
1 Introduction
This application note, using the work on the i.MX RT1060 EVK development
board as an example, introduces the porting and adaptation of the open
source machine vision project OpenMV. In terms of programming model,
OpenMV combines with MicroPython to enable users to use Python language
to develop the application of machine vision. You can use Python on this
development board to quickly evaluate and use OpenMV functions, or on
this basis, customize their own visual processing module and communicate
with other modules in the system. For those who are more familiar with the
MicroPython and OpenMV software architectures, further customization can
be made, such as adding new functionality or stripping out the MicroPython
system to develop machine vision applications in a pure C environment.
The native project management and build system of OpenMV is based on
GCC and make under Linux. To facilitate the development habits of most
MCU embedded engineers, the development environment is also migrated to
Keil MDK5.

We assume that you have basic experience of development with KEIL MDK,
with the knowledge of CMSIS-Pack, the concept of target in KEIL and how to
switch between them.

If you are not yet familiar with how to use Micropython
on i.MX RT1050/1060, see Building Micropython with
KEIL and Programming with Python on i.MX RT1050/1060
(document AN13242).

 NOTE

The i.MX RT1050/1060 series processors each has a single Arm® Cortex®-M7
core, which operates at the speed up to 600 MHz. The great processing
capability, real-time feature, and reach integration of abundant peripherals
make i.MX RT1050 ideal for lot of high-performance applications, such
as industrial computing, motor control, power conversion, smart consumer
products, high-end audio systems, home and building automation.

2 Hardware platform

2.1 i.MX RT1050/60 crossover process
The i.MX RT1050/60 offered by NXP with single Arm® Cortex®-M7 core can
operate at the speed up to 600 MHz. It has 512 KB on-chip RAM, which can be
flexibly configured as core Tightly-Coupled Memory (TCM) or general-purpose
RAM. RT1060 has additional dedicated 512 KB of OCRAM. It provides:

• Various interfaces for connecting various external memories

Contents

1 Introduction......................................1
2 Hardware platform...........................1
2.1 i.MX RT1050/60 crossover

process.. 1
2.2 i.MX RT1050/60 EVK board........ 2
3 Machine vision and OpenMV project

.. 2
3.1 Introduction to machine vision..... 2
3.2 Introduction to OpenMV project... 3
3.3 Components of OpenMV project

...3
4 Build and run OpenMV firmware on

your i.MX RT1050/1060 EVK.......... 4
4.1 Download source code................ 4
4.2 Open KEIL project and build

firmware....................................... 4
4.3 Prepare for file system.................6
4.4 Download and run........................6
5 Access Micropython file system from

PC... 8
6 Explore OpenMV functions with

OpenMV IDE................................... 8
7 Skeleton of OpenMV machine vision

applications..................................... 9
8 Image capture configurations........11
8.1 Color mode................................ 11
8.2 Image resolution and window

clipping.......................................11
8.3 Brightness control...................... 11
9 Image module - Brain of machine

vision... 13
9.1 Drawing......................................13
9.2 Image processing/filtering..........13
9.3 Snapshot....................................14
9.4 Video recording..........................14
9.5 Face and eye detection............. 14
9.6 Feature detection.......................14
9.7 Color tracking.............................15
9.8 Barcode and QR code detection

...15
9.9 April-Tag detection.....................15
10 Get more information.....................15
11 References....................................15
12 Revision history.............................15

AN13243
Machine Vision Applications on i.MX RT1050/1060 with OpenMV
and Micropython
Rev. 0 — 10 May, 2021 Application Note

https://www.nxp.com/docs/en/application-note/AN13242.pdf
https://www.nxp.com/products/processors-and-microcontrollers/applications-processors/i.mx-applications-processors/i.mx-rt-series/i.mx-rt1050-crossover-processor-with-arm-cortex-m7-core:i.MX-RT1050
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt1060-crossover-mcu-with-arm-cortex-m7-core:i.MX-RT1060

• A wide range of serial communication interfaces, such as USB, Ethernet, SDIO, CAN, UART, I2C, and SPI

• Rich audio and video features, including LCD display, basic 2D graphics, camera interface, SPDIF and I2S audio interface

