AN12970

KW36 - Integrating the OTAP Client Service into a Bluetooth LE

Central Device

Rev. 0 — 09/2020

1 Introduction

The Over The Air Programming (OTAP) NXP’s custom Bluetooth LE service
provides the developers a solution to upgrade the software that the MCU
contains. It removes the need of cables and a physical link between the OTAP
client, the device that is reprogrammed, and the OTAP server, the device that
contains the software update.

The best way to take advantage of the OTAP service is to integrate it into the
Bluetooth LE application. In that way, you can reprogram the device as many
times as required.

This document is intended for developers that are familiarized with the
OTAP software.

2 OTARP client software

OTAP memory management during the update process describes the actual
implementation of the OTAP client software included in the SDK package

for FRDM-KW36. Advantages of the OTAP service integration explains the
importance of integrating OTAP client software into your application, and what
it is expected to achieve through this application note.

2.1 OTAP memory management during the update
process

1. The KW36 Flash is partitioned into:

* One 256 KB Program Flash array (P-Flash) divided into 2
KB sectors with a flash address range from 0x0000_ 0000 to
0x0003 FFFF.

Application Note

Contents
1 Introduction..........ccceeeeeiieceeesiieennnns 1
2 OTAP client software...........ccccuernuee. 1
21 OTAP memory management
during the update process........... 1
2.2 Advantages of the OTAP service
integration............ccooeceiiiiieenn, 4
3 Prerequisites.......ccccvecviiienriciineennn. 5
3.1 Downloading and installing the
software development kit............. 5
4 Customizing a based Bluetooth LE
demo to integrate the OTAP service
.. 7
41 Importing the OTAP service and
framework services into the Temp
Coll example.......ccoccevvieiiiiinennen. 7
4.2 Main modifications in the source
1= 14
4.3 Modifications in project settings
and storage configurations........ 31
5 Testing the Temp Coll-OTAP demo
.. 32
5.1 Preparing the OTAP client SDK
SOftware........ccceeveeeiieeeseee 32
5.2 Creating a Temp Coll - OTAP S -
record image to update the
SOftware......ccccoovcveveee e 35
53 Creating a Temp Coll S-Record
image to update the software.... 36
5.4 Testing the Temp Coll-OTAP

software.......ccccvveveveeeeeeieeeeeeee. 38

+ One 256 KB FlexNVM array divided in 2 KB sectors with address range from 0x1000 0000 to 0x1003 FFFF.

+ Alias memory with address range from 0x0004 0000 to 0x0007_FrFF. Writing or reading at the Alias range address

modifies or returns the FlexNVM content respectively.

h
P

NXP Semiconductors

0x1003 FFFF

0x1000_0000

Ox0007_FFFF

0x0004 0000

0x0003_FFFF

Ox0000_0000

Figure 1. MCU on-chip memory

KB FlexNVM

256 KB Alias FlexNVM

256 KB P-Flash

2. The OTAP application splits the flash into two independent parts, the OTAP bootloader and the OTAP client.
« The OTAP bootloader verifies if there is a new image available in the OTAP client to reprogram the device.

» The OTAP client software provides the Bluetooth LE custom service needed to communicate the OTAP client
device with the OTAP server that contains the new image file.

Therefore, the OTAP client device needs to be programmed twice, first with the OTAP bootloader, and then with the
Bluetooth LE application supporting OTAP client. The mechanism is created to have two different software coexisting in the
same device and store each one in different memory regions. This is implemented by the linker file. In the KW36 device,
the bootloader application has reserved an 8 KB slot of memory from 0x0000 0000 to 0x0000_1FFF, thus the rest of the

memory is reserved, among other things, by the OTAP client application.

OTAP Client Device

Ox0003_FFFF

OTAP Client Software P-Flash
0x0000 2000
Ox0000_1FFF

Bootloader Software P-Flash

0x0000_0000

Figure 2. OTAP client software

3. To create a new image file for the OTAP client device, the developer needs to specify that the code will be stored with
an offset of 8 KB since the first addresses must be reserved for the bootloader, making use of the linker script. The new
application should contain the Bootloader Flags at the corresponding address to work properly.

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020

Application Note

OTAP client software

NXP Semiconductors

OTARP client software

0x0003_FFFF

0x0000_2000
Ox0000_1FFF

void

0x0000_0000

Figure 3. Software update

4. At the connection state, the OTAP server sends the image packets (known as chunks) to the OTAP client via Bluetooth
LE. The OTAP client device can store these chunks, in the first instance, at the external SPI flash (only available on
the FRDM-KW36 board) or the On-Chip FlexNVM memory. The destination of the code is selectable in the OTAP
client software.

FRDM-KW36
OTAP Client Device MEW36x512x%xx4
0x1003_FFFF
The Software Update can be
FlexMVM

stored at the FlexNWM

0x1000_0000 The Software Update can be
= External Flash

0x0003_FFFF stored at the External Flash

OTAP Client Software P-Flash
0x0000_2000
0x0000_1FFF

Bootloader Software P-Flash
0x0000_0000

Figure 4. Storage of the software update

5. When the transfer of the image has finished and all chunks were sent from the OTAP server to the OTAP client, the
OTAP client software writes information, such as the source of the image update, external flash or FlexNVM, in a portion
of memory known as Bootloader Flags, and then resets the MCU to execute the OTAP bootloader code. The OTAP
bootloader reads the Bootloader Flags to get the information needed to program the device and triggers a command to
reprogram the MCU with the new application. Because the new application was built with an offset of 8 KB, the OTAP

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020
Application Note 3/46

NXP Semiconductors

OTARP client software

bootloader programs the device starting from the 0x0000_ 2000 address and the OTAP client application is overwritten by
the new image. Then the OTAP bootloader triggers a command to start the execution of the new image. If the new image
does not contain the OTAP service included, the device is not able to be programmed again due to the lack of OTAP
functionality. For more description, see Advantages of the OTAP service integration.

OTAP Client Device

0x0003 FFFF

P-Flash

0x0000 2000
0x0000 1FFF
Bootloader Software P-Flash

0x0000_0000

Figure 5. Memory content at the end of the software update process

NOTE
In practice, the boundary created between the OTAP client software and the software update addresses when the
internal storage is enabled is not placed exactly in the boundary of the P-Flash and FlexNVM memory regions.
These values might change with linker settings. You can inspect the effective memory addresses in your project.

2.2 Advantages of the OTAP service integration

As explained in OTAP memory management during the update process, the OTAP client software is a single-programming demo
application. Supposing that an OTAP client device is programmed with the OTAP client software, this device requests an update,
for example, a Temperature Collector (Temp Coll). The image that the OTAP server will send to the OTAP client must be the
Temp Coll. After the reprogramming process the device that was the OTAP client, now, has turned into a Temperature Collector.
The Temp Coll does not have the capabilities to communicate with the OTAP server and request for another update. But if the
Temp Coll image had included the OTAP client service as well, the device would have the possibility to request another software
update, for example, a modified Wireless UART example with OTAP Service. Due to the WU software already includes the OTAP
client, the device can request another software update from the OTAP server. That way, the developer can continue upgrading
the software many times as needed. In other words, to be able to upgrade the software on the OTAP client device in the future,
the application sent over the air should support OTAP service.

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020
Application Note 4/46

NXP Semiconductors

Prerequisites

First
Update

OTAP Client

OTAP Client Software

OTAP Server

Software Update for Client

OTAP Client Software

Second
Update

OTAP Client

OTAP Client Software

QOTAP Server
Software Update for Client

OTAP Client Software

Third
Update

OTAP Client

OTAP Client Software

OTAP Server
Software Update for Client

OTAP Client Software

Figure 6. OTAP integration functionality example

This application note is intended as guidance to add the OTAP service to a Bluetooth LE application.

3 Prerequisites

This document is provided together with a functional demo of the OTAP service integration. The example was based on the Temp
Coll project, available in the FRDM-KW36 SDK package and developed on the MCUXpresso IDE platform. The following are
required to complete the implementation of the Temp Coll - OTAP integration demo.

* MCUXpresso IDE v11.0.0 or later

+ FRDM-KW36 SDK

» Temp Coll - OTAP demo package

* FRDM-KW36 board
* A smartphone with loT Toolbox NXP app (available for Android and iOS)

3.1 Downloading and installing the software development kit

This chapter provides all the steps needed to download the SDK (Software Development Kit) for the FRDM-KW36 used as a

starting point.

1. Navigate to MCUXpresso.

2. Click Select Development Board. Log in with your registered account.

3. In the Search by Name field, search for FRDM-KW36. Then click the suggested board and click Build MCUXpresso SDK.

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020

Application Note

5/46

https://mcuxpresso.nxp.com/en/welcome

NXP Semiconductors

Prerequisites

Select Development Board

Search for your board or kit to get started.

Search by Name Hardware Details
Board FRDM-KW36
FRDM-KW36
Device MKW36Z24

i Core Type / Max Freq Cortex-MOP / 48MHz
Select a Board, Kit, or Processor

Device Memory Size 512 KB Flash
* Boards 64 KB RAM
FRDM-KW36
y Kits Actions
v Processors Build MCUXpresso SDK
Name your SDK Explore selection with Pins tool
SDK_2.2.2_FRDM-KW36 @ Explore selection with Clocks tool

Don't use: (CEPEEERD in the name of your SDK

Figure 7. Building the FRDM-KW36 SDK package

4. Select MCUXpresso IDE in the Toolchain/IDE combo box. Select the supported OS and provide the name to identify the
package in your MCUXpresso Dashboard.

