NXP Semiconductors
Application Notes

Document Number: AN13109
Rev. 0, 12/2020

Enabling and Checking DDR ECC on
S32V23x Device

by: NXP Semiconductors

1. Introduction

The DDR controller of the S32V23x family has built-in
Error Checking and Correction (ECC) capabilities. ECC
allows single bit errors to be corrected and two/three
bits errors to be detected which increases the reliability
of high frequency operation as well as improves data
accuracy.

This application note provides an introduction to the
ECC mechanism as well as guideline to configure and
validate the ECC feature on DDR.

This document contains following sections:

Error Correcting Code (ECC) on DDR: This
section introduces features and calculation of the
ECC on DDR.

DDR ECC configuration: This section
introduces how to configure the MEW registers
to enable ECC on DDR.

Fault injection and reaction: This section
describes the basics of fault injection, how to
injectand trigger ECC faults, how to verify ECC
configuration on DDR and how to react to the
fault.

Configurationand verification examples: This
section gives examples to configure and verify
ECC mechanism on DDR.

N

Pow

No

Contents
INErOAUCTION. ..ot 1
Error Correcting Code (ECC)on DDR.........ccocevvivininnne, 2
2.1 Features of ECCONDDR........ccccoiiiiiiiiiicieee 2
2.2. Impact on performancCe...........covvvveiieienienee 3
2.3. Calculation of ECC on DDR..........ccooovviviniiiienne 4
DDR ECC configuration............ccccoceeiieiiieiiee e 7
Fault injection and reaction...........c.ccooevvveriiniiienieneene 8
4.1. Shadow region........ccceveiiieiiiicee e 8
4.2. Steps to injectand trigger fault...............c.ccooeeee 10
4.3. Fault reaction.........cccooeveviiiiiiiiice e 10
Configuration and verification examples............ccc.coenne 11
5.1. Sample for M4ccocoiiiiiii e 11
5.2. Sample for A53 (U-boot)eevvvieeiiiiiieiiiiee e, 13
SUMMAIY. ..t 15
RETEIENCE. ...ioiiiie e 15

-
P

https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/s32v2-vision-mpus-/s32v2-processors-for-vision-machine-learning-and-sensor-fusion:S32V234?utm_medium=AN-2021

Error Correcting Code (ECC) on DDR

The following abbreviations are used in the application note.

Table 1. Acronyms and abbreviations

Abbreviations Description

MMDC Multi-Mode DDR Controller

DDR Double Data Rate

DRAM Dynamic Random-Access Memory
MEW MMDC ECC and Debug Watchpoint
ECC Error Correcting Code

FCCU Fault Collection and Control Unit
XOR Exclusive Ored

XRDC Extended Resource Domain Controller
SEC Single error correction

DED Double error detection

TED Triple error detection

2.Error Correcting Code (ECC) on DDR

2.1. Features of ECC on DDR

As shown in Figure 1 MMDC is a multi-mode DDR controller and MEW module supports ECC and
debug watchpoint capabilitieson MMDC transactions. All the ECC errors detected by MEW are
reported to FCCU.

NIC 301

| XRDC

vEW
il

[mmDC |

DDR memory

Figure 1. MEW block diagram

There are two instances of MEW and MMDC modules available on S32VV23x. Each MEW internally
uses four ECC modulesin parallel. Each ECC module can generate eight ECC bits out of eight data bits
and byte-aligned 32 address bits as shown in Figure 2.

Enabling and Checking DDR ECC on S32V23x Device,Rev. 0, 12/2020
2 NXP Semiconductors

Error Correcting Code (ECC) on DDR

31 23 15 7
8 Data bits 8 Data bits 8 Data bits 8 Data bits
| 32 Address bits | 32 Address bits lﬂ 32 Address bits | 32 Address bits
ECC module ECC module ECC module ECC module
4 3 2 1
|8ECChits| [8Ecchits| [8ECChits| [8ECChbits |

Figure 2. Four ECC modules workin parallel

Four ECC schemes are supported by MEW module of S32V23x as shown in Table 2:
1. SEC-DED-TED for 8 data bitsand 8 ECC bits.
2. SED-DED for erroneous 23 address-bits.
3. SED for greater than 23 address bits.
4

Single error correction or Single error detection-Double error detection for combination of 8 data
bits, 23 address bits and 8 ECC bits (SEC/SED-DED).