• Other notable features including various modules for security, motor control, analog signal processing, and power
management

2.2 i.MX RT1050/60 EVK board
i.MX RT1050 EVKB/1060 EVKB board is a platform designed to showcase the most commonly used features of the i.MX RT1050
processor. The EVK board offers the below features:

• Memory: 256 Mbit SDRAM, 64 Mbit Quad SPI Flash, 512 Mbit Hyper Flash, TF Card Slot

• Communication interfaces: USB 2.0 OTG connector, USB 2.0 host connector, 10/100 Mbit/s Ethernet connector, CAN bus
connector

• Multimedia interfaces: CMOS sensor connector, LCD connector

• Audio interfaces: 3.5 mm stereo headphone hack, board-mounted microphone, SPDIF connector (not mounted by default)

• Debug interfaces: On-board debug adapter with DAP-Link, JTAG 20-pin connector

• Arduino interface

• User button and LEDs

The i.MX RT1050 EVKB is as shown in Figure 1.

Figure 1. i.MX RT1050 EVKB

3 Machine vision and OpenMV project

3.1 Introduction to machine vision
In a machine vision system,

1. A real image of the object is automatically received and processed through the device and optical non-contact sensor.

2. To obtain the required information or control the robot by analyze the characteristic of the image of color, light and
shade, shape characteristics, boundary features, area, length, etc. The measurement and decision-making uses the
designed algorithm instead of the human eye.

NXP Semiconductors
Machine vision and OpenMV project

Machine Vision Applications on i.MX RT1050/1060 with OpenMV and Micropython, Rev. 0, 10 May, 2021
Application Note 2 / 16

https://www.nxp.com/products/processors-and-microcontrollers/applications-processors/i.mx-applications-processors/i.mx-rt-series/i.mx-rt1050-evaluation-kit:MIMXRT1050-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/mimxrt1060-evk-i-mx-rt1060-evaluation-kit:MIMXRT1060-EVK

Traditional machine vision is often used in the working environment with clear boundaries and relatively simple and controllable
scene content, such as a corner of the factory production line, fixed monitoring equipment, etc. Recently, with the rise of deep
learning, visual processing systems based on deep neural networks are expanding their application fields.

Machine vision technology has been used in industryfor a long time. Due to the large amount of computation, industrial computer
has been used as the main computing component. But as the computing power of MCU devices has continued to increase in
recent years, some projects to deploy machine vision technology are developed on MCU. OpenMV is one of the excellent MCU
side machine vision projects.

3.2 Introduction to OpenMV project
OpenMV stands for Open Machine Vision. It is both a company name and a project name. The OpenMV project is about creating
a low-cost, scalable, Python-powered programmable machine vision module that can run on an MCU. The goal is to become the
Arduino for machine vision, bringing machine vision algorithms closer to makers and hobbyists. The OpenMV team has done the
difficult and time-consuming algorithm-based work to allow users to focus on their own applications.

3.3 Components of OpenMV project
The OpenMV project consists of following software parts and hardware parts.

• Hardware - OpenMV Cam

This is the hardware carrier of OpenMV functionality, which has been in development for four generations. Its main control chip
is an MCU, upgraded from the original 168 MHz Cortex-M4 to a 480 MHz Cortex-M7, which is compatible with both hardware
and software. They are very small in shape, just like a larger M12 camera module. After porting and adapting OpenMV to i.MX
RT1060 EVK, we also have third-party partners who design and manufacture a visual module similar to OpenMV CAM 3rd
generation hardware in appearance.

Figure 2. i.MX RT1060 vision module powered by OpenMV MCU side software

• Software

Open source code under the MIT open source license, after build, OpenMV MCU side software will generate a firmware image
running on the master MCU of OpenMV CAM. It is the main carrier of software functions of OpenMV project. It implements
machine vision algorithm on MCU and can also drive MCU to control peripheral devices. The porting of OpenMV to i.MX
RT1050/1060 is also carried out on the MCU side software of OpenMV. Because the OpenMV MCU side software originally

NXP Semiconductors
Machine vision and OpenMV project

Machine Vision Applications on i.MX RT1050/1060 with OpenMV and Micropython, Rev. 0, 10 May, 2021
Application Note 3 / 16

https://openmv.io/

ran on a very different MCU platform from i.MX RT1050/1060, this part of the porting costs most effort. The MCU side software
of OpenMV is also a customized MicroPython, and its basic functions are provided through the sensor module and the
image module.

