
Enabling and Checking DDR ECC on

S32V23x Device

by: NXP Semiconductors

1. Introduction

The DDR controller of the S32V23x family has built-in

Error Checking and Correction (ECC) capabilities. ECC

allows single bit errors to be corrected and two/three

bits errors to be detected which increases the reliability

of high frequency operation as well as improves data

accuracy.

This application note provides an introduction to the

ECC mechanism as well as guideline to configure and

validate the ECC feature on DDR.

This document contains following sections:

• Error Correcting Code (ECC) on DDR: This

section introduces features and calculation of the

ECC on DDR.

• DDR ECC configuration: This section

introduces how to configure the MEW registers

to enable ECC on DDR.

• Fault injection and reaction: This section

describes the basics of fault injection, how to

inject and trigger ECC faults, how to verify ECC

configuration on DDR and how to react to the

fault.

• Configuration and verification examples: This

section gives examples to configure and verify

ECC mechanism on DDR.

NXP Semiconductors Document Number: AN13109

Application Notes Rev. 0 , 12/2020

Contents

1. Introduction... 1
2. Error Correcting Code (ECC) on DDR 2

2.1. Features of ECC on DDR 2
2.2. Impact on performance.. 3

2.3. Calculation of ECC on DDR.................................. 4
3. DDR ECC configuration .. 7
4. Fault injection and reaction .. 8

4.1. Shadow region .. 8

4.2. Steps to inject and trigger fault 10
4.3. Fault reaction .. 10

5. Configuration and verification examples 11
5.1. Sample for M4 .. 11

5.2. Sample for A53 (u-boot) 13
6. Summary... 15
7. Reference .. 15

https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/s32v2-vision-mpus-/s32v2-processors-for-vision-machine-learning-and-sensor-fusion:S32V234?utm_medium=AN-2021

Error Correcting Code (ECC) on DDR

Enabling and Checking DDR ECC on S32V23x Device,Rev. 0, 12/2020

2 NXP Semiconductors

The following abbreviations are used in the application note.

Table 1. Acronyms and abbreviations

Abbreviations Description

MMDC Multi-Mode DDR Controller

DDR Double Data Rate

DRAM Dynamic Random-Access Memory

MEW MMDC ECC and Debug Watchpoint

ECC Error Correcting Code

FCCU Fault Collection and Control Unit

XOR Exclusive Ored

XRDC Extended Resource Domain Controller

SEC Single error correction

DED Double error detection

TED Triple error detection

2. Error Correcting Code (ECC) on DDR

2.1. Features of ECC on DDR

As shown in Figure 1 MMDC is a multi-mode DDR controller and MEW module supports ECC and

debug watchpoint capabilities on MMDC transactions. All the ECC errors detected by MEW are

reported to FCCU.

Figure 1. MEW block diagram

There are two instances of MEW and MMDC modules available on S32V23x. Each MEW internally

uses four ECC modules in parallel. Each ECC module can generate eight ECC bits out of eight data bits

and byte-aligned 32 address bits as shown in Figure 2.

Error Correcting Code (ECC) on DDR

Enabling and Checking DDR ECC on S32V23x Device, Rev. 0, 12/2020

NXP Semiconductors 3

Figure 2. Four ECC modules work in parallel

Four ECC schemes are supported by MEW module of S32V23x as shown in Table 2:

1. SEC-DED-TED for 8 data bits and 8 ECC bits.

2. SED-DED for erroneous 23 address-bits.

3. SED for greater than 23 address bits.

4. Single error correction or Single error detection-Double error detection for combination of 8 data

bits, 23 address bits and 8 ECC bits (SEC/SED-DED).

Table 2. ECC Schemes on DDR

Protected bits SEC SED DED TED

8 data bits X1,4

X1,4 X1

8 ECC bits X1,4

X1,4 X1

23 Address bits

X2,4 X2

Address bits 23 to 31

X3,4

2.2. Impact on performance

When ECC feature is enabled, MEW module converts the incoming transactions to the new address if

ECC region is accessed. For NON-ECC region, there is no conversion, but a default latency is added to

match up the bus.

