AN13584

Kinetis KW45 and K32W148 Loadpull Report

Rev. 0 — 24 August 2022

Application note

Document information

Information	Content
Keywords	KW45, K32W148, Loadpull
Abstract	The purpose of the measurements is to monitor the supply current, the transmit power, and the harmonics level while the complex load seen by the DUT is tuned in amplitude and phase.

Kinetis KW45 and K32W148 Loadpull Report

1 Introduction

1.1 Test purpose

The purpose of the measurements is to monitor the supply current, the transmit power and the harmonics level while the complex load seen by the DUT is tuned in amplitude and phase.

The automated impedance tuner <u>MT982BL</u> from MAURY MICROWAVE is used to make vary the DUT load.

The following pages describes the test set-up.

<u>Characterizing the tuner</u> covers the tuner stand alone and <u>Test</u> covers the load pull results on KW45/K32W148 device.

<u>Test limitations</u>: The harmonics rate depends on the DUT load value not only at the fundamental frequency but also at the harmonics frequencies. For the described measurements we control the load at the fundamental frequency but the return loss of the impedance tuner at the harmonics frequencies is not known.

1.2 Power and supply current summary Results

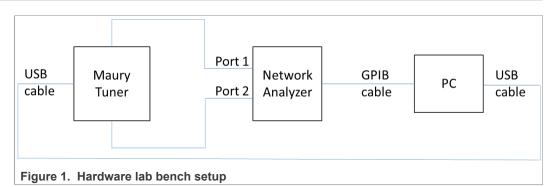
- VSWR = 1:1
 - The Tx power and supply current are almost constant versus the phase.
 - Delta Tx power is 0.23 dB and delta power consumption is 90 uA.
 - Power @SMA pin: +10.66 dBm for an EVK power consumption of 25.33 mA.
- VSWR = 2:1
 - The power varies from +8.89 dBm to +10.51 dBm depending on the phase.
 - Delta Tx power is 1.62 dB and delta power consumption is 2.6 mA.
 - Power @SMA pin: +10.04 dBm for an EVK power consumption of 25.95 mA.
- VSWR = 3:1
 - The power varies from +7.65 dBm to +9.81 dBm depending on the phase.
 - Delta Tx power is 2.16 dB and delta power consumption is 3.82 mA.
 - Power @SMA pin: +9.17 dBm for a EVK power consumption of 26.22 mA.

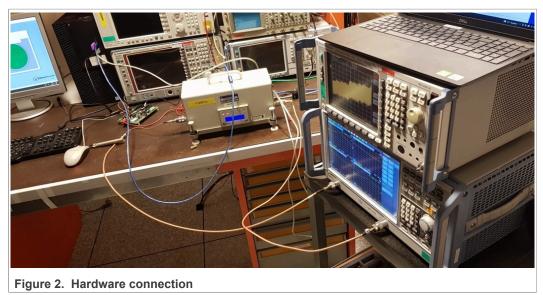
Overall results

- Power @SMA pin: from +7.65 dBm (min.) to +10.66 dBm (max.) +10.66 dBm @VSWR=1
- EVK Power consumption: from 23.24 mA (min.) to 27.06 mA (max.) 25.33 mA @VSWR=1

1.3 Conclusion

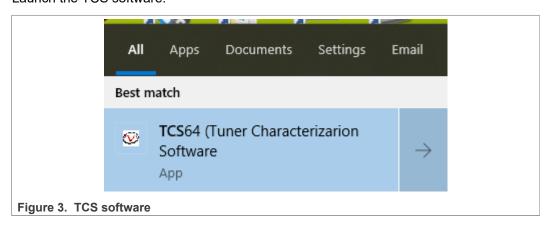
TX power level: Up to 2.1 dB variation with a poor quality antenna


Supply current: Significant extra consumption (~3.8 mA) with a poor quality antenna **Harmonics**:


- ...
- H2 are more sensitive to poor quality antenna (out of ETSI limits on some cases)
- H3 are sensitive but within an acceptable range

AN13584

Kinetis KW45 and K32W148 Loadpull Report


2 Hardware setup — Characterizing the tuner

2.1 Software lab bench setup

Launch the TCS software.

