
1 Introduction
This document introduces the dual-core application on i.MX RT1170, including
the following topics:

• Boot

• Brief introduction to MU/SEMA4/RDC/XRDC2/Shared memory

• Dual-core debug in different tool chain

2 Boot

2.1 Boot from CM7
By default, i.MX RT1170 boots from CM7 core. This chapter discusses how to boot CM4 when CM7 core is the boot core.

2.1.1 Basic model for understanding how to boot the second core
At first, we need to know a basic model to understand how to boot the second core, as shown in Figure 1.

Figure 1. Basic model for booting the second core

Figure 1 shows the basic steps to boot the second core (CM4):

1. CM7 loads the image into CM4 ITCM.

2. CM7 kicks off CM4.

3. CM4 core is running.

On i.MX RT1170, CM4 ITCM has two address, 0x1FFE_0000 and the alias of 0x2020_0000.

• 0x1FFE_0000 is for CM4 ITCM access. Only CM4 core can use this base address and the CM4 code image uses this
address for instruction storage.

• 0x2020_0000 is for alias access with slow speed. Both CM7 and CM4 can access this base address. CM7 loads CM4
image to CM4 ITCM with this address.

2.1.2 Detailed Boot flow
The detailed boot flow is as below:

1. Prepare CM4 image. Typically, it is placed inside CM7 image. It can also be from other source like SD card, or U-disk,
and so on.

2. After CM7 core runs, CM7 core loads the CM4 image into target memory. Typically, for CM7, it is the space
0x2020_0000 which maps to CM4 ITCM.

Contents

1 Introduction......................................1
2 Boot...1
3 Brief introduction to MU/

SEMA4/RDC/XRDC2/Shared
memory .. 2

4 Dual-core debug in different tool
chain..5

5 References....................................11
6 Revision history.............................11

AN13264
i.MX RT1170 Dual Core Application
Rev. 0 — 27 April, 2021 Application Note

3. CM7 core sets the vector table address of CM4 by IOMUXC_LPSR_GPR -> GPR0 and IOMUXC_LPSR_GPR -> GPR1.

4. Kick off CM4 core by SRC_SCR_BT_RELEASE_M4_MASK.

2.1.3 Loading CM4 image into target memory
To load the CM4 image into target memory, use either way as below:

• Load explicitly, using the memcpy() function.

• Load implicitly, similar to initializing some variables in RAM.

For different IDE/Tool chain, SDK uses different way. It is controlled by macro CORE1_IMAGE_COPY_TO_RAM. MCUXpresso uses
implicit way and IAR, KEIL and GCC uses explicit way.

For more details about boot from CM7, refer to SDK example at SDK root/boards/evkmimxrt1170/multicore_examples/hello_world

2.2 Boot from CM4
By default, i.MX RT1170 boot from CM7. By fusing BT_CORE_SEL (Bit 12 in 0x960), the chip switches to CM4 as main core.

The steps to boot from CM4 are as below, similar to booting from CM7.

1. CM4 loads CM7 image into target memory.

2. Release CM7 core.

3. CM7 core is running.

The difference is that CM7 vector table is loaded from IOMUXC_LPSR_GPR -> GPR26 and the release from
CM7 is by SRC_SCR_BT_RELEASE_M7_MASK. For more details, see the mcmgr_start_core_internal() function
in mcmgr_internal_core_api_imxrt1170.c.

CM4 cannot access CM7 TCM directly, so if necessary, use eDMA.

 NOTE

As NXP official SDK package only supports CM7 as main core (boot core), the enablement for this case is limited. Do not switch
to CM4 as main core if it is not a must in application.

3 Brief introduction to MU/SEMA4/RDC/XRDC2/Shared memory

3.1 MU
By MU, one core can give a 32-bit message to the other, and trigger interrupt of the other immediately. It supports four bi-directional
channels. Figure 2 shows the MU structure.

