
1 CANopen overview
CANopen is a CAN-based communication system. It comprises higher-layer
protocols and profile specifications. CANopen has been developed as a
standardized embedded network with highly flexible configuration capabilities.
Today it is used in various application fields, such as medical equipment,
off-road vehicles, maritime electronics, railway applications, or building
automation. This application note assumes that the reader already has a basic knowledge of CAN2.0A protocol, CAN frame
structure, ID assignment, data filed, and DLC.

A General CANopen device has three logical parts as in Figure 1.

Figure 1. CANopen system

1. CANopen protocol stack handles the communication via the CAN network.

2. Application software provides the internal control functionality as well as the interface to the process hardware interfaces.

3. Object dictionary interfaces the protocol as well as the application software. It contains references (indices) for all used data
types and stores all communication and application parameters.

1.1 Object dictionary
Object dictionary for a CANopen device is like registers for a microcontroller, which is the most important part in a CANopen
device. All communication and application parameters that determine the behavior of a CANopen device organized in a serialized
table named object dictionary.

In this table, all data that must be exchanged between the communication part (CANopen protocol stack) and the application
part (application software) of the device owns unique 24-bit addresses. This address is divided into a 16-bit index and an 8-bit

Contents

1 CANopen overview..........................1
2 LPC5500 series CAN and SDK

driver... 2
3 Porting CANopenNode on LPC5500

series...6
4 Reference......................................13

AN13121
Porting CANopennode stack on LPC5500 series
Rev. 0 — 29 January 2021 Application Note

subindex. Any entry in the CANopen object dictionary is readable via CANopen communication services. Different indices in an
OB (Object dictionary) are predefined into sections targeting different usage.

Figure 2. Object dictionary

1.2 Summary
The sections above are the basic concepts of CANopen. If you are new to CANopen and need details, see CiA (CAN in
automation) website https://www.can-cia.org/canopen/. There is a plenty of useful learning material and example about CANopen.
You may download the Application Layer and Communication Profile, Standard 301, which is the core protocol specification of
CANopen and is freely available for download on CiA website.

2 LPC5500 series CAN and SDK driver
This section describes:

• MCAN

• SDK driver

• SDK example

2.1 MCAN
The LPC55S16/LPC55S06 features a powerful CAN controller. The LPC55S16 SDK provides API wrapper to help customer easily
use MCAN. This section focuses on SDK MCAN driver usage as it is a prerequisite for porting CANopen stack on to LPC5500.

The MCAN block is available on the LPC55S1x/LPC55S0x devices. It conforms to CAN protocol version2.0 Part A, B definition,
and support CANFD frame. It has two configurable receive FIFOs, up to 64 dedicated received buffer, and up to 32 dedicated
transmit buffers. See Figure 3 for MCAN block diagram on LPC5500 series.

NXP Semiconductors
LPC5500 series CAN and SDK driver

Porting CANopennode stack on LPC5500 series, Rev. 0, 29 January 2021
Application Note 2 / 14

https://www.can-cia.org/canopen/

Figure 3. MCAN block diagram

One of the key concepts on MCAN configuration is message RAM configuration. The MCAN module occupies and allocates up to
4352 words in message RAM. The message RAM is a normal block in the system SRAM. It is divided into several subregion and
each region has its functionality, such as TX FIFO, RX FIFO, or filter template. You can use SDK driver to configure the subregion
size. For details, see Figure 4.

