
1 Introduction
The GUI Guider, by NXP, is a powerful development tool when creating
graphical user interface applications. It allows for quick development of
graphical displays. Often, however, applications have to do more than just
operate a display. The controller has to run a display and take input from a
keyboard, or buttons, or read information from sensors, and so on. Controls on
the display must interact with these other functions of the controller. This application note is intended to show how to get your GUI
Guider application to interact with other peripherals in your application.

2 GUI Guider overview
GUI Guider is a What You See Is What You Get (WYSIWYG) user interface design tool with drag and drop support. This tool is a
complementary tool from NXP that supports NXP devices. It allows for adding events, actions, and animations, which are useful
when allowing the target MCU to interact with the outside world. See Figure 1 for the main interface of the GUI Guider.

Figure 1. GUI Guider main interface

In the main interface, there is a left panel, middle panel, and right panel. The focus of this application note to give the detail about
the right panel, as that is where the events are added.

Contents

1 Introduction......................................1
2 GUI Guider overview.......................1
3 Adding custom code........................4
4 Software.. 6
5 Conclusion.....................................10
6 Revision history.............................10

AN13217
GUI Guider Peripheral Interaction
Rev. 0 — 18 June 2021 Application Note

To demonstrate how GUI Guider can interact with peripherals, we use the buttonCounterDemo application template. After creating
a demo based on this template, screen shown in Figure 2 should appear.

Figure 2. ButtonCounterDemo application template

Now, let us first inspect one of the button widgets. See Figure 3 for the events associated with the minus button.

NXP Semiconductors
GUI Guider overview

GUI Guider Peripheral Interaction, Rev. 0, 18 June 2021
Application Note 2 / 11

Figure 3. Minus button

In this application there is, by default one action associated with this widget. The action that is performed is the C code… action. This
is an action that allows custom code to be executed when the widget is triggered. The code to be executed can be directly written
into the code dialog box, see Figure 3. Any include files this code may need can be added in the Include dialog box, see Figure 3.

More than one C code action per widget / trigger combination is permitted. However, they are going to combine into
the same function when the code is generated by GUI Guider.

 NOTE

2.1 File structure
Once the events are configured as desired and code is generated, it is helpful to understand where that code is going to be placed,
see Figure 4.

• Hold custom code you may want for your application

• LVGL library source files. These files are also critical.

• Holds the generated files; includes images and fonts
used in the project. Files in this folder are critical.

• Holds project files for deployment to a target

• Files used by the simulator

• GUI Guider project file

• Holds the source image files used in the project

Figure 4. Root folder structure

NXP Semiconductors
GUI Guider overview

GUI Guider Peripheral Interaction, Rev. 0, 18 June 2021
Application Note 3 / 11

All event handlers reside in the events_init.c file, which resides in the generated folder. Do not manually modify these files, as
GUI Guider overwrite any manually written changes when generating code. See Figure 5 for folder structure and description of
files within the generated folder.

Font and image
source files

Source file for Events

Make file for GCC projects.

Main source files.

Configuration file.

Each screen has its own
source file.

Figure 5. Generated folder

When the project is first created, there is also a custom folder that is created which contains custom.c/h. code written in these
files, which is not going to be overwritten when generating code via GUI Guider.

3 Adding custom code

3.1 GUI Guider triggering peripherals
If you want a GUI Guider action to trigger a peripheral (for example, a button press on the display is to toggle an LED on the
board), custom code in GUI Guider is the way to do this. In this simple example, we use the LED macros that are already defined
in board.h, see Figure 6.

NXP Semiconductors
Adding custom code

GUI Guider Peripheral Interaction, Rev. 0, 18 June 2021
Application Note 4 / 11

These macros are only defined in board.h, so we must include board.h in the event.

Figure 6. Trigger, peripheral

 NOTE

Now, this is a simple example, not a number of code. Let us take the case where we may need to add many code or something
that takes so many lines of code, so it becomes unmanageable in GUI Guider. For this case, the function can be placed in another
file, like custom.c, and the function called from there.

3.2 Peripherals triggering GUI Guider actions
Take the case where your code would need to interact with GUI Guider without GUI Guider initiating the interaction. This does
not require an event to be set up in your GUI Guider application. You simply need to know how to refer and interact with the GUI
Guider widgets.

For this purpose, GUI Guider requires a variable of type lv_ui to be instantiated and passed to the setup functions as in
setup_ui(), events_init(), and custom_init(), see Figure 7 and Figure 8.

Figure 7. Variable

NXP Semiconductors
Adding custom code

GUI Guider Peripheral Interaction, Rev. 0, 18 June 2021
Application Note 5 / 11

Figure 8. Setup functions

This allows user code to interact with the widgets once it has been set up. The lv_ui handle contains all of the widgets contained
in the application, see Figure 9.

Figure 9. Widgets

Any LVGL function that can be applied to the object type can be used on the elements of the lv_ui structure. The setup_ui()
function then creates, configure, and assigns the individual elements to their specific widget type. User code must keep track of
the widget types of the elements to ensure that elements are only passed to functions meant for that widget type.

