
1 Introduction
High accuracy metering is an essential feature of an electronic power meter
application because inaccurate metering can result in substantial amounts of
lost revenue. Moreover, inaccurate metering can also undesirably result in
overcharging to customers. The common sources of metering inaccuracies, or
error sources in a meter, include the sensor devices, the sensor conditioning
circuitry, the Analog Front-End (AFE), and the metering algorithm executed
either in a digital processing engine or a microcontroller.

The critical task for a digital processing engine or a microcontroller in a
metering application is accurate computation of active energy, reactive energy,
active power, reactive power, apparent power, Root Mean Square (RMS)
voltage, and RMS current. The active and reactive energies are sometimes
referred to as billing quantities. Their computations must be compliant with
IS13779:1999 for class 0.5 or equivalent standard accuracy for a dynamic
range of the meter. For example, 10-60 A.

The remaining quantities are calculated for informative purposes and are referred to as non-billing.

The metering algorithms perform computation in either time or frequency domain. This application note describes an accurate and
scalable metering algorithm that is intended for use in electronic meters also referred to as the Low-Power Real-Time or the LPRT
Metering Algorithm. This algorithm calculates all billing and non-billing quantities in the time domain.

The LPRT Metering Algorithm integrates into an electronic power meter application. The algorithm requires only instantaneous
voltage and current samples provided at constant sampling intervals. The instantaneous voltage and current samples are
measured by an AFE with the help of a resistor divider, in the case of a phase voltage measurement, and a shunt resistor, current
transformer, or a Rogowski coil in the case of a phase current measurement. All current measurement sensors introduce a phase
shift into the current measurement. Therefore, it is necessary to align the phases of the instantaneous voltage and current samples
using either software phase correction method included in the LPRT Metering Algorithm or with the aid of delayed sampling before
using them.

The followings section provides a block diagram and a brief description of the LPRT Metering Algorithm in a one-phase power
meter configuration.

2 Block diagram
Figure 1 shows a block diagram of the LPRT Metering Algorithm in a typical one-phase power meter application. The current
and voltage measurements are represented by i(t) and u(t) signal sources. These sources provide time-aligned instantaneous
current and voltage samples at constant sampling intervals. The new voltage and current samples trigger a recalculation using
some part of the algorithm blocks. After every one second, consolidated recalculation is done using algorithm blocks and then
new billing and non-billing quantities will become available. All calculated quantities are displayed on the LCD and archived in
a database for post-processing and reading through the Automated Meter Reading (AMR) communication interface. In addition,
active and reactive energies also drive their respective pulse output LEDs for calibration and testing purposes.

Contents

1 Introduction......................................1
2 Block diagram..................................1
3 Theory... 2
3.1 Explicit RMS converter.................3
3.2 Average power converter.............3
4 Power meter application

development....................................4
4.1 Metering library............................ 6
5 Accuracy and performance testing

.. 25
6 Summary.......................................29
7 References....................................30
8 Revision history.............................30
9 C-Header file................................. 30
10 Test application............................. 34

AN13259
Low-Power Real-Time Algorithm for Metering Applications
Rev. 0 — 01 June 2021 Application Note

Process
Samples

Active Energy
Computing

Reactive Energy
 Computing

90-Degree Phase
Shifter

P

Q

Vrms

Irms

kVARh

kWh

Current {i(t)}

Voltage {u(t)}

Power
Converters

RMS Converters

Figure 1. Block diagram of the LPRT metering algorithm

The algorithm consists of several blocks as described below.

The first block in the signal flow is sample processing. This block removes offset from the instantaneous voltage and current
samples and returns the order of voltage waveform for single or 3 three-phase systems. If the Direct Current (DC) offset is stable
and deterministic, DC is removed by simple subtraction. However, in a real application, most analog components unintentionally
insert a DC offset as part of the signal conditioning, amplification, and analog-to-digital circuits. The DC offset of the analog circuits
is not constant but varies with time and other factors. Due to this fact, the first block calculates the DC offsets periodically and
thereafter removes them from the alternating voltage and current measurements.

The second block is essential for reactive energy calculation and is called the 90-degree phase shifter. This block implements a
sample buffering method to pick up the phase-shifted samples.

The following blocks in the signal flow diagram are the active and reactive energy computing and energy counter updater. These
blocks calculate active and reactive energies.

The RMS converters transform alternating voltage and current waveforms into RMS values. This method for the RMS value
computation requires the numerical square, average, and square root functions is called with the new samples of the analyzed
signal and at the end of no of periods of the analyzed fundamental frequency. For details, see Explicit RMS converter.

Finally, the average power converters calculate the active and reactive powers from the new unbiased phase voltage and phase
current samples. This power calculation method leverages mathematical calculations based on the theory described in this
document, For details, see Average power converter.

3 Theory
The LPRT Metering Algorithm comprises several blocks. The calculations performed by the algorithm are based on elementary
calculations, such as addition, subtraction, integration, multiplication, and square root.

NXP Semiconductors
Theory

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 2 / 37

3.1 Explicit RMS converter
The Root Mean Square (RMS) is a fundamental measurement of the magnitude of an alternating signal. In mathematics, the RMS
is known as the standard deviation, which is a statistical measure of the magnitude of a varying quantity. It measures only the
alternating portion of the signal as opposed to the RMS value, which measures both the direct and alternating components. In
electrical engineering, the RMS or effective value of a current (IRMS) is, by definition, such that the heating effect is the same for
equal values of alternating or direct current.

The basic equation for straightforward computation of the RMS current from the signal function is:

Equation 1. Computation of the RMS current from the signal function

where, i(t) denotes the function of the analyzed waveform in the time domain, and the period T is the time it takes for one
complete signal cycle to be produced.

1/T X2 i(t)2 AVG[i(t)2]i(t) IRMS

Σ

Figure 2. Explicit RMS current converter

This method for computing the RMS value calls the numerical square and summing functions every time a new sample of
the analyzed signal is obtained. At the end, the number of periods per second of the analyzed signal, average, and square
root functions are utilized to compute RMS values. Figure 6 shows the explicit RMS converter implementation for RMS
current computation.

The section Average power converter describes a similar method for the calculation of active and reactive power.

3.2 Average power converter
As opposed to the RMS current, where the heating effect is the same for equal values of alternating or direct current, the RMS
value of power is not equivalent to heating power and it does not represent any useful physical quantity. The equivalent heating
power of a waveform is the average power and can be calculated using the average power converter. This converter can calculate
both the active (P) and reactive (Q) powers.

The active power (P) is measured in watts (W)and is expressed as the product of the voltage and the in-phase component of the
alternating current. The average power of any whole number of cycles is the same as the average power value of just one cycle.
You can find the average power of a very long-duration periodic waveform by calculating the average value of one complete cycle.

Equation 2. Calculating the average value

where, u(t) and i(t) denote alternating voltage and current waveforms, and the time T is the waveform period.

Figure 3 shows tha the power is calculated by multiplying instantaneous voltage and current samples.

NXP Semiconductors
Theory

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 3 / 37

X P=AVG [p(t)]

u(t)

i(t)

p(t)
Σ , 1/T

Figure 3. Average active power converter

The LPRT Metering Algorithm uses the average power converter for the calculation of active power (P) and reactive power (Q).
The reactive power (Q) is measured in units of volt-amperes-reactive (VAR) and is the product of the voltage and current and the
sine of the phase angle between them. The reactive power (Q) is calculated in the same manner as active power (P), but in reactive
power the voltage input waveform is 90 degrees shifted for the current input waveform.

X P=AVG [p(t)]

u(t)

i(t)

p(t)
Σ , 1/T

90-Degree
Phase Shifter

Figure 4. Average reactive power converter

LPRT Metering Algorithm uses buffering and weighted average to phase shift the voltage input waveform by 90 degrees for the
current input waveform. The shifted waveforms are then used for calculating the reactive power (Q) and reactive energy (kVARh).

4 Power meter application development
Mastering a power meter application and achieving the accuracy classes with minimal computational resources and a low-power
budget might be a never-ending process. More than designer diligence, usually it is the time to market that drives power meter
development milestones. The metrology portion of the power meter must be robust and behave deterministically under all
conditions. Therefore, to accelerate power meter development, the designers may familiarize themselves with algorithms offered
by the semiconductor vendors and select and adopt the best solution.