— OpenMV IDE

This is an integrated development environment specially created by the OpenMV team for developers. It is not only a
cross-platform Python code editor, but also can communicate with OpenMV firmware through USB or Wi-Fi through
special debugging protocol, preview the current frame buffer in OpenMV firmware, and control the start and stop of
Python scripts. The OpenMV IDE also comes with a large number of examples and integrates common machine
vision tools.

— OpenMV camera module

This is new from OpenMV H7 cam. In the past, camera chip is soldered on the OpenMV Cam board, but from OpenMV
H7 Cam, cameras are designed as pluggable modules, such as OV7725 module, global shutter module, high resolution
module, and passive infrared module.

— OpenMV expansion boards

It is connected by two rows of extension ports around OpenMV CAM. OpenMV expansion boards contain a variety of
types, such as LCD board, servo board, cloud board, TV board and so on.

4 Build and run OpenMV firmware on your i.MX RT1050/1060 EVK

4.1 Download source code

4.1.1 Download specific version for this AN
Download the source code and unzip it. We strongly recommend to download the version with tag an_mpy1050_rev1. This
application note describes the operations with this version.

4.1.2 git clone
If you're familiar with Git, you can open a command window, navigate to the directory you want to put in, and then execute
the command.

git clone https://github.com/RockySong/micropython-rocky.git

It will by default clone the omv_initial_integrate branch. To get exactly the same result, we strongly recommend to check out
to an_mpy_rt1050_60.

If you meet any issues with latest code, please switch to the an_mpy1050_rev1 tag.

 NOTE

4.2 Open KEIL project and build firmware
Based on an_mpy1050_rev1 version, locate the \ports\prj_keil_rt1060\ mpyrt1060.uvprojx and open it with KEIL 5.0 or above.

This project requires NXP.MIMXRT1062_DFP.12.1.0. It is a CMSIS pack.

 NOTE

This project has multiple targets as shown in Figure 3.

NXP Semiconductors
Build and run OpenMV firmware on your i.MX RT1050/1060 EVK

Machine Vision Applications on i.MX RT1050/1060 with OpenMV and Micropython, Rev. 0, 10 May, 2021
Application Note 4 / 16

https://github.com/RockySong/micropython-rocky/releases/tag/an_mpy1050_rev1
https://github.com/RockySong/micropython-rocky.git

Figure 3. Muitiple targets

The first three targets are designed to generate firmwares with OpenMV functionality.

rel_omvrt1

Build for the small i.MX RT1060 vision board

Do NOT build with this target for i.MX RT1050/1060 EVK boards!

 NOTE

dbg_evk1060_sdram

(best debugging experience)

Build firmware to run from SDRAM for i.MX RT1060 EVK. Downloading does not need to
program flash so it is very fast but re-downloading is required after power cycle or reset.
Recommend to re-download for debugging purpose.

dbg_evk1060_qspi
Build firmware to run from QSPI Flash for i.MX RT1050/1060 EVK board, good for demo and
normal use. Re-download is not required after power cycle or reset, but programming flash may
take more time.

The three build targets use i.MX RT1060's on-chip ITCM, DTCM, and OCRAM. It is very important to reasonably put performance
critical code and data to them to greatly improve the performance of machine vision algorithms.

Select the dbg_evk1060_sdram target，as debugging in SDRAM is most convenient. No matter whichever target you select, click

If you get below error:

Figure 4. Error message

It means the specified AC5 compiler version is not found. In this case, click

or press Alt+F7 to pop out the Options for Target dialog. Switch to the Target pannel and in the Code Generation frame, select
the Use default compiler 5 in the ARM Compiler combo box.

NXP Semiconductors
Build and run OpenMV firmware on your i.MX RT1050/1060 EVK

Machine Vision Applications on i.MX RT1050/1060 with OpenMV and Micropython, Rev. 0, 10 May, 2021
Application Note 5 / 16

or press F7 to build the whole project.

