDI cable pin	JP32 pins
GND (black)	Any GND pin
TXD (orange)	A (HSU_RX)
RXD (yellow)	B (HSU_TX)

IFM L1 test tool for PN7462

5.3 Program the PNEV7462C board

5.3.1 Download and install MCUXpresso IDE

The provided project with the ALPAR implementation was developed in MCUXpresso IDE and is provided as a MCUXpresso IDE project.

Go to <u>MCUXpresso-IDE</u> and follow the process to download the MCUXpresso IDE v11.4.0

Once downloaded, run the downloaded executable file, and follow the instructions to install the IDE. After the installation, create a directory where the workspace will be placed. Open MCUXpresso IDE and select the workspace directory (see Figure 4).

	X MCUXpresso IDE Launcher X	
	Select a directory as workspace	
	MCUXpresso IDE uses the workspace directory to store its preferences and development artifacts.	
	Workspace ⁹ C:\User\User\Documents\myWorkspace V Browse	
	Use this as the default and do not ask again	
	Recent Workspaces	
	Launch Cancel	
Figure 4. Workspac	e directory selection	

5.3.2 Import SW project

Unpack the file containing the SW project. The zip file is called *mobileknowledge-alpar-implementation-on-pn7462-e3454159eb8a v1.0.zip*.

On the quickstart panel, click "Import project(s) from the file system..." and select the root directory of the unpacked zip file.

IFM L1 test tool for PN7462

After clicking "Next", check the box for the PN7462_ex_phExCTEMVCo project and uncheck the "Copy projects into workspace" checkbox. Finally click "finish".

Once the project is imported, select the build configuration for the project by clicking the Manage Configurations button and selecting the desired build configuration.

Then, right-click the project name on the left in the workspace navigation bar and click build project. This builds all the files and generates the corresponding files to program the board.

CDT Build Console [PN7462AU_ex_phExCTE

arm-none-eabi-gcc -nostdlib -Xlink Finished building target: PN7462AU

make --no-print-directory post-bui Performing post-build steps arm-none-eabi-size "PN7462AU_ex_pP

rm-none-eabi-size "PN7462AU_ex_ph text data bss dec 39356 24 5200 44580 opy from `PN7462AU_ex_phExCTEMVCo

Finally, after building the project, one can program the PNEV7462 board. To run and debug the project on the PNEV7462 board, first connect an LPCLink2 to the PC using a USB cable, and also connect it to the PNEV7462 using an SWD cable, connecting LPCLink2 connector J7 with PNEV7462C board SWD connector JP4. After that, in the Quickstart Panel, click LinkServer drop down list button and click "Debug using LinkServer probes". Acknowledge the selection of the CMSIS-DAP probe. This begins a debug session for the project.

Once the Debug Session is set, click the Resume button (or F8) so the project runs.

Figure 8. LPC-Link2 debug probe connected to the PNEV7462C

Figure 9. Project debug launch

🔀 New project... 🔀 Import SDK exan

Build your project

PN7462AU_ex_phExCTEMVCo

Build

Ermin

port project(s) from file system.

🔱 Quickstart P.... 🛛 🕪 Variables 🗣 Breakpoints 😑 🗖 👘 I 📰 P 💽 P 👳 C 💥 🐙 T 📷 I

💽 • 🔛 • 🔜 •

Debug using LinkServer probes (Ctrl+Alt+Shift+S)

Erase flash action using LinkServer

Attach to a running target using LinkServer (Ctrl+Alt+S)
Progra Debug with LinkServer probes

5.4 SCRTester

SCRTester is a PC software allowing the user to communicate with an NXP smart card reader (PN7462 for instance) through an RS-232 serial link.

5.4.1 Run and install SCRTester

Run the SCRTester installer, and once installed run the SCRTester application.

5.4.2 Configure SRCTester

In the New button dropdown list, select Serial connection.

In the protocols section, select ALPAR protocol.

SCRTester 1.6.2.0 - Serial8 - [alpar-script.cmd]	Eile Edit Script Command	Protocols Reader View
File Edit Script Command Protocols Reade Image: Ima	♥ ● ● ↓ ● ♥ ● ● ● ↓ ● ● ATR: □ □ ● ● ● ● ATR: □ □ ●<	Alpar Alpar Alpar Alpar Alpar Cid Usb Cid Usb Loopback Auto 5 Pcsc 6 TAMA Mask
3 Serial 4 SPI (SPI driver) 5 USB (Generic driver) 6 USB (Specific PN531 driver)		Standard Power Select Mode Loopback
iqure 10. Setting for serial connection Figure	11. Selecting A	LPAR protoco

In the Reader menu, configure the connection with parameters detailed in <u>Table 9</u>. After the configuration, in the same menu select the COM port corresponding to the COM port of the serial connection with the PNEV7462C board and click Connect.