SDK Builder

Generate a downloadable SDK archive for use with desktop MCUXpresso Tools

Developer Environment Settings
Selections here will impact files and examples projects included in the SDK and Generated Projects

SDK Version Toolchain / IDE Host OS5
222 2019-12-06 release_conn_ksdk_2.2_kw35a_1.3.6_RC3.2 - MCUXpresso IDE - windows -
s Name $ Category “ Description Dependencies
D CMSIS DSP Library IMiddleware CMSIS DSP Software Library
FatFs IMiddleware FAT file system
FreeRTOS Operating systems
BLE Wireless stack BLE stack and examples
Framework Wireless stack Framework modules and examples
GenFsK Wireless stack GenFSK stack and examples

This MCUXpresso SDK configuration is available for direct download

Archive Name

Download SDK SDK_2.2.2 FRDM-KW36_1.3.6_RC3.2

Don't use XA in the name of your SDK

Figure 8. Customizing the installation settings

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020
Application Note 6/46

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

5. Click Download SDK and it will take a few minutes until the system gets the package into your account on the
MCUXpresso web page. Read and accept the license agreement. The SDK download starts automatically on your PC.

6. Open MCUXpresso IDE. Drag and drop the FRDM-KW36 SDK zip in the Installed SDK’s list.

[Installed SDKs

To install an SDK, simply drag and drop an SDK (zip file/folder) into the 'Installed SDKs' view.
Marme SDK Version Manifest Version

£ SDK_2.x_FRDM-KW36 2.2.2 3.1.0

Figure 9. Importing SDK package to MCUXpresso IDE

Now, you have downloaded and installed the SDK package for the FRDM-KW36 board.

4 Customizing a based Bluetooth LE demo to integrate the OTAP service

The following steps describe the process of customizing a Bluetooth LE demo imported from the SDK to integrate the OTAP
service into it. This guide uses a Temp Coll project as a starting point, so some steps may differ for another Bluetooth LE
SDK example.

4.1 Importing the OTAP service and framework services into the Temp Coll example

The OTAP client software makes use of Framework functionalities that are not included for the Temp Coll demo. So, the first step
for the OTAP integration must be to compare which folders and files in the project source tree are different between your project
and the OTAP Client. Then you must include it to enable these functionalities. A comparison between the Temp Coll (left) and the
OTAP Client (right) is as shown in Figure 10.

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020
Application Note 7/46

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

B bluetooth B bluetooth
@@ controller -8 controller
8 host 88 host
[profiles B profiles
D battery -9 battery
E device_info

. device_info

-3 temperature

== board &2 board
& CMsIs & CMsIs
= doc B2 doc
E= drivers E= drivers
B framework Bsr framework
-8 common -E8 common
-@ DCDC - DCDC
-5y Flash L
3 Internal i3 Internal
-E FunctionLib ~E& FunctionLib
-3 GPIO -8 GPIO
-2 Keyboard i Keyboard
-5 LED -5 LED
- Lists - Lists
-3 LowPower B3 LowPower
-[i& MemManager -E8 MemManager
-|i& Messaging -E8 Messaging
- Modulelnfo - Modulelnfo
BB MWSCoexistence BB MWSCoexistence
B3 NVM B3 NVM
-E OSAbstraction -E3 OS4bstraction
Iﬁ OtaSupport I
- Panic anic
~E3 Reset B3 Reset
-8 RNG -9 RNG
-3 Seclib - Seclib
-5 SerialManager -5 SerialManager
- Shell
- TimersManager -5 TimersManager

i3 XCVR

-3 XCVR

E5 freertos E5 freertos
& libs & libs
[== linkscripts &5 linkscripts
--m end_text.|dt l end_tesxt.Idt
--m main_text.|dt --m main_text.ldt
Il main_text_section.ldt |
--m symbols.|dt - symbﬁt
= source &5 source
- commaon B commen
@@ gatt_db . L@@ gatt_db

Figure 10. Source tree comparison

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020
Application Note 8/46

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

The folders and files, which are in OTAP but not in Temp Coll, must be imported in your Temp Coll project. For example, in Figure
10, the followings are required to be imported:

* bluetooth -> profiles -> otap
+ framework -> Flash -> External
» framework ->OtaSupport
* source -> common -> otap_client
« linkscripts -> main_text_section.ldt
To include these folders and source files in your project, perform the following steps.

1. Expand the bluetooth and framework folders in your workspace. Select the folder needed for updates and click the right
mouse button. Select New -> Folder. The Folder window appears to provide the same name as the missing folder in the
source directory, as shown in Figure 11.

3 Mew Folder O d

Folder —

Create a new folder resource. / /

Enter or select the parent folder:

| frdmbw3b_wireless_examples_bluetooth_temp_coll_freertos/bluetooth/profiles |

[y
v = frdmbkw3b_wireless_examples_bluetooth_temp_coll_freertos <Debug> ~
[= settings
w [~ bluetooth
(= controller
= host
w = profiles
[= battery
(= device_info

[= temperature
(= board
[= CMSIS
[= Debug

= dnr

Folder name: | otap

Advanced »»

Figure 11. Creating the Bluetooth and Framework folders

2. Repeat Step 1 for the left folders. The result must look similar as shown in Figure 12.

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020
Application Note 9/46

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

= frdmbow36_wireless_examples_bluetooth_termnp_coll_freertos
& Project Settings
[kl Includes
2 CMSIS
w [bluetooth
[= controller

= host
w = profiles
= battery

7= device_info

= temperature
2 board
2 drivers
w 2 framework
= common
= DCDC
w = Flash
w = External
= Interface
[= Source
= Internal
= FunctionLib
= GPIO

= Keyboard
[= LED
= Lists
= LowPower
= MemManager
= Messaging
= Modulelnfo
= MWSCoexistence
= MNVM
= OS5Abstraction
w = OtaSupport
= Interface
[= Source
w 2 source

w [=. common
= gatt_db

= otap_client

Figure 12. Temp Coll directory updated

3. Copy the files inside all the recently created folders from the OTAP client and save it into your project. Ensure that all the
files are in the same folder from the Temp Coll side. For this example, these files are listed as below.

* otap interface.h and otap_service.c in the bluetooth -> profiles -> otap folder.

* Eeprom.h in the framework -> Flash -> External -> Interface folder.

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020
Application Note 10/46

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

» Eeprom source files in the framework -> Flash -> External -> Source folder.
* OtaSupport.h in the framework -> OtaSupport -> Interface folder.

* OtaSupport.c in the framework -> OtaSupport -> Source folder.

* main text section.ldt in linkscripts folder.

* otap client.hand otap client.c in the source -> common -> otap_client folder.

v = frdmkw36_wireless_examples_bluetooth_temp_coll_freertos
© Project Settings
w Includes
= CMSIS
v (2 bluetooth
= controller
= host
v = profiles
= battery
= device_info
v (= otap
ln otap_interface.h
l¢ otap_service.c

= temperature

Figure 13. OTARP files integrated into the Temp Coll project

4. Replace 1ib ble 5-0 host central cmOp_gcc.a, included in your project in libs folder, with the
1lib ble 5-0_ host cm0p_gcc.a library located in <SDK_path>Imiddlewarelwireless|bluetooth_1.3.61hostllib.

You can simply drag and drop the new library on the workspace and remove the original library file. To remove the old
library, right-click on the file and select Delete.

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020
Application Note 11/46

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

= frdmbow36_wireless_examples_bluetooth_temp_coll_freertos

& Project Settings

it Includes

& CMSIS

2 bluetooth

[board

2 drivers

2 framework

2 freertos

2 linkscripts

2 source

2 startup

2 utilities

= doc

w = |ibs

lib_ble_5-0_host_cmlp_gee.a
owp lib_ble_kw3bz_controller_gcc.a
lib_crypto_m0.a

Figure 14. Updating the Bluetooth LE library

5. Navigate to Project -> Properties in MCUXpresso IDE. Go to C/C++ Build -> Settings -> Tool Settings -> MCU C Compiler
-> Includes. Click the icon next to the Include paths textbox, as shown in Figure 15. In the new window that appears, click
the Workspace button.

B8 Properties for frdmkw36_wireless_examples_bluetooth_temp_coll_freertos
type filter text Settings Qoo
Resource
~
Builders

v C/C++ Build Configuration: Debug [Active]

Build Variables
Environment
Logging

MCU settings ¥ ® MCU C Compiler Include paths (-1) B R
Settings & Dialect

® Tool Settings # Build steps Build Artifact Binary Parsers @ Error Parsers

Tool Chain Edi
C/C++ General
MCUXpresso Cor
Project Natures
Project Reference:
Refactoring Histo
Run/Debug Settir
Task Tags
Validation

(5 Preprocessor
 Includes

(= Optimization
(5 Debugging
& Warnings

../source

o
../framework/OSAbstraction/Interface
../framework/common

./freertos

-./framework/Flash/Internal

& Architecture
v ® MCU Assembler
& General
& Architecture & Headers
v ® MCU Linker
& General
& Libraries
(% Miscellaneous
(2 Shared Library Settings
& Architecture
(2 Managed Linker Script
& Multicore
v ® MCU Debugger
@ Debug
& Miscellaneous

k/GPIO

../framework/Keyboard/Interface
/framework/TimersManager/Interface
/framework/TimersManager/Source
../framework/LED/Interface
/framework/MemManager/Interface
./framework/Lists

v

Include files (-include)

aa8id

Figure 15. Include paths perspective

Apply and Close Cancel

6. Deploy your directory tree in the folder selection window. Select the following folders:

* bluetooth -> profiles -> otap

 framework -> Flash -> External -> Interface

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020

Application Note

12/ 46

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

+ framework -> OtaSupport -> Interface

* source -> common -> otap_client

Ensure that these paths were imported onto the Include paths view.

