
AN13189
PN7160 Android porting guide
Rev. 1.8 — 15 March 2022 Application note

Document information
Information Content

Keywords Android, NFC, NXP, NCI, PN7160

Abstract This application note describes how to add support for PN7160 NXP NCI-based NFC controller to
an Android system.

NXP Semiconductors AN13189
PN7160 Android porting guide

1 Revision history

Rev Date Description

1.8 20230315 Section 3 "Security fixes": added

1.7 20221215 Section 5.1 "Android 13": added

1.6 20220224 Adding firmware update procedure details (Section 5.2.5 and Section 5.3.5)

1.5 20220201 Adding Android12 support

1.4 20210916 Typo error in repository address fixed

1.3 20210913 Security status changed into "Company public", no content change

1.2 20210820 Security status changed into "Company restricted"

1.1 20210709 Updated with SPI support, FW update, NDEF emulation support and DTA application

1.0 20210324 Initial release

Revision history

AN13189 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.8 — 15 March 2022
2 / 26

NXP Semiconductors AN13189
PN7160 Android porting guide

2 Introduction

This document provides guidelines for the integration of PN7160 NXP NCI-based NFC controller to an Android
platform from software perspective.

It first explains how to install the required kernel driver, then it describes step by step how to adapt the Android
Open Source Project sources for adding the support of PN7160 NFC controller. Figure 1 shows the architecture
of the whole Android NFC stack.

NXP NCI HAL

nxpnfc driver

NXP NCI NFC Controller

Kernel API

Native libraries (C/C++)

Physical interface

Linux kernel drivers (I2C, SPI, GPIO…)

Other NCI HAL

NFC Controller Interface (libnfc-nci)

Java Native Interface (JNI)

Android NFC API

NFC service
NXP patchs

NXP patchs

Android app using NFC App layer (Java)

JNI API

App framework (Java)

Linux kernel

NXP patchs

Figure 1. Android NFC stack overview

• The nxpnfc driver is the kernel module allowing to access NXP NCI-based NFC controller hardware resource
• The NXP NCI HAL module is the implementation of NXP NFC controller’s specific hardware abstraction layer
• The libnfc-nci is the native library providing NFC functionality
• The JNI is a glue code between Java and Native classes
• The NFC service is the application framework module providing access to NFC functionality

AN13189 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.8 — 15 March 2022
3 / 26

NXP Semiconductors AN13189
PN7160 Android porting guide

3 Security fixes

Important notice:

The customer must integrate following security fixes. NXP will support them from next Android release.

CVE-2022-20471: https://android.googlesource.com/platform/hardware/nxp/nfc/
+/1164ee536ecf6504e73dcaac0ccb1ee887f3a19c

CVE-2023-20945: https://android.googlesource.com/platform/packages/apps/Nfc/
+/4a964908ff0bd91d93f96cdc26f7377420c58273

AN13189 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.8 — 15 March 2022
4 / 26

https://android.googlesource.com/platform/hardware/nxp/nfc/+/1164ee536ecf6504e73dcaac0ccb1ee887f3a19c
https://android.googlesource.com/platform/hardware/nxp/nfc/+/1164ee536ecf6504e73dcaac0ccb1ee887f3a19c
https://android.googlesource.com/platform/packages/apps/Nfc/+/4a964908ff0bd91d93f96cdc26f7377420c58273
https://android.googlesource.com/platform/packages/apps/Nfc/+/4a964908ff0bd91d93f96cdc26f7377420c58273

NXP Semiconductors AN13189
PN7160 Android porting guide

4 Kernel driver

The NFC Android stack uses nxpnfc kernel driver to communicate with the NXP NCI NFC controller. It is
available from the following repository: https://github.com/NXPNFCLinux/nxpnfc.

4.1 Driver details
The nxpnfc kernel driver offers communication to the NFC controller connected over either I2C or SPI physical
interface.

When loaded to the kernel, this driver exposes the interface to the NFC controller through the device node
named /dev/nxpnfc.

This kernel driver is compatible with a broad range of NXP’s NFC controllers, it explains specific NXP
references can be found in the source code.

The provided source code allows building both versions of the kernel driver (I2C and SPI) according to the
kernel configuration.

4.2 Getting the source code
Clone the nxpnfc repository into the kernel directory, replacing existing implementation:

$ rm -rf drivers/nfc
$ git clone https://github.com/NXPNFCLinux/nxpnfc.git drivers/nfc

This will end-up with the folder drivers/nfc containing the following files:

• README.md: repository information
• Makefile: driver heading makefile
• Kconfig: driver configuration file
• LICENSE: driver licensing terms
• i2c_devicetree.txt: example of I2C device tree definition
• spi_devicetree.txt: example of SPI device tree definition
• nfc sub folder containing:

– Makefile:
– common.c: generic driver implementation
– common.h: generic driver interface definition
– i2c.c: I2C-specific driver implementation
– i2c.h: I2C-specific driver interface definition
– spi.c: SPI-specific driver implementation
– spi.h: SPI-specific driver interface definition

4.3 Including the driver into the kernel
Including the driver to the kernel, and making it loaded during device boot, is done thanks to the device tree.

After updating the device tree definition as suggested in below examples, the platform-related device tree must
be rebuilt.

4.3.1 I2C version

I2C address (0x28 in below examples) and GPIO assignments must be adapted according to the hardware
integration in the platform.

AN13189 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.8 — 15 March 2022
5 / 26

https://github.com/NXPNFCLinux/nxpnfc

NXP Semiconductors AN13189
PN7160 Android porting guide

Below is an example of definition to be added to the platform device tree file (.dts file located for instance under
arch/arm/boot/dts kernel subfolder for arm-based platform).

i2c0: i2c@ffd71000 {
 ...
 status = "ok";
 nxpnfc: nxpnfc@28 {
 compatible = "nxp,nxpnfc";
 reg = <0x28>;
 nxp,nxpnfc-irq = <&gpio26 0 0>;
 nxp,nxpnfc-ven = <&gpio26 2 0>;
 nxp,nxpnfc-fw-dwnld = <&gpio26 4 0>;
 };
};

4.3.2 SPI version

SPI handle (0 in the below example) and GPIO assignments must be adapted according to the hardware
integration in the platform.