Table 2. ECC Schemes on DDR
Protected bits SEC | SED | DED | TED
8 data bits X1,4 X1,4 X1
8 ECC bits X1,4 X1,4 X1
23 Address bits X2,4 X2
Address bits 23 to 31 X3,4

2.2. Impact on performance

When ECC featureis enabled, MEW module converts the incoming transactions to the new address if
ECC region is accessed. For NON-ECC region, there is no conversion, but a default latency is added to
match up the bus.

e The transferswhich are smaller than x64 (like x8 / x16 / x32) are converted to double the current
size: x8 => x16, x16 => x32, x32 => x64.

e For atransfer of 64-bit size and length < 9, the transaction will be doubled up to the maximum
for a single burst. For burst transactions size x64 and length > 8, two bursts are generated.

The DRAM controller embeds ECC data within the normal data to the DRAM (inline ECC). While this
reduces the available data rate and memory space for the payload, no additional DRAM device for ECC
data is required.

In general, enabling ECC feature results in the following impacts:

e Reduce the available memory space, e.g. 1 MB protected normal data needs extra 1 MB space

for its ECC data
Enabling and Checking DDR ECC on S32V23x Device, Rev. 0, 12/2020

Error Correcting Code (ECC) on DDR

¢ Reduce the DDR bus bandwidth at least in half
e Add some extra latency

2.3. Calculation of ECC on DDR

ECC algorithms that are also known as Hamming codes are mathematically determined. Hamming
codes is based on the following concepts:

e In order to detect k-single bit error, minimum hamming distance (number of bit positionsin
which two code words differ) Dmin = k+1.

e In order to correct k-single bit error, minimum hamming distance Dmin = 2k +1.
In order to satisfy all the four ECC schemes, hamming distance-4 algorithm is used for development of
the H-matrix which is the implementation of DDR ECC on S32V23x.

In this H-matrix, each data bit is exclusive Ored into four different ECC bits; Each ECC bit is implicitly
exclusive Ored into a single ECC bits; 23-bit Address bits are exclusive Ored into 3, 6 or 8 ECC bits;
Address bit 23 to 31 are exclusive Ored (XOR) with Address bit 0 to 8 to extend the address range to 32
bit.
The following figure shows the H-matrix [1]:

Table 3. H-matrix

DDR bit0 | DDRbit 1 | DDR bit 2 | DDR bit 3 | DDR bit4 | DDR bit5 | DDR bit 6 | DDRbit 7
docimal 15 51 85 106 150 172 216 225
code
0 X X X X
1 X X X X
2 X X X X
o~
& 3 X X X X
o
g 4 X X X X
5 X X X X
6 X X X X
7 X X X X
binary code | 00001111 | 00110011 | 01010101 | 01101010 | 10010110 | 10101100 | 11011000 | 11100001

ECChit0 | ECChit1l | ECChit2 | ECChit3 | ECChit4 | ECChit5 | ECChit6 | ECChit7

decimal

1 2 4 8 16 32 64 128
code

X

X

X

ECCBit
N (v s |w N (= o

X
binary code | 00000001 | 00000010 | 00000100 | 00001000 | 00010000 | 00100000 | 01000000 | 10000000

Enabling and Checking DDR ECC on S32V23x Device,Rev. 0, 12/2020

4 NXP Semiconductors

Error Correcting Code (ECC) on DDR

Address bit0 | Addressbit1 | Addressbit2 | Address bit3 | Addressbit4 | Addressbit5
di;’::' %5 111 123 125 126 175
0 X X . X X
1 X X X X X
2 X X X X X
= 3 X X X X X X
O n X X X X
5 X y X X X
6 X X X X X
7 X
binary code 01011111 01101111 01111011 01111101 01111110 10101111
Address bit 6 | Address bit7 | Address bit 8 | Address hit 9 | Address bit 10 | Address bit 11
di‘;g;a' 187 189 207 219 221 222
0 X X X X X
1 X . X X
2 X . X X
i 3 X X X X X X
g 4 X b X X X
5 X X
6 X X X X
7 X X X X X X
binary code | 10111011 10111101 11001111 11011011 11011101 11011110
Address bit 12 | Address bit 13 | Address bit 14 Address bit 15 | Address bit 16 l::ldressu
decgl;\;al 25 26 28 37 38 52
0 X X
1 X X
2 X X X X
a 3 X X X
e A X X X X
5 X X X
6
7
binary code 00011001 00011010 00011100 00100101 00100110 00110100
Address hit 18 | Address bit 19 | Address bit 20 | Address bit 21 | Address bit 22
d‘:‘;;“:' 82 131 133 145 255
0 X X X X
1 X X X
2 X X
a 3 X
e X X X
5 X
6 X X
7 X X X X
binary code 01010010 10000011 10000101 10010001 11111111

