
SDK/MCAL to Real Time Drivers

Migration Guide SDK/MCAL to Real Time Drivers

by: NXP Semiconductors

1. Introduction

Real Time Drivers (RTD) are offered as production

qualified software abstraction of complex hardware

features to be used in AUTOSAR and Non-AUTOSAR

applications.

The RTD offer standardized API (AUTOSAR and

AUTOSAR extensions) available across products and

dedicated hardware specific interfaces, with ISO26262

compliance for API.

The RTD provide multiple software features as

extensions to AUTOSAR standard (to expose

specialized hardware features) and provide full

coverage of hardware features and hardware

peripherals. RTD have integrated driver examples with

default configurations. The examples are offered for

both CT and EB Tresos configuration tools. This brings

the approaches from SDK and MCAL. The RTD are

composed from AUTOSAR MCAL drivers and a set of

complex device drivers.

Mapping of the RTD on the peripherals is shown in the

platform specific appendix.

The RTD integrate use cases from AUTOSAR and

Non-AUTOSAR environment, therefore from customer

perspective existing functionalities from SDK and

MCAL experience is maintained. Each extension from

the standard package can be enabled or disabled.

NXP Semiconductors Document Number: AN13435

Application Notes Rev. 0 , 10/2021

Contents

1. Introduction .. 1

2. MCAL migration guide to RTD ... 2

2.1. AUTOSAR version and configuration impact 3

2.2. Functionality impact ... 4

2.3. Standard functionalities impact 4

2.4. CDD functionalities impact 4

2.5. File structure impact .. 5

2.6. Exclusive areas .. 7

2.7. Timeout handling .. 7

2.8. Compiler abstraction ... 7

2.9. Migration steps .. 7

3. SDK migration guide to RTD .. 8

3.1. Configuration tool impact 8

3.2. Driver configuration changes 8

3.3. Functionality impact ... 10

3.4. Memory mapping .. 12

3.5. Expose interface .. 12

3.6. Error management ... 13

3.7. File structure ... 14

3.8. Interrupt management ... 14

3.9. Timeout handling .. 15

3.10. Safety .. 15

4. OS abstraction – OSIF.. 15

4.1. Migration from MCAL to RTD-OSIF 15

4.2. Migrating from SDK to RTD-OSIF to OSIF......... 15

5. Multicore support ... 15

6. Release packaging .. 17

Appendix A. S32KXX product family 18

Chapter 1. Overview ... 18

Chapter 2. AUTOSAR Configuration and version impact. 22

Chapter 3. SDK Configuration and tool impact 22

MCAL migration guide to RTD

SDK/MCAL to Real Time Drivers, Rev. 0, 10/2021

2 NXP Semiconductors

Figure 1. Real Time Drivers overview in AUTOSAR Stack

From MCAL customer perspective, the RTD extend the standard functionalities as defined by the

standard with full coverage of hardware functionalities. In AUTOSAR applications the standardized

interface is available and it is recommended to be used in order to maintain portability across

applications.

From SDK customer perspective, the RTD extend the standardized functionalities, along with adding

multicore support, running in user mode support, memory mapping of code and data to specific memory

sections. For Non-AUTOSAR applications, both interfaces (standardized and IP) are available and can

be used. It depends on the application type and project constraints.

The RTD can be configured with any AUTOSAR configurator and NXP S32Design Studio. From the

configuration point of view, the NXP S32 Design Studio offers support of configuring both the driver

and peripheral layer independent of the driver. The usage of standardized interface and peripheral layer

interface is exclusive on the same hardware unit.

Figure 2. Overview of driver interface and configuration

2. MCAL migration guide to RTD

The following features should be considered to migrate an application from MCAL to RTD.

MCAL migration guide to RTD

SDK/MCAL to Real Time Drivers, Rev. 0, 10/2021

NXP Semiconductors

 3

2.1. AUTOSAR version and configuration impact

The standard AUTOSAR MCAL modules that are part of the RTD are implemented following the

AUTOSAR 4.4 requirements. Therefore the interface and the configuration for those drivers are

compliant with the standard.

The same configuration tool is supported. The default configuration files provided for the modules can

be used for configuring the drivers in AUTOSAR projects. No change is needed for already supported

tools.