• The transfers which are smaller than x64 (like x8 / x16 / x32) are converted to double the current

size: x8 => x16, x16 => x32, x32 => x64.

• For a transfer of 64-bit size and length < 9, the transaction will be doubled up to the maximum

for a single burst. For burst transactions size x64 and length > 8, two bursts are generated.

The DRAM controller embeds ECC data within the normal data to the DRAM (inline ECC). While this

reduces the available data rate and memory space for the payload, no additional DRAM device for ECC

data is required.

In general, enabling ECC feature results in the following impacts:

• Reduce the available memory space, e.g. 1 MB protected normal data needs extra 1 MB space

for its ECC data

Error Correcting Code (ECC) on DDR

Enabling and Checking DDR ECC on S32V23x Device,Rev. 0, 12/2020

4 NXP Semiconductors

• Reduce the DDR bus bandwidth at least in half

• Add some extra latency

2.3. Calculation of ECC on DDR

ECC algorithms that are also known as Hamming codes are mathematically determined. Hamming

codes is based on the following concepts:

• In order to detect k-single bit error, minimum hamming distance (number of bit positions in

which two code words differ) Dmin = k+1.

• In order to correct k-single bit error, minimum hamming distance Dmin = 2k +1.

In order to satisfy all the four ECC schemes, hamming distance-4 algorithm is used for development of

the H-matrix which is the implementation of DDR ECC on S32V23x.

In this H-matrix, each data bit is exclusive Ored into four different ECC bits; Each ECC bit is implicitly

exclusive Ored into a single ECC bits; 23-bit Address bits are exclusive Ored into 3, 6 or 8 ECC bits;

Address bit 23 to 31 are exclusive Ored (XOR) with Address bit 0 to 8 to extend the address range to 32

bit.

The following figure shows the H-matrix [1]:

Table 3. H-matrix

Error Correcting Code (ECC) on DDR

Enabling and Checking DDR ECC on S32V23x Device, Rev. 0, 12/2020

NXP Semiconductors 5

Follow the steps below to calculate the ECC value:

First step, Address bit 23 to 31 are exclusive Ored (XOR) with Address bit 0 to 8 to extend the address

range to 32-bit:

Then, the ECC bits can be calculated according to the H-matrix, calculation formula is as follow, take

ECC bit 0 as an example:

Error Correcting Code (ECC) on DDR

Enabling and Checking DDR ECC on S32V23x Device,Rev. 0, 12/2020

6 NXP Semiconductors

To be more concise, the formula is simplified to:

Formulas for Remaining ECC bits:

To give an example, it is assumed the address is 0xC2008000 and data is 0x44.

• ECC bits is calculated as 0xA1 while data is written

• If the last bit of the data bits is accidentally reversed, the data changed from 0x44 to 0x45

• The ECC bits are calculated again while being read and the value is 0xAE.

• Then the syndrome can be calculated by following formula:

As in this example, the syndrome is 0xA1 ^ 0xAE = 0x0F, then by comparing syndrome to binary code

in the H-matrix as shown in Table 3 and it can be found that the reversed bit is DDR data bit0 as shown

in the Figure 3.

Figure 3. Binary code of DDR data bit0

Because the H-matrix is based on Hamming distance-4 algorithm, double and triple bits error in ECC

and data bits can also be detected but cannot be corrected.

For address bits, 23-bit address is included in the H-matrix and address bit 23 to 31 are XOR with

address bit 0 to 8 to extend the address range to 32-bit. The ECC scheme of 32-bit address can only

detect single bit error. Using address bit0 and bit23 to give an example:

DDR ECC configuration

Enabling and Checking DDR ECC on S32V23x Device, Rev. 0, 12/2020

NXP Semiconductors 7

• If address bit0 is accidentally flipped, the syndrome becomes 0xFE, but if address bit23

accidentally flipped will also obtained the same syndrome. This is the reason why address bits

support SED but not SEC.