Follow the steps below to calculate the ECC value:

First step, Address bit 23 to 31 are exclusive Ored (XOR) with Address bit 0 to 8 to extend the address
range to 32-bit:

Addressbity = Addressbity @ Addressbit,,
Addressbit, = Addressbit, @@ Addressbit,,
Addressbit, = Addressbit, @ Addressbit,s
Addressbit; = Addressbit; @ Addressbit,,
Addressbit, = Addressbit, @ Addressbit,;
Addressbit; = Addressbits @ Addressbit,g
Addressbit, = Addressbity @ Addressbit,q
Addressbit; = Addressbit; @ Addressbit,,
Addressbity = Addressbitg @ Addressbits,

Then, the ECC bits can be calculated according to the H-matrix, calculation formulais as follow, take

ECC bit 0 as an example:
Enabling and Checking DDR ECC on S32V23x Device, Rev. 0, 12/2020

Error Correcting Code (ECC) on DDR

ECCbhity = Databity @ Databit, @ Databit, @ Databit; @ Addressbit, @ Addressbit,
b Addressbit, @ Addressbity @ Addressbits @ Addressbit, @ Addressbit;
D Addressbitg @ Addressbity @ Addressbit,y, @ Addresshit,, @ Addressbit,s
b Addressbit,g P Addresshit,y D Addressbit,; B Addressbit,,

To be more concise, the formulais simplified to:

ECCbity = "(Databitg 3, & Addressbityy4568911,13.161819,22)

ECCbit, = "(Databity; 45 & Addressbity3457.81011,14.151617.20,22)

ECCbity = "(Databityzss & Addressbityy34.567.891011,12,1314,22)

ECCbity = "(Databity ;4 & Addressbity>346791011,12.13.14.17.1821,22)

ECCbhit; = "(Databitys ¢ & Addressbits ¢7591011.19.2021.22)
To give an example, it is assumed the address is 0xC2008000 and data is 0x44.
e ECC bits is calculated as 0xAl while data is written
e If the last bit of the data bits is accidentally reversed, the data changed from 0x44 to 0x45
e The ECC bits are calculated again while being read and the value is OXAE.

e Then the syndrome can be calculated by following formula:
Syndrome = ECCbitsoriginai * ECChitspoy

As in this example, the syndrome is OxA1 * OXAE = OxOF, then by comparing syndrome to binary code
in the H-matrix as shown in Table 3 and it can be found that the reversed bit is DDR data bit0 as shown
in the Figure 3.

[DDR bit 0

decimal

code =

x| X [x|x

ECC Bit

NG (s W NR o

binary code |[00001111]

Figure 3. Binary code of DDR data bitO

Because the H-matrix is based on Hamming distance-4 algorithm, double and triple bits error in ECC
and data bits can also be detected but cannot be corrected.

For address bits, 23-bitaddress is included in the H-matrix and address bit 23 to 31 are XOR with
address bit 0 to 8 to extend the address range to 32-bit. The ECC scheme of 32-bit address can only
detect single bit error. Using address bit0 and bit23 to give an example:

Enabling and Checking DDR ECC on S32V23x Device,Rev. 0, 12/2020
6 NXP Semiconductors

DDR ECC configuration

e If address bit0 is accidentally flipped, the syndrome becomes OxFE, but if address bit23
accidentally flipped will also obtained the same syndrome. This is the reason why address bits
support SED but not SEC.

o If address bitO and bit23 are accidentally reversed at the same time, the syndrome will stay as
0xAl, that’s to say there is no error detected. This is the reason why DED can’t be supported on
address bits.