The old MCAL configuration can be imported into an RTD project. Any parameter which has been

updated or added will not be updated automatically by the tool importer and it needs to be updated

accordingly in the project configuration stage.

Figure 3. Driver configuration in EB Tresos

Additionally, the drivers have integrated support for the S32 Design Studio Configuration Tool. It

allows configuring the entire driver (i.e, its configuration in Tresos) and configuration independent of

the peripheral interface. For example configuring the AUTOSAR CAN driver (AUTOSAR interface), or

only the Non-AUTOSAR FlexCan module (peripheral interface).

 Details for each specific platform migration is available in the platform specific appendix.

MCAL migration guide to RTD

SDK/MCAL to Real Time Drivers, Rev. 0, 10/2021

4 NXP Semiconductors

Figure 4. Driver configuration in S32DS

2.2. Functionality impact

The RTD provide services to access an extended set of hardware features. From AUTOSAR perspective,

the RTD come with additional functional extensions and new CDDs to address most of the hardware

features on top of already standardized AUTOSAR functionalities.

2.3. Standard functionalities impact

Migrating a project that utilize all the standard functionalities described by AUTOSAR is seamless. In

RTD the AUTOSAR extensions are also supported as described in previous MCAL releases.

In addition, to support previous MCAL use-cases the standard drivers have a new APIs to extend the

hardware functionality coverage. The graphic interface is updated to offer the possibility to configuring

those features.

2.4. CDD functionalities impact

New CDDs are added to enable the hardware peripherals that were not covered by the previous MCAL

releases (i.e.; UART, Quadrature, RM, Platform).

A new feature is available for bare-metal applications through a Platform CDD. It allows configuring

and handling the interrupts for the application. The usage of this CDD is optional and there is the option

to implement the interrupt management in any other way decided for the application.

MCAL migration guide to RTD

SDK/MCAL to Real Time Drivers, Rev. 0, 10/2021

NXP Semiconductors

 5

Previous functionalities that were available only on MCL are now migrated to RM (Resource Manager

CDD) and MCL to cover better the hardware platform features and split the functionalities. The MCL

supports enablement for DMA and Caches. The RM will supports enablement for XRDC, SEMA42,

MPU and crossbar related (if applicable) configuration.

Figure 5. MCAL to RTD

2.5. File structure impact

2.5.1. Plugin structure

For MCAL user perspective there is limited impact in the RTD plugin structure. There is a similar file

and folder structure like on the previous MCAL release. Additional files and folders are required to be

included (i.e.; “headers” folder in Base plugin). The details of each file dependency are specified in the

driver IM.

The configuration data files are now split following a more granular approach to ensure the possibility of

using the stand-alone peripheral drivers. From a functional point of view, all the data that is needed in an

AUTOSAR application will be exported through the HLD files, so nothing changes in the application

flow.

All modules require configuration and generation of configuration files prior to their usage. Default

configurations files are to be provided to serve as a starting point.

MCAL migration guide to RTD

SDK/MCAL to Real Time Drivers, Rev. 0, 10/2021

6 NXP Semiconductors

Table 1. MCAL and RTD differences

MCAL RTD Comments

<Mdl>_Cfg.h

<Mdl>_Cfg.h

<Mdl>_Ipw_Cfg.h

<Ip>_Cfg.h

Contains precompile parameters used

in the driver, usually defines and

constants, extern declarations and data

types.

<Mdl>_Cfg.c

<Mdl>_Cfg.c

<Mdl>_Ipw_Cfg.c

<Ip>_Cfg.c

Static configuration structures

containing only variables that are not

variant aware, configured and

generated only once. This file alone

does not contain the whole structure

needed by <Mdl>_Init function to

configure the driver. Based on the

number of variants configured in the

EcuC, there can be more than one

configuration structure for one module

even for PreCompile variant.

<Mdl>_PBcfg_<Variant>.c

<Mdl>_PBcfg

_<Variant>.c

<Mdl>_Ipw_PBcfg

_<Variant>.c

<Ip>_PBcfg_<Variant>.c

There is one file for each variant. The

name of the file contains the name of

the variant, as defined in the EcuC.

This file contains the configuration

structure used by the driver that have

variant aware members. Each file

contains the configuration parameters

for its corresponding variant. All

parameters and/or structures that are

not variant aware and were generated

once in the <Mdl>_Cfg.c file are

referenced in the structures from

<Mdl>_PBcfg_<Variant>.c files if

needed. The configuration structures

are used in all variants.