Resource
Builders
V¥ C/C++ Build
Build Variables
Environment
Logging
MCU settings
Settings
Tool Chain Edi
C/C++ General
MCUXpresso Cor
Project Natures
Project Reference:
Refactoring Histo
Run/Debug Settir
Task Tags
Validation

Settings

Configuration: 'Debug [Active]

® Tool Settings # Build steps

. Properties for frdmkw36_wireless_examples_bluetooth_temp_coll_freertos

Build Artifact & Binary Parsers @ Error Parsers

v ® MCU C Compiler
& Dialect
 Preprocessor
(% Includes
(Optimization
(5 Debugging
(2 Warnings
2 Miscell

Include paths (-1)

Manage Configurations...

a8 80le

/bluetooth/profiles/battery
../bluetooth/profiles/device_info
./bluetooth/profiles/temperature
../framework/MWSCoexistence/Interface
../drivers

/CMSIS

./utilities

& Architecture
v ® MCU Assembler

& General

& Architecture & Headers
v ® MCU Linker

2 General

& Libraries

i k/DCDC/Interface/MKW36Z
amework/XCVR/MKW3674

Workspace_loc,/${ProjName}/bluetooth/ profiles/otap)”
"${workspace_loc./${ProjName}/framework/Flash/External/Interface}"
“${workspace_loc:/${ProjName}/framework/OtaSupport/Interface}"
“${workspace_loc:/${ProjName}/source/common/otap_client}”

~/startup

Include files (-include)

a

= Mi
(2 Shared Library Settings
& Architecture
(2 Managed Linker Script
& Multicore

v ® MCU Debugger
@ Debug
& Miscellaneous

Figure 16. Including the OTAP folders in the project paths

Apply and Close Cancel

7. Open the MCU Linker -> Libraries view. Remove the ble 5-0 host central cmOp gcc library and replace it with the

_ble 5-0_host_cmOp_gcc library, as shown in Figure 17. Then, click OK to save the changes.

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020

Application Note

13/46

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

Settings

Configuration: |Debug [Active]

® Tool Settings # Build steps

Build Artifact ki Binary Parsers @ Error Parsers

(& Architecture & Headers
v & MCU Linker
& General
(# Libraries
2 Miscellaneous
& Shared Library Settings
(& Architecture
(2 Managed Linker Script
& Multicore
v & MCU Debugger
2 Debug
& Miscellaneous

Library search path (-1)

"${workspace_loc/${ProjName}/libs}"

Figure 17. Updating the Bluetooth LE library path

Settings

Configuration: Debug [Active]

® Tool Settings # Build steps

Build Artifact b Binary Parsers @ Error Parsers

v

v ®

v & MCU C Compiler Libraries (-I) v ® MCU C Compiler Libraries (-I)
(& Dialect m % Dialect m
(& Preprocessor c (Preprocessor c
2 Includes gee 2 Includes gce
& Optimization nosys Optimization nosys
& Debugging ble kw36z controller gcc & Debuaging ble kw36z controller gcc
o h 7blef&thostﬁcentraLcmOpfgccI - _
(2 Warnings ~rypto.m0 (# Warnings ypiom0
& Miscellaneous # Miscellaneous
& Architecture & Architecture
v B MCU Assembler ~ & MCU Assembler
& General (General

£ Architecture & Headers
MCU Linker

(% General

(= Libraries

& Miscellaneous

(% Shared Library Settings
2 Architecture

Managed Linker Script
% Multicore

MCU Debugger

Debug
 Miscellaneous

Library search path (-L)

"${workspace_loc/${ProjName}/libs}”

Now, you have included the OTAP client Bluetooth and Framework services in the Temp Coll project.

4.2 Main modifications in the source files

Once you have included the OTAP client folders and files in your custom project, inspect the differences between the source files
of the OTAP client and your Bluetooth LE application and add the code needed to integrate the service. The following sections
explain the main aspects that you should focus on.

421 app_preinclude.h

The app_preinclude.h file contains many preprocessor directives that configure some functionalities of the project, such as low
power enablement, DCDC configuration, Bluetooth LE security definitions, and the hardware configuration macros. The OTAP
client software requires some definitions that are not included for other Bluetooth LE SDK projects. The software update must
include the following definitions:

* gEepromType d
* gEepromParams WriteAlignment c
* gOtapClientAtt d
The OTAP Temp Coll demo, sets the following values:

1. gEepromType_d: It defines the storage method between the AT45DB041E external flash on the FRDM-KW36 board, the
default value, or the FlexNVM on-chip memory. You can also select from the list of EEPROM devices in the Eeprom.h
header file at framework/Flash/External/Interface, for custom boards.

/* Specifies the type of EEPROM available on the target board */

#define gEepromType d gEepromDevice AT45DB041E c

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020

Application Note 14 /46

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

2. gEepromParams_WriteAlignment: It defines the offset of the software update for programming. Do not modify the
default value.

/* Eeprom Write alignment for Bootloader flags. */
#define gEepromParams WriteAlignment c 8

3. gotapClientatt d: It sets the ATT transference method for OTA updates. It must be set to 1 for own purpose.

#define gOtapClientAtt d 1

4.2.2 app_config.c

The app_config.c source file contains some structures that configure the advertising and scanning parameters and data. It also
contains the access security requirements for each service in the device.

The advertising data announces the list of services that the Bluetooth LE advertiser device, Temp Coll — OTAP, contains. This
information is used by the Bluetooth LE scanner, to filter out the advertiser devices that do not contain the services required.
Hence, you must include the OTAP client service in the advertising data, to announce to the OTAP server the availability of
this service.

The following code must be included in this file to prepare the advertising data:

/* Default Advertising Parameters. Values can be changed at runtime
to align with profile requirements */

#define gGapAdvertisingInterval 050ms_c 0x0050

#define gGapAdvertisingInterval 100ms_c 0x0O0AOQ

#define gGapAdvertisingInterval 125ms c 0x00C8

#define gGapAdvertisingInterval 250ms_c 0x0190

#define gGapAdvertisingInterval 500ms c 0x0320
gapAdvertisingParameters t gAdvParams =

{

/* minInterval */ gGapAdvertisingInterval 050ms_c,
/* maxInterval */ gGapAdvertisingInterval 100ms c,
/* advertisingType */ gAdvConnectableUndirected c,

/* addressType */ gBleAddrTypePublic c,

/* directedAddressType */ gBleAddrTypePublic c,

/* directedAddress */ {o, o, o, 0, 0, 0},

/* channelMap */ (gapAdvertisingChannelMapFlags t)

(gGapAdvertisingChannelMapDefault c),

/* filterPolicy */ gProcessAll c
}i
/* Scanning and Advertising Data */
static const uint8 t adDatalO[l] = { (gapAdTypeFlags t) (gLeGeneralDiscoverableMode c |
gBrEdrNotSupported c) };
static const uint8 t adbatal[] = { OxEO0, O0x1C, O0x4B, Ox5E, OxlE, OxEB, 0xAl, 0x5C, OxEE, OxF4, Ox5E,
0xBA, 0x50, 0x55, OxFF, 0x01};
static const gapAdStructure t advScanStruct[3] = {

{

.length = NumberOfElements (adDatalO) + 1,

.adType = gAdFlags_c,

.aData = (uint8 t *)adDatal

.length = NumberOfElements (adDatal) + 1,
.adType = gAdCompletel28bitServicelist c,
.abData = (uint8 t *)adDatal

.length = 8 + 1,

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020
Application Note 15/46

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

.adType = gAdShortenedLocalName c,
.aData = (uint8 t*)"NXP OTAT"
}
bi
gapAdvertisingData t gAppAdvertisingData =
{
NumberOfElements (advScanStruct) ,
(void *)advScanStruct
bi
gapScanResponseData t gAppScanRspData =
{
0,
NULL

}i

Additionally, you need to add the access security requirements for the OTAP service, including the
gapServiceSecurityRequirements_t struct. You can customize these parameters for your purpose. The Temp Coll - OTAP

demo sets the following parameters:

static const gapServiceSecurityRequirements t serviceSecurity[3] = {
{
.requirements = {
.securityModeLevel = gSecurityMode 1 Level 3 c,
.authorization = FALSE,
.minimumEncryptionKeySize = gDefaultEncryptionKeySize d
by

.serviceHandle = (uintlé_t)service otap

}I

.requirements = ({
.securityModeLevel = gSecurityMode 1 Level 3 c,
.authorization = FALSE,
.minimumEncryptionKeySize = gDefaultEncryptionKeySize d
by
.serviceHandle = (uintlé6_t)service battery
b
{
.requirements = {
.securityModeLevel = gSecurityMode 1 Level 3 c,
.authorization = FALSE,
.minimumEncryptionKeySize = gDefaultEncryptionKeySize d
b

.serviceHandle = (uintl6 t)service device info

bi
Last modification is to register all services into the deviceSecurityRequirements struct. See the following portion of code:

gapDeviceSecurityRequirements t deviceSecurityRequirements = {

.pMasterSecurityRequirements = (void*)s&masterSecurity,
.cNumServices = 3,
.aServiceSecurityRequirements = (void*)&serviceSecurity

}i

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020

Application Note 16 /46

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

4.2.3 gatt_db.h and gatt_uuid128.h

The gatt db.h header file contains the list of attributes, which shapes the profile of the Temp Coll-OTAP device. The most

important step of this guide is to include the list of the OTAP client attributes into the device’s database. It is recommended to open
the OTAP client SDK example and your Bluetooth LE demo to compare both GATT databases, and include the list of attributes
missing in your project. Figure 18 shows the OTAP client portion of the database that must be included in the Temp Coll project.

i CE_UUID128(service_otap, uuid_service_otap)
CHARACTERISTIC_UUID char_otap_control_point, uuid_char_otap_control_point, (gGattCharPropWrite_c gGattCharPropIndicate_c))
RLEN(value_otap_control_point, uuid_char_otap_control_point, (gPermissionFlagWritable_c), 16, 16, ©xee)

data, (gGattCharPro

RLEN(value_otap_data, uuid_char_otap_data, (gPermissionFlagWritable_c), gAttMaxMtu_c - 3, gAttMaxMtu_c - 3, ©x@e)

S CE(service_battery, gBleSig_BatteryService_d)
CTERISTIC(char_battery_level, gBleSig_BatterylLevel_d, (gGattCharPropNotify_c gGattCharPropRead_c))
\LUE (value_battery_level, gBleSig BatterylLevel d, (gPermissionFlagReadable_c), 1, ©x5A)
DESCRIP (desc_bat_level, gBleSig_CharPresFormatDescriptor_d, (gPermissionFlagReadable_c), 7, ©x@4, ©x@@, exAD, ©8x27, 0x0l, oxel, ©xee)

nformat vice_d)
STIC(char_manuf_name, gBleS anufacturerNameString_d, (gGattCharPropRead_c))