The Tuner and the Spectrum are declared in the right way and ready to use.

Kinetis KW45 and K32W148 Loadpull Report

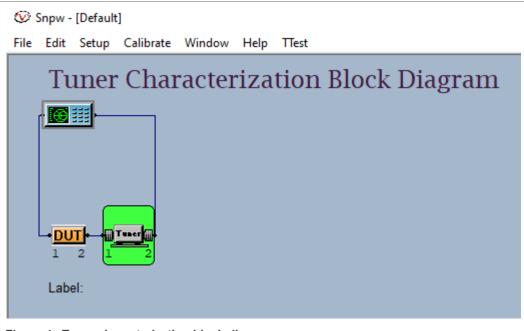
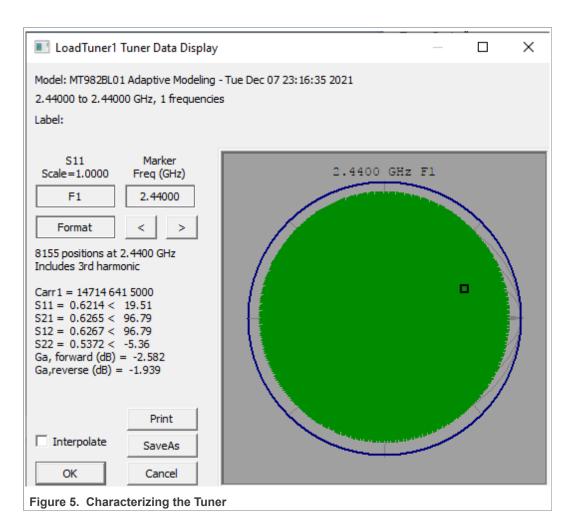
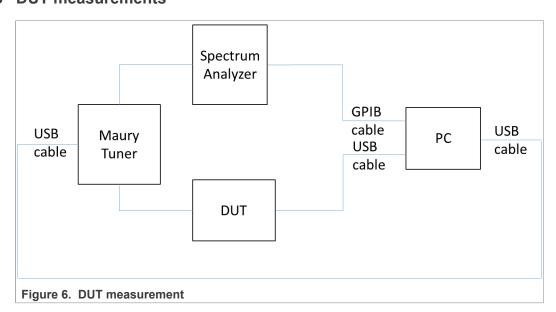


Figure 4. Tuner characterization block diagram

2.2 Characterizing the tuner

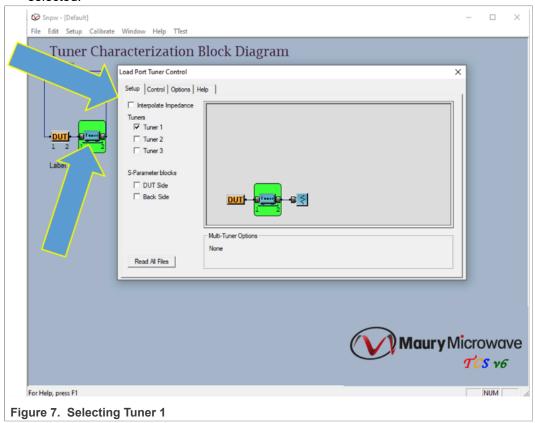

The tuner characterization is ready.

Verification step: Move tuner to one position: click right of the mouse, and then **Move Tuner**.


Check on Spectrum the S11 (for example):

- Real Amplitude = 0.621 dB
- Phase = 19.51°
- Ga = -2.58 dB

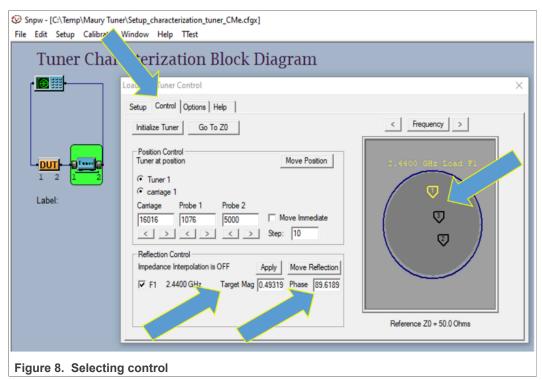
Kinetis KW45 and K32W148 Loadpull Report


2.3 DUT measurements

Perform the following steps:

Kinetis KW45 and K32W148 Loadpull Report

Click on the green tuner box, and the windows is opened, as shown in <u>Figure 7</u>.
 Verify that <u>Interpolate Impedance</u> is not selected (on the <u>Setup</u> tab) and <u>Tuner 1</u> is selected.

