
1 Introduction
Glow is a machine learning compiler for neural network graphs. It is designed
to optimize the neural network graphs and generate code for a targeted
hardware device. This code can then be integrated into a MCUXpresso
Software Development Kit (SDK) project which provides a framework that
allows the integration of the generated bundle.

This document covers how to understand the Glow memory information generated by the Glow compiler and calculate the memory
required for a particular model. This compiler can then be used to determine the minimum memory size that is needed to run
the model.

2 Glow bundle
A Glow bundle is the output of the Glow Ahead-of-Time (AOT) compiler. There are 4 files that are generated into the directory
specified by the -emit-bundle argument when compiling with the model-compiler Glow tool. This document uses the LeNet MNIST
model as an example.

• lenet_mnist.o - the bundle object file (code).

• lenet_mnist.h - the bundle header file (API).

• lenet_mnist.weights.bin - the model weights in binary format.

• lenet_mnist.weights.txt - the model weights in text format as C text array.

The weights.bin and weights.txt files contain the exact same data but in two different formats and only one needs to be used in a
project that uses Glow. For very large models with numerous weight data, using the .bin file in the project often results in faster
IDE compilation time than using the .txt file since the data is already in binary format and does not need to be parsed.

The lenet_mnist.o file is the object file that is integrated into the MCUXpresso IDE project and contains the compiled model code
that is executed when inferencing. Note that the size of this file on the hard drive is larger than the Flash size required on the
embedded system to use this library.

The lenet_mnist.h file contains #defines for memory usage and will be the focus of this application note.

2.1 Glow memory usage
Glow does not use dynamically allocated memory. Therefore, the memory requirements can be determined by looking at the
output in the header file that is generated by Glow.

Inside the header file, there are three key definitions starting near line 59 (using the MNIST model as an example):

// Memory sizes (bytes).
#define LENET_MNIST_CONSTANT_MEM_SIZE 431360
#define LENET_MNIST_MUTABLE_MEM_SIZE 3200
#define LENET_MNIST_ACTIVATIONS_MEM_SIZE 20992

Let us look at these definitions in more detail:

Contents

1 Introduction......................................1
2 Glow bundle.................................... 1
3 Glow project size.............................4
4 Conclusion.......................................6
5 Revision history...............................6

AN13001
Glow Memory Analysis
Rev. 0 — November 2020 Application Note

2.1.1 LENET_MNIST_CONSTANT_MEM_SIZE
Defines the size of the model weights. It exactly matches up with the size of the weights.bin file, and contains the number of
elements in the weight.txt array. During inferencing, the weights can be read from either non-volatile memory or from RAM. The
performance implications of having the weights read from non-volatile memory vs RAM will be covered later in this document.
From a memory standpoint, the weights will always take up the specified amount of Flash, and if read from RAM, will also require
that much RAM as well. In the example below, the weights are put into RAM.

In Glow project:

// Statically allocate memory for constant weights (model weights) and initialize.
 GLOW_MEM_ALIGN(LENET_MNIST_MEM_ALIGN)
 uint8_t constantWeight[LENET_MNIST_CONSTANT_MEM_SIZE] = {
 #include "lenet_mnist.weights.txt"
 };

2.1.2 LENET_MNIST_MUTABLE_MEM_SIZE
Defines the amount of memory required for both the input and output data buffers. The memory must be allocated in RAM. This
value remains constant for a particular model regardless of the compiler arguments used because the input and output dimensions
for a model are static. In the header file, you will also notice that there are two #defines for the address offsets of the input and
output buffers. These are offset values from the start of the LENET_MNIST_MUTABLE_MEM_SIZE buffer.

#define LENET_MNIST_data 0
#define LENET_MNIST_softmax 3136

Note that the output data offset is exactly 3,136 because the input data is a 28x28 pixel input image that uses 4 bytes to represent
the floating point value of each monochromatic pixel, thus requiring a 28*28*1*4=3,136 byte buffer to hold the input data.