\LUE (value_manuf_name, gBleSig_ManufacturerNameString_d, (gPermissionFlagReadable c), (MANUFACTURER_|
CTERISTIC(char_model no, gBleSig ModelNumberString d, (gGattCharPropRead_c))

\LUE (value_model_no, gBleSig_ModelNumberString_d, (gPermissionFlagReadable_c), 9, "OTAA Demo")
CTERISTIC(char_serial_no, gBleSig_SerialNumberString_d, (gGattCharPropRead_c))

ALUE (value_serial_no, gBleSig_SerialNumberString_d, (gPermissionFlagReadable_c), 7, "BLESN@1")
CTERISTIC(char_hw_rev, gBleSig_HardwareRevisionString_d, (gGattCharPropRead_c))

ALUE (value_hw_rev, gBleSig_HardwareRevisionString_d, (gPermissionFlagReadable_c),
CTERISTIC(char_fw_rev, gBleSig_FirmwareRevisionString_d, (gGattCharPropRead_c))

ALUE (value_fw_rev, gBleSig FirmwareRevisionString_d, (gPermissionFlagReadable c), 5, "1.1.1")
CTERISTIC(char_sw_rev, gBleSig_SoftwareRevisionString_d, (gGattCharPropRead_c))

UE(value_sw_rev, gBleSig SoftwareRevisionString_d, (gPermissionFlagReadable c), 5, "1.1.4")

Figure 18. OTAP client service

The gaft uuid128.hheader file contains all the custorn UUID definitions and its assignation. OTAP service and its characteristics
need to be specified by the developer as a 128 — UUID in this file. Figure 19 shows how to implement the 128 — UUID assignation
for the OTAP service.

UUID128(uuid_service_otap, oxEe, ex1C, ex4B, ©ex5E, ex1E, exEB, exAl, ©ex5C, OxEE, ©xF4, ex5E, ©xBA, ex5e, ex55, exFF, exel)

UUID128(uuid_char_otap_control_point, e, ex1C, ex4B, ©ex5E, exlE, » 0x5C, OxEE, 4, ©Ox5E, A 1, ©x55, exFF, exel)
UUID128(uuid_char_otap_data,) X X > > X X , Bx5E, OxBA >) oxe1)

Figure 19. Temp Coll - OTAP 128 — UUID definitions

4.2.4 temperature_collector.h and temperature_collector.c

The femperature_collector.c file is the main source file at the application level. Here are managed all the procedures that the device
performs, before, during and after to create a connection. The following steps are the main changes to integrate the OTAP service.

1. Merge the missing #include preprocessor directives to reference the OTAP files on your project in femperature_collector.c
file, except the #include statement forthe otap client att.h file. Figure 20 shows the comparison between Temp Coll
(left) and OTAP client (right) application files. This step depends on your software as it might share different files than this
example. The results are similar as depicted in Figure 21, before (Temp Coll left) and after (Temp Coll - OTAP right).

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020
Application Note 17 /46

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

= /* Framework / Drivers */
#include "EmbeddedTypes.h"

#include
#include
#include
= #include
#include

"RNG_Interface.h"

"Keyboard.h"

"LED.h"

“Panic.h”

"TimersManager.h"
#include "Functionlib.h”

= #include "shell.h"

| #if defined(cPWR_UsePowerDownMode) && (cPWR_UsePowerDownMode)
#include "PWR_Interface.h”

= #include "PWR_Configuration.h"
#endif

/* BLE Host Stack */

#include
#include

"gatt_server_interface.h"
"gatt_client_interface.h"

#include "gap_interface.h"
#include "gatt_db_app_interface.h”
#if !defined(MULTICORE_APPLICATION_CORE) || (!MULTICORE_APPLICATION_CORE)
#include "gatt_db_handles.h"
o #else
#define UUID128(name, ...) uint8_t name[16] = { _ VA ARGS__ };
#include “"gatt_uuidl28.h”
#undef UUID128
#endif

/* Profile / Services */
= #include "temperature_interface.h"

#include "EmbeddedTypes.h"

/* Framework / Drivers */
#include "RNG_Interface.h"
#include "Keyboard.h"
#include "LED.h"

#include "TimersManager.h"
#include "FunctionLib.h"
#include "Panic.h"

#1f (cPWR_UsePowerDownMode)
#include "PWR_Interface.h"

#endif
#include "OtaSupport.h"

/* BLE Host Stack */

#include “"gatt_interface.h"

#include "gatt_server_interface.h"

#include "gatt_client_interface.h"

#include "gatt_database.h"

#include "gap_interface.h"

#include "gatt_db_app_interface.h”

#if !defined (MULTICORE_APPLICATION_CORE) || (!MULTICORE_APPLICATION_CORE)
#include "gatt_db_handles.h"

#endif

/* Profile / Services */

#include "battery_interface.h"
#include "device_info_interface.h"
#include "otap_interface.h"

=3 @ /* Connection Manager */
#include "ble_conn_manager.h” #include "ble_conn_manager.h"
= &
l #include "ble_service_discovery.h" #include “"board.h"
#include "ApplMain.h" #include "ApplMain.h"
=3 @ #include “otap_client_att.h"
| #include "temperature_collector.h" #include "otap_client.h"
© #if defined(MULTICORE_APPLICATION_CORE) && (MULTICORE_APPLICATION_CORE) & #if defined(MULTICORE_APPLICATION_CORE) && (MULTICORE_APPLICATION_CORE == 1)
#include "erpc_host.h" #include "erpc_host.h"
=3 @ #include “dynamic_gatt_database.h”
| #include "mcmgr.h"
#endif #endif
Figure 20. Comparison between Temp Coll (left) and OTAP (right) include directives
KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020
Application Note 18/46

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

/* Framework / Drivers */
#include "EmbeddedTypes.h"
#include "RNG_Interface.h™
#include "Keyboard.h"
#include "LED.h"

#include "Panic.h"
#include "TimersManager.h"
#include "FunctionLib.h”
#include "shell.h"

#if defined(cPWR_UsePowerDownMode) && (cPWR_UsePowerDownMode)

#include "PWR_Interface.h"
#include "PWR_Configuration.h"
#endif

/* BLE Host Stack */

#include "gatt_server_interface.h"
#include "gatt_client_interface.h"

#include "gap_interface.h"
#include "gatt_db_app_interface.h"

#if |defined (MULTICORE_APPLICATION_CORE) || (!MULTICORE_APPLICATION_CORE)

#include "gatt_db_handles.h”
#else

#define UUID128(hame, ...) uint8_t name[16] = { __VA_ARGS__ };

#include "gatt_uuid128.h"
#undef UUID128
#endif

/* Profile / Services */

/* Framework / Drivers */
#include "EmbeddedTypes.h"
#include "RNG_Interface.h"
#include "Keyboard.h"
#include "LED.h"

#include "Panic.h"
#include "TimersManager.h"
#include "FunctionLib.h”
#include "shell.h"

#if defined(cPWR_UsePowerDownMode) &&

#include "PWR_Interface.h"
#include "PWR_Configuration.h"
#endif

#include "OtaSupport.h"

/* BLE Host Stack */

#include "gatt_interface.h"”
#include "gatt_server_interface.h"
#include "gatt_client_interface.h”
#include "gatt_database.h"
#include "gap_interface.h"
#include "gatt_db_app_interface.h”

(cPWR_UsePowerDownMode)

#if Idefined(MULTICORE_APPLICATION_CORE) || (!MULTICORE_APPLICATION_CORE)

#include "gatt_db_handles.h”
#else

#define UUID128(name, ...) uint8_t name[16] = { _VA_ARGS__ };

#include "gatt_uuid128.h"
#undef UUID128
#endif

/¥ Profile / Services */

#include "temperature_interface.h" #include "temperature_interface.h"
© @ #include "battery_interface.h"
#include "device_info_interface.h"
#include "otap_interface.h”

#include "ble_conn_manager.h" #include "ble_conn_manager.h"
© @ #include "board.h"
#include "ble_service_discovery.h" #include "ble_service_discovery.h"
#include "ApplMain.h" #include "ApplMain.h"
) @ #include "otap_client.h"
#include "temperature_collector.h" #include "temperature_collector.h™
#if defined(MULTICORE_APPLICATION_CORE) &% (MULTICORE_APPLICATION_CORE) #if defined(MULTICORE_APPLICATION_CORE) &% (MULTICORE_APPLICATION_CORE)
#include "erpc_host.h" #include "erpc_host.h"

#endif #endif

Figure 21. Merging the OTAP directives into the project, before (Temp Coll left), after (Temp Coll OTAP)

2. Add the function prototypes and global variables that are used by the OTAP client software. Figure 22 and Figure 23 show
the comparison between Temp Coll (left) and OTAP (right). As mentioned in Step 1, this might depend on your application.
Also, it is required to create another variable: static gapRole t mGapRole. This variable will be used to switch between
central and peripheral GAP roles as the OTAP Client device needs to be the Bluetooth LE peripheral to advertise this
service and communicate with the OTAP Server. In other words, your KW36 device will be the Bluetooth LE Central device
while it is the Temp Coll and will be the Bluetooth LE Peripheral device while it is the OTAP Client. The results are similar
as depicted in Figure 24 and Figure 25.