Figure 5. Options for Target window

4.3 Prepare for file system
The OpenMV MCU firmware functions are based on the Micropython system, where the file system concept is extremely important
and all Python scripts are stored in the file system. In our ported OpenMV system, the file system on the TF/microSD card and
the file system in the program Flash are supported. During startup, the system first checks whether the TF card is inserted.

• If so, mount the TF card into the root file system.

• If not, mount a block of approximately 2 MB of space allocated from QSPI Flash as the file system. If it is used for the first
time, the system will automatically format this area in the QSPI Flash.

The Flash file system makes it possible to run Micropython without a TF card. However, its write performance is extremely poor
(around 10 KB/s) and it does not include wear balance. It is generally recommended to place only files that do not change
frequently, such as configuration files, debugged scripts, and so on to internal Flash file system. In addition, when writing data to
the Flash file system, the interrupt will be turned off, affecting real-time. Therefore, it is highly recommended to insert a TF card
formatted using FAT/FAT32 on the board.

4.4 Download and run
To download, perform the following steps:

1. Determine which debugger you are using. i.MX RT1060 EVK has an on-board CMSIS-DAP compatible debugger, but due
to the large firmware generated by this project, the download with CMSIS-DAP is slow. J-Link can also be used. On the
i.MX RT1060 EVK, to use J-Link, disconnect J47 and J48; or shortcut them if you use the onboard CMSIS-DAP compatible
debugger. Under Keil, J-Link downloads far faster than the on-board CMSIS-DAP. As the firmware has grown several times
since the inclusion of OpenMV, so it can save lots of time to download it using J-Link.

If J-Link is used, after downloading to SDRAM, click the Reset button again before executing the program.
Otherwise, a hard fault may accidentally occur.

 NOTE

2. Connect the i.MX RT1060 EVK, as shown in Figure 6.

NXP Semiconductors
Build and run OpenMV firmware on your i.MX RT1050/1060 EVK

Machine Vision Applications on i.MX RT1050/1060 with OpenMV and Micropython, Rev. 0, 10 May, 2021
Application Note 6 / 16

Figure 6. Connecting i.MX 1060 EVK

The lower-right corner is connected to an OV7725 module, which is the input source of the video signal. If you also
have the LCD module for i.MX RT1060 EVK, you can connect it, so that you can preview the image on the LCD
module and overlay the annotation after OpenMV processing.

The USB port is near the Ethernet. The OpenMV IDE communicates with the development board through
this interface.

 NOTE

3. Open a serial port terminal and connect to the virtual serial port presented by the onboard debugger on the
development board with the baud rate set to 115200.

To run the i.MX1060 EVK, perform the following steps:

• To run from SDRAM:

1. Click or press Ctrl-F5 after build.

2. Wait until program code is fully downloaded and KEIL shows debug toolbar.

3. Press F5 to run.

• To run from QSPI Flash (XIP):

NXP Semiconductors
Build and run OpenMV firmware on your i.MX RT1050/1060 EVK

Machine Vision Applications on i.MX RT1050/1060 with OpenMV and Micropython, Rev. 0, 10 May, 2021
Application Note 7 / 16

1. Click or press F8 to download the built firmware to Flash.

• To run from Flash:

1. Directly reset the board to run. There is no need to enter the KEIL’s debug session.

5 Access Micropython file system from PC
To access the contents of the file system on your PC, connect to the computer on a USB port near the Ethernet port, which will
present a removable disk on the computer.

• When no TF card is inserted, the contents of the Flash file system are displayed on the removable disk.

• When one TF card is inserted, the contents of the TF card are displayed on the removable disk.

When accessing the Flash file system, the write speed is only about 10 KB/s. When accessing the TF card, the general read and
write speed is about 10 MB/s. OpenMV can record MJPEG video and store images to the file system. When using these functions,
be sure to insert a TF card.

Do NOT include a directory named flash (case sensitive) in your TF card. This will cause your Python script to
access /flash while still accessing the Flash file system and seeing the contents of the TF card on your PC.