In Glow project:

// Statically allocate memory for mutable weights (model input/output data).
 GLOW_MEM_ALIGN(LENET_MNIST_MEM_ALIGN)
 uint8_t mutableWeight[LENET_MNIST_MUTABLE_MEM_SIZE];

 // Bundle input data absolute address.
 uint8_t *inputAddr = GLOW_GET_ADDR(mutableWeight, LENET_MNIST_data);

 // Bundle output data absolute address.
 uint8_t *outputAddr = GLOW_GET_ADDR(mutableWeight, LENET_MNIST_softmax);

2.1.3 LENET_MNIST_ACTIVATIONS_MEM_SIZE
Defines the amount of scratch memory required for intermediate computations needed by the model. This buffer must be located
in RAM.

In Glow project:

// Statically allocate memory for activations (model intermediate results).
 GLOW_MEM_ALIGN(LENET_MNIST_MEM_ALIGN)
 uint8_t activations[LENET_MNIST_ACTIVATIONS_MEM_SIZE];

2.1.4 Glow memory summary
All three of these buffers that were allocated are used when running the inference:

lenet_mnist(constantWeight, mutableWeight, activations);

NXP Semiconductors
Glow bundle

Glow Memory Analysis, Rev. 0, November 2020
Application Note 2 / 7

A summary of the Glow memory usage defined by the header file can be found below:

Table 1. Glow memory summary

Type Constant Name in <network_name>.h Location Description

Model Weights CONSTANT_MEM_SIZE RAM or Flash Size required for Neural Network weight data

Input/Output
Data

MUTABLE_MEM_SIZE RAM Buffer size required for input data and
results output

Scratch Data ACTIVATIONS_MEM_SIZE RAM Buffer size required for
intermediate computation

2.2 Options that affect Glow memory requirements
The input/output buffer size is static regardless of what Glow compile arguments are used because the input and output
dimensions for a model are static. However, some compile options can have significant impacts on memory required for the
weights and scratch data.

2.2.1 Quantization
Quantization is transforming the model from its original 32-bit floating point weights to 8-bit fixed point weights. This means that
the model will require roughly ¼ of the space for weights. Also, fixed point math is faster than floating point math so quantizing a
model often, though not always, results in a faster inference time.

A model can be quantized with the Glow compiler by first generating a quantization profile with the model-profiler or image-
classifier tool. Then, when running the model-compiler Glow tool, the -load-profile=profile.yml argument is used to quantize the
model. The effect can be seen in the LENET_MNIST_CONSTANT_MEM_SIZE value, as it is reduced by a factor of 4. This means
less Flash is required, and if the weights are loaded into RAM, less RAM will be required. Also, because of the smaller data, the
amount of scratch RAM required will be reduced by a factor of 4 as well.

No Quantization:

#define LENET_MNIST_CONSTANT_MEM_SIZE 1724672
#define LENET_MNIST_MUTABLE_MEM_SIZE 3200
#define LENET_MNIST_ACTIVATIONS_MEM_SIZE 57600

Quantized (default settings):

#define LENET_MNIST_CONSTANT_MEM_SIZE 433152
#define LENET_MNIST_MUTABLE_MEM_SIZE 3200
#define LENET_MNIST_ACTIVATIONS_MEM_SIZE 15232

Note that it will not be exact ¼ the size as not all aspects of the model can be quantized. The MUTABLE_MEM_SIZE remains same
as expected since the input and output dimensions have not been modified when doing the quantization.

2.2.2 CMSIS-NN on memory and performance
Some Glow compiler arguments like -use-cmsis can also affect the memory requirements. However, the amount of change will
be less significant than the quantization parameter. The exact amount of change will depend on the particular model. Also, the
-use-cmsis option will only have an effect if the model is also quantized during compile time with the -load-profile argument.