Below is an example of definition to be added to the platform device tree file (.dts file located for instance under
arch/arm/boot/dts kernel subfolder for arm-based platform).

spi2: spi@ffd68000 {
 ...
 status = "ok";
 nxpnfc@0 {
 compatible = "nxp,nxpnfc";
 reg = <0>;
 nxp,nxpnfc-irq = <&gpio26 0 0>;
 nxp,nxpnfc-ven = <&gpio26 2 0>;
 nxp,nxpnfc-fw-dwnld = <&gpio26 4 0>;
 spi-max-frequency = <7000000>;
 };
};

4.4 Building the driver
Through menuconfig procedure include the targeted driver (I2C or SPI version) to the build, as built in (<*>):

Device Drivers --->
 < > NFC I2C Slave driver for NXP-NFCC
 < > NFC SPI Slave driver for NXP-NFCC

Rebuilding the complete kernel, the driver will be included in the kernel image.

AN13189 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.8 — 15 March 2022
6 / 26

NXP Semiconductors AN13189
PN7160 Android porting guide

5 AOSP adaptation

5.1 Android 13
Below step-by-step procedure is based on NXP’s Android NFC delivery from https://github.com/NXPNFCLinux/
nxpnfc_android13 repository.

The current release is based on Android AOSP version 13.0.0_r3, porting to other Android 13 subversion may
require minor adaptation of API (detected when compiling).

5.1.1 Step 1: retrieving NXP's Android NFC delivery

Copy the content of the PN7160 Android 13 engineering release package to the AOSP repository:

$ git clone https://github.com/NXPNFCLinux/nxpnfc_android13.git ${ANDROID_BUILD_TOP}/vendor/nxp/nfc

Please be aware that Android 13 is using kernel version 5.10.

5.1.2 Step 2: installing NXP-NCI delivery

Run the installation script:

$ ${ANDROID_BUILD_TOP}/vendor/nxp/nfc/install_NFC.sh

This will:

• Patch the AOSP system/nfc implementation to add PN7160 specific support
• Patch the AOSP hardware/nxp/nfc implementation to add PN7160 specific support
• Patch the AOSP packages/apps/Nfc folder to add support for PN7160 extensions
• Patch the AOSP frameworks/base definitions to add specific API
• Patch the AOSP frameworks/native definitions to add specific permissions
• Patch the vendor/nxp folder to add specific API for T4T NDEF emulation
• Patch the AOSP build/make folder to avoid warnings when building image
• Patch the AOSP hardware/interface definitions to add specific interface
• Patch the AOSP system/core folder to force remounting partitions

5.1.3 Step 3: updating configuration files

Adapt the libnfc-nci.conf and libnfc-nxp.conf files located in vendor/nxp/nfc/hw/pn7160/conf subfolder, created
at Section 5.1.1, according to the integration specificities (e.g. clock configuration, TxLDO configuration, RF
settings …).

For instance if using a system clock instead of an onboard crystal, the value of parameter
“NXP_SYS_CLK_SRC_SEL” in libnfc-nxp.conf must reflect this configuration.

More details about the configuration files can be found in Section 6.

5.1.4 Step 4: adding NFC to the build

In the device.mk makefile (e.g. device/brand/platform/device.mk), include specific makefile.

$(call inherit-product, vendor/nxp/nfc/device-nfc.mk)

AN13189 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.8 — 15 March 2022
7 / 26

https://github.com/NXPNFCLinux/nxpnfc_android13
https://github.com/NXPNFCLinux/nxpnfc_android13

NXP Semiconductors AN13189
PN7160 Android porting guide

In the BoardConfig.mk makefile (e.g. device/brand/platform/BoardConfig.mk), include specific makefile.

-include vendor/nxp/nfc/BoardConfigNfc.mk

5.1.5 Step 5: adding firmware libraries

The Android NFC stack integrates the support for updating the NFC controller firmware. To allow the update
mechanism, the updated firmware version must be included on the target in a form of a library (or binary). Arm
architecture libraries for NXP's NFC controller firmware are provided via dedicated repository https://github.com/
NXP/nfc-NXPNFCC_FW.

Retrieve PN7160 firmware library files from repository to dedicated subfolder with following commands:

$ wget -r -np -nd -P ${ANDROID_BUILD_TOP}/vendor/nxp/pn7160/firmware/64-bit/ https://github.com/NXP/nfc-NXPNFCC_FW/
tree/master/InfraFW/pn7160/64-bit/libpn7160_fw.so
$ wget -r -np -nd -P ${ANDROID_BUILD_TOP}/vendor/nxp/pn7160/firmware/32-bit/ https://github.com/NXP/nfc-NXPNFCC_FW/
tree/master/InfraFW/pn7160/32-bit/libpn7160_fw.so

This creates vendor/nxp/pn7160/firmware subfolder containing 32 bits and 64 bits Arm architecture libraries.
Those libraries will be included in the image when building the android image (as defined within vendor/nxp/nfc/
device-nfc.mk).

5.1.6 Step 6: building and installing NFC

Build and flash the Android images to the target (the boot image must contain the kernel driver as instructed in
Section 4). Please be aware that kernel should be at version 5.10.

5.1.7 Step 7: verifying NFC functionality

In Android “Settings” menu, check that NFC is ON. NFC functionality should be then up and running, ready to
discover NFC tags or exchange data with remote NFC devices.

To further test NFC reader functionality, NFC TagInfo by NXP and NFC TagWriter by NXP are 2 applications
available for free from Google Play store.

5.2 Android 12
Below step-by-step procedure is based on NXP’s Android NFC delivery from https://github.com/NXPNFCLinux/
nxpnfc_android12 repository.

The current release is based on Android AOSP version 12.0.0_r9, porting to other Android 12 subversion may
require minor adaptation of API (detected when compiling).