<Mdl>_PBcfg_<Variant>.h

<Mdl>_PBcfg

_<Variant>.h

<Mdl>_Ipw_PBcfg

_<Variant>.h

<Ip>_PBcfg_<Variant>.h

It was created to export the extern

declaration of each configuration

structure, to be used when calling

<Mdl>_Init in the application. There

is one file for each variant. The name

of the file contains the name of the

variant, as defined in the EcuC.

MCAL migration guide to RTD

SDK/MCAL to Real Time Drivers, Rev. 0, 10/2021

NXP Semiconductors

 7

2.6. Exclusive areas

Thread-safety will be ensured by means of Exclusive Areas, with no change in the Exclusive Area name,

which will be kept as in the previous MCAL releases.

2.7. Timeout handling

The OsIf module is added to RTD to allow a more flexible approach for applications with regards to OS

integration and also more options for users when configuring timeouts. For example, using an OS or a

hardware timer for precise timing or loop counting for avoiding any additional resource usage.

The OsIf module needs to be configured within the Base component:

• The type of OS used

• The types of counters/timers to enable

• References to the OS counters or the MCU clock, by case

It is possible to select the type of timeout (precise timing in microseconds or loop counting) in each

driver.

From migration perspective, timeout handling is backward compatible, as loop counting is a

configuration valid option in the drivers.

2.8. Compiler abstraction

The compiler abstraction has been simplified by removing the memory mapping related to AUTOSAR

specific macros (i.e.; FUNC, VAR). From a migration perspective, no impact is expected as the memory

mapping is supported through means of MemMap functionality because the supported compilers do not

require such abstraction macros and has the benefit of improving code clarity and compliance with code

parser tools.

2.9. Migration steps

The sub sections shows the steps to be followed in order to migrate an MCAL project to a RTD project.

2.9.1. Driver configuration

Due to changes in the hardware peripherals, migrating the configuration needs to be done using the

following steps.

1. All the general configuration can be imported from an older project by using the import features

of the configuration tools chosen. This will import all the configuration fields which are not

changed (all the AUTOSAR specific parameters, most of the high-level configuration

parameters, etc.).

2. Platform specific updates need to be performed in the configuration tool for all the platform

specific parameters which cannot be directly imported by the tool. The provided Recommended

SDK migration guide to RTD

SDK/MCAL to Real Time Drivers, Rev. 0, 10/2021

8 NXP Semiconductors

configurations mitigate the migration effort by providing a default configuration as a starting

point.

3. The RTD updated/new parameters need to be re-configured. The provided recommended

configurations mitigate the migration effort by providing a default configuration as a starting

point.

2.9.2. Driver build

1. File structure update, to include the new sources, where ever required.

2. Mapping the changes for rearchitected drivers (i.e.; MCL, RM, MCU. More details in their

specific document section) configuration, functionality and symbol names.

2.9.3. Functionality updates

1. The RTD maintains the previous MCAL provided functionality and builds on top of that with

support for other hardware peripherals.

3. SDK migration guide to RTD

The RTD offer the functionalities that were available in SDK, extending the PAL with AUTOSAR

implementation and support for use-cases addressing both AUTOSAR and Non-AUTOSAR

applications. The RTD abstract all the hardware functionalities, as supported in SDK.

The RTD architecture enables decoupling the peripheral layer in order to be used standalone, by

providing the peripheral interfaces.

Migrating an application from SDK to RTD implies several changes, as imposed by the RTD

architecture.

3.1. Configuration tool impact

From the SDK perspective, the S32 Configuration Tool is used to configure the drivers. In the S32

Configuration Tool both HL and IP interfaces of the driver can be configured to maintain the

functionality already provided in SDK.

Specific details are provided in the platform specific appendix.

3.2. Driver configuration changes

 The configuration for RTD are designed to address both ASR and non-ASR customers, hence the

configuration code can be generated using both S32CT and EB Tresos. The driver configuration files

follow the same layered architecture, split between HL and IP layers, with the internal IPW glue-layer in

between.