Besides the LPRT Metering Algorithm theory, this section also describes the software functions which serve as an interface into
the algorithm and its capabilities. All software functions are built into the metering library that must be integrated within the firmware
application during project compilation and linking. These software functions are called at the fixed sampling intervals.

The application note is delivered with the metering library and test applications. The library is provided in object
format and the test applications in C-source code.

 NOTE

NXP Semiconductors
Power meter application development

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 4 / 37

#include "Metering1Ph.h“

void main(void)
{
/* initialize AFE */
..
while(1)
{
/* MetDue is set to true every 1 second,
but not during battery/single wire modes */
if (mlib1phdata.MetDue == TRUE)
{
/* Do metering calculations */
DoMetering1Ph();

/* Calibration */
if (mlib1phdata.CalibState == CALIBSTATE_PROGRESS)
{

DoCalibration(&CalibPoint);
}
}
..
Display();

}
}

void V_Callback(AFE_CH_CALLBACK_TYPE type, int32 result)
{
/* read conversion samples, subtract offsets */
..
DoPower1Ph();

}

METERLIBLPRT1PH_DATA

(internal data
structure)

Submitting raw samples of voltage
and currents after removing

DC offsets

Calculate raw V, I square samples,
Integrate.

Signal MetDue after all samples are
received for 1 second

Calculate non-billing and
billing parameters

Read non-billing and
billing parameters

Application SW Metering library - Metering1Ph.h

Figure 5. Power meter development and user interactions

The software required to perform basic metering functionality is divided into two parts:

• Application software – This part includes configuration of the on-chip peripheral modules for high-precision analog
measurement and low-jitter pulse output generation, reading phase voltage and current samples, and passing them to
the metering library functions.

• Metering library – This comprises a set of highly optimized functions for calculating the billing and non-billing quantities
from the measured phase voltage and current samples.

Figure 5 depicts the usage of the metering library in a simple one-phase power meter test application.

Initially, necessary hardware initialization, including the AFE, is performed in the main() function.

Consecutively, all processing takes place in the Callback() interrupt service routine (ISR). In this routine, the phase voltage and
phase current samples are read from AFE and passed to the metering algorithm via the DoPower1Ph() function.

DoPower1Ph() internally sets the variable ‘MetDue’ of the tMETERLIBLPRT1PH_DATA data structure once about every second.
At this point, the application should call DoMetering1Ph() function to calculate all non-billing and billing parameters. Practically,
these functions shall be called at least 1200 times per second to calculate active and reactive energies in the frequency bandwidth
up to the 10th harmonic. The increasing calling frequency of these functions makes sense only if the billing quantities need to be
calculated over a higher frequency bandwidth. In a standard power meter application, the frequency bandwidth of calculations up
to 10th harmonics is usually sufficient and a further increasing sample rate will not bring any advantage.

Finally, the information stored within the metering library’s internal data structure can be read by the DoMetering1Ph() function.
This function is usually called from the main() function or a low-frequent software task. The calling frequency should be
once every second, which is indicated by the variable ‘MetDue’ of the tMETERLIBLPRT1PH_DATA data structure. By calling
DoMetering1Ph(), the variable ‘MetDue’ of the tMETERLIBLPRT1PH_DATA is negated internally and will be set again after 1
second, as described above.

Figure 5 shows that the metering library operates almost independently, it only requires that conversion samples of the phase
voltage and phase current waveforms be provided by the user application. Due to this design methodology, the library can be very
easily incorporated into various power meter applications.

NXP Semiconductors
Power meter application development

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 5 / 37

The metering library support one-phase and three-phase power meter applications. These deliverables are discussed in the
following sections.

4.1 Metering library
This section describes the metering library implementation of the LPRT Metering Algorithm. The library comprises several
functions with a unique Application Programming Interface (API) for the most frequent power meter topologies; that is, one-phase
and three-phase.

The IAR Embedded Workbench for Arm® (version 7.50.3) tool is used to obtain performance data for all
library functions. The code is compiled with full optimization for execution speed for the MKM35Z512 an Arm®

Cortex®-M0+ core-based target [4]. The device is clocked at 12 MHz using the Phase-Locked Loop(PLL) for
one-phase power meter and 24 MHz Frequency-Locked Loop (FLL) module operating in FLL Engaged External
(FEE) mode for three-phase power meter, driven by an external 32.768 kHz crystal. Measured execution times
were recalculated to core clock cycles. The flash and RAM requirements are represented in bytes.

 NOTE

Figure 6 shows a simple block diagram of the computing process, split by the functions realized by the LPRT metering library in
a one-phase power meter application.

NXP Semiconductors
Power meter application development

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 6 / 37

METERLIBLPRT1PH_DATA

X

VsampS[n]

ActPowerSum1Ph

ReactPowerSum1Ph

VrmsSum

IrmsSum

ActPowerSum1Ph

x Calibration Coefficient

DoPower1Ph()

DoMetering1Ph()

X2

X2

ActPower

ReactPower

Vrms

Irms

AppPower

VsampS[n]VsampS[n]

IsampS[n] IsampS[n]

IsampS[n]

∫

VsampS[n]

X

IsampS[n]

90-Degree
Phase Shifter

∫

VsampS[n] ∫

IsampS[n] ∫

1/T

1/T x Calibration Coefficient

ActPowerSum1Ph

ReactPowerSum1Ph

VrmsSum

IrmsSum

ActPowers
ReactPowers

1/T x Calibration Coefficient

1/T √ x Calibration Coefficient

ReactPowerSum1Ph
VrmsSum
IrmsSum

√

(P2 + Q2)√

Figure 6. Block diagram of the one-phase power meter computing using the LPRT library

A detailed description of the exported data types of the libraries, data types of the library functions, and APIs, is given in the
following subsections.

4.1.1 Core architecture and compiler support
The LPRT metrology library supports Arm® Cortex®-M0+ core.

The following table lists all the necessary header files, library files, and their locations, relative to the installation folder. Add these
files and paths into your project workspace to successfully integrate the LPRT library into your application.

NXP Semiconductors
Power meter application development

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 7 / 37

Figure 7. LPRT library integration

4.1.2 LPRT library function API
This section summarizes the API functions in the LPRT metering library libmeterliblprt_cmp0p.a, meterlprtlib_cm0p_iar.a,
or meterlprtlib_cm0p_mdk.lib. Prototypes of all functions and internal data structures are declared in the Metering1Ph.h,
Calibration1Ph, Metering3Ph.h, and Calibration3Ph.h header files.

4.1.2.1 One-phase power meter

• void MeterLibLPRT1Ph_InitParams(tMETERLIBLPRT1PH_DATA *mlib,
uint16 nSamples, uint16 samplesForOffset,
float *pFreqDependentPhErr, uint8 doFundamental);

Initializes meter library data structure object tMETERLIBLPRT1PH_DATA with user-defined parameters.

• void DoPower1Ph(void);

Process voltage and current samples for billing and non-billing parameter calculations.

• void DoMetering1Ph(void);

Calculate billing and non-billing parameters and finalize, once every second.

• void CorrectAppPhAngle1Ph(uint8 currenttoUse);

LPRT library provides this callback function to the application to correct the phase angle, if required.

• void FudgeParameters1Ph(void);

LPRT library provides this callback function to the application to tune up the non-billing and billing parameters.

• void EnableGain(void);

LPRT library provides this callback function to the application to enable gain of the current channel.

NXP Semiconductors
Power meter application development

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 8 / 37

• void DisableGain(void);

LPRT library provides this callback function to the application to disable gain of the current channel.

• void DoCalibration1Ph(tCalibPoint1Ph *calibpoint);

LPRT library provides this callback function to the application to start calibration of the meter.

4.1.2.2 Three-phase power meter

• void MeterLibLPRT3Ph_InitParams(tMETERLIBLPRT3PH_DATA *mlib,
uint16 nSamples, uint16 samplesForOffset,
float *pFreqDependentPhErr, uint8 doFundamental);

Initializes meter library data structure object tMETERLIBLPRT3PH_DATA with user-defined parameters.

• void ProcSamples3Ph(uint8 channel);

Process each phase voltage, current samples for a phase in a three-phase power meter.

• void DoPower3Ph(void);

Process voltage and current samples for billing and non-billing parameter calculations.

• void DoMetering3Ph(void);

Calculate billing and non-billing parameters and finalize, once every second.

• void CorrectAppPhAngle3Ph(uint8 currenttoUse);

LPRT library provides this callback function to the application to correct the phase angle.