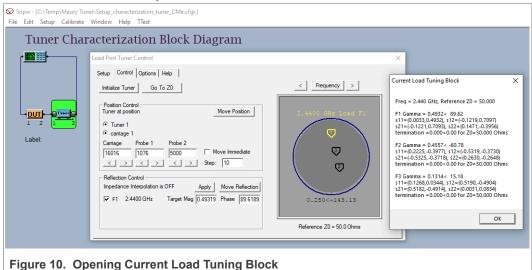

2. Select the Control tab.

Choose the Target Mag (VSWR) and Phase (°) values.

Click Apply and then Move Reflection.

Three markers (1:fund.; 2:H2; 3:H3) are represented in the smith graph.

Kinetis KW45 and K32W148 Loadpull Report


- Click Apply and then Move Reflection. Go to the graph. Right-click the mouse and select Show S-parameters. Example setting values:
 - Target Mag: VSWR:1 → 0 VSWR:2 → 0.333 VSWR:3 → 0.5
 Phase: 0°, 45°, ...
- Snpw [Default] 0 X Tuner Characterization Block Diagram Load Port Tuner Control Setup Control Options | Help < Frequency > Initialize Tuner Go To Z0 Move Position DUT ← Tuner 1 Carriage Probe 1 Probe 2 14201 1512 5000 < > < > < > Step: 10 Apply Move Reflection Enter Target point ☑ E1 2.4400 GHz Select Target point Select points Density Select points ON Select a circle Select points OFF Clear all points Verify selected points wary wicrowave TCS v6 For Help, press F1 Figure 9. Clicking Apply

Kinetis KW45 and K32W148 Loadpull Report

4. When the **Show S-parameters** is selected, the **Current Load Tuning Block** window is opened.

Available information:

Fund., H2 and H3 frequencies: S11, S12, S21, S22 values

3 Test

3.1 Test conditions

Measurements have been done under the following conditions:

- Channel 19 (2440 MHz), continuous CW, Power level +10 dBm, Buck mode
- USB power supply (5.0 V), Temperature = room temperature
- Three values of VSWR have been tested:
 - 1.004:1 (return loss = 54 dB): very good return loss
 - 2:1 (return loss = 9.5 dB): corresponds to a ceramic antenna without matching
 - 3:1 (return loss = 5.8 dB): poor return loss

For each value of VSWR the phase is varied from 0° to 315° by 45° steps.

- Spectrum analyzer settings for harmonics measurements
 - Reference amplitude: +12 dBm, RBW: 10 KHz, VBW: 30 KHz, Span 1 MHz, RF attenuation = 0 dB
- TX fundamental:
 - Center frequency 2.44 GHz/RBW 100 KHz / VBW 300 KHz / Span 10 MHz / Ref level 20 dBm /Trace average mode