5.2.1 Step 1: retrieving NXP's Android NFC delivery

Copy the content of the PN7160 Android 12 engineering release package to the AOSP repository:

$ git clone https://github.com/NXPNFCLinux/nxpnfc_android12.git ${ANDROID_BUILD_TOP}/vendor/nxp/nfc

5.2.2 Step 2: installing NXP-NCI delivery

Run the installation script:

$ ${ANDROID_BUILD_TOP}/vendor/nxp/nfc/install_NFC.sh

This will:

AN13189 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.8 — 15 March 2022
8 / 26

https://github.com/NXP/nfc-NXPNFCC_FW
https://github.com/NXP/nfc-NXPNFCC_FW
https://github.com/NXPNFCLinux/nxpnfc_android12
https://github.com/NXPNFCLinux/nxpnfc_android12

NXP Semiconductors AN13189
PN7160 Android porting guide

• Patch the AOSP system/nfc implementation to add PN7160 specific support
• Patch the AOSP hardware/nxp/nfc implementation to add PN7160 specific support
• Patch the AOSP packages/apps/Nfc folder to add support for PN7160 extensions
• Patch the AOSP frameworks/base definitions to add specific API
• Patch the AOSP frameworks/native definitions to add specific permissions
• Patch the vendor/nxp folder to add specific API for T4T NDEF emulation
• Patch the AOSP build/make folder to avoid warnings when building image
• Patch the AOSP hardware/interface definitions to add specific interface
• Patch the AOSP system/core folder to force remounting partitions

5.2.3 Step 3: updating configuration files

Adapt the libnfc-nci.conf and libnfc-nxp.conf files located in vendor/nxp/nfc/hw/pn7160/conf subfolder, created
at Section 5.2.1, according to the integration specificities (e.g. clock configuration, TxLDO configuration, RF
settings …).

For instance if using a system clock instead of an onboard crystal, the value of parameter
“NXP_SYS_CLK_SRC_SEL” in libnfc-nxp.conf must reflect this configuration.

More details about the configuration files can be found in Section 6.

5.2.4 Step 4: adding NFC to the build

In the device.mk makefile (e.g. device/brand/platform/device.mk), include specific makefile

$(call inherit-product, vendor/nxp/nfc/device-nfc.mk)

In the BoardConfig.mk makefile (e.g. device/brand/platform/BoardConfig.mk), include specific makefile

-include vendor/nxp/nfc/BoardConfigNfc.mk

5.2.5 Step 5: adding firmware libraries

The Android NFC stack integrates the support for updating the NFC controller firmware. To allow the update
mechanism, the updated firmware version must be included on the target in a form of a library (or binary). Arm
architecture libraries for NXP's NFC controller firmware are provided via dedicated repository https://github.com/
NXP/nfc-NXPNFCC_FW.

Retrieve PN7160 firmware library files from repository to dedicated subfolder with following commands:

$ wget -r -np -nd -P ${ANDROID_BUILD_TOP}/vendor/nxp/pn7160/firmware/64-bit/ https://github.com/NXP/nfc-NXPNFCC_FW/
tree/master/InfraFW/pn7160/64-bit/libpn7160_fw.so
$ wget -r -np -nd -P ${ANDROID_BUILD_TOP}/vendor/nxp/pn7160/firmware/32-bit/ https://github.com/NXP/nfc-NXPNFCC_FW/
tree/master/InfraFW/pn7160/32-bit/libpn7160_fw.so

This creates vendor/nxp/pn7160/firmware subfolder containing 32 bits and 64 bits Arm architecture libraries.
Those libraries will be included in the image when building the android image (as defined within vendor/nxp/nfc/
device-nfc.mk).

5.2.6 Step 6: building and installing NFC

Build and flash the Android images to the target (the boot image must contain the kernel driver as instructed in
Section 4).

AN13189 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.8 — 15 March 2022
9 / 26

https://github.com/NXP/nfc-NXPNFCC_FW
https://github.com/NXP/nfc-NXPNFCC_FW

NXP Semiconductors AN13189
PN7160 Android porting guide

5.2.7 Step 7: verifying NFC functionality

In Android “Settings” menu, check that NFC is ON. NFC functionality should be then up and running, ready to
discover NFC tags or exchange data with remote NFC devices.

To further test NFC reader functionality, NFC TagInfo by NXP and NFC TagWriter by NXP are 2 applications
available for free from Google Play store.

5.3 Android 11
Below step-by-step procedure is based on NXP’s Android NFC delivery from https://github.com/NXPNFCLinux/
nxpnfc_android11 repository.

The current release is based on Android AOSP version 11.0.0_r3, porting to other Android 11 subversion may
require minor adaptation of API (detected when compiling).

5.3.1 Step 1: retrieving NXP's Android NFC delivery

Clone repository into AOSP source directory:

$ git clone https://github.com/NXPNFCLinux/nxpnfc_android11.git ${ANDROID_BUILD_TOP}/vendor/nxp/nfc

5.3.2 Step 2: installing NXP-NCI delivery

Run the installation script:

$ ${ANDROID_BUILD_TOP}/vendor/nxp/nfc/install_NFC.sh

This will:

• Patch the AOSP system/nfc implementation to add PN7160 specific support
• Patch the AOSP hardware/nxp/nfc implementation to add PN7160 specific support
• Patch the AOSP packages/apps/Nfc folder to add support for PN7160 extensions
• Patch the AOSP frameworks/base definitions to add specific API
• Patch the AOSP frameworks/native definitions to add specific permissions
• Patch the vendor/nxp folder to add specific API for T4T NDEF emulation

5.3.3 Step 3: updating configuration files

Adapt the libnfc-nci.conf and libnfc-nxp.conf files located in vendor/nxp/nfc/hw/pn7160/conf subfolder, created
at Section 5.3.1, according to the integration specificities (e.g. clock configuration, TxLDO configuration, RF
settings …).

For instance if using a system clock instead of an onboard crystal, the value of parameter
“NXP_SYS_CLK_SRC_SEL” in libnfc-nxp.conf must reflect this configuration.

More details about the configuration files can be found in Section 6.

5.3.4 Step 4: adding NFC to the build

In the device.mk makefile (e.g. device/brand/platform/device.mk), include specific makefile

$(call inherit-product, vendor/nxp/nfc/device-nfc.mk)

AN13189 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.8 — 15 March 2022
10 / 26

https://github.com/NXPNFCLinux/nxpnfc_android11
https://github.com/NXPNFCLinux/nxpnfc_android11

NXP Semiconductors AN13189
PN7160 Android porting guide

In the BoardConfig.mk makefile (e.g. device/brand/platform/BoardConfig.mk), include specific makefile

-include vendor/nxp/nfc/BoardConfigNfc.mk

5.3.5 Step 5: adding firmware libraries

The Android NFC stack integrates the support for updating the NFC controller firmware. To allow the update
mechanism, the updated firmware version must be included on the target in a form of a library (or binary). Arm
architecture libraries for NXP's NFC controller firmware are provided via dedicated repository https://github.com/
NXP/nfc-NXPNFCC_FW.