NXP Semiconductors
LPC5500 series CAN and SDK driver

Porting CANopennode stack on LPC5500 series, Rev. 0, 29 January 2021
Application Note 3 / 14

Figure 4. Message RAM configuration

2.2 SDK driver
MCUXpresso SDK provides a full set of APIs to cover all the functions of MCAN module. MCUXpresso SDK also provides two
dedicated examples for demonstration:

MCAN driver file location:

• SDK_2.8.0_LPCXpresso55S16\devices\LPC55S16\drivers\fsl_mcan.c

• SDK_2.8.0_LPCXpresso55S16\devices\LPC55S16\drivers\fsl_mcan.h

Examples location:

• SDK_2.8.0_LPCXpresso55S16\boards\lpcxpresso55s16\driver_examples\mcan

2.3 SDK example
The SDK example interrupt_transfer is the best starting point to play with MCAN.

The steps for using SDK driver for basic CAN communication are:

1. Configure and enable MCAN input clock, MCAN functional clock is from main_clock.

/* Set MCAN clock 100Mhz/5=20MHz. */
CLOCK_SetClkDiv(kCLOCK_DivCanClk, 5U, true);
CLOCK_AttachClk(kMCAN_DIV_to_MCAN);

2. Initialize the MCAN module - Set the initialization structure to default value and call MCAN_Init to initialize the
MCAN module.

MCAN_GetDefaultConfig(&mcanConfig);
MCAN_Init(EXAMPLE_MCAN, &mcanConfig, MCAN_CLK_FREQ);

NXP Semiconductors
LPC5500 series CAN and SDK driver

Porting CANopennode stack on LPC5500 series, Rev. 0, 29 January 2021
Application Note 4 / 14

3. RX filter configuration - Enable RX filter and let specific RX frame pass through filter, reject all other CAN frames.

/* STD filter config. */
rxFilter.address = STD_FILTER_OFS;
rxFilter.idFormat = kMCAN_FrameIDStandard;
rxFilter.listSize = 1U;
rxFilter.nmFrame = kMCAN_reject0;
rxFilter.remFrame = kMCAN_rejectFrame;
MCAN_SetFilterConfig(EXAMPLE_MCAN, &rxFilter);

stdFilter.sfec = kMCAN_storeinFifo0;
/* Classic filter mode, only filter matching ID. */
stdFilter.sft= kMCAN_classic;
stdFilter.sfid1 = rxIdentifier;
stdFilter.sfid2 = 0x7FFU;
MCAN_SetSTDFilterElement(EXAMPLE_MCAN, &rxFilter, &stdFilter, 0);

4. RX FIFO and TX buffer configuration, setting TX buffer and RX FIFO to be classic CAN format and assign the memory into
txBuffer.address filed.

/* RX fifo0 config. */
rxFifo0.address = RX_FIFO0_OFS;
rxFifo0.elementSize= 1U;
rxFifo0.watermark = 0;
rxFifo0.opmode = kMCAN_FifoBlocking;
rxFifo0.datafieldSize = kMCAN_8ByteDatafield;
MCAN_SetRxFifo0Config(EXAMPLE_MCAN, &rxFifo0);

/* TX buffer config. */
memset(&txBuffer, 0, sizeof(txBuffer));
txBuffer.address = TX_BUFFER_OFS;
txBuffer.dedicatedSize = 1U;
txBuffer.fqSize = 0;
txBuffer.datafieldSize = kMCAN_8ByteDatafield;
MCAN_SetTxBufferConfig(EXAMPLE_MCAN, &txBuffer);

5. Set MCAN module into operation mode and start to send/receive CAN frame.

MCAN_EnterNormalMode(EXAMPLE_MCAN);

a. Send CAN frames - Set all fields in a txFrame structure and call MCAN_TransferSendNonBlocking to send out
CAN frames.

/* Config TX frame data. */
memset(tx_data, 0, sizeof(uint8_t) * CAN_DATASIZE);
for (cnt = 0; cnt < CAN_DATASIZE; cnt++)
{
 tx_data[cnt] = cnt;
}
tx_data[0] += numMessage++;
txFrame.xtd = kMCAN_FrameIDStandard;
txFrame.rtr = kMCAN_FrameTypeData;
txFrame.fdf = 0;
txFrame.brs = 0;
txFrame.dlc = 8U;
txFrame.id= txIdentifier << STDID_OFFSET;
txFrame.data = tx_data;
txFrame.size = CAN_DATASIZE;
txXfer.frame = &txFrame;