SDK migration guide to RTD

SDK/MCAL to Real Time Drivers, Rev. 0, 10/2021

NXP Semiconductors

 9

NOTE

The main difference between SDK and RTD configuration scheme is the

usage of dynamic(configurable) precompile configuration parameters. It

allows the application to disable parts of driver code that are not intended

for use (RTD driver sources include the configuration headers) which

results in more flexibility and less code size on the application side.

3.2.1. Configuration classes and variant support

The RTD configuration follows the ASR configuration concept that applies on all layers. In order to

support multiple configurations that are selectable at different binding times, variant and configuration

classes support was added. Consequently, the configuration code is generated in multiple files,

corresponding to the variants defined in the project.

Variant support translates into the possibility of generating multiple configuration structures, selectable

at runtime. Variant support main use-case is to allow runtime reconfiguration of an ECU (different mode

support – startup vs runtime vs shutdown driver behavior, same code with different behaviors depending

on external input – left door vs right door car integration, etc.)

Configuration class support translates into the possibility of generating multiple configuration structures,

selectable at pre-compile time, link time, post-build time. Each driver has support for a predefined one,

several, or all configuration classes. Figure 6 depicts how the configuration files are organized.

All the configuration structures are generated as constants, to avoid their spurious corruption, and

allocated in the memory space of the drivers, with support for independent memory mapping (for

example: map the configuration data into a slow/read-only memory, map the driver code into a fast

memory).

NOTE

Support for initializing a driver without the need to pass a configuration

pointer to the initialization function has been replaced by the

PRE_COMPILE mode configuration support (as in the AUTOSAR

methodology).

No default configuration is stored as internal driver global variables, instead, a (single/unique)

PRE_COMPILE configuration can be generated, which is referenced directly by the driver using

internal mechanisms. This has the benefit of supporting the same use cases plus offering support for

tailoring this configuration with help of the GUI configurator, support for memory mapping relocation,

reduced memory consumption and consistent approach for all configuration modes.

All modules require configuration and generation of configuration files prior to their usage. Default

configurations files are to be provided to serve as a starting point. These need to be processed by the

configuration tool before module initialization can be performed.

SDK migration guide to RTD

SDK/MCAL to Real Time Drivers, Rev. 0, 10/2021

10 NXP Semiconductors

Figure 6. Driver configuration file structure

3.3. Functionality impact

The RTD abstract all the hardware functionalities and offers standardized interfaces across platforms.

Due to changes in architecture and naming convention, SDK APIs and data types are changed to support

the current approach, that will imply that even though from functional perspective the RTD offers same

functionalities as the SDK, the migration will not be transparent to the customer.

The naming convention for the RTD implies consistent changes for the data types and APIs, as

presented below.

3.3.1. Data types

Data types in RTD use the following naming convention:

<Prefix>_<TypeName>Type

Where:

SDK migration guide to RTD

SDK/MCAL to Real Time Drivers, Rev. 0, 10/2021

NXP Semiconductors

 11

• <TypeName> shall follow the so called CamelCase convention (first letter of each word is

uppercase, consequent letters are lowercase).

• <Prefix> is

o HLD: <MSN> ModuleShortName

o IPW: <MSN>_Ipw (*1)

o Shared IPs: <Ip>_<MSN>_Ip

o Non-Shared IPs: <Ip>_Ip

o Example: typedef uint16 Spi_NumberOfDataType;

NOTE

“IPW” symbols are private and not intended to be used by an application.

3.3.2. API (function) names

APIs in RTD have the following naming convention:

- HL interface: <MSN>_<Function>() (ex: Wdg_Init())

- IP interface:

o <IP>_<MSN>_IP_<Function>() for all shared IPs (e.g.

eTimer_Icu_Ip_StartSignalMeasurement())

o <Ip>_Ip_<Function> for all IPs that are not shared (e.g. Swt_Ip_Init())

NOTE

“IPW” symbols are private and not intended to be used by an application.

The differences between SDK API names and RTD names are summarized in the following table.

Table 2. SDK and RTD name differences

Designation SDK RTD

Data types _t suffix & snake_case style Type suffix & CamelCase style

IP layer APIs <MDL>_DRV_FunctionName <MDL>_IP_FunctionName

High Level APIs <MDL>_PAL_FunctionName <MDL>FunctionName

NOTE

There is no implication that these formal changes in the API are the only

required updated for porting from SDK to RTD. The APIs in RTD also

contain semantic changes, as required by the integration with higher

levels. From a functional perspective, RTD APIs map logically on former

SDK APIs (no regression/degraded functionality); however, the meaning

of some function names/parameters may differ. It is application’s

responsibility to use the proper APIs for the required functionality, after

carefully studying the user manuals.