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020
Application Note 19/46

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

* Private macros
S8 Sk SR KK 3K K SR SR S K K K K K R R SR KK K S SR S KK SR K SR 3K S K 3K SR KK K R K SR SR KK R KKK R K K K ROK

s ok ok ok s o o K RSSO S K R S S SR KR R K SRR K R

/***
LR E SR SRS E LR S E RS SRS R LSS RS EE LR E RS LS
* Private type definitions

% 3k 3k ok ok 3k 3k ok ok ok ok ok ok ok ok 3k ok ok 3k ok ok ok 3k ok ok ok sk Sk ok ok ok Sk ok ok 3k ok ok ok sk ok ok Sk ok ok ok ok ok ok ok R ok
% 3k 3k ok ok 3k 3k ok ok ok ok ok ok ok ok 3k ok ok 3k ok ok ok 3k ok ok ok sk Sk ok ok ok Sk ok ok 3k ok ok ok sk ok ok Sk ok ok ok ok ok ok ok R ok

typedef enum appEvent_tag{
mAppEvt_PeerConnected_c,
mAppEvt_PairingComplete_c,
mAppEvt_ServiceDiscoveryComplete_c,
mAppEvt_ServiceDiscoveryFailed_c,
mAppEvt_GattProcComplete_c,
mAppEvt_GattProcError_c

}appEvent_t;

typedef enum appState_tag{
mAppIdle_c,
mAppExchangeMtu_c,
mAppServiceDisc_c,
mAppReadDescriptor_c,
mAppRunning_c,
appState_t;

typedef struct appCustomInfo_tag
tmecConfig_t tempClientConfig;

/* Add persistent information here */
}appCustomInfo_t;

typedef struct appPeerInfo_tag

{
deviceId_t deviceld;
appCustomInfo_t customInfo;
bool_t isBonded;
appState_t appState;

}appPeerInfo_t;

[AR RO IO IR IR KRR KRR KRR KRR KKK KKK KKK KKK KKK
B R e P e T e

* Private memory declarations
2k ok 3k 3k 3k 3 3k ok ok 3k ok ok ok ok ok e ok ok ok K sk k3 ok ok 3k K sk 3k ok ok ok 3k ok ok ok ok 3k ok ok ok ok Xk ok K sk 3 ok ok ok ok

o o 3 o oK KK KKK 3K 3K K KKK 3 S ok K K oK o 3 KK K K Sk ok 3 K K K R o ok 3K o o KKK

static appPeerInfo_t mPeerInformation;

#1f defined(gAppUseBonding_d) && (gAppUseBonding_d)

static bool_t mRestoringBondedLink = FALSE;
#endif

static bool_t mScanningOn = FALSE;

static bool_t mFoundDeviceToConnect = FALSE;

/* Buffer used for Characteristic related procedures */
static gattAttribute_t *mpCharProcBuffer = NULL;

/* Timers */
static tmrTimerID_t mAppTimerId;

@

@

* Private macros
KSR K K K 3K S K K 3K SR 3K R Ok SR KK K O SR SR KK K 3K 3K 3K S 3K SR K 3K 3K Ok SR SR KK S Ok ok SR SR K S SR K Sk 3K K SR SR KK R S SR 3K K K R R R SR K K K R kR
3K KK 3K K 3K SR K O K K 3K Ol SR KK K ok 3K 3R KK 3K 3K 3 3K SR 3K SR 3K 3K 3K 3K SR 3K K S Ok o 3K SR K 3K 3K 3K 3K 3K K R SR KK R SR KK K R R R R KR KRR R
(18)

#define mBatterylLevelReportInterval_c /* battery level report int

/**
EE RS SRS RS SRR E R L R S L RS E R E R R S SR EE R R EE SRS EE R SR S
* Private type definitions

Kk ok sk ok ok ok 3 ok ok ok sk ok ok 3k ok ok 3 ok sk ok ok ok Sk ok ok ok ok ok Sk ok ok sk ok ok ok Sk ok ok 3k ok ok ok ok k ok ok sk ok ok ok ok 3k ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
Kk ok sk ok ok ok 3 ok ok ok sk ok ok 3k ok ok 3 ok sk ok ok ok Sk ok ok ok ok ok Sk ok ok sk ok ok ok Sk ok ok 3k ok ok ok ok k ok ok sk ok ok ok ok 3k ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

typedef enum

{
#if gAppUseBonding_d
whitelListAdvState_c,
#endif
advState_c,
}advType_t;

typedef struct advState_tag
{

bool_t
advType_t
} advState_t;

advOn;
advType;

/**
3K K 3K % 3K Ok K 30K K K K K K 3Ok K 3 K K 3K 3 Ok K K K K 3 Ok K K 300 3 R O K 3K 3 Ok 5 R K K 3 Ok K K 3 K 3 K O K KK K 5 R 3K 30Ok K 5 K K 3K 3 Ok K K K K K K K X
* Private memory declarations

ok 2k 3k 3k ok 3k ok ok 3k sk ok ok ok ok sk ok ok ok ok k3 ok ok ok 3k sk 3 ok ok ok 3k ok ok ok ok k3 ok ok ok ok ok 3 ok ok ok ok sk 3 3k ok ok ok ok ok ok ok ok s ok ok ok ok ok ok e ok ok ok Xk sk 3k 3k ok Xk
ok 2k 3k 3k ok 3k ok ok 3k sk ok ok ok ok sk ok ok ok ok k3 ok ok ok 3k sk 3 ok ok ok 3k ok ok ok ok k3 ok ok ok ok ok 3 ok ok ok ok sk 3 3k ok ok ok ok ok ok ok ok s ok ok ok ok ok ok e ok ok ok Xk sk 3k 3k ok Xk
static deviceId_t mPeerDeviceld = gInvalidDeviceId_c;
/* Adv
static
static

Parmeters */
advState_t mAdvState;
tmrTimerID_t appTimerlId;

/* Service Data */
static bool_t basvalidClientList[gAppMaxConnections_c] = { FALSE };

static basConfig_t basServiceConfig = {(uintl6_t)service_battery, @, basvalidcl
static disConfig_t disServiceConfig = {(uintl6_t)service_device_info};

/* Application Data */

static tmrTimerID_t mBatteryMeasurementTimerId;

Figure 22. Comparison between Temp Coll (left) and OTAP (right) prototypes (1)

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020

Application Note

20/46

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

* Private functions prototypes A * Private functions prototypes
ERERKERAER KK F KRR E R R EHKER IR KK FH KR HH R HHE K H K EH KK KK KKK KKK KKK FHRHHK R FHE R HK IR I HK KK F KKK K FH R HHE K FHKFR KK KK HH KRR K K HHEHHE K EHKHH K
A AR AR FHK KKK KA KA KR KKK H K F K KK S KKK KKK KKK K K K K 3 Ko K SRR KKK R H K K K5 KK KKK KK KK KK KK o KK KKK KK KK
=% /* Host Stack callbacks */ @ /* Gatt and Att callbacks */
static void BleApp_ScanningCallback static void BleApp_AdvertisingCallback (gapAdvertisingEvent_t* pAdvertisingEven
(static void BleApp_ConnectionCallback (deviceld_t peerDeviceld, gapConnectionEv
gapScanningEvent_t* pScanningEvent static void BleApp_GattServerCallback (deviceld_t deviceld, gattServerEvent_t*
H
© static void BleApp_ConnectionCallback @

deviceId_t peerDeviceld,
gapConnectionEvent_t* pConnectionEvent

)5
static void BleApp_GattClientCallback
deviceId_t serverDeviceld,
gattProcedureType_t procedureType,
gattProcedureResult_t procedureResult,
bleResult_t error
);
static void BleApp_GattNotificationCallback ~
deviceId_t serverDeviceld,
uintl6_t characteristicValueHandle,
uint8_t* aValue,
uint16_t valuelength
H
static void BleApp_ServiceDiscoveryCallback
(
deviceId_t peerDeviceld,
servDiscEvent_t* pEvent
-
static void BleApp_Config(void); static void BleApp_Config(void);
= @

void BleApp_StateMachineHandler

deviceId_t peerDeviceld,
appEvent_t event

static bool_t CheckScanEvent(gapScannedDevice_t* pData);

static void BleApp_StoreServiceHandles ~ static void BleApp_Advertise (void);
(

gattService_t *pService

static void BleApp_StoreDescValues

gattAttribute_t *pDesc

'H
static void BleApp_PrintTemperature

uintl6_t temperature

)i
static bleResult_t BleApp_ConfigureNotifications(void);

static void ScanningTimeoutTimerCallback(void* pParam);

#if defined(cPWR_UsePowerDownMode) && (cPWR_UsePowerDownMode)
static void DisconnectTimerCallback(void* pParam); static void BatteryMeasurementTimerCallback (void *pParam);
#endif

Figure 23. Comparison between Temp Coll (left) and OTAP (right) prototypes (2)

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020
Application Note 21/46

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

* Private macros

HHH K *x *x RHEKKHK KK *x
Hkok % % A EAA K H ok
o
JEEE xx *x RAAKAAE KK *x
ETET *x *x EHERKHK KR *x
* Private type definitions
HHk % ¥ EHAKF KKK *x
HHkx *x ¥ EHAKF KKK *x
typedef enum appEvent_tagq{
mAppEvt_PeerConnected_c,
mAppEvt_PairingComplete_c,
mAppEvt_ServiceDiscoveryComplete_c,
mAppEvt_ServiceDiscoveryFailed_c,
mAppEvt_GattProcComplete_c,
mAppEvt_GattProcError_c
YappEvent_t;
typedef enum appState_tagq{
mAppIdle_c,
mAppExchangeMtu_c,
mAppServiceDisc_c,
mAppReadDescriptor_c,
mAppRunning_c,
Yappstate_t;
typedef struct appCustomInfo_tag
tmcConfig_t tempClientConfig;
/* Add persistent information here */
}appCustomInfo_t;
typedef struct appPeerInfo_tag
deviceld_t deviceld;
appCustomInfo_t customInfo;
bool_t isBonded;
appState_t appState;
YappPeerInfo_t;
o
yits *x *x EHARA KKK ok
HHokx *x ¥ EHAKF KKK *x
* Private memory declarations
HHH K ok *x RHEKKHK KK *x
HHk *% *% EHEHKHE KK *x

static appPeerInfo_t mPeerInformation;