The performance gains from using the CMSIS-NN option will often make the RAM trade-off worth it, but this will be application and
model specific. See Table 2 below for data from an example LeNet MNIST model:

NXP Semiconductors
Glow bundle

Glow Memory Analysis, Rev. 0, November 2020
Application Note 3 / 7

Table 2. CMSIS-NN Glow compile options

Compile Options Weights Input/
Output

Activations Compiled
Library

Total Flash Total RAM Inference
Time on
RT1060

Quantized w/ Symmetric Power 2 431,360 3,200 15,232 8,380 461,704 461,434 26 ms

Quantized w/ Symmetric Power 2
with CMSIS-NN

431,360 3,200 20,992 23,204 465,560
(+3,856)

467,184
(+5,750)

10 ms

2.2.3 HiFi4 on memory and performance
The RT685 has the option of compiling with HiFi4 extensions, which can dramatically decrease the inference time. However, this
requires the HiFi4 neural network library. This library requires a total of 676 KB of Flash, and is then loaded into the RT685 RAM
requiring an additional 676 KB of RAM as well. The performance gains from using the HiFi4 DSP will often make the memory
trade-off worth it, but this will be application and model specific. Note that the RT685 has 4.5 MB of on-chip SRAM.

The HiFi4 neural network library can be removed from the project by setting DSP_IMAGE_COPY_TO_RAM to 0 in the
Preprocessor project settings. The following data is collected with the LeNet MNIST model on the RT685, with weights in RAM
and removing the input.bin and output.bin test images found by default in the RT685 Glow SDK project. It also includes the RAM
required for the HiFi4 DSP library for the configurations that use the HiFi4 compile argument.

Table 3. HiFi4 Glow compile options

Glow Compile Options Weights Input/Output Activations Compiled
Library

Total Project
Flash

Total Project
RAM

Inference
Time on
RT685

Quantized w/ Symmetric
Power 2 No CMSIS-NN –
No HiFi4

431,360 3,200 15,232 8,400 475,244 507,932 60.39 ms

Quantized w/ Symmetric
Power 2 with CMSIS-NN –
No HiFi4

431,360 3,200 20,992 23,236 479,116
(+3,872)

513,692
(+5,760)

28.52 ms

Quantized w/ Symmetric
Power 2 with HiFi4 –
No CMSIS-NN

432,832 3,200 23,872 7,020 1,156,168
(+677,052)

1,194,428
(+680,736)

2.51 ms

Quantized w/ Symmetric
Power 2 with HiFi4
and CMSIS-NN

432,832 3,200 23,872 6,956 1,155,988
(-180)

1,194,428
(+0)

2.49 ms

3 Glow project size
Now let us explore how Glow memory requirements impact an example Glow application in MCUXpresso IDE. We will use LeNet
MNIST as an example with the RT1060 MNIST Glow project as our baseline. All buffers have been set to zero to start with, and
this data is captured using MCUXpresso IDE 11.2 with RT1060 SDK 2.8.0 using the “Release” high optimization compile settings.
The goal is that by looking at the Glow output bundle results, it can be determined if a particular model could fit on a particular
board or device based on memory requirements.

NXP Semiconductors
Glow project size

Glow Memory Analysis, Rev. 0, November 2020
Application Note 4 / 7

The lenet_mnist.h file contains the following defines:

#define LENET_MNIST_CONSTANT_MEM_SIZE 431360
#define LENET_MNIST_MUTABLE_MEM_SIZE 3200
#define LENET_MNIST_ACTIVATIONS_MEM_SIZE 20992

Table 4. MCUXpresso SDK compiled project size for Glow

Description Flash (bytes) RAM (bytes) Change (bytes) Details

Bare-Bones 21,424 8,496 Baseline Baseline SDK project with PRINTF support

Adding in .o 31,064 8,496 +9,640 Flash The Glow compiled library .o file. Note that this is less
than the size on the .o file on the PC hard drive.

Adding input/
output and
scratch buffers

31,064 32,688 +24,192 RAM Adding LENET_MNIST_MUTABLE_MEM_SIZE and
LENET_MNIST_ACTIVATIONS_MEM_SIZE requires
24 KB more RAM.

Adding weights
in Flash

462,432 32,688 +431,368 Flash If weights are read from Flash, this will not
affect RAM usage but will require 431,360 bytes
(LENET_MNIST_CONSTANT_MEM_SIZE) of non-
volatile memory. The extra 8 bytes are for alignment.

Adding weights
in RAM

462,424 464,048 +431,360 RAM If weights are read from RAM, the project will require
LENET_MNIST_CONSTANT_MEM_SIZE additional
bytes of RAM. This is optional but may decrease
inference time.