Table 9	FTDI	connections	to	PNEV7462C
Table 9.	гии	connections	ω	FINE V / 4020

Baud Rate (Bauds)	Parity Bit	Stop bit
115200	No parity	1 stop bit

If the PNEV7462C board is well programmed and well powered, and the FTDI cable is well connected, one can easily verify the setup by clicking the "Mask Number" button. It sends to the PNEV7462C a command requesting the FW version of the program, and the board answers with the FW version coded in ASCI.

To read more on SCRTester use and configuration, read SCRTester user manual.

Figure 12. Mask Number button and FW version response

5.4.3 Run command script

To validate the implementation of the ALPAR protocol, a command script is provided with filename *alpar_script.cmd*.

Open the script and configure the SCRTester in command mode by going to the Script menu and clicking Commands. In this mode, the SCRTester completes the command with the header byte and the length bytes.

Double-click the first line and go through the script command by command by clicking the Step button. Follow the instructions written on the comments of the script and compare the responses with the expected ones detailed in the comments.

	الألي Serial8 - [alpar-script.cmd] ع Return: Unknown conmand (0x55)
	BB: * Gend num mask * Parans: None * Return: SV version in ascii chars 0A: * Send num mask with unexpected parameter * Parans: None * Return: Bad Param Error (0x35) © A 32:
	* Initial tests without card * * Call unknown command * Return: Unknown command (0x55) PC \rightarrow IFD : U0 00 00 EB DE IFD \rightarrow PC : ERROR 0x55 : UNKNOWN COMMAND E0 00 01 EB 55 OF
	★ Send num mask ★ Params: None ★ Return: Section in accii chars PC →> IFD : MASK NUMBER PC →> IFD : MASK NUMBER EXECUTED IFD →> PC : MASK NUMBER EXECUTED 60 00 08 0A 37 34 36 32 20 31 30 30 74
Figure 13. Step button	Figure 14. Example of script commands run

5.4.4 Run EMVCo loopback

PN7462C board SW includes a script that implements EMVCo IFM L1 Loopback according to version 4.3c of the specifications. The script execution can be triggered from

IFM L1 test tool for PN7462

the SCRTester by sending the specific ALPAR command. For more information, refer to <u>Section 4.3.9</u>.

6 Reference ICS

Reference ICS can be found attached at the end of the current document. Please note that there are some fields that should be filled out before submitting.

Part of the ICS for EMV 4.3c relative to SW implementation can be found below.

Table 10. Implemented Protocol Type

Item number	Protocol Type	Reference	Status	Support (Y/N)
1	ATR	EMV 4.3c, §8	m	Y
2	Character protocol T=0	EMV 4.3c, §9.2.2	m	Y
3	Block protocol T=1	EMV 4.3c, §9.2.4	m	Y
4	Transport of APDUs by T=0	EMV 4.3c, §9.3.1	m	Y
5	Transport of APDUs by T=1	EMV 4.3c, §9.3.2	m	Y

Table 11. General Protocol Information

ltem number	Parameter	Reference	Status	Support (Y/N)
1	Does the terminal reject an ICC returning TCK in a T=0 only ATR?	EMV 4.3c, §8.3.4		Ν
2	Does the terminal continue the card session as soon as all characters indicated in T0 and/or TDi have been received?	EMV 4.3c, §8.3.4		Y
3	Implicit negotiable mode (without PPS)	EMV 4.3c, §8.3.3.1	m	Y
4	Explicit negotiable mode (with PPS)	EMV 4.3c, §8.3.3.1	0	Ν

Table 12. Parameter Values for ATR

ltem number	Parameter	Reference	Status	Support
1	When TA2 is returned with b5=0, is the IFM able to support TA1 values that are not in the range '11' to '13'?	EMV 4.3c, §8.3.3.1	0	No
2	Is the IFM able to support TC2 values different from '0A'?	EMV 4.3c, §8.3.3.7	0	No

Table 13. Protocol T=1 – Implemented Features

ltem number	Function	Reference	Status	Support
1	Node addressing with NAD≠"00"	EMV 4.3c, §9.2.4.1.1	0	Y
2	Behavior on BWT excess	EMV 4.3c, §9.2.5.1	m	Deactivate
3	Behavior on WTX excess	EMV 4.3c, §9.2.5.1	m	Deactivate
4	Behavior on CWT excess	EMV 4.3c, §9.2.5.1	m	Deactivate

IFM L1 test tool for PN7462

Table 13. Protocol T=1 – Implemented Features...continued

ltem number	Function	Reference	Status	Support
5	Behavior on I-block when LEN='FF'	EMV 4.3c, §9.2.5.1	m	Request for block retransmission

Table 14. Block Types

ltem number	Block	Reference	Status	Support
1	S(RESYNCH request)	EMV 4.3c, §9.2.5.1 / 8 and NOTE	0	No
2	Behavior on BWT excess	EMV 4.3c, §9.2.5.1 / 9 and NOTE	0	No

Table 15. Parameter Values for T=1

ltem number	Parameter	Reference	Status	Support
1	LEN of INF in the range ['0', …, '254']	EMV 4.3c, §9.2.4.1.1 reference specification	m	Yes

7 IFM test tool test results

7.1 Electrical test cases

Test Case Executions	102	
Passed	102	100%
Failed	0	0%
Inconclusive	0	0%
☑ Total Duration	00:15:25	

All electrical test cases passed successfully. Result summary can be seen in the figure above.