#if defined(gAppUseBonding_d) && (gAppUseBonding_d)
static bool_t mRestoringBondedLink = FALSE;
#endif

static bool_t mScanningOn = FALSE;
static bool_t mFoundDeviceToConnect = FALSE;

/* Buffer used for Characteristic related procedures */
static gattAttribute_t *mpCharProcBuffer = NULL;

J* Timers */
static tmrTimerID_t mAppTimerlId;

Figure 24. Merging the variables into the project:

HH AR
Hkk

HR AR

RN

HRRH
HRRH

HR R
HRRH

HH AR
EHKH

* Private macros
% % %

HH A KK *k HH KA

*k *k *k F A *k Fkk kR

@ #define mBatterylevelReportInterval_c (10) /* battery level report inte

/% xx xx RAERAAE KK xx EHERA A
*x *x *x EERKEE KR *x XERER
* Private type definitions

*x % *x EHAKA KKK *x]
*x *x *x EHAKA KKK *x]

typedef enum appEvent_tag{
mAppEvt_PeerConnected_c,
mAppEvt_PairingComplete_c,
mAppEvt_ServiceDiscoveryComplete_c,
mAppEvt_ServiceDiscoveryFailed_c,
mAppEvt_GattProcComplete_c,
mAppEvt_GattProcError_c

}appEvent_t;

typedef enum appState_tag{
mAppIdle_c,
mAppExchangeMtu_c,
mAppServiceDisc_c,
mAppReadDescriptor_c,
mAppRunning_c,
Yappstate_t;

‘typedef struct appCustomInfo_tag
{

tmcConfig_t tempClientConfig;

/* Add persistent information here */
}appCustomInfo_t;

‘typedef struct appPeerInfo_tag

deviceId_t devicelId;
appCustomInfo_t customInfo;
bool_t isBonded;
appState_t appState;

}appPeerInfo_t;
@ typedef enum

{
#if gAppUseBonding_d
whitelistAdvState_c,
#endif
advState_c,
}advType_t;

typedef struct advState_tag
{
bool_t advon;
advType_t advType;
} advState_t;

/% *x *x AR AR AR *x P
*x *x *x EA AR AR AR *x pr——
* Private memory declarations

% % AR KK % kR R
*x *x *x R AR RK *x e

static appPeerInfo t mPeerInformation;
<:‘| static gapRole t mGapRole; |

/* Adv Parmeters */

static advState_t mAdvState;

/* Service Data */

static bool_t basValidClientList[gAppMaxConnections_c] = { FALSE };

static basConfig_t basServiceConfig = {(uint16_t)service_battery, 0, basValidcli
static disConfig t disServiceConfig = {(uintl6_t)service_device_info};

#1f defined(gAppUseBonding_d) && (gAppUseBonding_d)
static bool_t mRestoringBondedlLink = FALSE;
#endif

static bool_t mScanningOn = FALSE;
static bool_t mFoundDeviceToConnect = FALSE;

/* Buffer used for Characteristic related procedures */
static gattAttribute_t *mpCharProcBuffer = NULL;

/* Timers */
static tmrTimerID_t mAppTimerId;
@ static tmrTimerID_t mBatteryMeasurementTimerId;

before (Temp Coll left) and after (Temp Coll - OTAP) (1)

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020

Application Note

22/46

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

* Private functions prototypes A * Private functions prototypes
ERERKERAER KK F KRR E R R EHKER IR KK FH KR HH R HHE K H K EH KK KK KKK KKK KKK FHRHHK R FHE R HK IR I HK KK F KKK K FH R HHE K FHKFR KK KK HH KRR K K HHEHHE K EHKHH K
A AR AR FHK KKK KA KA KR KKK H K F K KK S KKK KKK KKK K K K K 3 Ko K SRR KKK R H K K K5 KK KKK KK KK KK KK o KK KKK KK KK
o @
/* Gatt and Att callbacks */
static void BleApp_AdvertisingCallback (gapAdvertisingEvent_t* pAdvertisingEven
static void BleApp_ConnectionCallback (deviceld_t peerDeviceId, gapConnectionEv
static void BleApp_GattServerCallback (deviceld_t deviceld, gattServerEvent_t*
/* Host Stack callbacks */ /* Host Stack callbacks */
static void BleApp_ScanningCallback static void BleApp_ScanningCallback
((
gapScanningEvent_t* pScanningEvent gapScanningEvent_t* pScanningEvent
5);
static void BleApp_ConnectionCallback static void BleApp_ConnectionCallback
deviceId_t peerDeviceld, deviceId_t peerDeviceld,
gapConnectionEvent_t* pConnectionEvent gapConnectionEvent_t* pConnectionEvent
static void BleApp_GattClientCallback ~ static void BleApp_GattClientCallback
((
deviceId_t serverDeviceld, deviceId_t serverDeviceld,
gattProcedureType_t procedureType, gattProcedureType_t procedureType,
gattProcedureResult_t procedureResult, gattProcedureResult_t procedureResult,
bleResult_t error bleResult_t error
););
static void BleApp_GattNotificationCallback static void BleApp_GattNotificationCallback
deviceId_t serverDeviceld, deviceId_t serverDeviceld,
uintl6_t characteristicValueHandle, uintl6_t characteristicValueHandle,
uint8_t* aValue, uint8_t* avalue,
uint16_t valuelength uintl6_t valuelength
)3)i
static void BleApp_ServiceDiscoveryCallback static void BleApp_ServiceDiscoveryCallback
deviceld_t peerDeviceld, deviceId_t peerDeviceld,
servDiscEvent_t* pEvent servDiscEvent_t* pEvent
)s);
static void BleApp_Config(veoid); static void BleApp_Config(veoid);
= A |@ static void BleApp_Advertise (void);
void BleApp_StateMachineHandler void BleApp_StateMachineHandler
deviceId_t peerDeviceld, deviceId_t peerDeviceld,
appEvent_t event appEvent_t event
static bool_t CheckScanEvent(gapScannedDevice_t* pData); static bool_t CheckScanEvent(gapScannedDevice_t* pData);
static void BleApp_StoreServiceHandles static void BleApp_StoreServiceHandles
((
gattService_t *pService gattService_t *pService
)i)i
static void BleApp_StoreDescValues ~ static void BleApp_StoreDescValues
(
gattAttribute_t *pDesc gattAttribute_t *pDesc
H);
static void BleApp_PrintTemperature static void BleApp_PrintTemperature
uintl6_t temperature uintlé_t temperature
)s);
static bleResult_t BleApp_ConfigureNotifications(void); static bleResult_t BleApp_ConfigureNotifications(void);
= @
static void ScanningTimeoutTimerCallback(void* pParam); static void ScanningTimeoutTimerCallback(void* pParam);
o #if defined(cPWR_UsePowerDownMode) && (cPWR_UsePowerDownMode) @
static void DisconnectTimerCallback(void* pParam); static void BatteryMeasurementTimerCallback (void *pParam);
#endif
Figure 25. Merging the variables into the project: before (Temp Coll left) and after (Temp Coll - OTAP) (2)

3. Locate the B1eapp 1nit function. You can add in this function, driver initialization API's for the application. The Temp Coll
does not support the Battery Service while the OTAP Client does, so you must call the BoarRD Initadc function. See the
following portion of code:

void BleApp Init (void)
{
/* Initialize application support for drivers */
BOARD InitAdc();
/* Init shell and set prompt */
shell init ("BLE Temp Collector>");
#if defined (MULTICORE APPLICATION CORE) && (MULTICORE APPLICATION CORE)
/* Init eRPC host */
init erpc host();

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020
Application Note 23/46

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

fendif
}

4. Locate the Blerpp_ start function. This function is used to start the scanning. Modify it as follows to start scanning or
advertising depending on the gapRrole variable and change the Bleapp start prototype at femperature_collector.h by
void BleApp_Start (gapRole t gapRole) file, to match with the new function.

void BleApp Start (gapRole t gapRole)
{
switch (gapRole)
{
case gGapCentral c:
{
if (!mScanningOn)
{
gPairingParameters.localloCapabilities = gloKeyboardDisplay c;
/* Stop advertising, Start scanning */
if (mAdvState.advOn)
{
(void) Gap_StopAdvertising();
}
(void)App StartScanning(&gScanParams, BleApp ScanningCallback,
gGapDuplicateFilteringEnable c, gGapScanContinuously d, gGapScanPeriodicDisabled d);
}
break;
}
case gGapPeripheral c:
{
if (mPeerInformation.devicelId == gInvalidDevicelId c)
{
/* Device is not connected and not advertising*/
if (!mAdvState.advOn)
{
#if gAppUseBonding d
if (gcBondedDevices > 0)
{

mAdvState.advType = whiteListAdvState c;
}
else
{
#endif
mAdvState.advType = advState c;
#if gAppUseBonding d
}

#endif
gPairingParameters.localloCapabilities = gIoDisplayOnly c;
/* Stop scanning, Start advertising */
if (mScanningOn)
{
(void) Gap_StopScanning () ;
}
BleApp Advertise();
}
}
break;
}
default:

{

/* No action required */

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020

Application Note 24/ 46

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

break;

5. Locate the Bleapp HandleKeys function. This is executed each time that you press a switch on the FRDM-KW36 board. It
must be modified to change the GAP role of the device when the user presses a switch button, allowing to move from Temp
Coll to OTAP Client and return to Tempe Coll if it is desired.

void BleApp HandleKeys (key event t events)
{
switch (events)
{
/* Start on button press if low-power is disabled */
case gKBD EventPressPBl c:
{
BleApp Start (mGapRole) ;
break;
}
/* Disconnect on long button press */
case gKBD EventLongPBl c:
{
if (mPeerInformation.deviceId != glInvalidDeviceId c)
{
(void) Gap_Disconnect (mPeerInformation.devicelId);
}
break;
}
/* Toggle Gap Role */
case gKBD_EventPressPB2 c:
case gKBD EventLongPB2 c:
{
if (mGapRole == gGapCentral c)
{
mGapRole = gGapPeripheral c;

mGapRole = gGapCentral c;
}

break;
}
default:
{
; /* No action required */
break;