Retrieve PN7160 firmware library files from repository to dedicated subfolder with following commands:

$ wget -r -np -nd -P ${ANDROID_BUILD_TOP}/vendor/nxp/pn7160/firmware/64-bit/ https://github.com/NXP/nfc-NXPNFCC_FW/
tree/master/InfraFW/pn7160/64-bit/libpn7160_fw.so
$ wget -r -np -nd -P ${ANDROID_BUILD_TOP}/vendor/nxp/pn7160/firmware/32-bit/ https://github.com/NXP/nfc-NXPNFCC_FW/
tree/master/InfraFW/pn7160/32-bit/libpn7160_fw.so

This creates vendor/nxp/pn7160/firmware subfolder containing 32 bits and 64 bits Arm architecture libraries.
Those libraries will be included in the image when building the android image (as defined within vendor/nxp/nfc/
device-nfc.mk).

5.3.6 Step 6: building and installing NFC

Build and flash the Android images to the target (the boot image must contain the kernel driver as instructed in
Section 4).

5.3.7 Step 7: verifying NFC functionality

In Android “Settings” menu, check that NFC is ON. NFC functionality should be then up and running, ready to
discover NFC tags or exchange data with remote NFC devices.

To further test NFC reader functionality, NFC TagInfo by NXP and NFC TagWriter by NXP are 2 applications
available for free from Google Play store.

AN13189 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.8 — 15 March 2022
11 / 26

https://github.com/NXP/nfc-NXPNFCC_FW
https://github.com/NXP/nfc-NXPNFCC_FW

NXP Semiconductors AN13189
PN7160 Android porting guide

6 Configuration files

Two files allow configuring the libnfc-nci library at runtime: libnfc-nci.conf and libnfc-nxp.conf. There are defining
tags which are impacting library behavior. The value of the tags depends on the NFC Controller IC and the
targeted platform. For more details, refer to the examples given in vendor/nxp/nfc/hw/pn7160 subfolder of the
NXP's Android NFC delivery (see Section 5.2.3 or Section 5.3.3).

These files are loaded by the library respectively from /system/etc and /vendor/etc directories of the target,
during the NFC initialization phase.

Pay attention that the configuration files provided as example relate to the NFC Controller demo board.
These files must be adapted according to the targeted integration.

Below is the description of the different useful tags in the configuration files (refer to the conf files for detailed
information about the tag values).

Tag Description

APPL_TRACE_LEVEL Log levels for libnfc-nci
Recommended value for debugging is 0xFF

PROTOCOL_TRACE_LEVEL Log levels for libnfc-nci
Recommended value for debugging is 0xFF

NFC_DEBUG_ENABLED NFC debug enable setting
Recommended value for debugging is 0x01

NFA_STORAGE Set the target directory for NFC file storage

HOST_LISTEN_TECH_MASK Configure HOST listen feature

SCREEN_OFF_POWER_STATE Configuration of screen off power state

POLLING_TECH_MASK Configuration of the polling technologies

P2P_LISTEN_TECH_MASK Configuration of listen technologies for P2P

NFA_DM_DISC_DURATION_POLL Configuration of the discovery loop TOTAL DURATION (in
milliseconds)

NFA_MAX_EE_SUPPORTED Set the maximum number of Execution Environments
supported

OFFHOST_AID_ROUTE_PWR_STATE Defines the AID routing in device Off state
Recommended value is 0x3B for NDEF emulation

Table 1. Tag list of libnfc-nci.conf file

Tag Description

NXPLOG_EXTNS_LOGLEVEL Set level of EXTNS logs
Recommended value for debug is 0x03

NXPLOG_NCIHAL_LOGLEVEL Set level of NCIHAL logs
Recommended value for debug is 0x03

NXPLOG_NCIX_LOGLEVEL Set level of NCIX logs
Recommended value for debug is 0x03

NXPLOG_NCIR_LOGLEVEL Set level of NCIR logs
Recommended value for debug is 0x03

Table 2. Tag list of libnfc-nxp.conf file

AN13189 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.8 — 15 March 2022
12 / 26

NXP Semiconductors AN13189
PN7160 Android porting guide

Tag Description

NXPLOG_FWDNLD_LOGLEVEL Set level of FWDNLD logs
Recommended value for debug is 0x03

NXPLOG_TML_LOGLEVEL Set level of FWDNLD logs
Recommended value for debug is 0x03

NXP_NFC_DEV_NODE Set the NFC device node name

MIFARE_READER_ENABLE Set the support of the reader for MIFARE Classic

NXP_FW_TYPE Set the type of file taken for the FW update procedure
Recommended value is 0x01 (".so" file)

NXP_SYS_CLK_FREQ_SEL Set the clock frequency in case of PLL clock source

NXP_SYS_CLOCK_TO_CFG Set clock request acknowledgment time value in case of
PLL clock source

NXP_AGC_DEBUG_ENABLE Set dynamic RSSI debug information

NXP_ACT_PROP_EXTN Set NXP’s NFC controller proprietary features

NXP_CORE_STANDBY Set the standby mode enabled or disabled

NFA_PROPRIETARY_CFG Set Vendor proprietary configuration

NXP_EXT_TVDD_CFG Set TVDD configuration mode

NXP_EXT_TVDD_CFG_x Configure TVDD settings according to TVDD mode selected

NXP_NFC_PROFILE_EXTN Set discovery profile

NXP_I2C_FRAGMENTATION_ENABLED Configure I2C fragmentation

NXP_RF_CONF_BLK_x Set platform-specific RF configuration

NXP_CORE_CONF_EXTN Configure proprietary parts of the NFC controller

NXP_CORE_CONF Configure standardized parts of the NFC controller

NXP_CORE_MFCKEY_SETTING Proprietary configuration for the key storage for MIFARE
Classic

PRESENCE_CHECK_ALGORITHM Set the algorithm used for T4T presence check procedure

ISO_DEP_MAX_TRANSCEIVE Define maximum ISO-DEP extended APDU length

NXP_T4T_NFCEE_ENABLE Define NDEF emulation configuration

DEFAULT_T4TNFCEE_AID_POWER_STATE Defines the NDEF emulation device power state
Recommended value is 0x3B

Table 2. Tag list of libnfc-nxp.conf file...continued

AN13189 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.8 — 15 March 2022
13 / 26

NXP Semiconductors AN13189
PN7160 Android porting guide

7 Factory test native application

To ease the characterization of the NFC integration in the Android device, the FactoryTestApp native application
is offered providing the following functionalities:

• Continuous RF ON: puts the NFC controller into continuous unmodulated RF field
• Functional mode: puts the NFC controller in a mode where it continuously poll for tag detection
• PRBS mode: puts the NFC controller into continuous modulated RF field emission (Pseudo Random pattern)
• Standby mode: puts the NFC controller in low power consumption mode (for consumption measurement)
• Dump RF settings: lists the value of all NFC controller RF settings
• Set RF settings: allows updating the value of NFC controller RF settings

The source code is delivered together with the NXP's Android NFC delivery (see above Section 5.2.1 or
Section 5.3.1).