• void FudgeParameters3Ph(void);

LPRT library provides this callback function to the application to tune up the non-billing and billing parameters.

• void DoCalibration3Ph(tCalibPoint3Ph *calibpoint);

LPRT library provides this callback function to the application to start calibration of the meter.

4.1.3 Data structures
This section describes the data structures for accessing those state variables calculated by the LPRT metering library.

4.1.3.1 tMETERLIBLPRT1PH_DATA

Structure containing LPRT metering library parameters for a one-phase power meter.

4.1.3.1.1 Reference

#include “Metering1Ph.h”

NXP Semiconductors
Power meter application development

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 9 / 37

4.1.3.1.2 Data fields

Type Name Description

float Vrms Calculated RMS value of the voltage

float Irms[nCURRENTS] Calculated RMS currents - Phase and neutral

float VrmsNoFudge RMS value of voltage w/o compensation

float IrmsNoFudge[nCURRENTS] RMS value of currents w/o compensation

float PFMetImax Calculated Power factor value during forced Imax condition

float ActPowers[nCURRENTS] Calculated active power

float ActPowersNoFudge[nCURRENTS] Calculated active power value w/o compensation

float ReactPowers[nCURRENTS] Calculated reactive power

float AppPowers[nCURRENTS] Calculated apparent power

float AppPowersNoFudge[nCURRENTS] Calculated apparent power w/o compensation

float PowerFactors[nCURRENTS] Calculated power factor

float Frequency Calculated frequency

unsigned short int nSamples No of voltage/current samples per second - application to load

unsigned char MetDue Indicates metrology processing is due for a second

unsigned char MetOnImax Indication to do metering with Imax condition - application
to load

signed char ISigns[nCURRENTS] Forward/reverse sign of currents, 1 = forward, -1 = reverse

unsigned char ReactSampleIndex Reactive sample index – internal

unsigned char CurToUse Indicates which current has higher value - Phase/neutral

unsigned short int NSamps Indicates current sample index ~ [0-(nSamples-1)]

int VOffset Calculated Voltage offset

int * pVQCycleSamps 90-degree phase-shifted voltage samples buffer pointer
– internal

int IOfstSum[nCURRENTS] Current offset sum – internal

int IOffsets[nCURRENTS] Calculated current offsets

int VSampsS Offset compensated voltage sample

Table continues on the next page...

NXP Semiconductors
Power meter application development

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 10 / 37

Table continued from the previous page...

Type Name Description

int VOfstSum Voltage offset sum – internal

unsigned long
long VrmsSums[nBUFFERS] Square sums of the voltage samples – internal

unsigned long
long IrmsSums[nBUFFERS][nCURRENTS] Square sums of the current samples – internal

unsigned long
long RelaySenseSums[nBUFFERS] Square sums of the relay sense voltage samples – internal

int VRelayOfstSum Relay sense voltage offset sum – internal

int VRelayOffset Calculated relay voltage offset

float IBasic Basic current of the meter - application to load

float IMax Maximum current rating of the meter - application to load

float VHystHigh High threshold value of voltage to enable gain for the current
measurement - application to load

float VHystLow Low threshold value of voltage to disable gain for the current
measurement - application to load

float MaxPower Maximum value of calculated power to restrict power/energy
count calculation - application to load

int ISamps[nCURRENTS] Offset compensated current samples

float PhAngles[2] Calculated Phase angle

unsigned char MetRecordingType Power/energy recording type
METREC_FWDED/METREC_NET

unsigned char WBuffer Buffer index of voltage/current samples buffers for a
second period

unsigned char FirstTime internal use

unsigned char IsGainEnabled Returns current gain is status. TRUE = enabled, FALSE
= disabled

unsigned char LastGainStatus Related to current gain status – internal

unsigned char IncEnerPtrs[3] Indicated energy pointer types active, reactive and apparent
– internal

unsigned long int MetEnergyCounts[3] Calculated energy counts for 50 periods

Table continues on the next page...

NXP Semiconductors
Power meter application development

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 11 / 37

Table continued from the previous page...

Type Name Description

unsigned long
long MetEnergySecCounts[3] Calculated energy counts for last 1 second

unsigned char DoFundamental Indicate whether fundamental frequency calculation to be
done - application to load

unsigned char fSampNo Used for fundamental frequency-related calculations – internal

unsigned char CalibState Holds calibration state CALIBSTATE_IDLE,
CALIBSTATE_PROGRESS, CALIBSTATE_COMPLETE

4.1.3.2 tCalibStruct1Ph

Structure containing LPRT metering library calibration parameters for one-phase meter.

4.1.3.2.1 Reference

#include “Metering1Ph.h”
#include “Calibration1Ph.h”

4.1.3.2.2 Data fields

Type Name Description

unsigned long int CalibSign Defines calibration status

float FrequencyCoeff Frequency coefficient for calibration

float VCoeff Calibration Voltage coefficient

float ICoeff[nCURRENTS] Calibration Current coefficient with gain enabled

float ActPowerCoeff[nCURRENTS] Phase active power coefficient

float PhAngle[nCURRENTS] Phase error coefficient

float VFCoeff Calibration Voltage coefficient fundamental

float IFCoeff[nCURRENTS] Calibration Current coefficient fundamental

float ICoeff_LP Calibration Current coefficient with gain disabled

float ActPowerCoeff_LP Calibration power coefficient with gain disabled

signed char RTCCompValue RTC crystal compensation value

unsigned char RTCCompInterval RTC crystal compensation interval

Table continues on the next page...

NXP Semiconductors
Power meter application development

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 12 / 37

Table continued from the previous page...

Type Name Description

unsigned char PhCalibDone Phase calibration done

unsigned char NuCalibDone Neutral calibration done

unsigned short int CRC CRC

4.1.3.3 tCalibPoint1Ph

Structure containing LPRT metering library calibration point parameters for a one-phase power meter.

4.1.3.3.1 Reference

#include “Metering1Ph.h”
#include “Calibration1Ph.h”

4.1.3.3.2 Data fields

Type Name Description

float Voltage Calibration voltage - application to load

float Current Calibration current - application to load

float PhAngle Calibration Phase angle in radians - application to load

float PowerFactor Calibration power factor - application to load

float Frequency Calibration frequency - application to load

float CalibPhase Calibration CURRENT_PHASE or CURRENT_NEUTRAL - application to load

4.1.3.4 tMETERLIBLPRT3PH_DATA

Structure containing LPRT metering library parameters for a three-phase power meter.

4.1.3.4.1 Reference

#include “Metering3Ph.h”

4.1.3.4.2 Data fields

Type Name Description

float Vrms[nVPHASES] Calculated RMS value of the voltages

Table continues on the next page...

NXP Semiconductors
Power meter application development

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 13 / 37

Table continued from the previous page...

Type Name Description

float Irms[nIPHASES] Calculated RMS currents

float VrmsNoFudge[nIPHASES] RMS value of voltages w/o compensation

float IrmsNoFudge[nIPHASES] RMS value of currents w/o compensation

float Frequency Calculated frequency

unsigned short int nSamples No of voltage/current samples per second - application to load

unsigned char ReactSampleIndex Reactive sample index – internal

short int * pVQCycleSamps[nVPHASES] 90-degree phase-shifted voltage samples buffer pointer – internal

unsigned long
long VrmsSums[2][nVPHASES] Square sums of the voltage samples – internal

unsigned long
long IrmsSums[2][nIPHASES] Square sums of the current samples – internal

unsigned char MetDue Indicates metrology processing is due for a second

unsigned char MetOnImax Indication to do metering with Imax condition - application to load

short int VSampsS[nVPHASES] Offset compensated voltage samples

unsigned long int VOfstSum[nVPHASES] Voltage offset sums – internal

int IOfstSum[nIPHASES] Current offset sums – internal

int IOffsets[nIPHASES] Calculated current offsets

unsigned short int VOffsets[nVPHASES] Calculated Voltage offsets

int ISamps[nIPHASES] Offset compensated current samples

signed char ISigns[nVPHASES] Forward/reverse sign of currents, 1 = forward, -1 = reverse

float ActPowers[nVPHASES] Calculated active power values

float ReactPowers[nVPHASES] Calculated reactive power values

float AppPowers[nVPHASES] Calculated apparent power values

float PhPowerFactors[nVPHASES] Calculated power factor values of three-phases

float PowerFactor Calculated total power factor

float Powers[nPOWERS_3PH] Calculated powers values per second

Table continues on the next page...