SDK migration guide to RTD

SDK/MCAL to Real Time Drivers, Rev. 0, 10/2021

12 NXP Semiconductors

3.4. Memory mapping

The RTD introduce mechanisms for the mapping of code and data to specific memory sections in order

to support avoidance of waste of RAM, usage of specific RAM properties, usage of specific ROM

properties, usage of the same source code of a module for boot loader and application, encapsulation and

isolation.

Default memory sections are provided inside the RTD package, therefore migrating from SDK to RTD

implies only adding to the project the <Driver>_MemMap.h files provided into Base plugin and update

the linker files.

The <Driver>_MemMap.h file stubs are provided, which is expected to be updated in AUTOSAR

context and can be used as it is in Non-AUTOSAR context.

3.5. Expose interface

The RTD are designed to satisfy both AUTOSAR and non-AUTOSAR (former SDK) use cases. The

RTD provide two sets of interfaces:

• Standardized interface generic across platforms

• IP interface generic across platforms with the same set of IP features

Figure 7. Exposed interfaces

The following limitations are still applicable when migrating the application from SDK to RTD,:

• It is forbidden to use the same hardware instance in HL and IP (E.g. if SPI1 is used in HL

context, it cannot be used also through IPL)

• IP layer does not provide Tresos configuration. It can be configured only on Design Studio (CT).

• IP layer is not intended to be used in AUTOSAR applications, as it does not satisfy the ASR

compliance constraints (DEM, DET, Multicore, etc.); IP layer is not intended to be a standalone

AUTOSAR CDD.

SDK migration guide to RTD

SDK/MCAL to Real Time Drivers, Rev. 0, 10/2021

NXP Semiconductors

 13

3.6. Error management

The error detection and reporting mechanism for the RTD is tailored for the target application type.

Error management concept incorporates reporting of the development errors and runtime errors, using

different reporting mechanisms as described below.

Migrating applications that used the PAL functionalities implies architectural modification from error

management perspective. For the high-level layer, error management follows the AUTOSAR

specifications for Default Error Tracer and Diagnostics Event Manager. RTD provides reference code

for the implementation of these modules, which can be used or overwritten by the customer application.

3.6.1. HL API

The HL APIs return Std_ReturnType (E_OK/E_NOT_OK) where synchronous reaction is needed.

For asynchronous reactions, when these are defined, the HL APIs will return an extra specific error,

which can then be retrieved by calling the dedicated APIs in DEM/DET.

Default Error Tracer (DET) offers mechanisms to handle both development errors and runtime errors.

Diagnostic Event Manager (DEM) offers mechanisms to handle critical runtime errors,) in case these

have a high impact on the application integrity.

The RTD provide a “stub” implementation of these ASR modules, which can be used or overwritten by

the customer application.

3.6.2. IP API

The errors reported by the IP layer are still split in two categories:

• Development errors: Usually parameters checking, function call plausibility, etc. These errors

are checked using DevAssert function. In case an error is detected, it halts the program execution

in the default implementation. The default behavior of DevAssert function can also be

overwritten by the application. This mechanism is almost identical to the DEV_ASSERT

functionality in older SDK, the only improvement being that these statements are now

enabled/disabled for each driver separately, as opposed to the SDK approach where this was a

global configuration (refer to Figure 8).

• Runtime errors: As opposed to the SDK, where all runtime errors reported by drivers were

grouped in the generic enumeration called status_t, the RTD define a set of runtime errors as per

driver. The naming convention for these errors is <IP_Name>_Ip_StatusType.

Each driver defines the set of errors that can be reported by the controlled IP, these errors can either be

used by the non-ASR application implemented on top of the IP layer for retrieving the status of the

driver, or further fed into the high level state machine of the layers on top.

SDK migration guide to RTD

SDK/MCAL to Real Time Drivers, Rev. 0, 10/2021

14 NXP Semiconductors

3.7. File structure

To comply with both AUTOSAR and Non-AUTOSAR configuration tools, the RTD use a modular

approach on the file layout. While in S32SDK, drivers shared a common folder, but were distinct from

PALs, RTD modules are contained in individual folders.