The binary is generated while building the system image, but it can also be independently built using following
command:

$ mmm vendor/nxp/nfc/FactoryTestApp

Then copy the binary file (generated under out/target/product/platform/system/bin/NfcFactoryTestApp) to the
Android target, using adb tool:

$ adb push NfcFactoryTestApp /data

On the Android target, update the file rights to allow execution and, after making sure that the NFC service is
disabled (in “Settings” application NFC must be off, or else you can disable it using command "adb shell svc nfc
disable"), run the application:

Figure 2. Running factory test native application on Android target

AN13189 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.8 — 15 March 2022
14 / 26

NXP Semiconductors AN13189
PN7160 Android porting guide

8 NFC Forum DTA application

To allow NFC Forum certification testing, a Device Test Application is provided. It is comprised of several
components in the different Android layers (see Figure 1) which must be built and included to the Android
image.

Below is the recommended procedure:

• For Android 12:
1. Retrieve DTA application source code, depending of the Android version integration:

$ git clone -b NFC_DTA_v12.18_OpnSrc https://github.com/NXPNFCProject/NXPAndroidDTA.git
 ${ANDROID_BUILD_TOP}/vendor/nxp/NXPAndroidDTA

2. Patch the source code for PN7160:
$ cd ${ANDROID_BUILD_TOP}/vendor/nxp/NXPAndroidDTA/nfc-dta
$ patch -p1 <${ANDROID_BUILD_TOP}/vendor/nxp/nfc/patches/AROOT_system_nfc-dta.patch

3. Create symlink to reference the DTA application:
$ ln -s ${ANDROID_BUILD_TOP}/vendor/nxp/NXPAndroidDTA/nfc-dta ${ANDROID_BUILD_TOP}/system/nfc-dta

4. Build the DTA application components:
$ cd ${ANDROID_BUILD_TOP}/system/nfc-dta
$ mm -j

5. Rebuild android system image to include DTA application:
$ croot
$ make snod

• For Android 11:
1. Retrieve DTA application source code, depending of the Android version integration:

$ git clone -b NFC_DTA_v12.15_OpnSrc https://github.com/NXPNFCProject/NXPAndroidDTA.git
 ${ANDROID_BUILD_TOP}/vendor/nxp/NXPAndroidDTA

2. Patch the source code for PN7160:
$ cd ${ANDROID_BUILD_TOP}/vendor/nxp/NXPAndroidDTA/nfc-dta
$ patch -p1 <${ANDROID_BUILD_TOP}/vendor/nxp/nfc/patches/nfc-dta.patch

3. Create symlink to reference the DTA application:
$ ln -s ${ANDROID_BUILD_TOP}/vendor/nxp/NXPAndroidDTA/nfc-dta ${ANDROID_BUILD_TOP}/system/nfc-dta

4. Build the DTA application components:
$ cd ${ANDROID_BUILD_TOP}/system/nfc-dta
$ mm -j

5. Rebuild android system image to include DTA application:
$ croot
$ make snod

After flashing the target, the DTA application should then be present from the list of installed applications.

When started, the DTA application requests user to disable NFC function from the "settings" menu. Indeed, DTA
application directly access the NFC function from the low-level libraries, thus NFC service must be disabled to
prevent conflicts.

AN13189 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.8 — 15 March 2022
15 / 26

NXP Semiconductors AN13189
PN7160 Android porting guide

Figure 3. DTA application

"Cert.Rel" field must reflect Certification Release version targeted.

"TSN-F" field defines NFC-F technology Time Slot Number and must be set according to the test execution
requirement.

"Con.Dev" field defines Connection Device Limit and must be set according to the test execution requirement.

Only "Manual" mode of "Execution Mode" is available for now, "Auto" mode being reserved for future use.

"Pattern Number" must be set according to the test execution requirement.

The RF technology tabs allow selecting individually each technology for each possible mode.

"LLCP" field allows enabling specific "Pattern Number" for dedicated test execution.

"SNEP" field allows running dedicated tests, requiring also "Android Beam" feature been enabled in the Android
device settings.

"Log messages" field allows outputting the trace to a file (under “/sdcard/nxpdtalog/” folder) and/or a console.

AN13189 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.8 — 15 March 2022
16 / 26

NXP Semiconductors AN13189
PN7160 Android porting guide

9 NDEF emulation T4TDemo application

To demonstrate NDEF emulation feature in the Android device, the T4TDemo application is offered showing the
use of specific API:

• doWriteT4tData: API to set the NDEF content to be exposed
• doReadT4tData: API to get the NDEF content currently exposed

The NDEF emulation feature is enabled according to the value of NXP_T4T_NFCEE_ENABLE parameter from
libnfc-nxp.conf configuration file (see Section 6).

The source code is delivered together with the NXP's Android NFC delivery (see above Section 5.2.1, or
Section 5.3.1).

The application is generated while building the system image, but it can also be independently built using
following command:

$ mmm vendor/nxp/nfc/T4TDemo

Then install the application (generated under out/target/product/platform/system/app/T4TDemo.apk) to the
Android target, using adb tool:

$ adb install T4TDemo.apk

On the Android target, the T4TDemo is then visible in the list of applications. Run it by clicking the related icon:

Figure 4. Running T4TDemo application on Android target

AN13189 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.8 — 15 March 2022
17 / 26

NXP Semiconductors AN13189
PN7160 Android porting guide

10 Troubleshooting

The following items may help figuring out what is going wrong in case NFC is not working as expected when
starting the Android device.