Kinetis KW45 and K32W148 Loadpull Report

$$Reflection \ Coefficient = \Gamma = \frac{Z_L - Z_S}{Z_L + Z_S}$$

Where

 $\Gamma = Reflection\ Coefficient$

 $Z_L = Load\ Impedance$

 $Z_S = Source\ Impedance$

Figure 11. Test condition

3.2 Test results

3.2.1 Fundamental frequency

Fundamental frequency (2.44 GHz)									
VSWR=1.0	=> RL=54dB								
ZL	50.015 ohms	50.011 ohms	49.988 ohms	49.984 ohms	50.019 ohms	50.011 ohms	49.991 ohms	49.984 ohms	
Phase	O°	45°	90°	135°	180°	225°	270°	315°	
impedance (Ohms)	0.0111+0.0095i	0.0049+0.0098i	-0.0011+0.0117i	-0.0063+0.0151i	-0.0187+0.0003i	-0.0092-0.0058i	0.0015-0.0093i	0.0128-0.0098i	delta
TX power (dBm) @SMA	10.66dBm	10.43dBm	10.45dBm	10.55dBm	10.44dBm	10.49dBm	10.48dBm	10.49dBm	0.23dB
Vdd Current (mA)	25.33 mA	25.33 mA	25.33 mA	25.33 mA	25.24 mA	25.25 mA	25.25 mA	25.26 mA	0.09 mA
VSWR=2.0	=> RL=9.5dB								
[ZL]	99.665 ohms	100.337 ohms	100.340 ohms	100.344 ohms	100.341 ohms	100.346 ohms	99.656 ohms	99.666 ohms	
Phase	0°	45°	90°	135°	180°	225°	270°	315°	
impedance (Ohms)	0.3352-0.0019i	0.2332+0.2432i	-0.0078+0.3397i	-0.2417+0.2448i	-0.3414-0.0002i	-0.2469-0.2423i	0.004-0.3442i	0.2368-0.2362i	delta
TX power (dBm) @SMA	10.04dBm	10.34dBm	10.51dBm	10.10dBm	9.40dBm	8.89dBm	9.12dBm	9.59dBm	1.62dB
Vdd Current (mA)	25.95 mA	26.60 mA	26.40 mA	25.50 mA	24.40 mA	24.00 mA	24.01 mA	24.88 mA	2.60 mA
VSWR=3.0	=> RL=6.02								
ZL	149.504 ohms	150.490 ohms	150.493 ohms	149.498 ohms	149.495 ohms	150.513 ohms	150.511 ohms	149.483 ohms	
Phase	0°	45°	90°	135°	180°	225°	270°	315°	
Impedance (Ohms)	0.4961-0.0001i	0.3504+0.3427i	0.0033+0.4932i	-0.3489+0.3605i	-0.5054+0.0044i	-0.3617-0.3636i	-0.0062-0.5105i	0.3633-0.3685i	delta
TX power (dBm) @SMA	9.17dBm	9.44dBm	9.81dBm	9.17dBm	8.22dBm	7.65dBm	7.91dBm	8.63dBm	2.16dB
Vdd Current (mA)	26.22 mA	27.06 mA	26.88 mA	25.55 mA	23.88 mA	23.24 mA	23.48 mA	24.56 mA	3.82 mA

Figure 12. Fundamental frequency

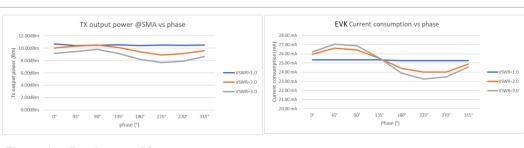


Figure 13. Fundamental frequency

Kinetis KW45 and K32W148 Loadpull Report

3.2.2 H2 frequency

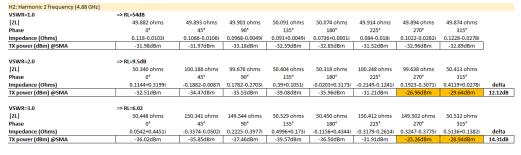
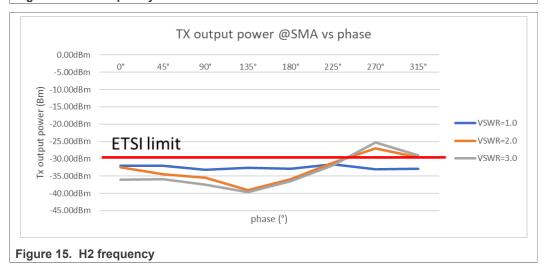