3.DDR ECC configuration

By default, ECC feature on DDR is disabled. To enable ECC, there are steps that the user should follow
(Take DDRO as an example, the configuration of DDRL1 is similar). It is recommended to configure the
ECC mechanism at boot stage before any application uses DDR.
Writing unlock PIN two timesto unlock the MEW registers:

MEW_AX|_0->ECC_ULK_PTN = OXAA55A5A5;

MEW_AX|_0->ECC_ULK_PTN = OXAA55A5A5;

if(MEW_AXI_0->ECC_ULK_PTN == OXFFFFFFFE)

{
/* MEW_AXI_O registers are unlocked */

}
After unlocking, the following registers can be written.

e MEW_AXI_ECC GLBL_CTRL
e MEW_AXI_ECC_MX_EPA

e MEW_AXI_ECC_MN_EPA

e MEW_AXI_ECC_SHD_STAT CTRL[SHD_RGN_SLT]
e MEW _AXI_ECC DBG_CTRL[ADD EN_ECC DIS]

Setting maximum and minimum protected region address:

MEW_AXI|_0->ECC_MX_EPA = ECC_MAX_ADDRESS;

MEW_AXI|_0->ECC_MN_EPA =ECC_LOW._ADDRESS;
ECC protectedregion is from ECC_LOW_ADDRESS to ECC_MAX_ ADDRESS - 1 address. Enough
memory space should be reserved, because the actual physical memory space occupation is as twice as
the size of protected region:

ECC_MAX_ADDRESS = ECC_LOW_ADDRESS
{ (2 + ECC_MAX_ADDRESS - ECC_LOW_ADDRESS) < DDR_MAX_ADDRESS}

Both maximum and minimum address should be multiple of 64KBytes.
Enable ECC and lock the registers:

Enable the module on both write and read data path by setting the corresponding bits in the control
register ECC_GLBL_CTRL. Then lock MEW registers back after configuration is done by writing
Ox55AAAAS5 twice to register ECC_LK_PTN.

MEW_AXI_0->ECC_GLBL_CTRL = 0x00090009; // Enable the ECC path on write and read

Enabling and Checking DDR ECC on S32V23x Device, Rev. 0, 12/2020

Fault injection and reaction

MEW_AXI|_0->ECC_LK_PTN = OX55AAAA5S;
MEW_AXI_0->ECC_LK_PTN = OX55AAAA5S;
if(MEW_AXI_0->ECC_LK_PTN == OxFFFFFFFE)
{

/* MEW_AXI_O registers are locked */

}

4. Fault injection and reaction

4.1. Shadow region

If ECC is enabled for ECC protected region, any transaction from SOC to protected region will be
converted by MEW module. In SOC address view, ECC protected region only includes data which are
protected by ECC, but in DDR-RAM physical address view ECC data are embedded in the normal data
and use double RAM space. For example, 32-bit data 0x11223344 writes to ECC protected region by
SOC will be stored as 64-bit ECC-DATA combined at physical address view like Oxese33ee44e¢] 10022,
symbol ‘¢’ stands for ECC bit, e.g. 0x7533A0448511DC22.

SOC address view DDR-RAM physical address view
0x0000 0x0000
non ECC non ECC
ECC_LOW_ADDRESS [—¢————— ECC_LOW_ADDRESS
ECC
protected
region
ECC
ECC_MAX_ADDRESS protected
\\ region
\
shadow \\
region N
N
N
N
2+ECC_MAX_ADDRESS - ECC_LOW_ADDRESS 2+ECC_MAX_ADDRESS - ECC_LOW_ADDRESS
non ECC non ECC
DDR_MAX_ADDRESS DDR_MAX_ADDRESS

Figure 4. Conversion between SOC and physical address views

The address can be converted according to the following formula:

addressypysica = 2 * addresss,, — ECC_LOW_ADDRESS

In SOC address view as show in the Figure 4, shadow region is followed behind the protected region
and is the same size with the protected region. The data bits can be modified without ECC bits
recalculated and the ECC bits can be modified directly through shadow region. In normal application the
shadow region should be protected by XRDC to avoid illegal access, as shown in the Figure 1. But in
the fault injection application, shadow region can be used to inject fault. A single bit flipped through the
shadow region can inject a single bit correctable ECC error and can be triggered by reading the
corresponding data from the protected region. Two or more bits flipped through the shadow region will

Enabling and Checking DDR ECC on S32V23x Device,Rev. 0, 12/2020

8 NXP Semiconductors

Fault injection and reaction

injectan uncorrectable ECC error and can be triggered by reading the corresponding data from the
protected region. Both single bit correctable and uncorrectable errors will be sent to the FCCU.