4 Software
The example software used for this application note is based on the buttonCounterDemo application template provided by the GUI
Guider. This template implements two buttons, a button named plus and other button named minus, which increment or decrement
a counter in the center of the screen. The plus button increments the count while, and the minus button decrements the counter.
To demonstrate the two situations discussed in this application note, a custom function implements when the minus button on the
screen is pressed and an external pushbutton increment the count.

4.1 Code for GUI Guider to trigger peripherals
The method for getting GUI Guider to trigger peripherals starts in the GUI Guider IDE. See Figure 10 for modified event in the
GUI Guider.

NXP Semiconductors
Software

GUI Guider Peripheral Interaction, Rev. 0, 18 June 2021
Application Note 6 / 11

Figure 10. Modified event

With these additions, the code executes the USER_LED_TOGGLE() function, which toggles the LED on the board, and a
custom_print() function, which has to be defined in the code. Also notice that board.h has been included. This is necessary
because the USER_LED_TOGGLE() function is defined in board.h. The custom_print() function is defined elsewhere, so we
should not include for this function.

Now let us examine the generated code. All the code is executed when the minus button is pressed, contained within the
screen_minusevent_handler(). This function is located in events_init.c, see Figure 11.

Figure 11. screen_minusevent_handler()

NXP Semiconductors
Software

GUI Guider Peripheral Interaction, Rev. 0, 18 June 2021
Application Note 7 / 11

The code for the LV_EVENT_CLICKED case is exactly how it was written in the GUI Guider IDE event. The include
that were added, have also been added to the top of the events_init.c file, see Figure 12.

Figure 12. events_init.c

 NOTE

The custom code function is added to the custom.c file. No custom code should be added to any of the other GUI Guider files as
these files are overwritten every time whenever code is regenerated, see Figure 13 for custom code.

Figure 13. Custom code

4.2 Code for peripherals triggering GUI Guider actions
Enabling peripherals to trigger GUI Guider actions is slightly more involved than the other way around. The main reason for
peripherals triggering is because LVGL is not thread safe. So, if an operating system is being used, which is the case in this
example, then you cannot interact with the screen at just any point in the application. To cope with this requirement, first an LVGL
task has to be created, see Figure 14.

Figure 14. LVGL task

NXP Semiconductors
Software

GUI Guider Peripheral Interaction, Rev. 0, 18 June 2021
Application Note 8 / 11

This task checks for a semaphore to be set. If that semaphore is set, the semaphore will be cleared and then the event will be sent
to inform LVGL that the plus sign has been clicked, see Figure 15.

Figure 15. Semaphore

This semaphore will be set in the GPIO interrupt. But before this can happen, the GPIO must be set up for this operation. This is
done as one of the first operations in the AppTask, see Figure 16.

Figure 16. AppTask

Now, the GPIO interrupt handler is written, see Figure 17.

Figure 17. GPIO interrupt handler

The task of the GPIO interrupt handler is to simply service the GPIO interrupt (clear the flags) and set the semaphore. This way
the gpio_task_cb() function knows that the GPIO has been pressed and the LV_EVENT_CLICKED signal can be sent.

Finally, the pin MUX of the pin must be set correctly. This is configured in the BOARD_InitPins() function in the pin_mux.c file,
see Figure 18. The IOMUXC_SetPinMux function should be used to set the appropriate pin and the clock to the IOMUXC SNVS logic
should also be enabled, see Figure 19.

NXP Semiconductors
Software

GUI Guider Peripheral Interaction, Rev. 0, 18 June 2021
Application Note 9 / 11

Figure 18. BOARD_InitPins()

Figure 19. IOMUXC_SetPinMux

5 Conclusion
In this application note, it has been shown how to insert custom code into your GUI Guider project to interact with on-chip
peripherals, as well as have on-chip peripherals interact with GUI Guider widgets in your project. Both actions have a slightly
different implementation and are useful actions for your application. It has also been shown how to add custom code such that
your custom code is not destroyed upon subsequent code generations.

6 Revision history
Table 1 summarizes the changes done to this document since the initial release.

Table 1. Revision history

Revision number Date Substantive changes

0 18 June 2021 Initial release

NXP Semiconductors
Conclusion

GUI Guider Peripheral Interaction, Rev. 0, 18 June 2021
Application Note 10 / 11

How To Reach
Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Limited warranty and liability — Information in this document is provided solely to enable system and software implementers to use NXP
products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on
the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does
NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or
specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including
“typicals,” must be validated for each customer application by customer's technical experts. NXP does not convey any license under its
patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the
following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including
without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all
information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer
is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these
vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open and/or proprietary
technologies supported by NXP products for use in customer’s applications. NXP accepts no liability for any vulnerability. Customer
should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that
best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products
and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless
of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP, HITAG,
ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE
ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS,
UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis,
Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower,
TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight,
Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power
Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org. M, M Mobileye and other Mobileye trademarks or logos appearing herein are trademarks of Mobileye Vision
Technologies Ltd. in the United States, the EU and/or other jurisdictions.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 18 June 2021
Document identifier: AN13217

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 GUI Guider overview
	2.1 File structure

	3 Adding custom code
	3.1 GUI Guider triggering peripherals
	3.2 Peripherals triggering GUI Guider actions

	4 Software
	4.1 Code for GUI Guider to trigger peripherals
	4.2 Code for peripherals triggering GUI Guider actions

	5 Conclusion
	6 Revision history