• If address bit0 and bit23 are accidentally reversed at the same time, the syndrome will stay as

0xA1, that’s to say there is no error detected. This is the reason why DED can’t be supported on

address bits.

3. DDR ECC configuration

By default, ECC feature on DDR is disabled. To enable ECC, there are steps that the user should follow

(Take DDR0 as an example, the configuration of DDR1 is similar). It is recommended to configure the

ECC mechanism at boot stage before any application uses DDR.

Writing unlock PIN two times to unlock the MEW registers:

MEW_AXI_0->ECC_ULK_PTN = 0xAA55A5A5;

MEW_AXI_0->ECC_ULK_PTN = 0xAA55A5A5;

if (MEW_AXI_0->ECC_ULK_PTN == 0xFFFFFFFE)

{

 /* MEW_AXI_0 registers are unlocked */

}

After unlocking, the following registers can be written.

• MEW_AXI_ECC_GLBL_CTRL

• MEW_AXI_ECC_MX_EPA

• MEW_AXI_ECC_MN_EPA

• MEW_AXI_ECC_SHD_STAT_CTRL[SHD_RGN_SLT]

• MEW_AXI_ECC_DBG_CTRL[ADD_EN_ECC_DIS]

Setting maximum and minimum protected region address:

MEW_AXI_0->ECC_MX_EPA = ECC_MAX_ADDRESS;

MEW_AXI_0->ECC_MN_EPA = ECC_LOW_ADDRESS;

ECC protected region is from ECC_LOW_ADDRESS to ECC_MAX_ADDRESS - 1 address. Enough

memory space should be reserved, because the actual physical memory space occupation is as twice as

the size of protected region:

Both maximum and minimum address should be multiple of 64KBytes.

Enable ECC and lock the registers:

Enable the module on both write and read data path by setting the corresponding bits in the control

register ECC_GLBL_CTRL. Then lock MEW registers back after configuration is done by writing

0x55AAAA55 twice to register ECC_LK_PTN.

MEW_AXI_0->ECC_GLBL_CTRL = 0x00090009; // Enable the ECC path on write and read

Fault injection and reaction

Enabling and Checking DDR ECC on S32V23x Device,Rev. 0, 12/2020

8 NXP Semiconductors

MEW_AXI_0->ECC_LK_PTN = 0x55AAAA55;

MEW_AXI_0->ECC_LK_PTN = 0x55AAAA55;

if (MEW_AXI_0->ECC_LK_PTN == 0xFFFFFFFE)

{

 /* MEW_AXI_0 registers are locked */

}

4. Fault injection and reaction

4.1. Shadow region

If ECC is enabled for ECC protected region, any transaction from SOC to protected region will be

converted by MEW module. In SOC address view, ECC protected region only includes data which are

protected by ECC, but in DDR-RAM physical address view ECC data are embedded in the normal data

and use double RAM space. For example, 32-bit data 0x11223344 writes to ECC protected region by

SOC will be stored as 64-bit ECC-DATA combined at physical address view like 0x••33••44••11••22,

symbol ‘•’ stands for ECC bit, e.g. 0x7533A0448511DC22.

Figure 4. Conversion between SOC and physical address views

The address can be converted according to the following formula:

In SOC address view as show in the Figure 4, shadow region is followed behind the protected region

and is the same size with the protected region. The data bits can be modified without ECC bits

recalculated and the ECC bits can be modified directly through shadow region. In normal application the

shadow region should be protected by XRDC to avoid illegal access, as shown in the Figure 1. But in

the fault injection application, shadow region can be used to inject fault. A single bit flipped through the

shadow region can inject a single bit correctable ECC error and can be triggered by reading the

corresponding data from the protected region. Two or more bits flipped through the shadow region will

Fault injection and reaction

Enabling and Checking DDR ECC on S32V23x Device, Rev. 0, 12/2020

NXP Semiconductors 9

inject an uncorrectable ECC error and can be triggered by reading the corresponding data from the

protected region. Both single bit correctable and uncorrectable errors will be sent to the FCCU.