Because of size limitation, the shadow region can only be mapped to half of the protected region
physical address, the register MEW_AXI_ECC_SHD_STAT_CTRL[SHD_RGN_SLT] is used to select
first or second half that shadow region points to. Shadow region allows users to directly access the
physical memory view that both data bits and ECC bits can be accessed.

By default, MEW_AXI_ECC_SHD_STAT_CTRL[SHD_RGN_SLT] =1, shadow region points to
second region of ECC protected region physical address as shown in the Figure 5. In this case, the start
address of shadow region points to the data in protected region address (ECC_MAX_ADDRESS +
ECC_LOW_ADDRESS)/2, the end address of shadow region points to the protected region address
ECC_MAX_ADDRESS.

SOC address view DDR-RAM physical address view
0x0000 0x0000
non ECC non ECC
ECC_LOW_ADDRESS ECC_LOW_ADDRESS
ECC
protected
region
ECC
ECC_MAX_ADDRESS b4 —————— ™ protected
region
shadow
region
2+ECC_MAX_ADDRESS - ECC_LOW_ADDRESS [——#¢————— 2+ECC_MAX_ADDRESS - ECC_LOW_ADDRESS
non ECC non ECC
DDR_MAX_ADDRESS DDR_MAX_ADDRESS

Figure 5. Shadow region points to second region

Shadow region can be selectedto point to first region of ECC protected region physical address as
shown in the Figure 6 by setting MEW_AXI_ECC_SHD_STAT_CTRL[SHD_RGN_SLT] = 0. In this
case, the start address of shadow region points to the data in protected region address
ECC_LOW_ADDRESS, the end address of shadow region points to the protected region address
(ECC_MAX_ADDRESS + ECC_LOW_ADDRESS)/2.

Enabling and Checking DDR ECC on S32V23x Device, Rev. 0, 12/2020

Fault injection and reaction

SOC address view DDR-RAM physical address view
0x0000 0x0000

non ECC non ECC

ECC_LOW_ADDRESS ECC_LOW_ADDRESS
//
ECC s
protected e
region i
s
/ ECC
ECC_MAX_ADDRESS E protected
// region
/
shadow //
region i
s
s
/
2+ECC_MAX_ADDRESS - ECC_LOW_ADDRESS 2+ECC_MAX_ADDRESS - ECC_LOW_ADDRESS

non ECC non ECC

DDR_MAX_ADDRESS DDR_MAX_ADDRESS

Figure 6. Shadow region points to first region

4.2. Steps to inject and trigger fault

Reading and writing operation on shadow region will not trigger ECC mechanism. Therefore, the data
can be modified through shadow region without ECC bits recalculated and the ECC bits can be modified
directly. Fault injection can be performed by this way.

Step 1. Configure and enable ECC
Configure and enable ECC by following the steps described in section 3.
Step 2. Initialize ECC bits

After ECC enabled, ECC bits are not automatically calculated and stored, the ECC bits need to be
initialized by writing on the protected region.

Step 3. Inject fault

ECC mechanism on DDR supports single bit error correctionand up to 3 bits error detection on data and
ECC bits. So, fault can be injected by changing 1 to 3 bits of target data into the corresponding physical
view address in the shadow region. Data bits and ECC bits in the shadow region can be changed in many
ways, such as the user application on M4 and the u-boot command on A53, please refer to section5 for
more details.

Step 4. Trigger fault

After fault injection, a read operation at the target address in protected region will trigger an ECC fault.
The corresponding error flag can be observed in the register MEW_AXI ECC_ERR_IN_STCLR.