10.1 Missing kernel driver or wrong device node rights
The following ADB logs may indicate nxpnfc driver is missing in the kernel or wrong rights are applied:

…
D NxpExtns: find found NXP_NFC_DEV_NODE=/dev/nxpnfc
D NxpTml : getTransport Requested transportType: 2
D NxpTml : OpenAndConfigure Opening port=/dev/nxpnfc
E NxpTml : _i2c_open() Failed: retval ffffffff
E NxpHal : phTmlNfc_Init Failed
D NxpHal : Failed to deallocate (list empty)
D NxpHal : Node dump:
D NxpHal : Failed to deallocate (list empty)
D NxpHal : Node dump:
E NxpHal : phNxpNciHal_MinOpen failed
E NxpHal : nxpncihal_monitor is null
…

The nxpnfc device node should usually appear with the following rights:

$ adb shell ls -als /dev/nxpnfc
crw-rw---- nfc nfc 10, 54 2016-05-03 13:05 nxpnfc

If not listed in the /dev folder, it means the module is not properly loaded as depicted in Section 4.3. Check
kernel logs to see if error occurs during the module load or refer to the device tree definition.

In case the device node is seen with wrong rights, check the correct definition is present in /vendor/etc/init/
init.TargetProduct.nfc.rc file:

$ adb shell cat vendor/etc/init/init.TargetProduct.nfc.rc
on post-fs-data
 setprop ro.nfc.port "I2C"
 mkdir /data/vendor 0777 nfc nfc
 mkdir /data/vendor/nfc 0777 nfc nfc
 mkdir /data/vendor/nfc/param 0777 nfc nfc
 chmod 0660 /dev/pn544
 chown nfc nfc /dev/pn544
 chmod 0660 /dev/nxpnfc
 chown nfc nfc /dev/nxpnfc

10.2 Missing configuration files
The following ADB logs may indicate the absence of the libnfc-nci.conf file:

…
I com.android.nf: [0224/072605.700111:INFO:NfcJniUtil.cpp(47)] NFC Service: loading nci JNI
I com.android.nf: loadConfigEntry
F com.android.nf: nfc_config.cc:93] Check failed: config_path != ""
F com.android.nf: runtime.cc:655] Runtime aborting...
F com.android.nf: runtime.cc:655] Dumping all threads without mutator lock held
F com.android.nf: runtime.cc:655] All threads:
F com.android.nf: runtime.cc:655] DALVIK THREADS (17):
F com.android.nf: runtime.cc:655] "main" prio=5 tid=1 Runnable
F com.android.nf: runtime.cc:655] | group="" sCount=0 dsCount=0 flags=0 obj=0x7215b448 self=0xb40000748b64f010
…

The libnfc-nci.conf configuration file should be present in the android system under /system/etc, if this is not the
case, refer to related procedure in Section 5.2.4 or Section 5.3.4.

$ adb shell ls -als /system/etc/libnfc*
4 -rw-r--r-- 1 root root 3428 2021-02-24 07:34 /system/etc/libnfc-nci.conf

AN13189 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.8 — 15 March 2022
18 / 26

NXP Semiconductors AN13189
PN7160 Android porting guide

The following ADB logs may indicate the absence of the libnfc-nxp.conf file:

…
I com.android.nf: [0224/072835.710998:INFO:NfcJniUtil.cpp(47)] NFC Service: loading nci JNI
I com.android.nf: loadConfigEntry
I com.android.nf: ConfigFile - Parsing file '/etc/libnfc-nci.conf'
I com.android.nf: ConfigFile - [APPL_TRACE_LEVEL] = 0xFF
I com.android.nf: ConfigFile - [PROTOCOL_TRACE_LEVEL] = 0xFFFFFFFF
I com.android.nf: ConfigFile - [NFC_DEBUG_ENABLED] = 0x01
I com.android.nf: ConfigFile - [NFA_STORAGE] = "/data/vendor/nfc"
I com.android.nf: ConfigFile - [HOST_LISTEN_TECH_MASK] = 0x07
I com.android.nf: ConfigFile - [SCREEN_OFF_POWER_STATE] = 1
I com.android.nf: ConfigFile - [NCI_HAL_MODULE] = "nfc_nci.pn54x"
I com.android.nf: ConfigFile - [POLLING_TECH_MASK] = 0xEF
I com.android.nf: ConfigFile - [P2P_LISTEN_TECH_MASK] = 0xC5
I com.android.nf: ConfigFile - [PRESERVE_STORAGE] = 0x01
I com.android.nf: ConfigFile - [AID_MATCHING_MODE] = 0x03
I com.android.nf: [0224/072835.713008:INFO:NfcAdaptation.cc(633)] Failed to retrieve the NXP NFC HAL!
I com.android.nf: [0224/072835.713158:INFO:NfcAdaptation.cc(639)] NfcAdaptation::InitializeHalDeviceContext:
 INfc::getService()
I com.android.nf: [0224/072835.714035:INFO:NfcAdaptation.cc(650)] NfcAdaptation::InitializeHalDeviceContext:
 INfc::getService() returned 0xb4000077ae5bc710 (remote)
I com.android.nf: [0224/072835.714403:INFO:NfcAdaptation.cc(657)] NfcAdaptation::InitializeHalDeviceContext:
 INfc::getService() returned 0xb4000077ae5bc710 (remote)
…

The libnfc-nxp.conf configuration file should be present in the android system under /vendor/etc, if this is not the
case, refer to related procedure in Section 5.2.4 or Section 5.3.4.

