

Linux Integration Example of S32V234 A53

SCST Library

by: NXP Semiconductors

1. Introduction

This application note describes an integration example

of Cortex-A53® SCST Library in a Linux environment

on S32V234 product, which provides an

implementation hint when Cortex-A53 SCST Library is

required to be deployed as a safety measure for Cortex-

A53 cores. It is intended to assist system integrators to

design and develop some applicable methods to adapt

Cortex-A53 SCST Library to their OS environment.

This is supplementary to the S32V234 Cortex-A53

SCST User Manual available in NXP RTM release of

Cortex-A53 SCST Library for S32V234. Please read

Cortex-A53 S32V234 SCST User Manual in

conjunction with the application note for a

comprehensive understanding.

The integration example is based on S32V234 Linux

BSP and some proprietary software components:

• S32V234 Linux BSP RTM v23.1

— Linux v4.19.59

— U-Boot v2018.07

• Secure Monitor patches from S32V234 VSDK

v1.7.0

— U-Boot patch for Secure Monitor

support.

— Linux device tree patch to reserve

NXP Semiconductors Document Number: AN13276

Application Notes Rev. 0 , 08/2021

Contents

1. Introduction .. 1
2. Terms and Abbreviations ... 2
3. Integration Limitations ... 3
4. Possibilities of Integration ... 3
5. Description of Demo Application 4

5.1. Prerequisites .. 4
5.2. Secure Monitor Firmware 5
5.3. Linux Kernel Module .. 7
5.4. Linux User Space Application 7
5.5. Execution Time ... 7

6. Summary .. 8
7. Reference ... 8

Terms and Abbreviations

Linux Integration Example of S32V234 A53 SCST Library, Rev. 0, 08/2021

2 NXP Semiconductors

memory for Secure Monitor firmware and SCST environment.

• Proprietary Cortex-A53 SCST for S32V234, 1.0.2 RTM

• Proprietary Secure Monitor Linux driver and firmware sample for SCST

• GCC compiler (BLD = 1620) 6.3.1 20170509 (build.sh rev=g01b30c3)

NOTE

For additional information refer to Reference.

2. Terms and Abbreviations

Terms and abbreviations Meaning

Cortex-A53 The Cortex-A53 processor is a mid-range, low-power

processor that implements the Arm® v8-A architecture.

SCST Structural Core Self-Test

OS Operating System, for example Linux

AArch64 The ARM 64-bit Execution state that uses 64-bit

general purpose registers, and a 64-bit program counter

(PC), stack pointer (SP), and exception link registers

(ELR). AArch64 Execution state provides a single

instruction set, A64.

RTM Released To Market

BSP Board Support Package

VSDK Vision Software Development Kit

CPU A hardware implementation of the ARM Architecture.

EL0 The lowest Exception level. The Exception level that is

used to execute user applications in Non-secure state.

EL1 The privileged Exception level. The Exception level

that is used to execute operating systems in Non-secure

state.

EL1h Indicates use of the SP_EL1 Stack Pointer in the

Exception Level 1. Compared with EL1t which

indicates use of the SP_EL0 Stack Pointer.

EL2 The hypervisor Exception level. The Exception level

that is used to execute hypervisor code in Non-secure

state.

EL3 The Secure Monitor Exception level. The Exception

level that is used to execute Secure Monitor code,

which handles the transitions between Non-secure and

Secure states. EL3 is always in Secure state.

MMU Memory Management Unit

GPL GNU General Public License

SM The Secure Monitor is software that executes at the

EL3 Exception level.

Firmware Software that provides platform specific services.

Firmware typically operates at an exception level

higher than the operating system or Hypervisor which

makes use of the firmware services.

GIC Generic Interrupt Controller

Possibilities of integration

Linux Integration Example of S32V234 A53 SCST Library, Rev. 0, 08/2021

NXP Semiconductors 3

Terms and abbreviations Meaning

SMC Secure Monitor Call. An Arm assembler instruction

that causes an exception that is taken synchronously

into EL3.

ASIL Automotive Safety Integrity Level

3. Integration Limitations

Cortex-A53 SCST Library is a software self-test method and can be integrated into an application

running in a Linux environment with the following limitations:

• Core-tests from Cortex-A53 SCST Library cannot be executed within ordinary Linux user space

application as these applications run in Exception Level EL0, which lacks privileges required by

the tests (e.g. some system registers are not writable in this exception level, some instructions

cannot be executed, etc.). This is also the case of applications executed with root privileges,

which give the application additional permissions to access files and commands on Unix

systems, but do not provide extended access to hardware resources. Therefore, the SCST Library

is designed to be executed from Exception Level EL1, which is normally used by the Linux

Kernel and which provides accesses to most of the hardware features from software.