4.3. Fault reaction

When there is an ECC fault, there are some mechanisms to catch the fault information.
Inside the MEW, the following registers store information about the ECC fault:

Enabling and Checking DDR ECC on S32V23x Device,Rev. 0, 12/2020

10 NXP Semiconductors

Configuration and verification examples

e MEW_AXI _ECC ERR_IN_STCLR registerindicates the fault type and which ECC module
has the fault.

e MEW_AXI_ECC _EERAR registergives 32-bit address which caused the first ECC fault.

e MEW_AXI_ECC_EERDSRnN registerscontain detailed information of the ECC fault, including
data bits, ECC bits and syndrome.

e MEW_AXI_ECC _CBL_UNCBL_BIT_EC registerrecords the count of correctable fault and
uncorrectable fault. If the count exceeds the upper limit (15-bitunsigned int), the overflow flag
bit will be set.

When interrupts are enabled in MEW_AXI_ECC_ERR_IE register, the corresponding ECC fault will be
sent to FCCU module for user-defined handling.

There are two types of ECC faults: single bit correctable fault and uncorrectable fault. Reactions to the
fault can be configured in the FCCU, including functional reset, alarm interrupt and active output pin. In
this note, the alarm interrupt and reset are used as examples. The fault ID of single bit correctable error
is 99 and the fault ID of uncorrectable error is 100. Fault ID is the fault source that caused FCCU to
enter ALARM state. Refer to S32V234_NCF_List.xsIx for Fault ID list (Reference Manual [1]
attachment).

If alarm interrupt is configured as FCCU's reactionto the DDR ECC fault, an interrupt will be generated
when ECC fault is detected by MEW. Then the fault should be handled in the FCCU interrupt handler to
clear the fault source, fault flags in MEW and FCCU modules. Fault flags in
MEW_AXI_ECC_ERR_IN_STCLR can be cleared by writing 1 to corresponding flag bit or setting
MEW_AXI ECC _SHD STAT _CTRL[STAT_CLR] bit to clear all fault flags.

If reset is configured as FCCU’s reaction to the DDR ECC fault, a reset will be generated when ECC
fault is detected by MEW. A Long functional reset is recommended to react to the uncorrectable ECC
error.

5. Configuration and verification examples

This section gives two examples, one is for M4 core and the other for A53.

5.1. Sample for M4

In this case, DDR1 memory region 0xC2000000 to 0xC2010000 is used as the protected region. The
following functionis used to configure MEW at initialization stage.
static void MEW_Init(void)
{
/* Unlock MEW_AXI_ECC_ULK_PTK by writing unlock PIN OXAA55A5A5 two times */
REG_WRITE32(&MEW_AXI_1->ECC_ULK_PTN), OXAAS5A5AS);
REG_WRITE32(&(MEW_AXI_1->ECC_ULK_PTN), OXAA55A5A5);
/* High Address boundary for ECC protected memory region */
REG_WRITE32(& MEW_AXI_1->ECC_MN_EPA), 0xC2000000);
/* Low Address boundary for ECC protected memory region */
REG_WRITE32(&(MEW_AXI_1->ECC_MX_EPA), 0xC2010000);

Enabling and Checking DDR ECC on S32V23x Device, Rev. 0, 12/2020

Configuration and verification examples

/* Enable the ECC path on write */
REG_BIT_SET32(&(MEW_AXI|_1->ECC_GLBL_CTRL),
MEW_AXI_ECC_GLBL_CTRL_WR_EN_MASK);

/* Enable the ECC path on read */

REG_BIT_SET32(&MEW_AXI_1->ECC_GLBL_CTRL),
MEW_AXI_ECC_GLBL_CTRL_RD_EN_MASK);

/* Lock MEW_AXI_ECC_ULK_PTK by writing unlock PIN 55AAAA55 two times */

REG_WRITE32(&(MEW_AXI_1->ECC_LK_PTN), OX55AAAASS);
REG_WRITE32(&MEW_AXI_1->ECC_LK_PTN), OX55AAAASS5);

After enabling ECC feature, the ECC protected region must be firstinitialized, otherwise ECC errors

}

will come.
for (uint32_t i = 0xC2000000; i < 0XC2010000; i +=4)
{

REG_WRITE32((Lint32_t *)(i), 0x00000000);
}

Inject fault by modifying data and ECC bits through shadow region. Trigger a fault by reading the

corresponding data from the protected region address.
/* Inject correctable error */

static void DDR_InjectCErr(void)
{

/* Write data 0x11223344 in 0xC2008000 for generating a ECC code */

REG_WRITE32((Uint32_t *)(0xC2008000), 0x11223344);