$ adb shell ls -als /vendor/etc/libnfc*
12 -rw-r--r-- 1 root root 9775 2021-03-11 11:02 /vendor/etc/libnfc-nxp.conf

10.3 Missing NXP’s NFC libraries
The following ADB logs may indicate missing NFC-specific libraries:

…
I NfcService: Starting NFC service
D AndroidRuntime: Shutting down VM
E AndroidRuntime: FATAL EXCEPTION: main
E AndroidRuntime: Process: com.android.nfc, PID: 3503
E AndroidRuntime: java.lang.UnsatisfiedLinkError: dlopen failed: library "libnfc_nci_jni.so" not found
E AndroidRuntime: at java.lang.Runtime.loadLibrary0(Runtime.java:1087)
E AndroidRuntime: at java.lang.Runtime.loadLibrary0(Runtime.java:1008)
E AndroidRuntime: at java.lang.System.loadLibrary(System.java:1664)
E AndroidRuntime: at com.android.nfc.dhimpl.NativeNfcManager.<clinit>(NativeNfcManager.java:47)
E AndroidRuntime: at com.android.nfc.NfcService.<init>(NfcService.java:438)
E AndroidRuntime: at com.android.nfc.NfcApplication.onCreate(NfcApplication.java:66)
E AndroidRuntime: at android.app.Instrumentation.callApplicationOnCreate(Instrumentation.java:1192)
E AndroidRuntime: at android.app.ActivityThread.handleBindApplication(ActivityThread.java:6712)
E AndroidRuntime: at android.app.ActivityThread.access$1300(ActivityThread.java:237)
E AndroidRuntime: at android.app.ActivityThread$H.handleMessage(ActivityThread.java:1913)
E AndroidRuntime: at android.os.Handler.dispatchMessage(Handler.java:106)
E AndroidRuntime: at android.os.Looper.loop(Looper.java:223)
E AndroidRuntime: at android.app.ActivityThread.main(ActivityThread.java:7656)
E AndroidRuntime: at java.lang.reflect.Method.invoke(Native Method)
E AndroidRuntime: at com.android.internal.os.RuntimeInit$MethodAndArgsCaller.run(RuntimeInit.java:592)
E AndroidRuntime: at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:947)

…

The library should be located under /system/lib/hw android target subdirectory (or under /system/lib64/hw if the
platform is 64 bits).

$ adb shell ls -als /system/lib64/*libnfc*
844 -rw-r--r-- 1 root root 861528 2019-12-18 17:55 /system/lib64/libnfc-nci.so
680 -rw-r--r-- 1 root root 695952 2019-12-19 16:25 /system/lib64/libnfc_nci_jni.so

$ adb shell ls -als /system/lib64/vendor.nxp.nxpnfc@1.0.so
88 -rw-r--r-- 1 root root 88368 2019-11-20 14:13 /system/lib64/vendor.nxp.nxpnfc@1.0.so

If this is not the case, insure it is properly built:

$ croot

AN13189 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.8 — 15 March 2022
19 / 26

NXP Semiconductors AN13189
PN7160 Android porting guide

$ mmm system/nfc
$ mmm package/apps/Nfc
$ make systemimage

You can then either flash the newly created system.img or just copy the library to the android target:

$ adb push $OUT/system/lib64/libnfc-nci.so /system/lib64/
$ adb push $OUT/system/lib64/libnfc-nci.so /system/lib64/
$ adb push $OUT/system/lib64/vendor.nxp.nxpnfc@1.0.so /system/lib64/

10.4 Missing modules
The following ADB logs may indicate missing declaration of required NFC libraries:

…
W ActivityManager: Re-adding persistent process ProcessRecord{f8a0220 28966:com.android.nfc/1027}
I ActivityManager: Start proc 28995:com.android.nfc/1027 for restart com.android.nfc
I com.android.nf: ConfigFile - Parsing file '/etc/libnfc-nci.conf'
I com.android.nf: ConfigFile - [NFA_STORAGE] = "/data/vendor/nfc"
I com.android.nf: ConfigFile - [NCI_HAL_MODULE] = "nfc_nci.pn54x"
I hwservicemanager: getTransport: Cannot find entry vendor.nxp.nxpnfc@1.0::INxpNfc/default in either framework or
 device manifest.
I hwservicemanager: getTransport: Cannot find entry android.hardware.nfc@1.2::INfc/default in either framework or
 device manifest.
I hwservicemanager: getTransport: Cannot find entry android.hardware.nfc@1.1::INfc/default in either framework or
 device manifest.
I hwservicemanager: getTransport: Cannot find entry android.hardware.nfc@1.0::INfc/default in either framework or
 device manifest.
F libc : Fatal signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr 0x0 in tid 28995 (com.android.nfc), pid 28995
 (com.android.nfc)
F DEBUG : pid: 28995, tid: 28995, name: com.android.nfc >>> com.android.nfc <<<
F DEBUG : #00 pc 00000000000ad8c8 /system/lib64/libnfc-nci.so (NfcAdaptation::InitializeHalDeviceContext()+1736)
 (BuildId: bc889132110efe73c4fc9e58e8776b54)
F DEBUG : #1 pc 00000000000ad1dc /system/lib64/libnfc-nci.so
…

Make sure that the related libraries are present on the target and also properly declared in manifest file (/
vendor/etc/vintf/manifest.xml).

10.5 VTS testing
The following issues may be encountered during VTS testing.

10.5.1 Wrong interface

Wrong interface may be subject to test while it should not (for instance below “nfc-nci” while only “default”
interface must be considered):

VtsHalNfcV1_0Target#NfcHidlTest.OpenAndClose(nfc_nci)_64bit fail Unknown failure.
VtsHalNfcV1_0Target#NfcHidlTest.WriteCoreReset(nfc_nci)_64bit fail Unknown error: test case requested but not
 executed.

“nfc-nci” interface must be undefined from “fqname” tag inside /vendor/etc/vintf/manifest.xml file.

10.5.2 Missing declaration

GetConfig test may fail because of missing declaration.

VtsHalNfcV1_1Target#NfcHidlTest.GetConfig(default)_64bit fail hardware/interfaces/nfc/1.1/vts/functional/
VtsHalNfcV1_1TargetTest.cpp:223

To fix this, add “ISO_DEP_MAX_TRANSCEIVE=0xFEFF” definition to “libnfc-nxp.conf” configuration file.

AN13189 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.8 — 15 March 2022
20 / 26

NXP Semiconductors AN13189
PN7160 Android porting guide

10.5.3 Wrong vendor properties namespace

testVendorPropertyNamespace test may fail because of wrong definition.

VtsTrebleSysProp#testVendorPropertyNamespace fail 2 != 0 vendor propertes (cts_gts.media.gts persist.nfc.) have
 wrong namespace armeabi-v7a VtsTrebleSysProp
Update sepolicy/property_contexts file with “persist.vendor.nfc.” instead of “persist.nfc.”.