 NOTE

6 Explore OpenMV functions with OpenMV IDE
OpenMV treats Micropython as its runner, so it is natural to use MicroPython development tools to develop OpenMV applications.
However, there are some special requirements for machine vision applications, such as real-time preview of the collected and
annotated images, analysis of the basic statistical characteristics of the image, real-time control of the script to start and stop,
integration of common machine vision tools, etc. Both low-bitrate control flow and high-bitrate image data flow are involved.

To meet this new demand, the OpenMV project, besides providing the core machine vision function, has developed a new set of
development and debugging mechanism. It enables the PC to monitor and control the running state of OpenMV firmware through
the USB virtual serial port. OpenMV team also developed a supporting IDE environment, called OpenMV IDE. When porting the
OpenMV MCU side software to i.MX RT1060 platform, we also ported this capability to communicate with OpenMV IDE, so we
can still use OpenMV IDE to monitor the running state of OpenMV MCU side software on i.MX RT1060.

OpenMV IDE can be downloaded from https://openmv.io/pages/download. It supports Windows, OSX, Ubuntu, and Raspberry Pi.
OpenMV IDE contains the code editor window, framebuffer preview window, serial terminal window, and image histogram window,
as shown in Figure 7.

NXP Semiconductors
Access Micropython file system from PC

Machine Vision Applications on i.MX RT1050/1060 with OpenMV and Micropython, Rev. 0, 10 May, 2021
Application Note 8 / 16

https://openmv.io/pages/download
https://openmv.io/pages/download

Figure 7. OpenMV IDE

The refresh rate of the real-time refresh frame buffer monitor window on the right side of the lower status bar
is often lower than the cycle rate of the main image processing loop. In addition, since image compression and
uploading also occupy a part of MCU terminal system resources, if the image monitor window is disabled, the image
processing frequency will also increase.

The FPS displayed at the right bottom corner is the image refresh rate of OpenMV IDE, typically less than the real
image refresh rate inside device. The image compression and upload take some MCU side resources, so if you
disable the frame buffer window, image processing rate will grow.

 NOTE

For more details about OpenMV IDE, see OpenMV IDE Overview.

To communicate with the OpenMV IDE, there is also a dedicated module called USBDBG on the OpenMV MCU terminal software.

In our ported OpenMV MCU terminal software, USBDBG and REPL multiplexed the same USB virtual serial port, and the USB
interface (J9) near the Ethernet port on i.MX RT1060 EVK was needed to connect to the computer through USB cable before use.
REPL via USB cannot be used during the connection to the OpenMV IDE is active.

7 Skeleton of OpenMV machine vision applications
To run the machine vision algorithm, perform the following steps:

1. Prepare the camera and then loop through the image data.

NXP Semiconductors
Skeleton of OpenMV machine vision applications

Machine Vision Applications on i.MX RT1050/1060 with OpenMV and Micropython, Rev. 0, 10 May, 2021
Application Note 9 / 16

https://docs.openmv.io/openmvcam/tutorial/openmvide_overview.html

Let's take a small program that implements this dry run function as an example, which can also be considered as the Hello
World program in OpenMV machine vision.

a. Import the required modules.

import sensor, image, time

sensor and image are the two most important modules in OpenMV. The sensor module encapsulates the camera
operation and the image module encapsulates the operation of machine vision. The time module can be used to
measure the frame rate.

b. Prepare the camera.

sensor.reset() # Reset and initialize the sensor.

The sensor.reset() method resets and initializes the controller chip of camera, such as OV7725. Different sensors
take different time to reset.

c. After the camera is initialized, give the desired resolution, color/grayscale mode Settings. For this simple example,
use QVGA@RGB565, which is also the setting used for most examples in OpenMV.

sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565
sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240)

d. Use the set_pixFormat () method above to set the pixel format. The color format commonly used is RGB565.If you
want a grayscale, change the RGB565 to GRAYSCALE.

e. After working, the sensor chip often needs 1-2 seconds to dynamically adapt to the ambient lighting. Adjust
the exposure time, white balance and other parameters. In OpenMV, you can optionally skip images during
this transition.

sensor.skip_frames(time = 2000) # Wait for settings take effect.

f. Use the skip_frames() method above ton skip images during a specified time, in milliseconds. In the above code,
2000 ms is skipped.