6. Locate the Bleapp GenericCallback function. Include the handling of gadvertisingParametersSetupComplete
gAdvertisingDataSetupComplete_c,and gAdvertisingSetupFailed c events

void BleApp GenericCallback (gapGenericEvent t* pGenericEvent)
{

/* Call BLE Conn Manager */

BleConnManager GenericEvent (pGenericEvent) ;

switch (pGenericEvent->eventType)

{

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020
Application Note 25/46

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

case gInitializationComplete c:
{
BleApp Config();
}
break;
case gAdvertisingParametersSetupComplete c:
{
(void) Gap_SetAdvertisingData (&gAppAdvertisingData, &gAppScanRspData);
}
break;
case gAdvertisingDataSetupComplete c:
{
(void)App StartAdvertising (BleApp AdvertisingCallback, BleApp ConnectionCallback) ;
}
break;
case gAdvertisingSetupFailed c:
{
panic(0,0,0,0);
}
break;
default:
{
; /* No action required */
}

break;

7. Locate the Bleapp config function. The Bleapp Config function configures the initial GAP role of the device, with the
default value that Temp Coll - OTAP is GAP Central, registers the notifiable attributes, prepares the services built on the
database, and allocates some application timers. Register the Bleapp Gattservercallback defines an initial GAP role for
the device, including the otapclient Configand Dis_start functions to initialize these services and allocate a timer for
the battery measurements. The result should look as the following example.

static void BleApp Config(void)
{
#if defined(MULTICORE_APPLICATION_CORE) && (MULTICORE_APPLICATION CORE == 1)
if (GattDbDynamic CreateDatabase() != gBleSuccess c)
{
panic(0,0,0,0);
return;
}
fendif /* MULTICORE APPLICATION_ CORE */
/* Configure as GAP Central */
BleConnManager GapCommonConfig () ;
/* Register for callbacks*/
(void)App RegisterGattServerCallback (BleApp GattServerCallback);
(void)App RegisterGattClientProcedureCallback (BleApp GattClientCallback) ;
(void)App RegisterGattClientNotificationCallback (BleApp GattNotificationCallback) ;
BleServDisc RegisterCallback (BleApp ServiceDiscoveryCallback);
/* By default, always start node as GAP central */
mGapRole = gGapCentral c;
/* Initialize private variables */
mPeerInformation.appState = mAppldle c;
mPeerInformation.deviceld = gInvalidDeviceld c;
mScanningOn = FALSE;
mAdvState.advOn = FALSE;
mFoundDeviceToConnect = FALSE;
/* Start services */

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020
Application Note 26/ 46

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

basServiceConfig.batteryLevel = BOARD GetBatteryLevel () ;

void)Bas_Start (&basServiceConfig);

void)Dis Start (&disServiceConfig);

if (OtapClient Config() == FALSE)

{
/* An error occurred in configuring the OTAP Client */
panic(0,0,0,0);

}

/* Allocate scan timeout timer */

mAppTimerId = TMR AllocateTimer () ;

mBatteryMeasurementTimerId = TMR AllocateTimer () ;

/* Update UI */

shell write("\r\nPress SW2 to change the role. Press SW3 to connect either to a Temperature

Sensor or OTAP Server\r\n");

}
8. Include after Bleapp Config, the Bleapp Advertise function:

static void BleApp Advertise (void)
{
switch (mAdvState.advType)
{
#if gAppUseBonding d
case whiteListAdvState c:
{
gAdvParams.filterPolicy = gProcessWhiteListOnly c;
}
break;
#endif
case advState c:
{
gAdvParams.filterPolicy = gProcessAll c;
}
break;
default:
; /* For MISRA compliance */
break;
}
/* Set advertising parameters*/
(void) Gap_SetAdvertisingParameters (&gAdvParams) ;

9. Include after BleApp ScanningCallback, the Bleapp AdvertisingCallback function:

static void BleApp AdvertisingCallback (gapAdvertisingEvent t* pAdvertisingEvent)
{
switch (pAdvertisingEvent->eventType)
{
case gAdvertisingStateChanged c:
{
mAdvState.advOn = !mAdvState.advOn;
if (mAdvState.advOn)
{
shell write("\r\nAdvertising...\r\n");
LED StopFlashingAllLeds () ;
Led2Flashing () ;

break;

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020
Application Note 27/ 46

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

case gAdvertisingCommandFailed c:
{

Led20n () ;

panic(0,0,0,0);
}
break;
default:

; /* For MISRA compliance */
break;

10. Locate the Bl1eapp ConnectionCallback function. The connection callback is triggered whenever a connection event
happens, such as a connection or disconnection. Modify this callback to handle the OTAP service as follows:

static void BleApp ConnectionCallback (deviceId t peerDeviceld, gapConnectionEvent t*
pConnectionEvent)
{
if (mGapRole == gGapCentral c)
{
/* Connection Manager to handle Host Stack interactions */
BleConnManager GapCentralEvent (peerDeviceId, pConnectionEvent) ;
}
else
{
/* Connection Manager to handle Host Stack interactions */
BleConnManager GapPeripheralEvent (peerDevicelId, pConnectionEvent);;
}
switch (pConnectionEvent->eventType)
{
case gConnEvtConnected c:
{
mAdvState.advOn = FALSE;
/* Subscribe client*/
(void)Bas_ Subscribe (&basServiceConfig, peerDeviceId);
(void) OtapCS Subscribe (peerDeviceId) ;
/* Update UI */
LED_StopFlashingAllLeds () ;
Led30n () ;
shell write("\r\nConnected!\r\n");
mPeerInformation.deviceId = peerDeviceld;
mPeerInformation.isBonded = FALSE;
#if (cPWR UsePowerDownMode)
/* Device does not need to sleep until some information is exchanged with the peer.
=/
PWR_DisallowDeviceToSleep () ;
#endif
if (!TMR IsTimerActive (mBatteryMeasurementTimerId)) {
/* Start battery measurements */
(void) TMR StartLowPowerTimer (mBatteryMeasurementTimerId,
gTmrLowPowerIntervalMillisTimer c,
TmrSeconds (mBatteryLevelReportInterval c),
BatteryMeasurementTimerCallback, NULL) ;
}
if (mGapRole == gGapCentral c)
{
#if defined(gAppUseBonding d) && (gAppUseBonding d)
(void) Gap CheckIfBonded (peerDeviceld, &mPeerInformation.isBonded) ;
if ((mPeerInformation.isBonded) &&

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020
Application Note 28 /46

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

(gBleSuccess c == Gap LoadCustomPeerInformation (peerDeviceld,
(void*) &mPeerInformation.customInfo, 0, sizeof (appCustomInfo t))))
{
mRestoringBondedLink = TRUE;
/* Restored custom connection information. Encrypt link */
(void) Gap EncryptLink (peerDeviceld) ;
}
#endif
BleApp StateMachineHandler (mPeerInformation.deviceId, mAppEvt PeerConnected c);
}
if (mGapRole == gGapPeripheral c)
{
/* Handle OTAP connection event */
OtapClient HandleConnectionEvent (peerDevicelId);
}
}
break;
case gConnEvtDisconnected c:
{
/* Unsubscribe client */
(void)Bas Unsubscribe (&basServiceConfig, peerDeviceld);
(void) OtapCS Unsubscribe () ;
mPeerInformation.deviceId = gInvalidDevicelId c;
mPeerInformation.appState = mAppIdle c;
TMR_StopTimer (mBatteryMeasurementTimerId) ;
if (mGapRole == gGapPeripheral c)
{
/* Handle OTAP disconnection event */
OtapClient HandleDisconnectionEvent (peerDeviceld) ;
}
/* Reset Service Discovery to be sure*/
BleServDisc_Stop (peerDeviceld) ;
/* Update UI */
shell write("\r\nDisconnected!\r\n");
LED TurnOffAllLeds();
LED StartFlash (LED ALL);
}
break;
#if gAppUsePairing d
case gConnEvtPairingComplete c:
{
/* Notify state machine handler on pairing complete */
if (pConnectionEvent->eventData.pairingCompleteEvent.pairingSuccessful)
{
BleApp StateMachineHandler (mPeerInformation.deviceId, mAppEvt PairingComplete c);
}
}
break;
#i1f defined (gAppUseBonding d) && (gAppUseBonding d)
case gConnEvtEncryptionChanged c:
{
if (pConnectionEvent->eventData.encryptionChangedEvent.newEncryptionState)
{
if (mRestoringBondedLink)
{
/* Try to enable temperature notifications, disconnect on failure */
if (gBleSuccess c != BleApp ConfigureNotifications())
{

(void) Gap_Disconnect (peerDeviceld) ;

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020
Application Note 29/ 46

NXP Semiconductors

}

Customizing a based Bluetooth LE demo to integrate the OTAP service

else

{
mRestoringBondedLink = FALSE;

break;

case gConnEvtAuthenticationRejected c:

{

}

/* Start Pairing Procedure */
(void)Gap Pair (peerDeviceld, &gPairingParameters);

break;
#endif /* gAppUseBonding d */
#endif /* gAppUsePairing d */
default:

; /* No action required */
break;

11. Develop the Blerpp GattServerCallback function. It manages all the incoming communications from the client devices.

Add the GATT server events that need to be handled by the OTAP client software. See the following example.

static void BleApp GattServerCallback (devicelId t deviceld, gattServerEvent t* pServerEvent)

{

switch (pServerEvent->eventType)

{

case gEvtMtuChanged c:
{
OtapClient AttMtuChanged (deviceld,
pServerEvent->eventData.mtuChangedEvent.newMtu) ;
}
break;
case gEvtCharacteristicCccdWritten c:
{

OtapClient CccdWritten (deviceld,
pServerEvent->eventData.charCccdWrittenEvent.handle,
pServerEvent->eventData.charCccdWrittenEvent.newCccd) ;