/* Read the ECC code of 0xC2008000 (ECC code located at 0XC2010000) */

uint32_t test DDR = REG_READ32((uint32_t*)(0xC2010000));
/* Invert one bit of ECC code */

test_DDR = (((~test_DDR) & 0x00000001) | (test DDR & OxFFFFFFFE));

/* Write back inverted ECC code to 0xC2010000 */
REG_WRITE32((uint32_t *)(0xC2010000), test_DDR);
/* Read data to trigger a ECC correctable error */

test DDR = REG_READ32((uint32_t *)(0xC2008000));
(void)test_DDR;

/* Inject uncorrectable error */

static void DDR_InjectUErr(void)
{

/* Write data 0x11223344 in 0xC2008000 for generating a ECC code */

REG_WRITE32((uint32_t *)(0xC2008000), 011223344);

/* Read the ECC code of 0xC2008000 (ECC code located at 0XC2010000) */

uint32_t test DDR = REG_READ32((uint32_t *)(0xC2010000));
/* Invert two bits of ECC code */

test_DDR = (((~test_DDR) & 0x00000003) | (test_DDR & OxFFFFFFFC));

/* Write back inverted ECC code to 0xC2010000 */

Enabling and Checking DDR ECC on S32V23x Device,Rev

. 0, 12/2020

12

NXP Semiconductors

5.2.

REG_WRITE32((uint32_t *)(0xC2010000), test_DDR);
/* Read data to trigger a ECC uncorrectable error */

test DDR = REG_READ32((uint32_t *)(0xC2008000));

(void)test_DDR;

Sample for A53 (u-boot)

Configuration and verification examples

In this case, DDR0O memory region 0x80000000 to 0xA0000000 is used as the protected region. The
ECC feature on DDR can be configured in u-boot code after DRAM is initialized.

static void MEW_Init(void)

{

}

/* unlock registers */

writel(OxAA55A5A5, 0x40037010);
writel(OxAA55A5A5, 0x40037010);

[* set protected region address */
writel(0x80000000, 0x40037008);
writel(0OxA0000000, 0x40037004);
/* enable ECC */

writel(0x00090009, 0x40037000);

/*lock registers */

writel(0OxX55AAAAS55, 0x4003700C);

In this case, there is 512 MB memory which needs to be initialized. To optimize the initialization time,

DMA module can be used to do this initialization.
static void ECC_protected_memory_Init(void)

{

/* DMA CR */

writel(0x00000100, 0x40002000);
/* DMA EEI*/
writel(0x00000001, 0x40002014);
/* DMA TCD */

/* SOURCE ADDR */
writel(0x00006780, 0x40003000);
/* ATTR */

writew(0x0505, 0x40003006);
/*NBYTES */

writel(0x20000000, 0x40003008);
/*DESTADDR */
writel(0x80000000, 0x40003010);
/* DEST OFFSET */
writew(0x0020, 0x40003014);

/* CITER ELINKNO */
writew(0x0001, 0x40003016);

Enabling and Checking DDR ECC on S32V23x Device, Rev. 0, 12/2020

Configuration and verification examples

/* CSR */

writew(0x0000, 0x4000301C);

/* BITER ELINKNO */

writew(0x0001, 0x4000301E);

[* Trigger */

writeb (0x0000, 0x4000201D);
while((readw(0x4000301C) & 0x0080)!=0x0080)
{

/* Wait until complete */

Using DMA to initialize 512 MB of memory typically takes 4-5 seconds. For time-critical application
scenarios there is a faster way to use ARM® NEON to initializethe DRAM, it takes around 276 us to
initialize 512 MB memory:
void neon_memset_8uint(uint8_t *apDst, uint8_taVal, int32_t aSize)
{
/* Set up buffers and number of iterations */
long ISIMDlterations = aSize / 16;
uint8_t ISrcVals[16] = {aVal};
memset(ISrcVals, aVal, 16);
char* IpDstVals = (char*)apDst;
char* IpSrcVals = (char*)ISrcVals;
/* Run NEON */
__asm volatile(
"LD1{V0.16B}, [%][lpSrcVals]] \n\t'
"1:\n\t"
"ST1{V0.16B}, [%[IpDstVals]], #16 \n\t"
"subs %[ISIMDlterations],%[ISIMDIterations] #1 \n\t"
"bne 1b \n\t"
: [IpSrcVals] "+r'(IpSrcVals), [IpDstVals] “+r"(IpDstVals),
[ISIMDlterations] "+r"(ISIMDlterations)