• Another specific of the Linux environment is that it uses MMU to separate address spaces of

running processes from each other and from kernel address space. On 64-bit system, each

process has its 64-bit address space, where part of the address space is reserved for the

application’s data (program, data, heap, stack, linked libraries…) and part of the address is

reserved for kernel’s data (shared across all processes within the system). The memory mapping

of a program file with all its sections into an address space is done by an operating system on

program startup. The SCST Library currently cannot use this feature, but rather relies on static

mapping of individual sections to target memory based on the definitions in the linker file and

configuration header file. It is possible to run the SCST Library with MMU enabled, but virtual

to physical address translation is still needed to be known in advance as it must be provided by

the user at compile time.

4. Possibilities of integration

There are two technical possibilities of how to integrate SCST Library into an application running with a

Linux environment:

• Integration of the SCST Library directly into Linux kernel, thus linking the kernel with the

library, or using binary loadable module. This scenario is not applicable because of the legal

issue associated with the fact that the Linux kernel falls under the GPL, while SCST Library is a

proprietary product.

• Using a Linux kernel module to interface with custom firmware running in Secure Monitor

(Exception Level EL3), that will execute the tests from SCST Library at EL1.

The second option was considered in the demo application, which was proved to be working.

Linux Integration Example of S32V234 A53 SCST Library, Rev. 0, 08/2021

4 NXP Semiconductors

Description of demo application

5. Description of demo application

The structure of the demo application is previewed in the figure below. It consists of three executable

files. The idea is that on request from Linux environment, custom firmware running in Secure Monitor

mode (EL3) is instructed to switch between Linux environment and SCST environment. Once the

system has switched into SCST environment, the specified tests can be executed and result is passed

back to the Linux environment. In Linux environment, a Kernel module is used to interface with custom

firmware. Linux user space application accesses functions of the kernel module, thus enabling it to run

the SCST tests and get the result.

5.1. Prerequisites

The Secure Monitor firmware is a bare-metal firmware, that is loaded by the Linux kernel module

sm_drv upon initialization into reserved region of DRAM memory. The address, that the firmware is

loaded to, must match the address that the firmware is linked to, otherwise the whole system hangs. The

DRAM memory reservation is done by Device Tree Blob (DTB) file for target device found in the

EL0
Linux user space User Space App

SM Linux Driver
(sm_drv)

SM FW Core
(sm_core)

/dev/sm_drv via ioctl()

EL1h
Linux kernel space

EL3
Secure Monitor Firmware

SMC instruction with #code as call commands
X0, X1 registers as call arguments and return values

Linux Device Tree

nxp,resmem

Load SM firmware binary
to reserved memory

1MB DDR RAM region at
address 0xC4F00000

SM Application

SM app custom handlers registered for SMC #code

MMU
application

GIC
application

SCST Library

EL1h
SCST environment

SM Application:

• Handles SCST parameters (stores test range and test result)

• Stores and restores OS CPU context on tests execution start/stop

• Passes control between the OS and SCST Library at EL1

SCST Library:

• Static library (libscst_sys.a)

• Linked in Secure Monitor Firmware
(theA53App.bin)

Figure 1. Structure of Linux SCST integration demo

Description of demo application

Linux Integration Example of S32V234 A53 SCST Library, Rev. 0, 08/2021

NXP Semiconductors 5

arch/arm64/boot/dts sub-directory of the Linux kernel source tree. An example of how to reserve 1MB

of memory at address 0xC4F00000 is presented below. For detailed description of DTB files please see

Reference.

The example DTS patch included in the S32V234 Yocto VSDK build can be found in Reference.

During the boot process of the Linux environment, it’s necessary to enable the Secure Monitor Call

(SMC) instructions from Non-secure EL1 to be handled by Secure Monitor firmware running at EL3. To

enable this feature, HCR_EL2.TSC and SCR_EL3.SMD bits of the system registers shall be cleared to

zero just before passing control to the Linux kernel image. Further, address of the exception vector table

used at EL3, which is part of the Secure Monitor firmware and known in advance, must be written to the

VBAR_EL3 system register. This is best achieved by modifying the bootloader that is used to boot the

Linux environment, such as U-Boot, because it has sufficient privileges to access the system registers on

startup. This setup shall be done on all A53 cores that are supposed to run SCST environment. In this

example, the boot core #0 is configured as described and it will be the only core running SCST

environment.

The example patch for U-Boot Yocto VSDK build can be found in Reference.