NXP Semiconductors
Power meter application development

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 14 / 37

Table continued from the previous page...

Type Name Description

float PhAngles[nVPHASES] Calculated Phase angles

float AppPowersNoFudge[nVPHASES] Calculated apparent power values w/o compensation

float ActPowerNoFudge Calculated total active power value w/o compensation

float AppPowerNoFudge Calculated total apparent power value w/o compensation

float PhPFNoFudge[nIPHASES] Calculated power factors w/o compensation

float IBasic Basic current of the meter - application to load

float IMax Maximum current rating of the meter - application to load

float MaxPower Maximum value of calculated power to restrict power/energy count
calculation - application to load

unsigned char MetRecordingType Power/energy recording type METREC_FWDED/METREC_NET

unsigned char WBuffer Buffer index of voltage/current samples buffers for a second period

unsigned char IncEnerPtrs[3] Indicated energy pointer types active, reactive and apparent – internal

unsigned long int MetEnergyCounts[3] Calculated energy counts for 50 periods

unsigned long
long MetEnergySecCounts[3] Calculated energy counts for last 1 second

unsigned char DoFundamental Indicate whether fundamental frequency calculation to be done -
application to load

unsigned char CalibState Holds calibration state CALIBSTATE_IDLE,
CALIBSTATE_PROGRESS, CALIBSTATE_COMPLETE

4.1.3.5 tCalibStruct3Ph

Structure containing LPRT metering library calibration parameters for a three-phase meter.

4.1.3.5.1 Reference

#include “Metering3Ph.h”
#include “Calibration3Ph.h”

NXP Semiconductors
Power meter application development

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 15 / 37

4.1.3.5.2 Data fields

Type Name Description

unsigned long int CalibStatus Defines calibration status = 0xFFFFFFFF for phases, 0x0000FFFF
for neutral

float VCoeff[nVPHASES] Calibration Voltage coefficient for all phases

float ICoeff[nIPHASES] Calibration Current coefficient for all phases

float ActPowerCoeff[nVPHASES] Phase active power coefficient for all phases

float FrequencyCoeff Frequency coefficient for calibration

float PhAngle[nVPHASES] Phase error coefficient.

float VFCoeff[nVPHASES] Calibration Voltage coefficient fundamental

float IFCoeff[nIPHASES] Calibration Current coefficient fundamental

signed char RTCCompValue RTC crystal compensation value

unsigned char RTCCompInterval RTC crystal compensation interval

unsigned short int CRC CRC

4.1.3.6 tCalibPoint3Ph

Structure containing LPRT metering library calibration point parameters for a three-phase power meter.

4.1.3.6.1 Reference

#include “Metering3Ph.h”
#include “Calibration3Ph.h”

4.1.3.6.2 Data fields

Type Name Description

float Voltage Calibration voltage - application to load

float Current Calibration current - application to load

float PhAngle Calibration Phase angle in radians - application to load

float PowerFactor Calibration power factor - application to load

float Frequency Calibration frequency - application to load

NXP Semiconductors
Power meter application development

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 16 / 37

4.1.4 MeterLibLPRT_InitParams
These functions initialize the LPRT meter library along with few application-specific parameters. It also resets most of the
metering library parameters of structure object tMETERLIBLPRT1PH_DATA and tMETERLIBLPRT3PH_DATA once before
starting metering application functioning.

4.1.4.1 Syntax

#include “Metering1Ph.h”
void MeterLibLPRT1Ph_InitParams(tMETERLIBLPRT1PH_DATA *mlib,
 uint16 nSamples, uint16 samplesForOffset,
 float *pFreqDependentPhErr, uint8 doFundamental);
#include “Metering3Ph.h”
void MeterLibLPRT3Ph_InitParams(tMETERLIBLPRT3PH_DATA *mlib,
 uint16 nSamples, uint16 samplesForOffset,
 float *pFreqDependentPhErr, uint8 doFundamental);

Arguments

Type Name Direction Description

tMETERLIBLPRT1PH_DATA * mlib in/out Pointer to LPRT library data
structure tMETERLIBLPRT1PH_DATA.

tMETERLIBLPRT3PH_DATA * Mlib in/out Pointer to LPRT library data
structure tMETERLIBLPRT3PH_DATA.

unsigned short int nSamples In Number of voltage/current samples per second.

unsigned short int samplesForOffset in/out Number of samples per second to be used for
offset calculation.

float * pFreqDependentPhErr in/out Application-defined frequency-dependent phase
correction values.

unsigned char doFundamental in
Application-defined initialization if the metering
library should perform fundamental calculation-
related tasks.

4.1.4.2 Return

None.

4.1.4.3 Description

These functions initialize tMETERLIBLPRT1PH_DATA or tMETERLIBLPRT3PH_DATA metering structure object with few
application-specific parameters. Typically to be called once in application run cycle.

4.1.5 DoPower
This function does a part of RMS and power calculation per the voltage and current samples. Also, does the offset calculations.
Once this function finished all samples processing for 50 periods (50 Hz signal), metering application specific MetDue is set to
'TRUE' value.

NXP Semiconductors
Power meter application development

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 17 / 37

4.1.5.1 Syntax

#include “Metering1Ph.h”
void DoPower1Ph (void);
#include “Metering3Ph.h”
void DoPower3Ph (void);

4.1.5.2 Arguments

These functions do not use any arguments.

4.1.5.3 Return

None.

4.1.5.4 Description

These functions must be called after 1 set of voltage, current samples are received.

Voltage samples are squared and integrated for 1 second and stored into VrmsSum.

Current samples are squared and integrated for 1 second and stored into IrmsSum.

Voltage and in-phase current samples are multiplied, integrated for 1 second, and stored into ActPowerSum.

For reactive power, current samples and voltage samples shifted by 90-degree phase shifter are multiplied, integrated for 1
second, and stored into ReactPowerSum.

METERLIBLPRT_DATA

X

VsampS[n]

X2

X2

IsampS[n]

∫

VsampS[n]

X

IsampS[n]

90-Degree
Phase
 Shifter

∫

VsampS[n] ∫

IsampS[n] ∫

METERLIBLPRT_DATA

VrmsSum

IrmsSum

ActPowerSum

ReactPowerSum

Figure 8. DoPower function processing block diagram

90-degree phase-shifted samples are derived by storing raw voltage samples in a circular buffer for a quarter cycle period of the
input fundamental frequency. To derive the quarter cycle phase shifted sample of incoming voltage samples stream, 2 adjacent
samples are identified from the circular voltage buffer and are linearly interpolated.

NXP Semiconductors
Power meter application development

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 18 / 37

VQCycleSamps[0]

VQCycleSamps[1]

VQCycleSamps[2]

VQCycleSamps[N-2]

VQCycleSamps[N-1]

90 degree
phase shifted
Voltage sample

Weighted Averaging

Figure 9. 90-degree Phase Shifter for voltage samples

Weighted averaging of samples of the originally non-linear voltage signal will introduce error in power/energy calculation but this
process is simple and fast. This is suitable for the low operating speed of meter MCU and found adequate for up to class 0.5 of
energy meter applications.

t0 t1t

v0

v1

v Weighted
average

samples time

Voltage sample value

Original curve

(t1 – t)(t - t0)

Figure 10. Weighted averaging of voltage samples

4.1.5.5 Performance

Function Code size Stack size Clock cycles

DoPower1Ph 486 15 2825

DoPower3Ph 1132 10 1919

NXP Semiconductors
Power meter application development

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 19 / 37

4.1.6 DoMetering
These functions recalculate all billing and non-billing quantities for the last 1 second period.

4.1.6.1 Syntax

#include “Metering1Ph.h”
void DoMetering1Ph (void);
#include “Metering3Ph.h”
void DoMetering3Ph (void);

4.1.6.2 Arguments

None.

4.1.6.3 Return

None.

4.1.6.4 Description

The DoMetering() function must be called after tMETERLIBLPRT_DATA -> MetDue is set to 'TRUE' value by DoPower() function.
DoMetering() function internally clears tMETERLIBLPRT_DATA -> MetDue to 'FALSE'.