NXP Semiconductors
LPC5500 series CAN and SDK driver

Porting CANopennode stack on LPC5500 series, Rev. 0, 29 January 2021
Application Note 5 / 14

txXfer.bufferIdx = 0;
MCAN_TransferSendNonBlocking(EXAMPLE_MCAN, &mcanHandle, &txXfer);

b. Receive a CAN frame: SDK use callback function to notify application layer a CAN frame has been received, user
application should mark a flag in can_callback function and copy the received frame and process it in the main thread.

static void mcan_callback(CAN_Type *base, mcan_handle_t *handle, status_t status, uint32_t
result, void *userData)
{
 switch (status)
 {
 case kStatus_MCAN_RxFifo0Idle:
 {
rxComplete = true;
 }
 break;

 case kStatus_MCAN_TxIdle:
 {
txComplete = true;
 }
 break;

 default:
break;
 }
}

3 Porting CANopenNode on LPC5500 series
This section describes:

• CANopenNode

• Porting CANopenNode

• Test

3.1 CANopenNode
CANopenNode is free and open source CANopen protocol stack written in ANSI C. It can run on different microcontrollers, as
standalone application or with RTOS. Variables (communication, device, custom) are ordered in CANopen Object Dictionary and
are accessible from both: C code and from CANopen network.

Github page for CANopenNode project is : https://github.com/CANopenNode/CANopenNode.

CANopenNode support following CANopen features:

• Heartbeat producer/consumer error control.

• PDO linking and dynamic mapping for fast exchange of process variables.

• SDO expedited, segmented and block transfer for service access to all parameters.

• SDO master.

• Emergency message.

• Sync producer/consumer.

• Time protocol (producer/consumer).

• Non-volatile storage.

NXP Semiconductors
Porting CANopenNode on LPC5500 series

Porting CANopennode stack on LPC5500 series, Rev. 0, 29 January 2021
Application Note 6 / 14

https://github.com/CANopenNode/CANopenNode

3.2 Porting CANopenNode
CANopenNode itself does not have complete working code for any microcontroller. It is only the library with the stack. It has
example, which should compile on any system with template driver (drvTemplate), which actually does not access CAN hardware.

3.2.1 Download source code
We use CANopenNodeV1.3, so the default download page is not correct, please download source code on:

https://github.com/CANopenNode/CANopenNode/tree/v1.3-master

3.2.2 File structure
The stack file structure shown in Figure 5 is not modified.

Figure 5. CANopenNode stack file structure

Figure 6. CANopenNode example file structure

3.2.3 Flowchart of a typical CANopenNode implementation
CANopenNode need three threads to operate. as shown in Figure 7.

NXP Semiconductors
Porting CANopenNode on LPC5500 series

Porting CANopennode stack on LPC5500 series, Rev. 0, 29 January 2021
Application Note 7 / 14

https://github.com/CANopenNode/CANopenNode/tree/v1.3-master

Figure 7. CANopenNode stack file structure

Here the focus is on BareMetal porting, which is simplified into main loop and interrupt handling:

1. The mainline thread is put into while(1) loop.

2. The Timer interval thread need to be called every 1ms, we put timer interval thread into a 1ms interrupt services
handler.

3. Put the CAN receive thread into SDK’s callback handler function, which in essence handled in hardware interrupt
handler.

It is necessary to protect critical sections, where different threads access to the same resource. In simple BareMetal interrupts
systems: user may be need temporary disabled between access to the shared resource.

3.2.4 Implement CO_Driver
Put stack source code and example file into your project, include the corresponding include path, as Fig shows:

NXP Semiconductors
Porting CANopenNode on LPC5500 series

Porting CANopennode stack on LPC5500 series, Rev. 0, 29 January 2021
Application Note 8 / 14

Figure 8. Add CANopenNode stack into project

The remaining task focus on implement CO_driver.c to connect SDK’s MCAN driver to CANopenNode stack.

The CO_driver.c/h is responsible for:

• Basic data types.

• Receive and transmit buffers for CANopen messages.

• Interaction with CAN module on the microcontroller.