5.2. Secure Monitor Firmware

The Secure Monitor firmware runs in AArch64 execution state in Exception Level EL3 and consists of

two major components – the sm_core component and the sm_application component.

reserved-memory {

#address-cells = <2>;

#size-cells = <2>;

ranges;

resmem: rmem@C4F00000 {

reg = <0 0xC4F00000 0 0x100000>;

no-map;

};

};

nxpresmem: themem@C4F00000 {

status = "okay";

compatible = "nxp,resmem";

memory-region = <&resmem>;

interrupts = <0 0 4>;

};

Linux Integration Example of S32V234 A53 SCST Library, Rev. 0, 08/2021

6 NXP Semiconductors

Description of demo application

The sm_core component is a generic component that provides interface between software running at

lower Exception Levels on the CPU and custom applications running in Secure Monitor. It handles

incoming SMC calls from lower Exception Levels (in this case from Linux environment), processes call

arguments passed in registers X0 (parameter_id) and X1 (parameter_value) and then invokes

corresponding application. Applications in Secure Monitor register their callbacks within sm_core

component on initialization to handle specific SMC exceptions as distinguished by SMC exception

syndrome (i.e. “#code” in SMC instruction in Figure 1).

The sm_application component is custom application running partially at EL3 and partially at EL1h. In

EL3 it is responsible for processing of SCST parameters, storing and restoring Linux CPU context,

passing control to the SCST environment and then back to the Linux environment. It works like a simple

hypervisor, that switches between two guest operating systems on a single hardware. In EL1h, it

executes a single procedure scst_execute_core_tests(), that represents SCST environment.

This function acquires start and end test indexes from Secure Monitor and then directly calls

a53_sys_scst_execute_core_tests() function from SCST Library.

There are currently several commands and parameters supported by the sm_application. They are listed

in Table 1 and Table 2 as implementation example.

Table 1. Commands supported by sm_application

Table 2. Parameters supported by sm_application

The sm_application also makes use of GIC controller and MMU controller. Using the GIC controller, it

disables external interrupts once the control is passed to the SCST environment and restores them back

when returning to Linux environment. This is necessary, because SCST environment cannot handle

interrupts, that were previously setup by Linux environment. The MMU controller can be used when

SCST Library is configured to use virtual addresses for testing purposes. The sm_application is then

responsible for proper MMU re-configuration and page table setup before switching into SCST

environment.

The sm_core, sm_application and SCST Library together correspond to a single executable file.

Therefore, the SCST environment, as displayed in Figure 1, is de-facto built into the Secure Monitor

firmware, but it is executed independently in a different Exception Level (EL1h).

Command SMC #code Description

SC_CMD_INIT 0x1001 Initialize the sm_application
SC_CMD_START 0x1002 Switch from Linux to SCST environment and execute core

tests
SC_CMD_STOP 0x1003 Switch from SCST back to Linux environment (only used by

SCST environment)
SC_CMD_CONFIG_SET 0x1004 Change SCST configuration parameter (must be writable)
SC_CMD_CONFIG_GET 0x1005 Read SCST configuration parameter (must be readable)

Parameter Readable Writeable Description

APP_KEY_PRM_START_IDX Yes Yes Index of the first SCST test to execute

APP_KEY_PRM_END_IDX Yes Yes Index of the last SCST test to execute

APP_KEY_PRM_SCST_RESULT Yes No Returned signature of the last SCST run

Description of demo application

Linux Integration Example of S32V234 A53 SCST Library, Rev. 0, 08/2021

NXP Semiconductors 7

5.3. Linux Kernel Module

The Linux kernel module sm_drv provides means to load the Secure Monitor firmware from Linux

environment to reserved memory partition and to communicate with it by using dedicated SMC

instructions plus core registers X0 and X1. It implements the communication protocol used by sm_core

module on the Linux side.

Once the driver module is successfully loaded into Linux kernel, it creates a new device /dev/sm_drv

within the Linux filesystem. This device provides ioctl interface to support communication between

Linux user space application and the Secure Monitor firmware. Following commands are defined with

this interface.

Table 3. sm_drv ioctl interface commands

These commands are either handled directly by kernel module or are internally translated to SMC calls

and handled by Secure Monitor firmware.

5.4. Linux User Space Application

A command line application can be developed to execute SCST tests from Linux user space. It may only

be executed once the sm_drv kernel module was successfully loaded using insmod Linux command. The

user space application can use two arguments - the first and last SCST test indexes. It then forwards

these indexes to the SCST environment and requests test execution, both using sm_drv ioctl interface.

When control is returned to the application, it reads the resulting signature and prints it to the standard

output. The demo application currently uses only subset of commands defined in Table 3 to accomplish

this task.

5.5. Execution Time

All 60 atomic tests can be invoked through a minimum call to the test shell executed at EL1h:

The typical execution time of a complete Linux user space SCST call is around 6.6 milliseconds.