METERLIBLPRT_DATA METERLIBLPRT_DATA

ActPower

ReactPower

Vrms

Irms

ReactPower
ActPower AppPower

x Calibration Coefficient1/T

1/T x Calibration Coefficient

ActPowerSum

ReactPowerSum

VrmsSum

IrmsSum

1/T x Calibration Coefficient

1/T √ x Calibration Coefficient

√

(P2 + Q2)√

Figure 11. DoMetering function processing block diagram

In DoMetering() functions, processed outputs of DoPower() functions are finalized for re-computation of non-billing and billing
parameters, once every second.

The active energy in a typical one-phase power meter application is computed as an infinite integral of the unbiased instantaneous
phase voltage u(t) and phase current i(t) waveforms.

Equation 3. Computing active energy

NXP Semiconductors
Power meter application development

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 20 / 37

Calculated active power of one second is converted to active energy counters as per the following equations.

 MetEnergySecCounts 0 = 2 28 3600 x ActPower
Equation 4. Calculated active power

0 ≤ MetEnergySecCounts 0 ≤ 2 28 − 1
Equation 5. Calculated active energy counters

Power values are multiplied with 2(28) to retain high-resolution decimal values. MetEnergySecCounts are recalculated every
power integration period of ‘1’ second and must be accumulated by the application only.

The reactive energy in a typical one-phase power meter is computed as an infinite integral of the unbiased instantaneous shifted
phase voltage u(t-90°) and phase current i(t) waveforms.

Equation 6. Reactive energy

Calculated reactive power of one second is converted to reactive energy counters as per the following equations.

MetEnergySecCounts 1 = 2 28 3600 x ReactPower
Equation 7. Calculated reactive power

0 ≤ MetEnergySecCounts 1 ≤ 2 28 − 1
Equation 8. Calculated reactive energy counters

These functions retrieve apparent power (S) from the internal data structure. The total power in an AC circuit (both absorbed and
dissipated) is referred to as the total apparent power (S). The apparent power is measured in the units of volt-amperes (VA). For
any general waveforms with higher harmonics, the apparent power is given by the product of the RMS phase current and RMS
phase voltage.

Equation 9. Apparent power given by a product

For sinusoidal waveforms with no higher harmonics, the apparent power can also be calculated using the power triangle method,
as a vector sum of the active power (P) and reactive power (Q) components.

Equation 10. Power triangle method

Calculated apparent power of one second is converted to energy counters as per the following equations.

MetEnergySecCounts 2 = 2 28 3600 x AppPower
Equation 11. Calculated apparent power

NXP Semiconductors
Power meter application development

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 21 / 37

0 ≤ MetEnergySecCounts 2 ≤ 2 28 − 1
Equation 12. Calculated apparent energy counters

The non-billing parameters such as Vrms, Irms, ActPower, ReactPower and billing parameters such as MetEnergySecCounts[]
and are stored in the metering library data structure objects tMETERLIBLPRT_DATA and are directly read by the
metering application.

4.1.6.5 Performance

Function Code size Stack size Clock cycles

DoMetering1Ph 2582 50 165847

DoMetering3Ph 2636 46 203837

4.1.7 CorrectAppPhAngle
These functions provide an option to further tune-up phase angle correction by the user application.

4.1.7.1 Syntax

#include “Metering1Ph.h”
void CorrectAppPhAngle1Ph (uint8 currenttoUse);
#include “Metering3Ph.h”
void CorrectAppPhAngle3Ph (uint8 currenttoUse);

4.1.7.2 Arguments

Type Name Direction Description

Unsigned char currentt
oUse In

Phase number CURRENT_PHASE or CURRENT_NEUTRAL for a one-
phase power meter.

Phase number V_R_PHASE, V_Y_PHASE, or V_B_PHASE for a three-
phase power meter.

4.1.7.3 Return

None.

4.1.7.4 Description

CorrectAppPhAngle() functions are called from DoMetering () library functions.

4.1.8 FudgeParameters
These functions are used to clean up any leakage current etc. calculated as per the threshold values defined in the application etc.

NXP Semiconductors
Power meter application development

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 22 / 37

4.1.8.1 Syntax

#include “Metering1Ph.h”
void FudgeParameters1Ph (void);
#include “Metering3Ph.h”
void FudgeParameters3Ph (void);

4.1.8.2 Arguments

None.

4.1.8.3 Return

None.

4.1.8.4 Description

FudgeParameters() functions are called from DoMetering() library functions.

4.1.9 ChkVolLvl
This function is called from the metering library to allow an application to check current phase voltage and indicate the
metering library to switch to low-power mode measurements of non-billing parameters through tMETERLIBLPRT1PH_DATA ->
IsGainEnabled parameter.

4.1.9.1 Syntax

#include “Metering1Ph.h”
void ChkVolLvl (void);

4.1.9.2 Arguments

None.

4.1.9.3 Return

None.

4.1.9.4 Description

ChkVolLvl is called from DoMetering1Ph() metering function.

4.1.10 DisableGain
This function is called from the metering library during the calibration phase only to calculate calibration coefficients during
low-power operation and current gain is disabled. The application should also call this function in the context of ChkVolLvl() if the
current RMS voltage is higher than tMETERLIBLPRT1PH_DATA -> VHystLow. These functions recalculate active power (P).

4.1.10.1 Syntax

#include “Metering1Ph.h”
void DisableGain (void);

4.1.10.2 Arguments

None.

NXP Semiconductors
Power meter application development

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 23 / 37

4.1.10.3 Return

None.

4.1.10.4 Description

DisableGain() is called from DoMetering1Ph() metering function.

4.1.11 EnableGain
This function is called from the metering library during the calibration phase only to calculate calibration coefficients after a
low-power operation and current gain is enabled. The application should also call this function in the context of ChkVolLvl() if the
current RMS voltage is higher than tMETERLIBLPRT1PH_DATA -> VHystHigh.

4.1.11.1 Syntax

#include “Metering1Ph.h”
void EnableGain (void);

4.1.11.2 Arguments

None.

4.1.11.3 Return

None.

4.1.11.4 Description

EnableGain() is called from DoMetering1Ph() metering function.

4.1.12 CalibMemwrite
These functions are called from the metering library to allow an application to save CalibStruct data structure objects - once the
calibration is done.

4.1.12.1 Syntax

#include “Metering1Ph.h”
void CalibMemwrite1Ph (void);
#include “Metering3Ph.h”
void CalibMemwrite3Ph (void);

4.1.12.2 Arguments

None.

4.1.12.3 Return

None.

4.1.12.4 Description

CalibMemwrite() is called by the DoMetering() metering function after calibration operation is performed.

NXP Semiconductors
Power meter application development

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 24 / 37

4.1.13 ProcSamples3Ph
This function Process three-phase each phase voltage, current samples for a phase.

4.1.13.1 Syntax

#include “Metering3Ph.h”
void ProcSamples3Ph (void);

4.1.13.2 Arguments

Type Name Direction Description

unsigned char channel in Phase number of three phases.

4.1.13.3 Return

None.

4.1.13.4 Description

ProcSamples3Ph() function is utilized to process per phase voltage and current samples of three-phase meter application.

4.1.13.5 Performance

Table 1.

Function Code size Stack size Clock cycles

ProcSamples3Ph 170 20 218

5 Accuracy and performance testing
The performance of the metering library was tested on the one-phase Kinetis M power meter reference design [1]. The
MKM35Z512 device (32-bit Kinetis M MCU) at the heart of the reference design is based on the Arm Cortex-M0+ core. This
efficient processor core, with support for 32-bit mathematics, enables fast execution of the LPRT Metering Algorithm.

Table 2. Accuracy and performance testing

Single-phase KM3x power meter specification

Type of meter Single-phase residential

Type of measurement 4-quadrant

Metering algorithm Low-Power Real-Time (LPRT)

Precision (accuracy) IS13779 class 0.5 %

Nominal Voltage 240 VAC ± 20 %

Table continues on the next page...