Figure 14. H2 frequency

3.2.3 H3 frequency

/SWR=1.0	=> RI =54dB								
		E0 146 above	EO 14E about	50 144 ehme	50.143 ohms	E0 145 ebes	50 146 above	50 146 ehme	
[ZL]	50.146 ohms	50.146 ohms	50.145 ohms	50.144 ohms		50.145 ohms	50.146 ohms	50.146 ohms	
Phase	0°	45°	90°	135°	180°	225°	270°	315°	
Impedance (Ohms)	0.1382+0.0471i	0.1385+0.046i	0.1377+0.045i	0.1367+0.0448i	0.1359+0.0443i	0.1375+0.0445i	0.1384+0.0455i	0.1384+0.0472i	
TX power (dBm) @SMA	-33.18dBm	-33.78dBm	-34.62dBm	-33.22dBm	-37.30dBm	-32.76dBm	-36.62dBm	-34.14dBm]
VSWR=2.0	=> RL=9.5dB								
ZL	50.139 ohms	50.143 ohms	50.135 ohms	50.145 ohms	50.132 ohms	50.140 ohms	50.148 ohms	50.129 ohms	
Phase	0°	45°	90°	135°	180°	225°	270°	315°	
Impedance (Ohms)	0.1304+0.0475i	0.1332+0.0508i	0.1255+0.0485i	0.1368+0.0477i	0.1214+0.0524i	0.1341+0.0387i	0.1353+0.0597i	0.1194+0.0495i	de
TX power (dBm) @SMA	-35.12dBm	-35.80dBm	-35.55dBm	-33.81dBm	-35.14dBm	-32.76dBm	-32.16dBm	-34.11dBm	3.64
VSWR=3.0	=> RL=6.02								
ZL	50.159 ohms	50.130 ohms	50.131 ohms	50.155 ohms	50.108 ohms	50.159 ohms	50.147 ohms	50.103 ohms	
Phase	0°	45°	90°	135°	180°	225°	270°	315°	
Impedance (Ohms)	0.1531+0.0433i	0.1138+0.0629i	0.1268+0.0344i	0.1389+0.0678i	0.0987+0.0437i	0.1544+0.037i	0.1206+0.0848i	0.099+0.029i	de
TX power (dBm) @SMA	-37.04dBm	-40.23dBm	-33.87dBm	-38.86dBm	-33.46dBm	-30.07dBm	-31.83dBm	-34.24dBm	10.1

Kinetis KW45 and K32W148 Loadpull Report

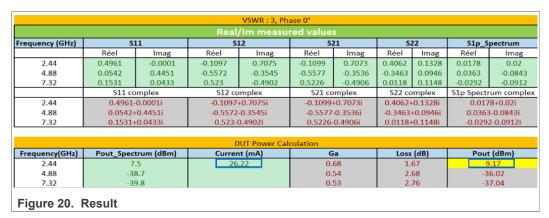
3.2.4 Results

Power @SMA pin: +10.66 dBm (VSWR:1, phase 0°) for a power consumption of 25.33 mA

			Real	VSWR : 1, Pha /Im measu		s					
Frequency (GHz) S11 S12 S21 S22 S1p_Spectrum											
	Réel	lmag	Réel	lmag	Réel	Imag	Réel	lmag	Réel	Imag	
2.44	0.0111	0.0095	-0.204	0.8258	-0.2043	0.8253	0.0131	0.8258	0.0178	0.02	
4.88	0.118	-0.0103	-0.6468	-0.431	-0.6479	-0.4292	-0.0259	-0.0006	0.0363	-0.0843	
7.32	0.1382	0.0471	0.5817	-0.4281	0.5811	-0.4291	0.005	0.1106	-0.0292	-0.0912	
	S11 co	mplex S12 complex S21 complex S22 complex S1p Spec				S1p Spect	rum comple				
2.44	0.0111+	+0.0095i	-0.204+0.8258i		-0.2043	-0.2043+0.8253i		0.0131+0.8258i		0.0178+0.02i	
4.88	0.118-0	0.0103i	-0.6468-0.431i		-0.6479	-0.4292i	0.4292i -0.0259-0.0006i		0.0363-0.0843i		
7.32	0.1382+	-0.0471i	0.5817-0.4281i		0.5811	0.5811-0.4291i 0.005+0.1		0.1106i	-0.0292-0.0912i		
				DUT Power Cal	culation						
Frequency(GHz)	Pout_Spect	trum (dBm)	Currer	nt (mA)	G	ia	Loss	(dB)	Pout	t (dBm)	
2.44	9.	11	25	.33	0	.7	1.	55	1	0.66	
4.88	-34	.06			0.62		2.08		-31.98		
7.32	-35	.94			0.	53	2.	76	-3	3.18	

3.2.5 Results

Power @SMA pin: +10.04 dBm (VSWR:2, phase 0°) for a power consumption of 25.95 mA