Now, the camera has been working normally.

2. Enter the main working loop.

Assuming that the system is working all the time, we use an infinite loop. Once in a cycle, take a picture and do the actual
processing on that picture.

while(True):
clock.tick() # Update the FPS clock.
img = sensor.snapshot() # Take a picture and return the image.
<do further image processing>
print(clock.fps()) # Note: OpenMV Cam runs slower when connected to the IDE. The FPS should increase once

disconnected.

The sensor.snapshop() above takes one snapshot and returns the image.

The above is how a Hello World of the machine vision application is realized through OpenMV, which can be regarded as the
starting point for adding subsequent machine vision logic.

You can also see from the main loop above that images are processed individually in OpenMV.

NXP Semiconductors
Skeleton of OpenMV machine vision applications

Machine Vision Applications on i.MX RT1050/1060 with OpenMV and Micropython, Rev. 0, 10 May, 2021
Application Note 10 / 16

8 Image capture configurations
Image acquisition is the eye of machine vision system. High-quality acquisition effect provides a strong guarantee for the
correctness of machine vision algorithm results. Developers need to reasonably set the image resolution, color mode, color and
brightness control parameters according to the needs of the machine vision task.

8.1 Color mode
For image capture, OpenMV supports the .RGB565 sensor as color and .GRAYSCALE as grayscale, used in the
sensor.set_pixformat() method.

When binary image is needed, use the binary() method of image object to convert to binary image.

8.2 Image resolution and window clipping
Although the extremely high resolution of 1920 × 1080 or even 3840 × 2160 (4 K) on computers was used for nowadays' desktops,
320 × 240 (QVGA) or even lower is the most commonly used in OpenMV machine vision applications, as show in Table 1.

Table 1. Image resolution

Resolution Abbreviation/Remark

128 × 128 B128 × 128

160 × 120 QQVGA

320 × 240 QVGA

352 × 288 CIF

480 × 272 i.MX RT1060 EVK LCD resolution

640 × 480 VGA

With the sensor.set_windowing() method, you can clip a smaller window from a larger resolution input. For example, 480 × 272
is not a native resolution supported by OpenMV, but can be clipped from the VGA resolution.

In the ported camera driver, the window clipping is done at the same time as the image is received, and the original image does not
take up an additional frame buffer. The sensor.set_windowing() method is for clipping. It can accept both the (left, top, length,
and width) of the target rectangle position & size given by the 4-tuple, and the cocentric rectangular window from the clipped image
given by only the (length, width) size of the target rectangle. For example, we can crop out a window with an i.MX RT1060 EVK
LCD screen from the center of the original image as follows:

sensor.set_framesize(sensor.VGA)
sensor.set_windowing((480,272))

The parentheses around (480,272) are required to indicate that the argument is passed as a tuple. The
sensor.set_windowing() method determines whether there are only two or four elements in the tuple to
determine whether the rectangular position is manually specified.

 NOTE

8.3 Brightness control
The brightness of images has a significant impact on the quality of machine vision algorithms. The combination of camera
exposure time and ambient lighting greatly affects the brightness of images. Photographic chips generally provides a variety of

NXP Semiconductors
Image capture configurations

Machine Vision Applications on i.MX RT1050/1060 with OpenMV and Micropython, Rev. 0, 10 May, 2021
Application Note 11 / 16

programmable direct or indirect control that affects brightness in the captured image. In OpenMV, Python API bindings provide a
variety of ways to directly and indirectly control brightness, briefly described as below:

• Adjust brightness directly

With the sensor.set_brightness() method, you can directly control the brightness logic of the sensor. Configurable range
is an integer between [-3,3].

• Increase exposure time length

With the sensor.set_auto_exposure (False, integer) method, you can manually specify an exposure time, ranging between
[0, 10000]. The bigger value indicates longer exposure time and higher brightness.

• Increase the gain ceiling

With the auto-gain mode method (by default after sensor reset), increase the gain ceiling up to 128 by
sensor.set_gainceiling(2/4/8/16/32/64/128). The higher the gain, the brighter the image.

• Specify gain manually

With the sensor.set_auto_gain (False, 2/4/8/16/32/64/128) method, to manually specify the desired gain.