Adding memory
for static input
image and
including image

465,560 467,184 +3,136 Flash

+3,136 RAM

Allocating space for a 28*28 pixel monochromatic (1
color channel) image, with each pixel being a 4-byte
wide floating point value: 28*28*1*4=3,136. If image
is not statically included, then will save this amount
of space.

The minimum memory requirements for a particular model can then be found by using a simple formula using numbers found in
the Glow bundle header file:

• Flash: Base Project + CONSTANT_MEM_SIZE + .o library File

• RAM: Base Project + MUTABLE_MEM_SIZE + ACTIVATIONS_MEM_SIZE

3.1 Effect of weights read from RAM vs Flash
The weight data can be read directly from non-volatile Flash during inferencing by adding a “const” in front of the weight
array definition:

uint8_t const constantWeight[LENET_MNIST_CONSTANT_MEM_SIZE] = {
#include "lenet_mnist.weights.txt"
};

This decreases the amount of RAM required compared to having the weights copied to RAM. The trade-off is that the inference
time will often be slower. The amount of impact on inference time is very dependent on the model, with some models having a
very negligible impact while others have a significant impact. It is recommended to experiment with your particular model to see
what the trade-off is for that model. The effect on the amount of Flash required is negligible since the weights need to be stored
in the Flash in both scenarios.

NXP Semiconductors
Glow project size

Glow Memory Analysis, Rev. 0, November 2020
Application Note 5 / 7

Below is an example for some models on the RT1060 using the default SDK demos. You can see that having weights in RAM
makes a much larger difference in inference time for the LeNet MNIST model than for the CIFAR10 model.

Table 5. Comparing weights read from Flash or RAM

LeNet MNIST CIFAR10

Inference Time Weights read from Flash 17 ms 30 ms

Inference Time Weights read from RAM 10 ms 29 ms

RAM required for Weights read from
Flash (bytes)

35,824 104,816

RAM required for Weights read from
RAM (bytes)

467,184 (+431,360) 138,288 (+33,472)

4 Conclusion
This document describes how to calculate the Glow memory requirements using the generated Glow bundle. The MCU and
external memory requirements can then be known ahead of time for a particular model. It also explored the impact of quantization
on memory usage and the impact of reading weight data from Flash vs RAM.

5 Revision history

Rev Date Description

0 11/2020 Initial Release

NXP Semiconductors
Conclusion

Glow Memory Analysis, Rev. 0, November 2020
Application Note 6 / 7

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder
to design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products
for any particular purpose, nor does NXP assume any liability arising out of the application
or use of any product or circuit, and specifically disclaims any and all liability, including
without limitation consequential or incidental damages. “Typical” parameters that may be
provided in NXP data sheets and/or specifications can and do vary in different applications,
and actual performance may vary over time. All operating parameters, including “typicals,”
must be validated for each customer application by customer's technical experts. NXP does
not convey any license under its patent rights nor the rights of others. NXP sells products
pursuant to standard terms and conditions of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject
tounidentified vulnerabilities. Customers are responsible for the design and operation of
theirapplications and products to reduce the effect of these vulnerabilities on customer’s
applicationsand products, and NXP accepts no liability for any vulnerability that is discovered.
Customersshould implement appropriate design and operating safeguards to minimize the risks
associatedwith their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,
COOLFLUX,EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire,
ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,
PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform
in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D
are trademarks of NXP B.V. All other product or service names are the property of their
respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio,
CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled,
NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME,
ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected
by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle
and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and
Power.org word marks and the Power and Power.org logos and related marks are trademarks
and service marks licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: November 2020
Document identifier: AN13001

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Glow bundle
	2.1 Glow memory usage
	2.1.1 LENET_MNIST_CONSTANT_MEM_SIZE
	2.1.2 LENET_MNIST_MUTABLE_MEM_SIZE
	2.1.3 LENET_MNIST_ACTIVATIONS_MEM_SIZE
	2.1.4 Glow memory summary

	2.2 Options that affect Glow memory requirements
	2.2.1 Quantization
	2.2.2 CMSIS-NN on memory and performance
	2.2.3 HiFi4 on memory and performance

	3 Glow project size
	3.1 Effect of weights read from RAM vs Flash

	4 Conclusion
	5 Revision history