NXP Semiconductors
Brief introduction to MU/SEMA4/RDC/XRDC2/Shared memory

i.MX RT1170 Dual Core Application, Rev. 0, 27 April, 2021
Application Note 2 / 12

Figure 2. Figure 2. MU structure on i.MX RT1170

For example, CM7 can give a 0x1234_5678 message to CM4, and then CM4 can catch the 0x1234_5678 message in an
interrupt immediately.

For related SDK example, see SDK root/boards/evkmimxrt1170/driver_examples/mu.

3.2 SEMA4
SEMA4 is typically used for resource protection in multi-core environment, to prevent different masters using one resource at the
same time.

The resource can be a memory block, a peripheral or even an SW object in memory.

The SEMA4 supports up to 16 gates. Only the master who locks the gate successfully, getting the sema4, can use the resource
protected by this SEMA4 gate. Other masters have to wait until the master who owns the gate releases/unlocks this gate.

Figure 3 shows the SEMA4 structure.

NXP Semiconductors
Brief introduction to MU/SEMA4/RDC/XRDC2/Shared memory

i.MX RT1170 Dual Core Application, Rev. 0, 27 April, 2021
Application Note 3 / 12

Figure 3. SEMA4 structure

For related SDK example, see SDK root/boards/evkmimxrt1170/driver_examples.

3.3 RDC/XRDC2
RDC/XRDC2 is used for resource isolation. The resource can be peripheral or memory. The privilege can be read, written or both
read and written.

For example, we can assign LPUART1 to CM7 domain, and then only CM7 core can access LPUART1. If other bus master like
CM4 core accesses LPUART1, violation ISR happens.

Bus masters for RDC/XRDC2 are not limited to CM7 and CM4 core, ENET, LCDIF, USB, CSI and so on, are also
bus masters.

 NOTE

3.4 Shared memory
Shared memory can be accessed by both CM7 and CM4 core. If a data block needs to be passed from one core to the other core,
shared memory with MU can be a good candidate.

The typical working flow is as below:

1. A core write a block data into B core.

2. After Step 1 completes, A core trigger B core MU interrupt, and B core knows there is data block from A core ready.

3. B core read the data block and process.

4. After Step 3 completes, B core trigger A core MU interrupt, and A core knows B core has processed the data block, and
then A core can load the next data block for B core.

If necessary, double buffer and even a queue can be used.

Table 1 lists typical memory which can be used as shared memory.

NXP Semiconductors
Brief introduction to MU/SEMA4/RDC/XRDC2/Shared memory

i.MX RT1170 Dual Core Application, Rev. 0, 27 April, 2021
Application Note 4 / 12

Table 1. Typical memory which can be used for shared memory

Access address for CM7 Access address for CM4 Size

CM4 DTCM 0x2022_0000 0x2000_0000 128 KB

OCRAM1 0x2024_0000 Same as CM7 512 KB

OCRAM2 0x202C_0000 Same as CM7 512 KB

OCRAM1_ECC 0x2034_0000 Same as CM7 64 KB

OCRAM2_ECC 0x2035_0000 Same as CM7 64 KB

In addition, external memory from SEMC, like SDRAM and memory from Flex SPI, can also be used as shared memory
if necessary.

4 Dual-core debug in different tool chain
For the guide to dual-core debugging, see Getting Started with MCUXpresso SDK for MIMXRT1170-EVK (document
MCUXSDKMIMXRT117XGSUG), which is available on MCUXpresso SDK Builder, as shown in Figure 4.

Figure 4. Get SDK getting start guide

See the sections related to multi-core to know how to start a dual-core debugging on RT1170 for MCUXpresso/IAR/Keil/GCC.

This document also introduces some key points for dual core debugging for user reference.