D;

static void ECC_protected_memory_Init(void)
{
neon_memset_8uint((uint8_t *)0x80000000, 0, 536870912);

}
An ECC fault can be injected and triggered by using the u-boot command line. In this way it can be
verified if ECC feature on DDR works as expected.

=> mw.| 0x90000000 0x11223344 1 «— write 0x11223344 to ECC protected address 0x90000000

=> md.| 0XA0000000 2 < read the corresponding shadow region address of 0x90000000

a0000000: 3933ed44 c9119022

Enabling and Checking DDR ECC on S32V23x Device,Rev. 0, 12/2020

14 NXP Semiconductors

=> mw.| 0xA0000000 0x3933ed45 1
=>md.| 040037030 1

40037030: 00000000

=>md.| 0x90000000 1

90000000: 11223344

=>md.| 0x40037030 1

40037030: 00010000

6. Summary

«— inject single bit error through shadow region

« the error flags show no errors

« trigger ECC error by reading on injected address

« the error flag shows there is a correctable error detected

ECC feature on DDR can enhance data accuracy and stability, reduce single point failure and latent
failure on DDR memory. The usage of ECC on DDR is closely related to application scenarios. The
configurationand initialization of the ECC protected region should be done before DDRs are used. And
the detected ECC faults should be properly handled. The sample codes in this note are for reference
only. For more information, please refer to the reference manual [1] and the safety manual [2].

7.Reference

1. S32V234 Reference Manual, S32V234RM, Rev. 5, 11/2019
2. Safety Manual for S32V234, S32V234SM, Rev. 3, 10/2017

Enabling and Checking DDR ECC on S32V23x Device, Rev. 0, 12/2020

Howto Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

arm

Information in this documentis provided solely to enable system and software
implementers to use NXP products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits based on the
information in this document. NXP reserves the rightto make changes without further
notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its
products for any particular purpose, nor does NXP assume any liability arising out of the
application or use of any productor circuit, and specifically disclaims any and all
liability, including without limitation consequential orincidental damages. “Typical”
parameters thatmay be providedin NXP data sheets and/or specifications can and do
vary in differentapplications, and actual performance may vary over time. All operating
parameters, including “typicals,” must be validated for each customer application by
customer’s technical experts. NXP does notconvey any license underits patentrights
northe rights of others. NXP sells products pursuantto standard terms and conditions
of sale, which can be found atthe following address: nxp.com/Sales TermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FORA SMARTER WORLD,
COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES,
MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,
MANTIS, MIFARE ULTRALIGHT, MIFARE4AMOBILE, MIGLO, NTAG, ROADLINK,
SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the
Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware,
the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,
PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play, SafeAssure, the
SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack,
CoreNet, Flexis, MXC, Platformin a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink,and UMEMS are trademarks of NXP B.V. All other product or service names
are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan,
Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and pVision are registered
trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7,
ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON,
POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its
subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are
registered trademarks of Oracle and/or its affiliates. The Power Architecture and
Power.org word marks and the Power and Power.orglogos and related marks are
trademarks and service marks licensed by Power.org.

©2020NXPB.V.

Document Number: AN13109
Rev. 0
12/2020

\r
4\

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	1. Introduction
	2. Error Correcting Code (ECC) on DDR
	2.1. Features of ECC on DDR
	2.2. Impact on performance
	2.3. Calculation of ECC on DDR

	3. DDR ECC configuration
	4. Fault injection and reaction
	4.1. Shadow region
	4.2. Steps to inject and trigger fault
	4.3. Fault reaction

	5. Configuration and verification examples
	5.1. Sample for M4
	5.2. Sample for A53 (u-boot)

	6. Summary
	7. Reference