As such, in the RTD a module is the container for both IP layer and HL driver. Due to this fact, a

module will have an IP folder, containing the implementations for the targeted IPs and two folders for

the HL (include and src).

Figure 8. RTD file structure

3.8. Interrupt management

As opposed to the S32 SDK, the RTD do not manage interrupt requests at system level. It is an external

assumption that the proper interrupts are enabled in the interrupt controller and the right handlers are

present in the IVT for the drivers to work. It is thus application responsibility to configure the interrupt

controller and define the right ISRs, as mentioned in each driver documentation.

From migration perspective, the RTD define a dedicated platform specific driver, called Platform_CDD,

which provides the API and configuration support for setting up the interrupts. The configuration for

Platform_CDD contains all the required information for the interrupt settings (enablement, priorities,

handlers etc.). Calling the initialization function of this new driver sets the right configuration in place

and is considered a prerequisite for the correct functionality of other drivers that require interrupt

routines.

Multicore support

SDK/MCAL to Real Time Drivers, Rev. 0, 10/2021

NXP Semiconductors

 15

3.9. Timeout handling

The RTD do not support mutexes and semaphores for timeout handling. The timeout handling is

simplified by offering asynchronous (interrupt driven) and synchronous(polling) services. For more

details, review Timeout handling.

3.10. Safety

The RTD contain the safety analysis (FMEA) and the safety measures covering both exposed interfaces

(HL + IP), including the safety measures and external assumptions for the application.

4. OS abstraction – OSIF

4.1. Migration from MCAL to RTD-OSIF

The OsIf module is added to the RTD to allow a more flexible approach for applications with regards to

OS integration and also more options for users when configuring timeouts, for example, using an OS or

a hardware timer for precise timing or loop counting for avoiding any additional resource usage.

The OsIf module needs to be configured within the Base component:

• The type of OS used

• The types of counters/timers to enable

• References to the Os counters or the Mcu clock, by case

Then, in each driver it is possible to select the type of timeout (precise timing in microseconds or loop

counting).

4.2. Migrating from SDK to RTD-OSIF to OSIF

The OsIf module in the RTD is largely different from the SDK counterpart. Mutex and semaphores are

no longer supported, and the timing services are mainly geared toward timeouts rather than measuring

time or delays.

The project-level symbol (compiler -D options) for selecting the type of OS, -

DUSING_OS_BAREMETAL or -DUSING_OS_FREERTOS remain the same. Additionally, -

DUSING_OS_AUTOSAROS is now supported.

5. Multicore support

The RTD offers multicore support, by providing support for both former MCAL AUTOSAR multicore

concept and SDK instance per core approach. See the following figure for more details.

Multicore support

SDK/MCAL to Real Time Drivers, Rev. 0, 10/2021

16 NXP Semiconductors

Figure 9. Multicore support

Release packaging

SDK/MCAL to Real Time Drivers, Rev. 0, 10/2021

NXP Semiconductors

 17

6. Release packaging

The RTD release package contains source code, Tresos configuration, S32CT configuration, examples,

documentation.

From a delivery perspective, two methods are available:

• Design studio update site

• Installer published in Flexera

Figure 10. RTD release packaging methods.

From a former SDK user perspective, the deployment of the product as an S32 Design Studio update site

will provide the same level of integration with configuration/build/debug tools, inherent from the IDE

integration. The product is usable along the S32 configuration tool, that can configure both HL and IP

layers; it also contains sample applications delivered as a ready-to-use DS project, highlighting the

usage of the drivers and ready to be downloaded on target using built-in toolchain support, providing

excellent “out of the box” experience for non-ASR customers.

Additionally, RTD integrates with other NXP software products which are bundled into S32 DS,

including various non-ASR middleware and stacks which are ported on top of the drivers.

From MCAL perspective, the deployment of the product the installer published in Flexera will contain

the same level of integration for RTD.

Release packaging

SDK/MCAL to Real Time Drivers, Rev. 0, 10/2021

18 NXP Semiconductors

Appendix A. S32KXX product family

Chapter 1. Overview

Summary of the platform specific migration aspects, including the platform specific driver/IP mapping,

the configuration tool.