• Lower the master clock (MCLK) of the sensor

With the sensor.set_framerate() method, adjust the main clock frequency of the photosensitive chip and lower the
frequency to increase the exposure time and brightness. In our ported system, the clock source and frequency divider can be
selected by the user, encoded as follows:

{encoded clock source}<<9 | {clock_divider+1}<<11

The encoded clock sources can be:

— 0 : 24 MHz

— 2 : 120 MHz

clock_divider can be 0 to 7, which means to divide by 1 to 8.

For the OV7725 image sensor connected to the i.MX RT1060 EVK, the max allowed input clock is 15 MHz, multiplied by 4
internally. To decrease OV7725 master clock and increase brightness indirectly, change the clock source to 0 (24 MHz) and
set clock_divider greater than 1.

• Use VGA as native resolution and clip your window

OV7725 gets brighter image when working under VGA mode, but high resolution requires more resources. To solve this
problem by window clipping, use the following settings to emulate the effect of sensor.set_framesize (sensor.QVGA):

sensor.set_framesize(sensor.VGA)
sensor.set_windowing((320,240))

The region of image is only the 50% of original visual range.

 NOTE

The effects of the above methods can be superimposed to make the image brightness vary greatly. Figure 8 shows the image
effect in the same dark room, with the lighting source as 3 W white LED strip lamp.

NXP Semiconductors
Image capture configurations

Machine Vision Applications on i.MX RT1050/1060 with OpenMV and Micropython, Rev. 0, 10 May, 2021
Application Note 12 / 16

Figure 8. Brightness control effect

As shown in Figure 8, the brightness will affect the color of the image.

9 Image module - Brain of machine vision
OpenMV MCU side software includes the implementation of a rich set of machine vision algorithms. These algorithms are
encapsulated in the image Python module, responsible for presenting various machine vision functions of OpenMV. If the sensor
module introduced above is the eye of OpenMV, the image module is the brain of OpenMV. To demonstrate what this brain can do,
the OpenMV IDE comes with a number of sample programs. The below will describe the commonly-used machine vision functions
in the image module with examples.

9.1 Drawing
Draw arrows, lines, crosses, circles, ellipses, key points, and output strings. These functions are not part of machine vision, but
can be used to annotate the results of processing and make a simple man-machine interface.

Figure 9. Drawing

9.2 Image processing/filtering
This part contains many common image processing algorithms, including: adaptive histogram, blur, cartoon, bilateral, binary
filter, light removal, edge detection, corrosion and expansion, gamma correction, camera calibration, linear kernel function and
morphology filter - polar coordinates, the log - polar coordinates, average adaptive threshold filtering, adaptive threshold average
filtering and median filtering, median filtering, midpoint adaptive threshold filtering, midpoint filtering, negating, perspective and
rotation correction, sharpen, flip and mirror, etc.

Examples related to image processing/filtering are located at .\OpenMV IDE\share\ QtCreator\Examples \OpenMV\ 04-image-
filters.

You can explore them with Windows File explorer as below:

NXP Semiconductors
Image module - Brain of machine vision

Machine Vision Applications on i.MX RT1050/1060 with OpenMV and Micropython, Rev. 0, 10 May, 2021
Application Note 13 / 16

Or, open each per time within OpenMV IDE by clicking File -> Examples -> OpenMV -> Image -> Filters.

9.3 Snapshot
OpenMV supports snapshot on condition or time elapse. Examples are located
at .\OpenMV IDE\share\qtcreator\examples\OpenMV\05-Snapshot.

9.4 Video recording
OpenMV can record small videos in GIF and MJPEG formats. The accompanying example demonstrates that the video
recording is triggered by a face detection event and by a movement detection event. Examples are located at .\openMV
IDE\ Share\QTCreator\Examples\openMV\06-video-recording.

9.5 Face and eye detection
OpenMV includes face and eye detection models trained by the classical machine learning Haar-Cascade
method. Relevant examples are located at .\OpenMV IDE\share\qtcreator\examples\OpenMV\07-Face-Detection
and .\OpenMV IDE\share\qtcreator\examples\OpenMV\08-Eye-Tracking.