Because of size limitation, the shadow region can only be mapped to half of the protected region

physical address, the register MEW_AXI_ECC_SHD_STAT_CTRL[SHD_RGN_SLT] is used to select

first or second half that shadow region points to. Shadow region allows users to directly access the

physical memory view that both data bits and ECC bits can be accessed.

By default, MEW_AXI_ECC_SHD_STAT_CTRL[SHD_RGN_SLT] = 1, shadow region points to

second region of ECC protected region physical address as shown in the Figure 5. In this case, the start

address of shadow region points to the data in protected region address (ECC_MAX_ADDRESS +

ECC_LOW_ADDRESS)/2, the end address of shadow region points to the protected region address

ECC_MAX_ADDRESS.

Figure 5. Shadow region points to second region

Shadow region can be selected to point to first region of ECC protected region physical address as

shown in the Figure 6 by setting MEW_AXI_ECC_SHD_STAT_CTRL[SHD_RGN_SLT] = 0. In this

case, the start address of shadow region points to the data in protected region address

ECC_LOW_ADDRESS, the end address of shadow region points to the protected region address

(ECC_MAX_ADDRESS + ECC_LOW_ADDRESS)/2.

Fault injection and reaction

Enabling and Checking DDR ECC on S32V23x Device,Rev. 0, 12/2020

10 NXP Semiconductors

Figure 6. Shadow region points to first region

4.2. Steps to inject and trigger fault

Reading and writing operation on shadow region will not trigger ECC mechanism. Therefore, the data

can be modified through shadow region without ECC bits recalculated and the ECC bits can be modified

directly. Fault injection can be performed by this way.

Step 1. Configure and enable ECC

Configure and enable ECC by following the steps described in section 3.

Step 2. Initialize ECC bits

After ECC enabled, ECC bits are not automatically calculated and stored, the ECC bits need to be

initialized by writing on the protected region.

Step 3. Inject fault

ECC mechanism on DDR supports single bit error correction and up to 3 bits error detection on data and

ECC bits. So, fault can be injected by changing 1 to 3 bits of target data into the corresponding physical

view address in the shadow region. Data bits and ECC bits in the shadow region can be changed in many

ways, such as the user application on M4 and the u-boot command on A53, please refer to section 5 for

more details.

Step 4. Trigger fault

After fault injection, a read operation at the target address in protected region will trigger an ECC fault.

The corresponding error flag can be observed in the register MEW_AXI_ECC_ERR_IN_STCLR.

4.3. Fault reaction

When there is an ECC fault, there are some mechanisms to catch the fault information.

Inside the MEW, the following registers store information about the ECC fault:

Configuration and verification examples

Enabling and Checking DDR ECC on S32V23x Device, Rev. 0, 12/2020

NXP Semiconductors 11

• MEW_AXI_ECC_ERR_IN_STCLR register indicates the fault type and which ECC module

has the fault.

• MEW_AXI_ECC_EERAR register gives 32-bit address which caused the first ECC fault.

• MEW_AXI_ECC_EERDSRn registers contain detailed information of the ECC fault, including

data bits, ECC bits and syndrome.

• MEW_AXI_ECC_CBL_UNCBL_BIT_EC register records the count of correctable fault and

uncorrectable fault. If the count exceeds the upper limit (15-bit unsigned int), the overflow flag

bit will be set.

When interrupts are enabled in MEW_AXI_ECC_ERR_IE register, the corresponding ECC fault will be

sent to FCCU module for user-defined handling.