Table 3. Mapping of peripherals components and S32K3XX drivers

Real Time Driver S32K3XX IP Comments

DEM - Diagnostics Event Manager

Reference code provided by NXP to be used in Non

AUTOSAR applications.

To be replaced to AUTOSAR Standard Implementation for

AUTOSAR applications

DET - Default Error Tracer

Reference code provided by NXP to be used in Non

AUTOSAR applications.

To be replaced to AUTOSAR Standard Implementation for

AUTOSAR applications

ECUC - Ecu Configuration – add support for multicore

Reference code provided by NXP to be used in Non

AUTOSAR applications.

To be replaced to AUTOSAR Standard Implementation for

AUTOSAR applications

ECUM - Ecu Manager

Reference code provided by NXP to be used in Non

AUTOSAR applications.

To be replaced to AUTOSAR Standard Implementation for

AUTOSAR applications

RTE - Run Time Environment – implements exclusive areas

Reference code provided by NXP to be used in Non

AUTOSAR applications

To be replaced to AUTOSAR Standard Implementation for

AUTOSAR applications

OsIf - OS Abstraction layer

Integrates support for FreeRTOS and AUTOSAR OS

Release packaging

SDK/MCAL to Real Time Drivers, Rev. 0, 10/2021

NXP Semiconductors

 19

Resource - Resource driver – collection for all derivatives features

BASE - Base driver Collection of header files

A subset of driver’s files provided by NXP can be used in

Non AUTOSAR applications

A subset of driver’s files provided by NXP can be

replaced to AUTOSAR Standard Implementation for

AUTOSAR applications

REG_PROT

MCU MC_CGM Microcontroller Unit Driver

Provides services for basic microcontroller initialization,

mode management and clock management
FIRC

SIRC

PLLDIG

FXOSC

MC_RGM

MC_ME

SXOSC

CMU

MC_PCU

PFLASH

PRAMC

PMC

PLATFORM MSCM Platform – Complex Device Driver

Integrates functionalities specific to platform and interrupt

management
NVIC

INTM

MCM

RM MPU Resource Manager – Complex Device Driver

 XRDC

SEMA42

PFLASH

Release packaging

SDK/MCAL to Real Time Drivers, Rev. 0, 10/2021

20 NXP Semiconductors

VIRT_Wrapper

XBIC - MCR

reg

XBAR

MCL eDMA Microcontroller Library – Complex Device Driver

Offers DMA and Cache functionalities LCU

DMAMUX

TRGMUX

Cache_M7

PORT SIUL2 PORT Driver

Provides the services for initializing the whole structure of

PORT driver

DIO Digital Input Output Driver

Provides services for accessing the microcontroller’s

hardware pins

EEP FLEXRAM EEPROM Driver

Provides services for reading, writing, erasing to/from an

EEPRM
FLEXNVM

FLS QuadSPI Flash Driver

C40

PFLASH

ICU eMIOS Input Capture Unit Driver

SIUL2

LPCMP

WKPU

OCU eMIOS Output Capture Unit Driver

GPT eMIOS General Purpose Timer Driver

PIT(-RTI)

Release packaging

SDK/MCAL to Real Time Drivers, Rev. 0, 10/2021

NXP Semiconductors

 21

RTC

STM

PWM eMIOS Pulse Width Modulation Driver

FlexIO_PWM

QD eMIOS Quadrature Complex Device Driver

I2C LPI2C I2C Complex Device Driver

FlexIO_I2C

ETH ENET Ethernet Driver

UART LPUART UART Complex Device Driver

FlexIO_UART

LIN LPUART Lin Driver

SPI LPSPI Serial Parallel Interface Driver

FlexIO_SPI

CAN FlexCan Can Driver

ADC ADC Analog Digital Comparator Driver

BCTU

Crypto HSE_M Crypto Driver

MU

WDG SWT Watchdog Driver

SENT FlexIO_SENT SENT driver

CRC CRCU CRC Complex Device Driver

SAI SAI SAI Complex Device Driver

Release packaging

SDK/MCAL to Real Time Drivers, Rev. 0, 10/2021

22 NXP Semiconductors

Chapter 2. AUTOSAR Configuration and version impact.