NXP Semiconductors
Accuracy and performance testing

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 25 / 37

Table 2. Accuracy and performance testing (continued)

Single-phase KM3x power meter specification

Current Range 0 – 60 A (10 A is nominal current; dynamic range is up to 72 A)

Nominal Frequency 50 Hz ± 5 %

Meter constant (imp/kWh, imp/kVArh) 3200

Functionality
V, A, kW, VAr, VA, kWh (import/export), kVArh (import / export), Hz, power

factor, time, date

Voltage sensor Voltage divider

Current sensor
Shunt resistor down to 200 μΩ (350 μΩ used in this design),

Current transformer with 2500:1 turns ratio

Energy output pulse interface Two red LEDs (active and reactive energy)

User interface (HMI) 8 x 15 segment LCD, one pushbutton

Tamper detection Two hidden buttons (module area and main cover)

IEC62056-21 infrared interface 9600 / 8-N-1 IR interface

Remote communication modules (optional only)

• GPRS
GPRS modules with 1 x SIM card slot, IPv6 capable module

aExternal NVMs

• EEPROM

• Flash (optional only)

M240M2, 256 KB

IS25LQ040B, 512 KB

Internal battery ½ AA, 3.6 V Lithium-Thionyl Chloride (Li-SOCI2) 1.2 Ah

Power consumption @ 3.3 V and 22 °C:

• Normal mode (powered from mains)

• Stand-by mode (powered from a battery)

• Power-down mode (powered from a battery)

11.0 mA 1

2.2 mA

4.0 μA (both covers closed, no tampering)

1. Valid for CORECLK = 12.288 MHz and without any plugin communication module software.

 NOTE

The MKM35Z512 one-phase reference designs are fully calibrated using the test equipment ST6300V2. All power meters were
tested according to the IS13779 class 1 (1.0 %) Indian standards for electronic meters.

During the calibration and testing process, the power meter measured electrical quantities generated by the test bench ST6300V2,
calculated the active energy, and generated pulses on the output LED. Each generated pulse was equal to the active energy
amount in kWh/ imp. The deviations between the pulses generated by the power meter and the reference pulses generated by
the test equipment defined the measurement accuracy.

NXP Semiconductors
Accuracy and performance testing

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 26 / 37

The following figures show the accuracy plot of the NXP MKM35Z512 one-phase smart power meter. The figures indicate the
results of the power meter accuracy performed at 25 °C. The accuracy of the measurement for various phase currents, various
phase voltages, various frequency values, and the angles between phase current and phase voltage, are shown in the graphs.

Figure 12 shows the accuracy of the active energy measurement after calibration. The x-axis shows the variation of the phase
current, and the y-axis denotes the average accuracy of the power meter, computed from five successive measurements. The two
bold red lines define the Class 1 (IS13779) accuracy margins for active energy measurement for power factor 1 for this test.

In (A)

ERR [%] Active Energy
(unity and other power factors PF)

Figure 12. Kinetis M one-phase power meter reference design accuracy with load variation

Figure 13 shows the accuracy of the active energy after calibration. The x-axis shows the variation of the phase voltage, and the
y-axis denotes the average accuracy of the power meter, computed from five successive measurements. The two bold red lines
define the Class 1 (IS13779) accuracy margins for active energy measurement for power factor 1 for this test.

NXP Semiconductors
Accuracy and performance testing

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 27 / 37

ERR [%] Active Energy
(unity and other power factors PF)

Figure 13. Kinetis M one-phase power meter reference design accuracy with voltage variation

Figure 14 shows the accuracy of the active energy after calibration. The x-axis shows the variation of the frequency, and the y-axis
denotes the average accuracy of the power meter, computed from five successive measurements. The two bold red lines define
the Class 1 (IS13779) accuracy margins for active energy measurement for power factor 1 for this test.

NXP Semiconductors
Accuracy and performance testing

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 28 / 37

43 45 47 49 51 53 55 57

ERR [%] Active Energy
(unity and other power factors PF)

Figure 14. Kinetis M one-phase power meter reference design accuracy with frequency variation

By analyzing the protocols of several MKM35Z512 one-phase power meters, this equipment measures active and reactive
energies at all power factors, at 25 °C ambient temperature, and in the current range of 0.1 – 80 A, with the accuracy range of
±0.5 %.

Even though the current range of the power meter is scaled to 72 A, it is not recommended to operate the power
meter in the 60 – 72 A range for a longer period, due to heating of the shunt resistor in this current range.

 CAUTION

6 Summary
This application note describes a metering library that implements the Low-Power Real-Time (LPRT) Metering Algorithm. The
presented algorithm is simple and highly accurate. It has been designed specifically for devices featuring sigma-delta converters,
which have a fixed measurement sample rate.

The presented LPRT Metering Algorithm can be easily integrated into electronic meters and requires only instantaneous phase
voltage and current samples to be provided to their inputs. All available sensing circuitries, such as a voltage divider for phase
voltage measurement, or a shunt resistor, and a current transformer for phase and neutral current measurement, are supported.
The presented algorithms are intended for post-processing instantaneous phase voltage and current samples after phase
shift compensation.

The performance of the metering library has been tested in the one-phase Kinetis M power meter reference design – the accuracy
of the measurement was in the range ±0.5 % in the current range of 0.1 – 72 A.

NXP Semiconductors
Summary

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 29 / 37

7 References
The following documents are useful when using the LPRT Algorithm for Metering Applications. These documents can be found
in can be found on www.nxp.com.

1. KM35Z512 based One-Phase Smart Meter Reference Design (document AN12837)

2. Filter-Based Algorithm for Metering Application (document AN4265)

3. Single Point Meter Calibration process (document AN12827).

4. Kinetis KM35 Sub-Family Reference Manual (document KM35P144M75SF0RM)

8 Revision history
Table 3 summarizes the changes done to this document since the initial release.

Table 3. Revision history

Revision number Date Substantial changes

0 01 June 2021 Initial release

9 C-Header file

#include "types.h"
/***
 * Definitions
 **/
#define nBUFFERS 2
#define POWERTOENERGY (74.56540444)

typedef enum
{
 CURRENT_PHASE,
 CURRENT_NEUTRAL,
 nCURRENTS
} CURRENTS;

typedef enum
{
 ACT_POWER,
 REACT_POWER,
 APP_POWER,
 nPOWERS
} POWERS;

typedef enum
{
 ACTI_ENERGY,
 REACTIACTI_ENERGY,
 REACTEACTI_ENERGY,
 APPI_ENERGY,
 ACTE_ENERGY,
 APPE_ENERGY,
 nENERGIES
} ENERGIES;

NXP Semiconductors
References

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 30 / 37

http://www.nxp.com/webapp/sps/site/taxonomy.jsp?code=KINETIS_M_SERIES
https://www.nxp.com/docs/en/application-note/AN12837.pdf
https://www.nxp.com/docs/en/application-note/AN4265.pdf
https://www.nxp.com/docs/en/application-note/AN12827.pdf
https://www.nxp.com/docs/en/reference-manual/KM35P144M75SF0RM.pdf

typedef enum
{
 METREC_FWDED,
 METREC_NET,
} METRECTYPES;

/*! Metering library data structure definition - 1PH METER */
typedef struct
{
 float Vrms; /*!< Calculated RMS value of the voltage */
 float Irms[nCURRENTS]; /*!< Calculated RMS currents - Phase and neutral */
 float VrmsNoFudge; /*!< RMS value of voltage w/o compensation */
 float IrmsNoFudge[nCURRENTS]; /*!< RMS value of currents w/o compensation */
 float PFMetImax; /*!< Calculated Power factor value during forced Imax condition */
 float ActPowers[nCURRENTS]; /*!< Calculated active power */
 float ActPowersNoFudge[nCURRENTS]; /*!< Calculated active power value w/o compensation */
 float ReactPowers[nCURRENTS]; /*!< Calculated reactive power */
 float AppPowers[nCURRENTS]; /*!< Calculated apparent power */
 float AppPowersNoFudge[nCURRENTS]; /*!< Calculated apparent power w/o compensation */
 float PowerFactors[nCURRENTS]; /*!< Calculated power factor */
 float Frequency; /*!< Calculated frequency */
 uint16 nSamples; /*!< No of voltage/current samples per second - application to load
*/
 uint8 MetDue; /*!< Indicates metrology processing is due for a second */
 uint8 MetOnImax; /*!< Indication to do metering with Imax condition - application to
load */
 int8 ISigns[nCURRENTS]; /*!< Forward/reverse sign of currents, 1 = forward, -1 = reverse */
 uint8 ReactSampleIndex; /*!< Reactive sample index - internal */
 uint8 CurToUse; /*!< Indicates which current has higher value - Phase/neutral */
 uint16 nSamps; /*!< Indicates current sample index ~ [0-(nSamples-1)] */
 int32 VOffset; /*!< Calculated Voltage offset */
 int32 *pVQCycleSamps; /*!< 90-degree phase-shifted voltage samples buffer pointer -
internal */
 int32 IOfstSum[nCURRENTS]; /*!< Current offset sum - internal */
 int32 IOffsets[nCURRENTS]; /*!< Calculated current offsets */
 int32 VSampsS; /*!< Offset compensated voltage sample */
 int32 VOfstSum; /*!< Voltage offset sum - internal */
 uint64 VrmsSums[nBUFFERS]; /*!< Square sums of the voltage samples - internal */
 uint64 IrmsSums[nBUFFERS][nCURRENTS]; /*!< Square sums of the current samples - internal */
 uint64 RelaySenseSums[nBUFFERS]; /*!< Square sums of the relay sense voltage samples - internal */
 int32 VRelayOfstSum; /*!< Relay sense voltage offset sum - internal */
 int32 VRelayOffset; /*!< Calculated relay voltage offset */
 float IBasic; /*!< Basic current of the meter - application to load */
 float IMax; /*!< Maximum current rating of the meter - application to load */
 float VHystHigh; /*!< High threshold value of voltage to enable gain for the current
measurement - application to load */
 float VHystLow; /*!< Low threshold value of voltage to disable gain for the current
measurement - application to load */
 float MaxPower; /*!< Maximum value of calculated power to restrict power/energy
count calculation - application to load */
 int32 ISamps[nCURRENTS]; /*!< Offset compensated current samples */
 float PhAngles[2]; /*!< Calculated Phase angle */
 uint8 MetRecordingType; /*!< Power/energy recording type METREC_FWDED/METREC_NET */
 uint8 WBuffer; /*!< Buffer index of voltage/current samples buffers for a second
period */
 uint8 FirstTime; /*!< internal use */
 uint8 IsGainEnabled; /*!< Returns current gain is status. TRUE = enabled, FALSE =
disabled */
 uint8 LastGainStatus; /*!< Related to current gain status - internal */