There are two types of ECC faults: single bit correctable fault and uncorrectable fault. Reactions to the

fault can be configured in the FCCU, including functional reset, alarm interrupt and active output pin. In

this note, the alarm interrupt and reset are used as examples. The fault ID of single bit correctable error

is 99 and the fault ID of uncorrectable error is 100. Fault ID is the fault source that caused FCCU to

enter ALARM state. Refer to S32V234_NCF_List.xslx for Fault ID list (Reference Manual [1]

attachment).

If alarm interrupt is configured as FCCU's reaction to the DDR ECC fault, an interrupt will be generated

when ECC fault is detected by MEW. Then the fault should be handled in the FCCU interrupt handler to

clear the fault source, fault flags in MEW and FCCU modules. Fault flags in

MEW_AXI_ECC_ERR_IN_STCLR can be cleared by writing 1 to corresponding flag bit or setting

MEW_AXI_ECC_SHD_STAT_CTRL[STAT_CLR] bit to clear all fault flags.

If reset is configured as FCCU’s reaction to the DDR ECC fault, a reset will be generated when ECC

fault is detected by MEW. A Long functional reset is recommended to react to the uncorrectable ECC

error.

5. Configuration and verification examples

This section gives two examples, one is for M4 core and the other for A53.

5.1. Sample for M4

In this case, DDR1 memory region 0xC2000000 to 0xC2010000 is used as the protected region. The

following function is used to configure MEW at initialization stage.

static void MEW_Init(void)

{

 /* Unlock MEW_AXI_ECC_ULK_PTK by writing unlock PIN 0xAA55A5A5 two times */

 REG_WRITE32(&(MEW_AXI_1->ECC_ULK_PTN), 0xAA55A5A5);

 REG_WRITE32(&(MEW_AXI_1->ECC_ULK_PTN), 0xAA55A5A5);

 /* High Address boundary for ECC protected memory region */

 REG_WRITE32(&(MEW_AXI_1->ECC_MN_EPA), 0xC2000000);

 /* Low Address boundary for ECC protected memory region */

 REG_WRITE32(&(MEW_AXI_1->ECC_MX_EPA), 0xC2010000);

Configuration and verification examples

Enabling and Checking DDR ECC on S32V23x Device,Rev. 0, 12/2020

12 NXP Semiconductors

 /* Enable the ECC path on write */

 REG_BIT_SET32(&(MEW_AXI_1->ECC_GLBL_CTRL),

 MEW_AXI_ECC_GLBL_CTRL_WR_EN_MASK);

 /* Enable the ECC path on read */

 REG_BIT_SET32(&(MEW_AXI_1->ECC_GLBL_CTRL),

 MEW_AXI_ECC_GLBL_CTRL_RD_EN_MASK);

 /* Lock MEW_AXI_ECC_ULK_PTK by writing unlock PIN 55AAAA55 two times */

 REG_WRITE32(&(MEW_AXI_1->ECC_LK_PTN), 0x55AAAA55);

 REG_WRITE32(&(MEW_AXI_1->ECC_LK_PTN), 0x55AAAA55);

}

After enabling ECC feature, the ECC protected region must be first initialized, otherwise ECC errors

will come.

for (uint32_t i = 0xC2000000; i < 0xC2010000; i += 4)

{

REG_WRITE32((uint32_t *)(i), 0x00000000);

}

Inject fault by modifying data and ECC bits through shadow region. Trigger a fault by reading the

corresponding data from the protected region address.