NXP Semiconductors
Dual-core debug in different tool chain

i.MX RT1170 Dual Core Application, Rev. 0, 27 April, 2021
Application Note 5 / 12

https://mcuxpresso.nxp.com

4.1 MCUXpresso
Test environment:

• SDK: 2.9.1 for i.MX RT1170

• MCUXpresso: 11.3.1

• Example: SDK_root\boards\evkmimxrt1170\multicore_examples\hello_world

4.1.1 By DAP-LINK (CMSIS DAP)
Set the board to XIP boot mode by setting SW1 to OFF OFF ON OFF. Make sure there is a known image in the flash which is
working correctly. Some bad images will block debugger connections.

Quick steps for MCUXpresso dual core debug:

1. Import multi-core hello world example, as shown in Figure 5.

Figure 5. Import multi-core hello world example

2. Build the CM4 project.

3. Build the CM7 project.

4. Select the CM7 project.

Figure 6. Select CM7 project

5. Start debug session by click the

6. Select CMSIS DAP debugger for CM7 and CM4 separately in Figure 7.

NXP Semiconductors
Dual-core debug in different tool chain

i.MX RT1170 Dual Core Application, Rev. 0, 27 April, 2021
Application Note 6 / 12

button.

Figure 7. Select CMSIS DAP

7. Then CM7 stops at main.

Figure 8. CM7 core stops at main()

8. Click the

button.

9. CM4 core stops at main.

10. Click the Run button in CM4 core project and both cores are running. The console log is as below:

Hello World from the Primary Core!
Starting Secondary core.
The secondary core application has been started.

11. In the Debug window, both cores are running. We can select either core and stop it for debugging, or if there is user break
point, it hits once the code runs to the breakpoint.

Figure 9. Debug window

4.1.2 By JLink
Set the board to XIP boot mode by setting SW1 to OFF OFF ON OFF.

NXP Semiconductors
Dual-core debug in different tool chain

i.MX RT1170 Dual Core Application, Rev. 0, 27 April, 2021
Application Note 7 / 12

For JLink debugger, un-populate J5-J8. Steps for CMSIS DAP are same, and the below only lists the different steps:

1. Select CM7 project and start debug session.

2. Run CM7 project, while CM4 project will not be attached automatically.

3. Attach CM4 project.

a. Select CM4 project.

b. Click the

4. The dual-core debug is enabled.

Figure 10. Dual-core debug by JLink in MCUXpresso

4.2 IAR
Test environment:

• SDK: 2.9.1 for i.MX RT1170

• IAR: 9.10.1

• Example: SDK_root\boards\evkmimxrt1170\multicore_examples\hello_world

4.2.1 By DAP-LINK (CMSIS DAP)
Quick steps for IAR dual core debug are as below:

1. Build the CM4 project.

2. Build the CM7 project.

3. In the CM7 project, start the debug session by click the

Then both CM7 and CM4 projects are launched for debugging automatically by IAR in multicore mode.

NXP Semiconductors
Dual-core debug in different tool chain

i.MX RT1170 Dual Core Application, Rev. 0, 27 April, 2021
Application Note 8 / 12

button.

button.

Figure 11. IAR work in multicore mode

4. Run CM7 core in the CM7 project.

5. Run CM4 core in the CM4 project.

4.2.2 By JLink
Set the board to XIP boot mode by setting SW1 to OFF OFF ON OFF.

For JLink, IAR does not support multicore mode like what it supports for DAP-Link. We need to open CM7 project and CM4 project
separately for dual-core debugging.

The steps for dual core debug by JLink are as below:

1. Build CM4 and CM7 projects.

2. Start CM7 debug session.

3. Run the CM7 project.

4. Attach CM4 project, as shown in Figure 12.

Figure 12. Attach CM4 in IAR

NXP Semiconductors
Dual-core debug in different tool chain

i.MX RT1170 Dual Core Application, Rev. 0, 27 April, 2021
Application Note 9 / 12

5. Press the button if necessary, and the code stops where it is running.

4.2.3 Debug CM4 core from the first instruction
By default, CM4 core debugging cannot start from the beginning. To debug CM4 from the first instruction, follow steps as below.