S12 S21 S22 S1p_Spectrum Spectrum S12 S21 S22 S1p_Spectrum S12 S12					\(C\A\D + 2 Db -	· 0°						
Frequency (GHz) S11 S12 S21 S22 S1p_Spectrum Réel Imag Rout Imag Réel Imag Rout Imag Imag <th colspan="9">VSWR: 2,Phase: 0° Real/Im measured values</th>	VSWR: 2,Phase: 0° Real/Im measured values											
2.44 0.3352 -0.0019 -0.1572 0.7756 -0.1575 0.7752 0.2663 0.1177 0.0178 0.02 4.88 0.1144 0.3199 -0.5971 -0.39 -0.5978 -0.3885 -0.2777 0.0107 0.0363 -0.084 7.32 0.1304 0.0475 0.5387 -0.469 0.5381 -0.4697 -0.0021 0.0963 -0.0292 -0.093 2.44 0.3352-0.0019i -0.1572+0.7756i -0.1575+0.7752i 0.2663+0.1177i 0.0178+0.02i 4.88 0.1144+0.3199i -0.5971-0.39i -0.5978-0.3885i -0.2777+0.0107i 0.0363-0.0843i 7.32 0.1304+0.0475i 0.5387-0.469i 0.5381-0.4697i -0.0021+0.0963i -0.0292-0.0912i DUT Power Calculation Frequency(GHz) Pout _Spectrum (dBm) Current (mA) Ga Loss (dB) Pout (dBm) 2.44 8.55 25.95 0.71 1.49 10.04 4.88 -34.95 0.57 2.44 -32.51 </th <th colspan="10"></th>												
4.88 0.1144 0.3199 -0.5971 -0.39 -0.5978 -0.3885 -0.2777 0.0107 0.0363 -0.084 7.32 0.1304 0.0475 0.5387 -0.469 0.5381 -0.4697 -0.0021 0.0963 -0.0292 -0.099 S11 complex S12 complex S22 complex S15 Spectrum complex 2.44 0.3352-0.0019i -0.1572+0.7756i -0.1575+0.7752i 0.2663+0.1177i 0.0178+0.02i 4.88 0.1144+0.3199i -0.5971-0.39i -0.5978-0.3885i -0.2777+0.0107i 0.0363-0.0843i 7.32 0.1304+0.0475i 0.5387-0.469i 0.5381-0.4697i -0.0021+0.0963i -0.0292-0.0912i DUT Power Calculation Frequency(GHz) Pout_Spectrum (dBm) Current (mA) Ga Loss (dB) Pout (dBm) 2.44 8.55 25.95 0.71 1.49 10.04 4.88 -34.95 0.57 2.44 -32.51 7.32 -37.96		Réel	Imag	Réel	Imag	Réel	Imag	Réel	Imag	Réel	Imag	
No. No.	2.44	0.3352	-0.0019	-0.1572	0.7756	-0.1575	0.7752	0.2663	0.1177	0.0178	0.02	
S11 complex S12 complex S21 complex S22 complex S12 Spectrum complex	4.88	0.1144	0.3199	-0.5971	-0.39	-0.5978	-0.3885	-0.2777	0.0107	0.0363	-0.0843	
2.44 0.3352-0.0019i -0.1572+0.7756i -0.1575+0.7752i 0.2663+0.1177i 0.0178+0.02i 4.88 0.1144+0.3199i -0.5971-0.39i -0.5978-0.3885i -0.2777+0.0107i 0.0363-0.0843i 7.32 0.1304+0.0475i 0.5387-0.469i 0.5381-0.4697i -0.0021+0.0963i -0.0292-0.0912i DUT Power Calculation Frequency(GHz) Pout_Spectrum (dBm) Current (mA) Ga Loss (dB) Pout (dBm) 2.44 8.55 25.95 0.71 1.49 10.04 4.88 -34.95 0.57 2.44 -32.51 7.32 -37.96 0.52 2.84 -35.12	7.32	0.1304	0.0475	0.5387	-0.469	0.5381	-0.4697	-0.0021	0.0963	-0.0292	-0.0912	
4.88 0.1144+0.3199i -0.5971-0.39i -0.5978-0.3885i -0.2777+0.0107i 0.0363-0.0843i 7.32 0.1304+0.0475i 0.5387-0.469i 0.5381-0.4697i -0.0021+0.0963i -0.0292-0.0912i DUT Power Calculation Frequency(GHz) Pout_Spectrum (dBm) Current (mA) Ga Loss (dB) Pout (dBm) 2.44 8.55 25.95 0.71 1.49 10.04 4.88 -34.95 0.57 2.44 -32.51 7.32 -37.96 0.52 2.84 -35.12		S11 cc	S11 complex S12 complex S21 complex S22 complex			S1p Spectrum complex						
7.32 0.1304+0.0475i 0.5387-0.469i 0.5381-0.4697i -0.0021+0.0963i -0.0292-0.0912i DUT Power Calculation Frequency[GHz] Pout_Spectrum (dBm) Current (mA) Ga Loss (dB) Pout (dBm) 2.44 8.55 25.95 0.71 1.49 10.04 4.88 -34.95 0.57 2.44 -32.51 7.32 -37.96 0.52 2.84 -35.12	2.44	0.3352-	-0.0019i	-0.1572+0.7756i		-0.1575	-0.1575+0.7752i		0.2663+0.1177i		0.0178+0.02i	
DUT Power Calculation Frequency(GHz) Pout_Spectrum (dBm) Current (mA) Ga Loss (dB) Pout (dBm) 2.44 8.55 25.95 0.71 1.49 10.04 4.88 -34.95 0.57 2.44 -32.51 7.32 -37.96 0.52 2.84 -35.12	4.88	0.1144+	+0.3199i	-0.5971-0.39i		-0.5978	-0.3885i -0.27		-0.2777+0.0107i		3-0.0843i	
Frequency(GHz) Pout_Spectrum (dBm) Current (mA) Ga Loss (dB) Pout (dBm) 2.44 8.55 25.95 0.71 1.49 10.04 4.88 -34.95 0.57 2.44 -32.51 7.32 -37.96 0.52 2.84 -35.12	7.32	0.1304+	+0.0475i	0.5387	'-0.469i	0.5381	-0.4697i	-0.0021+0.0963i		-0.0292-0.0912i		
Frequency(GHz) Pout_Spectrum (dBm) Current (mA) Ga Loss (dB) Pout (dBm) 2.44 8.55 25.95 0.71 1.49 10.04 4.88 -34.95 0.57 2.44 -32.51 7.32 -37.96 0.52 2.84 -35.12												
2.44 8.55 25.95 0.71 1.49 10.04 4.88 -34.95 0.57 2.44 -32.51 7.32 -37.96 0.52 2.84 -35.12				1	DUT Power Cal	culation						
4.88 -34.95 0.57 2.44 -32.51 7.32 -37.96 0.52 2.84 -35.12	Frequency(GHz)	Pout_Spect	trum (dBm)	Currer	nt (mA)	G	ia	Loss	(dB)	Pout	(dBm)	
7.32 -37.96 0.52 2.84 -35.12	2.44	8.	55	25	.95	0.	71	1.	49	1	0.04	
1000 1000 1000	4.88	-34	.95			0.	57	2.44		-3	2.51	
Fi 40 B!4	7.32	-37	.96			0.	52	2.	84	-3	5.12	
Figure 19. Result	Figure 19.	Result										