NXP Semiconductors
C-Header file

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 31 / 37

 uint8 IncEnerPtrs[3]; /*!< Indicated energy pointer types active, reactive and apparent -
internal */
 uint32 MetEnergyCounts[3]; /*!< Calculated energy counts for 50 periods */
 uint64 MetEnergySecCounts[3]; /*!< Calculated energy counts 1 second */
 uint8 DoFundamental; /*!< Indicate whether fundamental frequency-calculation to be done -
application to load */
 uint8 fSampNo; /*!< Used for fundamental frequency-related calculations - internal
*/
 uint8 CalibState; /*!< Holds calibration state CALIBSTATE_IDLE, CALIBSTATE_PROGRESS,
CALIBSTATE_COMPLETE */
} tMETERLIBLPRT1PH_DATA;

#define SWB_SIGN 0xA5
#define SWB_CUR_BOTH (SWB_CUR_PH | SWB_CUR_NU)

/***
* Prototypes
**/
extern tMETERLIBLPRT1PH_DATA *pmlib1phdata;
extern float VFundamental1Ph;
extern float IFundamental1Ph[nCURRENTS];
extern float VTHD1Ph;
extern float ITHD1Ph[nCURRENTS];

extern float Vrelaysense;

/***//*!
 * @brief Does the RMS and power calculation per the voltage and current samples.
 * Also, does the offset calculations. Once this function finished all
 * samples processing for 50 periods (50 Hz signal),
 * tMETERLIBLPRT3PH_DATA -> MetDue is set to 'TRUE' value.
 * @note The @ref DoPower1Ph function must be called after 1 set of voltage,
 * current samples are received.
 **/
extern void DoPower1Ph(void);

/***//*!
 * @brief Re-calculates non-billing parameters once every second or 50
 * sinusoidal wave periods.
 * @note The @ref DoMetering1Ph function must be called after
 * tMETERLIBLPRT1PH_DATA -> MetDue is set to 'TRUE' value. This
 * function internally clears tMETERLIBLPRT1PH_DATA -> MetDue to
 * 'FALSE'.
 **/
extern void DoMetering1Ph(void);

/***//*!
 * @brief Initializes tMETERLIBLPRT1PH_DATA metering structure object with
 * few application specific parameters. Typically to be called once
 * application run cycle.
 * @param nSamples No of voltage/current samples per second
 * - application to load.
 * @param samplesForOffset No of samples per second to be used for offset
 * calculation.
 * @param pFreqDependentPhErr Application defined Frequency dependent phase
 * correction values.
 * @param doFundamental Application defined initialization if metering library
 * should perform fundamental calculation-related tasks.
 * @note The @ref MeterLibLPRT1Ph_InitParams function must be called
 * typically once in application initialization cycle.

NXP Semiconductors
C-Header file

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 32 / 37

 **/
extern void MeterLibLPRT1Ph_InitParams(tMETERLIBLPRT1PH_DATA *mlib,
 uint16 nSamples, uint16 samplesForOffset,
 float *pFreqDependentPhErr, uint8 doFundamental);

/* Callbacks/hooks exported by metrology library */
/***//*!
 * @brief This function is called from the metering library to allow the application
 * to further correct the phase angle to fine-tune power calculation.
 * @param currenttoUse Current phase number CURRENT_PHASE or CURRENT_NEUTRAL.
 * @note The @ref CorrectAppPhAngle1Ph is called from DoMetering1Ph().
 **/
extern void CorrectAppPhAngle1Ph(uint8 currenttoUse);

/***//*!
 * @brief This function is called from the metering library to allow the application
 * to tune up non-billing parameters as per application need - for
 * example to clear leakage current and related parameters.
 * @note The @ref FudgeParameters1Ph is called from DoMetering1Ph().
 **/
extern void FudgeParameters1Ph(void);

/***//*!
 * @brief This function is called from the metering library to allow the application
 * to check current phase voltage and indicate the metering library
 * to switch to low-power mode measurements of non-billing parameters
 * through tMETERLIBLPRT1PH_DATA -> IsGainEnabled parameter.
 * @note The @ref ChkVolLvl is called from DoMetering1Ph().
 **/
extern void ChkVolLvl(void);

/***//*!
 * @brief This function is called from the metering library during calibration
 * phase only to calculate calibration coefficients during low-power
 * operation and current gain are disabled. The application should also call
 * this function in the context of ChkVolLvl() if the current RMS
 * voltage is higher than tMETERLIBLPRT1PH_DATA -> VHystLow.
 * @note The @ref DisableGain is called from DoMetering1Ph().
 **/
extern void DisableGain(void);

/***//*!
 * @brief This function is called from the metering library during calibration
 * phase only to calculate calibration coefficients after low-power
 * operation and current gain are enabled. The application should also call
 * this function in the context of ChkVolLvl() if the current RMS
 * voltage is higher than tMETERLIBLPRT1PH_DATA -> VHystHigh.
 * @note The @ref EnableGain is called from DoMetering1Ph().
 **/
extern void EnableGain(void);

/***//*!
 * @brief This function is called from the metering library to allow the application
 * to save CalibStruct1Ph data structure object - once after the
 * calibration is done.
 * @note The @ref CalibMemwrite1Ph is called whenever calibration is
 * performed.
 **/
extern void CalibMemwrite1Ph(void);

NXP Semiconductors
C-Header file

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 33 / 37

#endif /* __METERING1PH_H */

10 Test application

#include <math.h>

#include "fraclib.h"
#include "Metering1Ph.h"
#include "Calibration1Ph.h"
#include "pin_mux.h"
#include "board.h"

#define _PI 3.14159265358979323846 /* pi */
#define NSAMPLES 3000 /*!< No of samples per second */
#define I_MAX 141.421 /*!< Maximal current I-peak in amperes */
#define U_MAX 350.000 /*!< Maximal voltage U-peak in volts */
#define PHASE_PHERR_PERHZ 0.0f
#define NEUTRAL_PHERR_PERHZ 0.0f

/* static data definitions */
static tMETERLIBLPRT1PH_DATA mlib1phdata;
tCalibPoint1Ph CalibPoint;
float FreqDependentPhErr[nCURRENTS] = { PHASE_PHERR_PERHZ, NEUTRAL_PHERR_PERHZ};
static volatile frac32 u24_sample, i24_sample;
static double time = 0.0, U_ANGLE = (60.0/180.0)*_PI, I_SHIFT = (-5.5/180.0)*_PI;

void RestoreDefCalib(void);
void AppInterfaceInit(void);