9.6 Feature detection
OpenMV includes a variety of image feature detection functions, including edge detection, circle detection, line segment detection,
rectangle detection, directional gradient histogram (HOG), key points, linear regression, and Local Binary Partten (LBP).

Relevant examples are located at .\OpenMV IDE\share\qtcreator\examples\OpenMV\09-Feature-Detection.

NXP Semiconductors
Image module - Brain of machine vision

Machine Vision Applications on i.MX RT1050/1060 with OpenMV and Micropython, Rev. 0, 10 May, 2021
Application Note 14 / 16

9.7 Color tracking
OpenMV includes a variety of color blob and line tracking functions, including grayscale and color blob tracking, and an example
of a vehicle tracing along a black lead line. It tracks a variety of colors at the same time.

Relevant examples are located at .\OpenMV IDE\share\qtcreator\examples\OpenMV\10-Color-Tracking.

9.8 Barcode and QR code detection
OpenMV has ported the zbar library, which can use Python interface to detect single or multiple barcodes and QR codes in the
image field of view, and correct lens distortion before detection.

Relevant examples are located at .\OpenMV IDE\share\qtcreator\examples\OpenMV\16-Codes.

9.9 April-Tag detection
OpenMV detects April-Tag of multiple families and decodes the code number, distance information, attitude information. Multiple
April-Tags from different families can be detected in the same field of view.

OpenMV IDE also comes with a small tool to generate April-Tags.

OpenMV supports below April-Tag families: 16H5, 25H7, 25H9, 36H10, 36H11.

Relevant examples are located at .\OpenMV IDE\share\qtcreator\examples\OpenMV\26-April-Tags.

10 Get more information
OpenMV has a very complete document system, MicroPython documentation, where you can find documentation about OpenMV
and an introduction to the MicroPython language, libraries, and somefeatures of the development board for reference.

Chinese users can refer to Singtown for the OpenMV documents that Sing-town has translated and numerous instructional videos.

11 References
Following documents may offer further reference.

• MicroPython documentation

• MicroPython

• micropython-rocky

• OpenMV

• Singtown

12 Revision history

Revision number Date Substantive changes

0 10 May, 2021 Initial release

NXP Semiconductors
Get more information

Machine Vision Applications on i.MX RT1050/1060 with OpenMV and Micropython, Rev. 0, 10 May, 2021
Application Note 15 / 16

https://docs.openmv.io/
https://singtown.com/learn/
https://docs.openmv.io
http://www.micropython.org
https://github.com/RockySong/micropython-rocky/
https://book.openmv.cc/
https://singtown.com/learn/

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There
are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor
does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided
in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical
experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to
standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce
the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other
open and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no
liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules, regulations, and standards of the intended
application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all
legal, regulatory, and security related requirements concerning its products, regardless of any information or support that
may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com)
that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP,
HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,
MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG,
TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy
Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ
Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are
trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,
ULINK-ME, ULINK-PLUS, ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 10 May, 2021
Document identifier: AN13243

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Hardware platform
	2.1 i.MX RT1050/60 crossover process
	2.2 i.MX RT1050/60 EVK board

	3 Machine vision and OpenMV project
	3.1 Introduction to machine vision
	3.2 Introduction to OpenMV project
	3.3 Components of OpenMV project

	4 Build and run OpenMV firmware on your i.MX RT1050/1060 EVK
	4.1 Download source code
	4.1.1 Download specific version for this AN
	4.1.2 git clone

	4.2 Open KEIL project and build firmware
	4.3 Prepare for file system
	4.4 Download and run

	5 Access Micropython file system from PC
	6 Explore OpenMV functions with OpenMV IDE
	7 Skeleton of OpenMV machine vision applications
	8 Image capture configurations
	8.1 Color mode
	8.2 Image resolution and window clipping
	8.3 Brightness control

	9 Image module - Brain of machine vision
	9.1 Drawing
	9.2 Image processing/filtering
	9.3 Snapshot
	9.4 Video recording
	9.5 Face and eye detection
	9.6 Feature detection
	9.7 Color tracking
	9.8 Barcode and QR code detection
	9.9 April-Tag detection

	10 Get more information
	11 References
	12 Revision history