/* Inject correctable error */

static void DDR_InjectCErr(void)

{

 /* Write data 0x11223344 in 0xC2008000 for generating a ECC code */

 REG_WRITE32((uint32_t *)(0xC2008000), 0x11223344);

 /* Read the ECC code of 0xC2008000 (ECC code located at 0XC2010000) */

 uint32_t test_DDR = REG_READ32((uint32_t *)(0xC2010000));

 /* Invert one bit of ECC code */

 test_DDR = (((~test_DDR) & 0x00000001) | (test_DDR & 0xFFFFFFFE));

 /* Write back inverted ECC code to 0xC2010000 */

 REG_WRITE32((uint32_t *)(0xC2010000), test_DDR);

 /* Read data to trigger a ECC correctable error */

 test_DDR = REG_READ32((uint32_t *)(0xC2008000));

 (void)test_DDR;

}

/* Inject uncorrectable error */

static void DDR_InjectUErr(void)

{

 /* Write data 0x11223344 in 0xC2008000 for generating a ECC code */

 REG_WRITE32((uint32_t *)(0xC2008000), 0x11223344);

 /* Read the ECC code of 0xC2008000 (ECC code located at 0XC2010000) */

 uint32_t test_DDR = REG_READ32((uint32_t *)(0xC2010000));

 /* Invert two bits of ECC code */

 test_DDR = (((~test_DDR) & 0x00000003) | (test_DDR & 0xFFFFFFFC));

 /* Write back inverted ECC code to 0xC2010000 */

Configuration and verification examples

Enabling and Checking DDR ECC on S32V23x Device, Rev. 0, 12/2020

NXP Semiconductors 13

 REG_WRITE32((uint32_t *)(0xC2010000), test_DDR);

 /* Read data to trigger a ECC uncorrectable error */

 test_DDR = REG_READ32((uint32_t *)(0xC2008000));

 (void)test_DDR;

}

5.2. Sample for A53 (u-boot)

In this case, DDR0 memory region 0x80000000 to 0xA0000000 is used as the protected region. The

ECC feature on DDR can be configured in u-boot code after DRAM is initialized.

static void MEW_Init(void)

{

 /* unlock registers */

writel(0xAA55A5A5, 0x40037010);

 writel(0xAA55A5A5, 0x40037010);

 /* set protected region address */

 writel(0x80000000, 0x40037008);

 writel(0xA0000000, 0x40037004);

 /* enable ECC */

 writel(0x00090009, 0x40037000);

 /* lock registers */

 writel(0x55AAAA55, 0x4003700C);

}

In this case, there is 512 MB memory which needs to be initialized. To optimize the initialization time,

DMA module can be used to do this initialization.

static void ECC_protected_memory_Init(void)

{

 /* DMA CR */

 writel(0x00000100, 0x40002000);

 /* DMA EEI */

 writel(0x00000001, 0x40002014);

 /* DMA TCD */

 /* SOURCE ADDR */

 writel(0x00006780, 0x40003000);

 /* ATTR */

 writew(0x0505, 0x40003006);

 /* NBYTES */

 writel(0x20000000, 0x40003008);

 /* DEST ADDR */

 writel(0x80000000, 0x40003010);

 /* DEST OFFSET */

 writew(0x0020, 0x40003014);

 /* CITER ELINKNO */

 writew(0x0001, 0x40003016);

Configuration and verification examples

Enabling and Checking DDR ECC on S32V23x Device,Rev. 0, 12/2020

14 NXP Semiconductors

 /* CSR */

 writew(0x0000, 0x4000301C);

 /* BITER ELINKNO */

 writew(0x0001, 0x4000301E);

 /* Trigger */

 writeb(0x0000, 0x4000201D);

 while((readw(0x4000301C) & 0x0080)!=0x0080)

 {

/* Wait until complete */

 }

}

Using DMA to initialize 512 MB of memory typically takes 4-5 seconds. For time-critical application

scenarios there is a faster way to use ARM® NEON to initialize the DRAM, it takes around 276 us to

initialize 512 MB memory:

void neon_memset_8uint(uint8_t *apDst, uint8_t aVal, int32_t aSize)