Full report can be found under the name '211027 - DETMOK018F Electrical tests summary report.pdf'.

7.2 Protocol test cases

All protocol test cases passed successfully. Result summary can be seen in the figure above.

Full report can be found under the name '211027 - DETMOK018F Protocol tests summary report.pdf'.

IFM L1 test tool for PN7462

8 Legal information

8.1 Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

8.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Evaluation products — This product is provided on an "as is" and "with all faults" basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer's exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US\$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

IFM L1 test tool for PN7462

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.

Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at <u>PSIRT@nxp.com</u>) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

8.3 Licenses

Purchase of NXP ICs with NFC technology — Purchase of an NXP Semiconductors IC that complies with one of the Near Field Communication (NFC) standards ISO/IEC 18092 and ISO/IEC 21481 does not convey an implied license under any patent right infringed by implementation of any of those standards. Purchase of NXP Semiconductors IC does not include a license to any NXP patent (or other IP right) covering combinations of those products with other products, whether hardware or software.

8.4 Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners. **NXP** — wordmark and logo are trademarks of NXP B.V.

EdgeVerse — is a trademark of NXP B.V.

Tables

Tab. 1.	PN7462 IFM L1 Test tool components
Tab. 2.	List of implemented ALPAR commands
Tab. 3.	Implemented ALPAR outgoing commands8
Tab. 4.	Implemented ALPAR error commands9
Tab. 5.	Supported FiDi values10
Tab. 6.	Baud rate parameter11
Tab. 7.	set_clock_card parameter12
Tab. 8.	FTDI connections to PNEV7462C16

Tab. 9.	FTDI connections to PNEV7462C	20
Tab. 10.	Implemented Protocol Types	22
Tab. 11.	General Protocol Information	22
Tab. 12.	Parameter Values for ATR	22
Tab. 13.	Protocol T=1 – Implemented Features .	22
Tab. 14.	Block Types	23
Tab. 15.	Parameter Values for T=1	23

Figures

Fig. 1.	IFM test tool architecture	4
Fig. 2.	PNEV7462C board power source	
	configuration	16
Fig. 3.	Illustration of FTDI cable connections	17
Fig. 4.	Workspace directory selection	17
Fig. 5.	Project Import	18
Fig. 6.	Configuration	18
Fig. 7.	Project Build	18
Fig. 8.	LPC-Link2 debug probe connected to the	
	PNEV7462C	19

Fig. 9. Fig. 10. Fig. 11.	Project debug launch Setting for serial connection Selecting ALPAR protocol	19 19 19
Fig. 12.	Mask Number button and FW version	20
Fig. 40	Otan hattan	20
Fig. 13.	Step button	20
Fig. 14.	Example of script commands run	20
Fig. 15.	Electrical Test Cases Result Summary	24
Fig. 16.	Protocol Test Cases Result Summary	24

Contents

1	Revision history	2
2	Introduction	3
3	IFM test tool overview	4
3.1	Components	4
4	Software implementation	5
4.1	ALPAR protocol	5
4.1.1	General dialog structure	6
4.1.1.1	Successful command	6
4.1.1.2	Unsuccessful command	6
4.1.1.3	Answer with and acknowledge	7
4.2	Supported commands	8
4.2.1	General commands	8
4.2.2	Error list	9
4.3	Commands description	10
4.3.1	Card_command (APDU)	10
4.3.2	Check_pres_card	10
4.3.3	Get_fw_version	10
4.3.4	Set_card_baud_rate	10
4.3.5	Set_serial_baud_rate	11
4.3.6	Show_fidi	11
4.3.7	Negotiate (PPS)	12
4.3.8	Set_clock_card	12
4.3.9	Start_EMV_Loopback	13
4.3.10	Power_off	13
4.3.11	Power_up commands	13
4.3.12	Power_up_1.8V	13
4.3.13	Power_up_3V	13
4.3.14	Power_up_5V	14
4.3.15	Card_take_off and card_insertion	14
4.3.16	Set_NAD	14
4.3.17	Idle_mode	15
4.3.18	Get_reader_status	15
5	How to set up IFM L1 test tool	16
5.1	Set up the PNEV7462C board	16
5.2	Connect PC and PNEV7462C board	16
5.3	Program the PNEV7462C board	17
5.3.1	Download and install MCUXpresso IDE	17
5.3.2	Import SW project	17
5.4	SCRTester	19
5.4.1	Run and install SCRTester	19
5.4.2	Configure SRCTester	19
5.4.3	Run command script	20
5.4.4	Run EMVCo loopback	20
6	Reference ICS	22
7	IFM test tool test results	24
7.1	Electrical test cases	24
7.2	Protocol test cases	24
8	Legal information	25

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2022.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 3 May 2022 Document identifier: AN13602