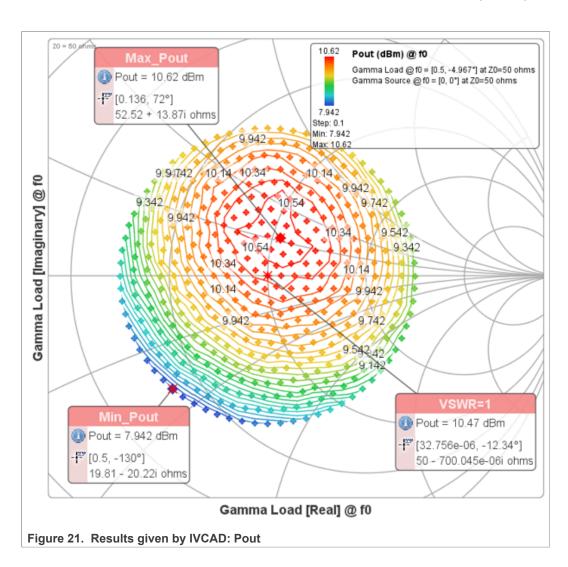
AN13584

Kinetis KW45 and K32W148 Loadpull Report

3.2.6 Results

Power @SMA pin: +10.04 dBm (VSWR:2, phase 0°) for a power consumption of 25.95 mA