#if defined(__ICCARM__)
 #pragma diag_suppress=Pa082
#endif

void FudgeParameters1Ph(void)
{
}

void CorrectAppPhAngle1Ph(uint8 currenttoUse)
{
}

void ChkVolLvl(void)
{
}

void EnableGain(void)
{
 mlib1phdata.IsGainEnabled = TRUE;
}

void DisableGain(void)
{
 mlib1phdata.IsGainEnabled = FALSE;
}

void RestoreDefCalib(void)
{

NXP Semiconductors
Test application

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 34 / 37

 CalibStruct1Ph.FrequencyCoeff = 1.00023889;

 CalibStruct1Ph.VCoeff = 7.517977528089888e-7;
 CalibStruct1Ph.ICoeff[0] = 3.0005420511E-7;
 CalibStruct1Ph.ICoeff[1] = 3.0005420511E-7;
 CalibStruct1Ph.ActPowerCoeff[0] = 3.0870693433E-13;
 CalibStruct1Ph.ActPowerCoeff[1] = 3.0870693433E-13;
 CalibStruct1Ph.PhAngle[0] = 2.24286317E-2;
 CalibStruct1Ph.PhAngle[1] = -3.33993435E-2;
 CalibStruct1Ph.VFCoeff = 5.52673412E-13;
 CalibStruct1Ph.IFCoeff[0] = 1.12404917E-13;
 CalibStruct1Ph.IFCoeff[1] = 6.38489369E-14;
 CalibStruct1Ph.ICoeff_LP = 3.0005420511E-7;
 CalibStruct1Ph.ActPowerCoeff_LP = 3.0870693433E-13;

 CalibStruct1Ph.RTCCompValue = 0;
 CalibStruct1Ph.RTCCompInterval = 0;

 CalibStruct1Ph.CalibSign = CALIBNOTDONE;
}

void AppInterfaceInit(void)
{
 mlib1phdata.IMax = 60.0;
 mlib1phdata.IBasic = 10.0;
 mlib1phdata.VHystHigh = 160.0;
 mlib1phdata.VHystLow = 155.0;
 mlib1phdata.MaxPower = 240.0 * mlib1phdata.IMax * 1.6;
}

void CalibMemwrite1Ph(void)
{
 CalibStruct1Ph.CalibSign = CALIBDONE;
}

uint32 NoOfMetDue = 0;
void main (void)
{
 BOARD_InitPins();
 BOARD_BootClockRUN();

 MeterLibLPRT1Ph_InitParams(&mlib1phdata, NSAMPLES, (NSAMPLES*20)/100, FreqDependentPhErr, FALSE);
 mlib1phdata.Frequency = 50.0f;
 AppInterfaceInit();
 RestoreDefCalib();
 mlib1phdata.CalibState = CALIBSTATE_PROGRESS;
 CalibPoint.Voltage = 240.0;
 CalibPoint.Current = 10.0;
 CalibPoint.PhAngle = 1.04719;
 CalibPoint.PowerFactor = 0.5;
 CalibPoint.Frequency = 50.0;
 /* calibration can be done for CALIB_PHASE or CALIB_NEUTRAL - one at a time */
 CalibPoint.CalibPhase = CALIB_PHASE;
 CalibStruct1Ph.CalibSign = CALIBNOTDONE;

 while (1)
 {
 /* calculate phase voltage and phase current waveforms */
 time = time+(1.0/NSAMPLES);
 u24_sample = FRAC24(((sin(2*_PI*50.0*time+U_ANGLE)*240.0*sqrt(2)+0.0)/U_MAX));

NXP Semiconductors
Test application

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 35 / 37

 mlib1phdata.VOfstSum += u24_sample;
 mlib1phdata.VSampsS = u24_sample - mlib1phdata.VOffset; /* Previous offset */
 i24_sample = FRAC24(((sin(2*_PI*50.0*time+I_SHIFT)*10.0*sqrt(2)+0.0)/I_MAX));
 mlib1phdata.IOfstSum[0] += i24_sample;
 mlib1phdata.IOfstSum[1] += i24_sample;
 mlib1phdata.ISamps[0] = i24_sample - mlib1phdata.IOffsets[0]; /* Previous offset */
 mlib1phdata.ISamps[1] = i24_sample - mlib1phdata.IOffsets[1]; /* Previous offset */

 DoPower1Ph();

 if (mlib1phdata.MetDue == TRUE)
 {
 NoOfMetDue++;
 /* Do metering calculations */
 DoMetering1Ph();

 if (mlib1phdata.CalibState == CALIBSTATE_PROGRESS)
 {
 /* comes to this place until CALIBSTATE_COMPLETE */
 DoCalibration1Ph(&CalibPoint);
 }
 }
 }
}

NXP Semiconductors
Test application

Low-Power Real-Time Algorithm for Metering Applications, Rev. 0, 01 June 2021
Application Note 36 / 37

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Limited warranty and liability — Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any
integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice
to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor
does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided
in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical
experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to
standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce
the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other
open and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no
liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules, regulations, and standards of the intended
application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all
legal, regulatory, and security related requirements concerning its products, regardless of any information or support that
may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com)
that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP,
HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,
MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG,
TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy
Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ
Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are
trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,
ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates.
The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks
and service marks licensed by Power.org. M, M Mobileye and other Mobileye trademarks or logos appearing herein are
trademarks of Mobileye Vision Technologies Ltd. in the United States, the EU and/or other jurisdictions.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 01 June 2021
Document identifier: AN13259

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Block diagram
	3 Theory
	3.1 Explicit RMS converter
	3.2 Average power converter

	4 Power meter application development
	4.1 Metering library
	4.1.1 Core architecture and compiler support
	4.1.2 LPRT library function API
	4.1.2.1 One-phase power meter
	4.1.2.2 Three-phase power meter

	4.1.3 Data structures
	4.1.3.1 tMETERLIBLPRT1PH_DATA
	4.1.3.1.1 Reference
	4.1.3.1.2 Data fields

	4.1.3.2 tCalibStruct1Ph
	4.1.3.2.1 Reference
	4.1.3.2.2 Data fields

	4.1.3.3 tCalibPoint1Ph
	4.1.3.3.1 Reference
	4.1.3.3.2 Data fields

	4.1.3.4 tMETERLIBLPRT3PH_DATA
	4.1.3.4.1 Reference
	4.1.3.4.2 Data fields

	4.1.3.5 tCalibStruct3Ph
	4.1.3.5.1 Reference
	4.1.3.5.2 Data fields

	4.1.3.6 tCalibPoint3Ph
	4.1.3.6.1 Reference
	4.1.3.6.2 Data fields

	4.1.4 MeterLibLPRT_InitParams
	4.1.4.1 Syntax
	4.1.4.2 Return
	4.1.4.3 Description

	4.1.5 DoPower
	4.1.5.1 Syntax
	4.1.5.2 Arguments
	4.1.5.3 Return
	4.1.5.4 Description
	4.1.5.5 Performance

	4.1.6 DoMetering
	4.1.6.1 Syntax
	4.1.6.2 Arguments
	4.1.6.3 Return
	4.1.6.4 Description
	4.1.6.5 Performance

	4.1.7 CorrectAppPhAngle
	4.1.7.1 Syntax
	4.1.7.2 Arguments
	4.1.7.3 Return
	4.1.7.4 Description

	4.1.8 FudgeParameters
	4.1.8.1 Syntax
	4.1.8.2 Arguments
	4.1.8.3 Return
	4.1.8.4 Description

	4.1.9 ChkVolLvl
	4.1.9.1 Syntax
	4.1.9.2 Arguments
	4.1.9.3 Return
	4.1.9.4 Description

	4.1.10 DisableGain
	4.1.10.1 Syntax
	4.1.10.2 Arguments
	4.1.10.3 Return
	4.1.10.4 Description

	4.1.11 EnableGain
	4.1.11.1 Syntax
	4.1.11.2 Arguments
	4.1.11.3 Return
	4.1.11.4 Description

	4.1.12 CalibMemwrite
	4.1.12.1 Syntax
	4.1.12.2 Arguments
	4.1.12.3 Return
	4.1.12.4 Description

	4.1.13 ProcSamples3Ph
	4.1.13.1 Syntax
	4.1.13.2 Arguments
	4.1.13.3 Return
	4.1.13.4 Description
	4.1.13.5 Performance

	5 Accuracy and performance testing
	6 Summary
	7 References
	8 Revision history
	9 C-Header file
	10 Test application