Command Description

SM_DRV_IOCTL_INIT Initialize the firmware

SM_DRV_IOCTL_START Start firmware operation

SM_DRV_IOCTL_STOP Stop firmware operation

SM_DRV_IOCTL_SET_CFG Set configuration parameter

SM_DRV_IOCTL_GET_CFG Get configuration parameter

SM_DRV_IOCTL_REG_SIG Register asynchronous signal listener

SM_DRV_IOCTL_UNREG_SIG Cancel registration of asynchronous signal listener

SM_DRV_IOCTL_ENABLE_EVENTS Enable/Disable asynchronous events reporting by firmware

/* Execute tests */

test_result = a53_sys_scst_execute_core_tests(0, 59);

Linux Integration Example of S32V234 A53 SCST Library, Rev. 0, 08/2021

8 NXP Semiconductors

References

6. Summary

The demo application described in this application note uses Secure Monitor firmware to implement the

context switch between Linux OS environment and SCST environment. It provides an idea on how to

integrate SCST Library in OS scenario and it’s system integrator’s responsibility to develop application

specific integration method to meet system safety requirements.

Please note that the Linux Integration Example can be provided “AS IS” with NXP’s approval for demo

purpose only. Also note that the example itself could be used to detect hardware faults in the processor

cores, but it’s not sufficient to achieve required ASIL of an application running in the Linux

environment.

7. Reference

[1] A53-S32V234 AArch64 Structural Core Self Test Library User Manual, Rev. 1.4, 24 October

2019

[2] S32V234 Cortex A53 Structural Core Self-Test Software

[3] Automotive SW - Linux BSP

[4] Vision SDK Software

[5] Arm® Cortex®-A53 MPCore Processor, Technical Reference Manual, Revision: r0p4

[6] Embedded Linux Wiki - Device Tree Reference

[7] DTS patch for reserved memory: 0001-s32v234-dts-Add-VSDK-specific-configuration.patch

[8] U-Boot patch for Secure Monitor support: 0001-secure-monitor-enable-Secure-Monitor-support-

2018.07.patch

https://www.nxp.com/webapp/swlicensing/sso/downloadSoftware.sp?catid=SW32V23-A53SCSTE
https://www.nxp.com/webapp/swlicensing/sso/downloadSoftware.sp?catid=SW32XX-LINUXBSP01D
https://www.nxp.com/webapp/swlicensing/sso/downloadSoftware.sp?catid=SW32V23-VSDK001E
https://developer.arm.com/documentation/ddi0500/j
https://elinux.org/Device_Tree_Reference
https://source.codeaurora.org/external/autobsps32/meta-adas/tree/recipes-kernel/linux/files/0001-s32v234-dts-Add-VSDK-specific-configuration.patch?h=vision_sdk_rtm_1.7.0
https://source.codeaurora.org/external/autobsps32/meta-adas/tree/recipes-bsp/u-boot/files/0001-secure-monitor-enable-Secure-Monitor-support-2018.07.patch?h=BLN_VISION_SDK_RTM_1.7.0&id=874192ba70fa9427c00bd488bf8c22c14d370fb4
https://source.codeaurora.org/external/autobsps32/meta-adas/tree/recipes-bsp/u-boot/files/0001-secure-monitor-enable-Secure-Monitor-support-2018.07.patch?h=BLN_VISION_SDK_RTM_1.7.0&id=874192ba70fa9427c00bd488bf8c22c14d370fb4

Document Number: AN13276
Rev. 0

08/2021

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright licenses

granted hereunder to design or fabricate any integrated circuits based on the

information in this document. NXP reserves the right to make changes without further

notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does NXP assume any liability arising out of

the application or use of any product or circuit, and specifically disclaims any and all

liability, including without limitation consequential or incidental damages. “Typical”

parameters that may be provided in NXP data sheets and/or specifications can and do

vary in different applications, and actual performance may vary over time. All operating

parameters, including “typicals,” must be validated for each customer application by

customer’s technical experts. NXP does not convey any license under its patent rights

nor the rights of others. NXP sells products pursuant to standard terms and conditions

of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of

their applications and products to reduce the effect of these vulnerabilities on

customer’s applications and products, and NXP accepts no liability for any vulnerability

that is discovered. Customers should implement appropriate design and operating

safeguards to minimize the risks associated with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,

COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES,

MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,

MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK,

SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the

Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware,

the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,

PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the

SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack,

CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names

are the property of their respective owners. Arm, AMBA, Arm Powered, Artisan, Cortex,

Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered trademarks of

Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Arm7, Arm9, Arm11,

big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, Mbed, NEON, POP, Sensinode,

Socrates, ULINK and Versatile are trademarks of Arm Limited (or its subsidiaries) in the

EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of

Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the

Power and Power.org logos and related marks are trademarks and service marks

licensed by Power.org.

© 2021 NXP B.V.

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	1. Introduction
	2. Terms and Abbreviations
	3. Integration Limitations
	4. Possibilities of Integration
	5. Description of Demo Application
	5.1. Prerequisites
	5.2. Secure Monitor Firmware
	5.3. Linux Kernel Module
	5.4. Linux User Space Application
	5.5. Execution Time

	6. Summary
	7. Reference