{

/* Set up buffers and number of iterations */

 long lSIMDIterations = aSize / 16;

 uint8_t lSrcVals[16] = {aVal};

 memset(lSrcVals, aVal, 16);

 char* lpDstVals = (char*)apDst;

 char* lpSrcVals = (char*)lSrcVals;

 /* Run NEON */

 __asm volatile(

 "LD1 {V0.16B}, [%[lpSrcVals]] \n\t"

 "1: \n\t"

 "ST1 {V0.16B}, [%[lpDstVals]], #16 \n\t"

 "subs %[lSIMDIterations],%[lSIMDIterations],#1 \n\t"

 "bne 1b \n\t"

 : [lpSrcVals] "+r"(lpSrcVals), [lpDstVals] "+r"(lpDstVals),

 [lSIMDIterations] "+r"(lSIMDIterations)

 :);

}

static void ECC_protected_memory_Init(void)

{

 neon_memset_8uint((uint8_t *)0x80000000, 0, 536870912);

}

An ECC fault can be injected and triggered by using the u-boot command line. In this way it can be

verified if ECC feature on DDR works as expected.

=> mw.l 0x90000000 0x11223344 1 ← write 0x11223344 to ECC protected address 0x90000000

=> md.l 0xA0000000 2 ← read the corresponding shadow region address of 0x90000000

a0000000: 3933ed44 c9119022

Enabling and Checking DDR ECC on S32V23x Device, Rev. 0, 12/2020

NXP Semiconductors 15

=> mw.l 0xA0000000 0x3933ed45 1 ← inject single bit error through shadow region

=> md.l 0x40037030 1 ← the error f lags show no errors

40037030: 00000000

=> md.l 0x90000000 1 ← trigger ECC error by reading on injected address

90000000: 11223344

=> md.l 0x40037030 1 ← the error f lag shows there is a correctable error detected

40037030: 00010000

6. Summary

ECC feature on DDR can enhance data accuracy and stability, reduce single point failure and latent

failure on DDR memory. The usage of ECC on DDR is closely related to application scenarios. The

configuration and initialization of the ECC protected region should be done before DDRs are used. And

the detected ECC faults should be properly handled. The sample codes in this note are for reference

only. For more information, please refer to the reference manual [1] and the safety manual [2].

7. Reference

1. S32V234 Reference Manual, S32V234RM, Rev. 5, 11/2019

2. Safety Manual for S32V234, S32V234SM, Rev. 3, 10/2017

Document Number: AN13109
Rev. 0

12/2020

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright licenses

granted hereunder to design or fabricate any integrated circuits based on the

information in this document. NXP reserves the right to make changes without further

notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does NXP assume any liability arising out of the

application or use of any product or circuit, and specifically disclaims any and all

liability, including without limitation consequential or incidental damages. “Typical”

parameters that may be provided in NXP data sheets and/or specifications can and do

vary in different applications, and actual performance may vary over time. All operating

parameters, including “typicals,” must be validated for each customer application by

customer’s technical experts. NXP does not convey any license under its patent rights

nor the rights of others. NXP sells products pursuant to standard terms and conditions

of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,

COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES,

MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,

MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK,

SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the

Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware,

the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,

PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the

SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack,

CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names

are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan,

Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered

trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7,

ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON,

POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its

subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are

registered trademarks of Oracle and/or its affiliates. The Power Architecture and

Power.org word marks and the Power and Power.org logos and related marks are

trademarks and service marks licensed by Power.org.

© 2020 NXP B.V.

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	1. Introduction
	2. Error Correcting Code (ECC) on DDR
	2.1. Features of ECC on DDR
	2.2. Impact on performance
	2.3. Calculation of ECC on DDR

	3. DDR ECC configuration
	4. Fault injection and reaction
	4.1. Shadow region
	4.2. Steps to inject and trigger fault
	4.3. Fault reaction

	5. Configuration and verification examples
	5.1. Sample for M4
	5.2. Sample for A53 (u-boot)

	6. Summary
	7. Reference