• CAN receive and transmit interrupts.

The critical function needs to be implemented are list as below:

Table 1. Critical functions

Function Description

CO_CANrxBufferInit Configures specific CAN receive buffer. It sets CAN identifier and connects buffer
with specific object.

CO_CANtxBufferInit Configures specific CAN transmit buffer.

CO_CANsend Send CAN message.

CO_CANsend: This is the easiest function to implementation, just set the txFrame filed and
call MCAN_TransferSendNonBlocking.

 static mcan_buffer_transfer_t txXfer;
 static mcan_tx_buffer_frame_t txFrame;
 txFrame.xtd = kMCAN_FrameIDStandard;
 txFrame.rtr = kMCAN_FrameTypeData;
 txFrame.fdf = 0;
 txFrame.brs = 0;
 txFrame.dlc = len;
 txFrame.id = id << STDID_OFFSET;
 txFrame.data = buf;
 txFrame.size = len;
 txXfer.frame = &txFrame;

NXP Semiconductors
Porting CANopenNode on LPC5500 series

Porting CANopennode stack on LPC5500 series, Rev. 0, 29 January 2021
Application Note 9 / 14

 txXfer.bufferIdx = 0;
 MCAN_TransferSendNonBlocking(CAN0, &mcanHandle, &txXfer);

CO_CANtxBufferInit: CO_CANtxBufferInit() returns a pointer of type CO_CANtx_t, which contains buffer where CAN message
data can be written. CAN message is send with calling CO_CANsend() function. If at that moment CAN transmit buffer inside
microcontroller's CAN module is free, message is copied directly to CAN module.

 CO_CANtx_t *buffer = NULL;
 buffer = &CANmodule->txArray[0];
 if((CANmodule != NULL) && (index < CANmodule->txSize)){
 /* get specific buffer */
 buffer = &CANmodule->txArray[index];
 /* CAN identifier, DLC and rtr, bit aligned with CAN module transmit buffer. * Microcontroller
specific. */
 buffer->ident = ((uint32_t)ident & 0x07FFU)
 | ((uint32_t)(((uint32_t)noOfBytes & 0xFU) << 12U))
 | ((uint32_t)(rtr ? 0x8000U : 0U));
 buffer->bufferFull = false;
 buffer->syncFlag = syncFlag;
 buffer->DLC = noOfBytes;
 }
 return buffer;

CO_CANrxBufferInit: Before CAN messages can be received, each member in CO_CANrx_t must be initialized.
CO_CANrxBufferInit() is called by CANopen module, which uses specific member. Main arguments to the CO_CANrxBufferInit()
function are CAN identifier and a pointer to callback function. Those two arguments (and some others) are copied to the member
of the CO_CANrx_t array.

CO_ReturnError_t ret = CO_ERROR_NO;
 if((CANmodule!=NULL) && (object!=NULL) && (pFunct!=NULL) && (index < CANmodule->rxSize)){
 /* buffer, which will be configured */
 CO_CANrx_t *buffer = &CANmodule->rxArray[index];
 /* Configure object variables */
 buffer->object = object;
 buffer->pFunct = pFunct;
 /* CAN identifier and CAN mask, bit aligned with CAN module. Different on different
microcontrollers. */
 buffer->ident = ident & 0x07FFU;
 if(rtr){
 buffer->ident |= 0x0800U;
 }
 buffer->mask = (mask & 0x07FFU) | 0x0800U;
 }
 else{
 ret = CO_ERROR_ILLEGAL_ARGUMENT;
 }
 return ret;

The CAN frame receive processing is completed in SDK’s MCAN callback. Every time the hardware receives a CAN frame, the
software checks if the CAN frame id matches to any of the rxArray ID. If match occurs, software copies the CAN message and
calls CANopen’s msgbuf’s callback function for further processing.

static void mcan_callback(CAN_Type *base, mcan_handle_t *handle, status_t status, uint32_t result,
void *userData)
{
 int i;
 if(status == kStatus_MCAN_RxFifo0Idle)
 {
 CO_CANrxMsg_t rcvMsg;