AN13189 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.8 — 15 March 2022
21 / 26

NXP Semiconductors AN13189
PN7160 Android porting guide

11 Legal information

11.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

11.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.
In no event shall NXP Semiconductors, its affiliates or their suppliers
be liable to customer for any special, indirect, consequential, punitive
or incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.
Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors,
its affiliates and their suppliers and customer’s exclusive remedy for all of
the foregoing shall be limited to actual damages incurred by customer based
on reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

AN13189 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.8 — 15 March 2022
22 / 26

mailto:PSIRT@nxp.com

NXP Semiconductors AN13189
PN7160 Android porting guide

11.3 Licenses
Purchase of NXP ICs with NFC technology — Purchase of an NXP
Semiconductors IC that complies with one of the Near Field Communication
(NFC) standards ISO/IEC 18092 and ISO/IEC 21481 does not convey an
implied license under any patent right infringed by implementation of any of
those standards. Purchase of NXP Semiconductors IC does not include a
license to any NXP patent (or other IP right) covering combinations of those
products with other products, whether hardware or software.

11.4 Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.
AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.
I2C-bus — logo is a trademark of NXP B.V.
MIFARE — is a trademark of NXP B.V.
MIFARE Classic — is a trademark of NXP B.V.

AN13189 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.8 — 15 March 2022
23 / 26

NXP Semiconductors AN13189
PN7160 Android porting guide

Tables
Tab. 1. Tag list of libnfc-nci.conf file 12 Tab. 2. Tag list of libnfc-nxp.conf file 12

AN13189 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.8 — 15 March 2022
24 / 26

NXP Semiconductors AN13189
PN7160 Android porting guide

Figures
Fig. 1. Android NFC stack overview3
Fig. 2. Running factory test native application on

Android target ..14

Fig. 3. DTA application ... 16
Fig. 4. Running T4TDemo application on Android

target ... 17

AN13189 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1.8 — 15 March 2022
25 / 26

NXP Semiconductors AN13189
PN7160 Android porting guide

Contents
1 Revision history .. 2
2 Introduction ... 3
3 Security fixes ...4
4 Kernel driver ..5
4.1 Driver details ..5
4.2 Getting the source code 5
4.3 Including the driver into the kernel5
4.3.1 I2C version .. 5
4.3.2 SPI version .. 6
4.4 Building the driver ..6
5 AOSP adaptation ...7
5.1 Android 13 ... 7
5.1.1 Step 1: retrieving NXP's Android NFC

delivery ...7
5.1.2 Step 2: installing NXP-NCI delivery 7
5.1.3 Step 3: updating configuration files 7
5.1.4 Step 4: adding NFC to the build 7
5.1.5 Step 5: adding firmware libraries 8
5.1.6 Step 6: building and installing NFC 8
5.1.7 Step 7: verifying NFC functionality 8
5.2 Android 12 ... 8
5.2.1 Step 1: retrieving NXP's Android NFC

delivery ...8
5.2.2 Step 2: installing NXP-NCI delivery 8
5.2.3 Step 3: updating configuration files 9
5.2.4 Step 4: adding NFC to the build 9
5.2.5 Step 5: adding firmware libraries 9
5.2.6 Step 6: building and installing NFC 9
5.2.7 Step 7: verifying NFC functionality10
5.3 Android 11 ... 10
5.3.1 Step 1: retrieving NXP's Android NFC

delivery ...10
5.3.2 Step 2: installing NXP-NCI delivery 10
5.3.3 Step 3: updating configuration files10
5.3.4 Step 4: adding NFC to the build 10
5.3.5 Step 5: adding firmware libraries 11
5.3.6 Step 6: building and installing NFC 11
5.3.7 Step 7: verifying NFC functionality11
6 Configuration files .. 12
7 Factory test native application 14
8 NFC Forum DTA application 15
9 NDEF emulation T4TDemo application 17
10 Troubleshooting .. 18
10.1 Missing kernel driver or wrong device node

rights .. 18
10.2 Missing configuration files 18
10.3 Missing NXP’s NFC libraries 19
10.4 Missing modules ..20
10.5 VTS testing .. 20
10.5.1 Wrong interface ... 20
10.5.2 Missing declaration ..20
10.5.3 Wrong vendor properties namespace21
11 Legal information ..22

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2023 NXP B.V. All rights reserved.
For more information, please visit: http://www.nxp.com

Date of release: 15 March 2022
Document identifier: AN13189

	1 Revision history
	2 Introduction
	3 Security fixes
	4 Kernel driver
	4.1 Driver details
	4.2 Getting the source code
	4.3 Including the driver into the kernel
	4.3.1 I2C version
	4.3.2 SPI version

	4.4 Building the driver

	5 AOSP adaptation
	5.1 Android 13
	5.1.1 Step 1: retrieving NXP's Android NFC delivery
	5.1.2 Step 2: installing NXP-NCI delivery
	5.1.3 Step 3: updating configuration files
	5.1.4 Step 4: adding NFC to the build
	5.1.5 Step 5: adding firmware libraries
	5.1.6 Step 6: building and installing NFC
	5.1.7 Step 7: verifying NFC functionality

	5.2 Android 12
	5.2.1 Step 1: retrieving NXP's Android NFC delivery
	5.2.2 Step 2: installing NXP-NCI delivery
	5.2.3 Step 3: updating configuration files
	5.2.4 Step 4: adding NFC to the build
	5.2.5 Step 5: adding firmware libraries
	5.2.6 Step 6: building and installing NFC
	5.2.7 Step 7: verifying NFC functionality

	5.3 Android 11
	5.3.1 Step 1: retrieving NXP's Android NFC delivery
	5.3.2 Step 2: installing NXP-NCI delivery
	5.3.3 Step 3: updating configuration files
	5.3.4 Step 4: adding NFC to the build
	5.3.5 Step 5: adding firmware libraries
	5.3.6 Step 6: building and installing NFC
	5.3.7 Step 7: verifying NFC functionality

	6 Configuration files
	7 Factory test native application
	8 NFC Forum DTA application
	9 NDEF emulation T4TDemo application
	10 Troubleshooting
	10.1 Missing kernel driver or wrong device node rights
	10.2 Missing configuration files
	10.3 Missing NXP’s NFC libraries
	10.4 Missing modules
	10.5 VTS testing
	10.5.1 Wrong interface
	10.5.2 Missing declaration
	10.5.3 Wrong vendor properties namespace

	11 Legal information
	Tables
	Figures
	Contents