3.2.7 Results given by IVCAD: Pout


Table 1. IVCAD SW

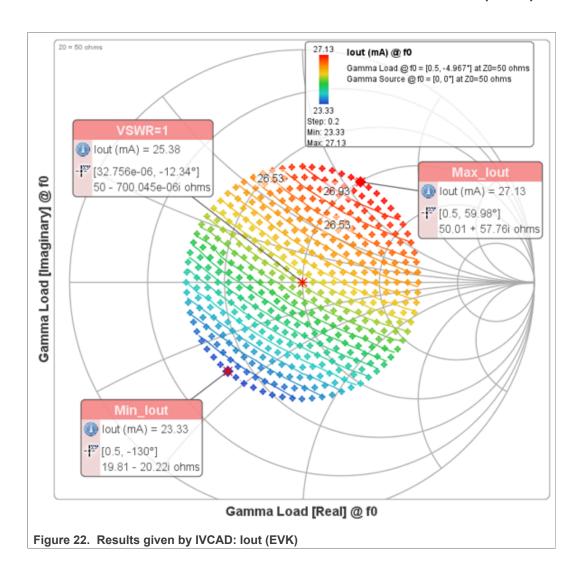
	Pout
minimum	7.94 dBm
VSWR = 1	10.47 dBm
maximum	10.62 dBm

Table 2. TCS SW

	Pout
minimum	7.65 dBm
VSWR = 1	10.66 dBm
maximum	10.66 dBm

Kinetis KW45 and K32W148 Loadpull Report

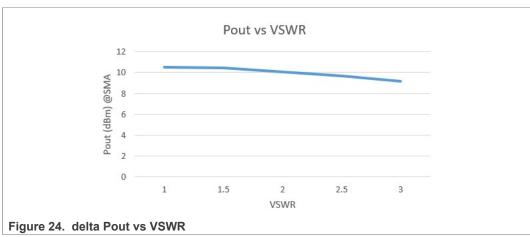
3.2.8 Results given by IVCAD: lout (EVK)


Table 3. IVCAD SW

	lout
minimum	23.33 mA
VSWR = 1	25.38 mA
maximum	27.13 mA

Table 4. TCS SW

14510 4. 100 000	
	lout
minimum	23.24 mA
VSWR = 1	25.33 mA
maximum	27.06 mA


Kinetis KW45 and K32W148 Loadpull Report

Kinetis KW45 and K32W148 Loadpull Report

3.2.9 KW45/K32W148: delta Pout vs VSWR

Kinetis KW45 and K32W148 Loadpull Report

4 Revision history

Revision number	Date	Substantive changes
0	24 August 2022	Initial release

Kinetis KW45 and K32W148 Loadpull Report

5 Legal information

5.1 Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

5.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

5.3 Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

 $\ensuremath{\mathsf{NXP}}$ — wordmark and logo are trademarks of NXP B.V.

AN13584

Kinetis KW45 and K32W148 Loadpull Report

Contents

1	Introduction	2
1.1	Test purpose	2
1.2	Power and supply current summary Results	2
1.3	Conclusion	2
2	Hardware setup — Characterizing the	
	tuner	3
2.1	Software lab bench setup	3
2.2	Characterizing the tuner	4
2.3	DUT measurements	
3	Test	8
3.1	Test conditions	8
3.2	Test results	9
3.2.1	Fundamental frequency	9
3.2.2	H2 frequency	10
3.2.3	H3 frequency	10
3.2.4	Results	11
3.2.5	Results	11
3.2.6	Results	12
3.2.7	Results given by IVCAD: Pout	12
3.2.8	Results given by IVCAD: lout (EVK)	13
3.2.9	KW45/K32W148: delta Pout vs VSWR	15
4	Revision history	16
5	Legal information	

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.