NXP Semiconductors
Porting CANopenNode on LPC5500 series

Porting CANopennode stack on LPC5500 series, Rev. 0, 29 January 2021
Application Note 10 / 14

 rcvMsg.DLC = rxFrame.size;
 memcpy(rcvMsg.data, rxFrame.data, rcvMsg.DLC);
 rcvMsg.ident = rxFrame.id >> STDID_OFFSET;
 CO_CANrx_t *msgBuff = NULL;
 for(i=0; i<CO->CANmodule[0]->rxSize; i++)
 {
 if(CO->CANmodule[0]->rxArray[i].ident == rcvMsg.ident)
 {
 msgBuff = &CO->CANmodule[0]->rxArray[i];
 }
 }
 if (msgBuff && msgBuff->pFunct)
 {
 msgBuff->pFunct(msgBuff->object, &rcvMsg);
 }
 MCAN_TransferReceiveFifoNonBlocking(CAN0, 0, &mcanHandle, &rxXfer);
 }
 if(status == kStatus_MCAN_TxIdle)
 {
 }
}

3.3 Test
This section describes the Hardware environment and the Test Step.

3.3.1 Hardware environment
• Boards

— One LPCXpresso55S16 boards

— One USB-CAN bridge convertor

• Miscellaneous

— One Micro USB cables

— One 120 Ohm terminated CAN cable

— Personal Computer

• Boards Setup

There is no specific jumper setting for LPC55S16, please follow SDK example: mcan_interrupt’s readme file for CAN jumper
setting. The block diagram is shown in Figure 9 and Figure 10.

Figure 9. Message RAM configuration

NXP Semiconductors
Porting CANopenNode on LPC5500 series

Porting CANopennode stack on LPC5500 series, Rev. 0, 29 January 2021
Application Note 11 / 14

Figure 10. Message RAM configuration

3.3.2 Test Step
Download the program on to the board and press RESET button. Run MCU, open USB-CAN convertor GUI, you can see that the
device is sending CANopen time sync frame every 1 s:

NXP Semiconductors
Porting CANopenNode on LPC5500 series

Porting CANopennode stack on LPC5500 series, Rev. 0, 29 January 2021
Application Note 12 / 14

Figure 11. Sync frame send from device every 1 s

Next, we test SDO functionality. Switch to CANopen panel, add Node 8, and click SDO panel. Set the operation type to SDO
request, reading the value from OD 0x2101, and sub index is 0x00 (which store the CAN Node ID in OD). If everything OK, the
return field should show 0x08.

Figure 12. SDO test

4 Reference
1. https://www.can-cia.org/canopen/

2. https://github.com/CANopenNode/CANopenNode

NXP Semiconductors
Reference

Porting CANopennode stack on LPC5500 series, Rev. 0, 29 January 2021
Application Note 13 / 14

https://www.can-cia.org/canopen/
https://github.com/CANopenNode/CANopenNode

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There
are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor
does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided
in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical
experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to
standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce
the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other
open and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no
liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules, regulations, and standards of the intended
application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all
legal, regulatory, and security related requirements concerning its products, regardless of any information or support that
may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com)
that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP,
HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,
MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG,
TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy
Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ
Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are
trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,
ULINK-ME, ULINK-PLUS, ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 29 January 2021
Document identifier: AN13121

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 CANopen overview
	1.1 Object dictionary
	1.2 Summary

	2 LPC5500 series CAN and SDK driver
	2.1 MCAN
	2.2 SDK driver
	2.3 SDK example

	3 Porting CANopenNode on LPC5500 series
	3.1 CANopenNode
	3.2 Porting CANopenNode
	3.2.1 Download source code
	3.2.2 File structure
	3.2.3 Flowchart of a typical CANopenNode implementation
	3.2.4 Implement CO_Driver

	3.3 Test
	3.3.1 Hardware environment
	3.3.2 Test Step

	4 Reference