1. Add an loop instruction as shown in Figure 13.

Figure 13. Hold CM4 at the first instruction

2. When CM4 core project is loaded correctly, the code breaks here. Move PC to the next instruction by right-clicking next
instruction → Set next statement command.

Figure 14. Right click and select Set next statement command

Now, we can debug from the first application instruction.

4.3 Keil
Test environment:

• SDK: 2.9.1 for i.MX RT1170

• Keil: 5.34

• Example: SDK_root\boards\evkmimxrt1170\multicore_examples\hello_world

4.3.1 By DAP-LINK(CMSIS DAP)
Set the board to XIP boot mode.

Follow the steps as below for dual-core debugging:

1. Build the CM4 project.

2. Build the CM7 project.

3. Start the CM7 debug session.

NXP Semiconductors
Dual-core debug in different tool chain

i.MX RT1170 Dual Core Application, Rev. 0, 27 April, 2021
Application Note 10 / 12

4. Attach the CM4 project by clicking the button.

4.3.2 By Jlink
Set the board to XIP boot mode by setting SW1 to OFF OFF ON OFF.

Follow the steps below for dual-core debugging:

1. Copy evkmimxrt1170\multicore_examples\hello_world\cm7\evkmimxrt1170_connect_cm4_cm7side.jlinkscript
to mdk folder and rename it to JLinkSettings.jlinkscript.

2. Copy evkmimxrt1170\multicore_examples\hello_world\cm4\evkmimxrt1170_connect_cm4_cm4side.jlinkscript
to mdk folder and rename it to JLinkSettings.jlinkscript.

3. Build the CM4 project.

4. Build the CM7 project.

5. Start the CM7 debug session but do not run.

6. Start the CM4 debug session.

7. Run the CM7 project.

4.3.3 Debug CM4 core from the first instruction.
For details, see Debug CM4 core from the first instruction and one difference is to select Set Program Counter after right click.

5 References
• i.MX RT1170 Processor Reference Manual (document IMXRT1170RM)

• Getting Started with MCUXpresso SDK for MIMXRT1170-EVK (document MCUXSDKMIMXRT117XGSUG)

6 Revision history

Revision number Date Substantive changes

0 27 April, 2021 Initial release

NXP Semiconductors
References

i.MX RT1170 Dual Core Application, Rev. 0, 27 April, 2021
Application Note 11 / 12

https://www.nxp.com/webapp/Download?colCode=IMXRT1170RM

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There
are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor
does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided
in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical
experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to
standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce
the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other
open and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no
liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules, regulations, and standards of the intended
application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all
legal, regulatory, and security related requirements concerning its products, regardless of any information or support that
may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com)
that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP,
HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,
MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG,
TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy
Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ
Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are
trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,
ULINK-ME, ULINK-PLUS, ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 27 April, 2021
Document identifier: AN13264

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Boot
	2.1 Boot from CM7
	2.1.1 Basic model for understanding how to boot the second core
	2.1.2 Detailed Boot flow
	2.1.3 Loading CM4 image into target memory

	2.2 Boot from CM4

	3 Brief introduction to MU/SEMA4/RDC/XRDC2/Shared memory
	3.1 MU
	3.2 SEMA4
	3.3 RDC/XRDC2
	3.4 Shared memory

	4 Dual-core debug in different tool chain
	4.1 MCUXpresso
	4.1.1 By DAP-LINK (CMSIS DAP)
	4.1.2 By JLink

	4.2 IAR
	4.2.1 By DAP-LINK (CMSIS DAP)
	4.2.2 By JLink
	4.2.3 Debug CM4 core from the first instruction

	4.3 Keil
	4.3.1 By DAP-LINK(CMSIS DAP)
	4.3.2 By Jlink
	4.3.3 Debug CM4 core from the first instruction.

	5 References
	6 Revision history