The standard AUTOSAR MCAL modules that are part of the Real Time Drivers releases will be

implemented following the AUTOSAR 4.4 requirements, therefore the interface and the configuration

for those drivers will be compliant with the standard.

S32K1 and S32K2 MCAL projects were developed according to AUTOSAR 4.3, S32K3 is developed

according to AUTOSAR 4.4. As a result, there is an impact in the AUTOSAR specific parameters which

have been updated between these revisions. The expected impact is small, considering that the

AUTOSAR 4.4 was an incremental updated with no disruptive change over AUTOSAR 4.3. Impacted

modules are: CRYPTO and all the modules which performed configuration updates to accommodate the

AUTOSAR Multicore Concept.

The AUTOSAR compliant configuration tools can leverage the import of all the parameters which have

kept the correspondence from MCAL to RTD schema. Most of the AUTOSAR MCAL standard

parameters and most of the Vendor specific extensions are expected to be compatible and importable in

a new RTD project.

For all the new AUTOSAR RTD CDDs and a small subset of Vendor specific parameters, the

configuration needs to be created from scratch. Default configuration files are provided as a starting

point, to reduce the effort.

The same configuration tools and configuration flows (including default configurations) will be

supported.

Chapter 3. SDK Configuration and tool impact

From SDK perspective, S32 Configuration Tool, that is part of S32 Design Studio, is used to configure

the drivers. In the S32 Configuration Tool both HL and IP interfaces of the driver can be configured, in

order to maintain the functionality already provided in SDK.

On S32K3 the same configuration tool (S32CT) will be supported.

Document Number: AN13435
Rev. 0

10/2021

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright licenses

granted hereunder to design or fabricate any integrated circuits based on the

information in this document. NXP reserves the right to make changes without further

notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does NXP assume any liability arising out of

the application or use of any product or circuit, and specifically disclaims any and all

liability, including without limitation consequential or incidental damages. “Typical”

parameters that may be provided in NXP data sheets and/or specifications can and do

vary in different applications, and actual performance may vary over time. All operating

parameters, including “typicals,” must be validated for each customer application by

customer’s technical experts. NXP does not convey any license under its patent rights

nor the rights of others. NXP sells products pursuant to standard terms and conditions

of sale, which can be found at the following address:

nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of

their applications and products to reduce the effect of these vulnerabilities on

customer’s applications and products, and NXP accepts no liability for any vulnerability

that is discovered. Customers should implement appropriate design and operating

safeguards to minimize the risks associated with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,

COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES,

MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,

MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK,

SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the

Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware,

the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,

PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the

SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack,

CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names

are the property of their respective owners. Arm, AMBA, Arm Powered, Artisan, Cortex,

Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered trademarks of

Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Arm7, Arm9, Arm11,

big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, Mbed, NEON, POP, Sensinode,

Socrates, ULINK and Versatile are trademarks of Arm Limited (or its subsidiaries) in the

EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of

Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the

Power and Power.org logos and related marks are trademarks and service marks

licensed by Power.org.

© 2021 NXP B.V.

http://www.freescale.com/
http://www.freescale.com/support

	1. Introduction
	2. MCAL migration guide to RTD
	2.1. AUTOSAR version and configuration impact
	2.2. Functionality impact
	2.3. Standard functionalities impact
	2.4. CDD functionalities impact
	2.5. File structure impact
	2.5.1. Plugin structure

	2.6. Exclusive areas
	2.7. Timeout handling
	2.8. Compiler abstraction
	2.9. Migration steps
	2.9.1. Driver configuration
	2.9.2. Driver build
	2.9.3. Functionality updates

	3. SDK migration guide to RTD
	3.1. Configuration tool impact
	3.2. Driver configuration changes
	3.2.1. Configuration classes and variant support

	3.3. Functionality impact
	3.3.1. Data types
	3.3.2. API (function) names

	3.4. Memory mapping
	3.5. Expose interface
	3.6. Error management
	3.6.1. HL API
	3.6.2. IP API

	3.7. File structure
	3.8. Interrupt management
	3.9. Timeout handling
	3.10. Safety

	4. OS abstraction – OSIF
	4.1. Migration from MCAL to RTD-OSIF
	4.2. Migrating from SDK to RTD-OSIF to OSIF

	5. Multicore support
	6. Release packaging
	Appendix A. S32KXX product family