}

break;

case gEvtAttributeWritten c:
{

OtapClient AttributeWritten (deviceld,
pServerEvent->eventData.attributeWrittenEvent.handle,
pServerEvent->eventData.attributeWrittenEvent.cValueLength,
pServerEvent->eventData.attributeWrittenEvent.aValue) ;

}

break;

case gEvtAttributeWrittenWithoutResponse c:
{

OtapClient AttributeWrittenWithoutResponse (deviceld,
pServerEvent->eventData.attributeWrittenEvent.handle,
pServerEvent->eventData.attributeWrittenEvent.cValueLength,
pServerEvent->eventData.attributeWrittenEvent.avValue) ;

}
break;
case gEvtHandleValueConfirmation c:

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020

Application Note

30/46

NXP Semiconductors

OtapClient HandleValueConfirmation

}
break;
case gEvtError c:

{

attErrorCode t attError =

>eventData.procedureError.error

Customizing a based Bluetooth LE demo to integrate the OTAP service

(devicelId) ;

(attErrorCode t) (pServerEvent-

& OxFF) ;

if (attError == gAttErrCodeInsufficientEncryption c ||
attError == gAttErrCodeInsufficientAuthorization c ||
attError == gAttErrCodeInsufficientAuthentication c)

{

#if gAppUsePairing d
#if gAppUseBonding d

bool t isBonded = FALSE;

/* Check if the devices are bonded and if this is true than the bond may have

* been lost on the peer device or the security properties may not be sufficient.
*/
&1sBonded)

* In this case try to restart pairing and bonding.
if Gap_CheckIfBonded (deviceld,

&&

(gBleSuccess_c
TRUE isBonded)
#endif /* gAppUseBonding d */

{

(void) Gap_SendSlaveSecurityRequest (deviceld, &gPairingParameters);
}
#endif /* gAppUsePairing d */
}
}

break;
default:
; /* For MISRA compliance */
break;

12. Include the timer callback for the battery service:

static void BatteryMeasurementTimerCallback (void * pParam)
{

basServiceConfig.batterylLevel = BOARD GetBatteryLevel () ;

(void)Bas_RecordBatteryMeasurement (&basServiceConfig) ;

Now, you have integrated the OTAP Client code into the Temp Coll.

NOTE
The example provided with this application note removes all references related to low power
support in the temperature_collector.c, except the PWR_DisallowDeviceToSleep function at
BleApp ConnectionCallback. The DisconnectTimerCallback and its associated timer instance and
it changes the state machine of the RGB LED. These changes are not listed in the steps above since they are not
relevant for this application note.

4.3 Modifications in project settings and storage configurations

The OTAP client software included in the SDK package contains some linker configurations to generate the application offset
needed for the OTAP Bootloader software and split the flash memory in accord of the storage method desired. Such configurations
are not part of the Temp Coll demo, so it should be included to integrate the OTAP on the application. Follow the next steps to set
the project settings and the storage configurations.

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020

Application Note 31/46

NXP Semiconductors

Testing the Temp Coll-OTAP demo

1. Locate the app_preinclude.h file under the source folder of the project.

+ To select external flash storage method, set the geepromType define to gEeprombevice AT45DB041E c, in the
attached Temp Coll-OTAP software by default.

+ To select internal flash storage method, set the geepromType define to geeprombDevice InternalFlash c.

'* Specifies the type of EEPROM available on the target board */
#define gEepromType_d gEepromDevice AT4SDBE@41E ¢

Figure 26. Configuring the storage method at the preinclude file

2. Click on the Temp Coll-OTAP demo in the MCUXpresso workspace.
3. Navigate to Project -> Properties in MCUXpresso IDE. Go to C/C++ Build -> MCU settings.

+ To select external flash storage method, as shown in Figure 27, configure the fields in the Memory details pane. This
is the default storage method for the Tempertaure Collector - OTAP software.

Flash PROGRAM_FLASH Flash %2000 0x79800 FTFE_2K_PD.cfx
Flash MNVM_region Flash2 0x7b800 D000 FTFE_2K_PD.cfx
Flash FREESCALE_PROD_DATA Flash3 0w 7F800 0nB800 FTFE_2K_PD.cfx

Figure 27. Configuring external storage method

» To select internal flash storage method, as shown in Figure 28, configure the fields in the Memory details pane.

Type Mame Alias Location Size Drriver

Flash PROGRAM_FLASH Flash 02000 Ow3c800 FTFE_2K_PD.cfx
i Flash INT_STORAGE Flash2 0x3e800 Ox3d000

Flash NVM_region Flash3 (%7800 0x4000 FTFE_2K_PD.cfx
Flash FREESCALE_PROD_DATA Flash4 0x7fB00 0800 FTFE_2K_PD.cfx

Figure 28. Configuring internal storage method

4. Clean and build the project.
At this point, you have finally integrated the OTAP service on the Bluetooth LE based application.

5 Testing the Temp Coll-OTAP demo

The test case example, designed to demonstrate the OTAP integration in Testing the Temp Coll-OTAP software, makes use of
the following software:

» OTAP Client SDK software, programmed in the FRDM-KW36 board.
* An SREC software update of the Temp Coll-OTAP example.
* An SREC software update of the Temp Coll SDK example.

The following sections explain how to build the software required for the testing case proposed by this document.

5.1 Preparing the OTAP client SDK software
1. Attach your FRDM-KW36 board on the PC.
2. Program the OTAP Bootloader on the FRDM-KW36.

Drag and drop the prebuilt binary file from the following path on the COM port icon corresponding to the FRDM-
KW36 device:

<FRDM-KW36_SDK_root>ltools|wireless|binaries|bootloader_otap_frdmkw36.bin
3. Open MCUXpresso IDE.

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020
Application Note 32/46

NXP Semiconductors

Testing the Temp Coll-OTAP demo
In the Quickstart Panel view, click Import SDK example(s).
MCUXpresso IDE - Quickstart Panel
Ioe | Mo project selected
= Create or import a project
—= . Mew project...
. Import SDK example(s)...
2 Import project(s) from file system...
Figure 29. Quickstart panel perspective
4. Click twice on the frdmkw36 icon.
38 sDK Import Wizard O X
€9 Please select a target device and a board x @
. Board and/or Device selection page =
- UL Available boards 21| £
MCUs from installed SDKs Please select an available board for your project.
NXP MKW36Z51200d type to filter |
>
frdmkw3§
@ < Back Next > Finish Cancel
Figure 30. Device selection perspective
5. In the Examples text field, type otac_att. In the Name pane, click wireless_examples -> bluetooth -> otac_att -> freertos.
Click Finish.

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020
Application Note

33/46

NXP Semiconductors

Testing the Temp Coll-OTAP demo

B sDK Import Wizard

1, The source from the SDK will be copied into the workspace,
If you want to use linked files, please unzip the 'SDK_2.x_FRDM-KW36' SDK.

N =
. Import projects

Project name prefic: | frdmlan3

7| Project name suffix: &
Use default location

C\Users\Edgar\Documents\MCUXpressolDE_11.0.0_2516\workspace\frdmlow36 Browse...
Project Type

Project Options
®) C Project C++ Project

C Static Library () C++ Static Library SDK Debug Console @) Semihost (O UART
Copy sources

Import other files

Example default

Examples

tu| 2 M %|@E
|utac_at‘t I |
Name Description Wersion
v (W] = wireless_examples
+~ (] £ bluetooth
v [H] £ otac_att
= bm
= freertos

@

< Back Next » Cancel

Figure 31. Importing the OTAP client project on the workspace

6. Set the storage configurations:

a. Open the app_preinclude.h file located in the source folder of the project:

+ To select the external flash storage method, aT45DB041E_c external flash, set gEepromType to
gEepromDevice_AT45DB041E_c.

» To select the internal flash storage method, On-chip FlexNVM memory, set gEepromType
to gEepromDevice_InternalFlash_c.

/* Specifies the type of EEPROM available on the target board */

#define gEepromType_d gEepromDevice AT45DB@41E_c

Figure 32. Configuring the storage method at the preinclude file

b. Navigate to Project -> Properties in MCUXpresso IDE. Go to C/C++ Build -> MCU settings perspective.

+ To select external flash storage method, as shown in Figure 33, configure the fields in the Memory details pane

Flash PROGRAM_FLASH Flash (%2000 0x79800 FTFE_2K_PD.cfx
Flash MNVM_region Flash2 (x7b800 (4000 FTFE_2K_PD.cfx
Flash FREESCALE_PROD_DATA Flash3 (7FB00 =800

FTFE_2K_PD.cfx

Figure 33. Configuring external storage method

» To select internal flash storage method, as shown in Figure 34, configure the fields in the Memory details pane.

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020
Application Note

34/46

NXP Semiconductors

Testing the Temp Coll-OTAP demo

Type Narme Alias Location Size Driver

Flash PROGRAM_FLASH Flash 0x2000 0x3c800 FTFE_2K_PD.cfx
i Flash INT_STORAGE Flash2 0x3e800 0x3d000

Flash NVM_region Flash3 (0x7bB00D 0x4000 FTFE_2K_PD.cfx
Flash FREESCALE PROD_DATA Flashd Cx7F200 0x200 FTFE_2K_PD.cfx

Figure 34. Configuring internal storage method

7. Clean and build the project. Flash the project on the FRDM-KW36 board.

Now, you have programmed and configured the OTAP client software on your board. You can communicate to a server and
request for a software update.

5.2 Creating a Temp Coll - OTAP S - record image to update the software

1. Install the Temp Coll-OTAP demo provided with this document in your MCUXpresso IDE. You can drag and drop the project
from your installation path to the MCUXpresso workspace. A warning message appears, as shown in Figure 35. click the
Copy button to clone the original example.

B8 MCUXpresso IDE Project Import] X

l@ Are you sure you want to import the following projects?

D:Afrdmkw36_TempCollOtap_wireless_examples_bluetooth_temp_coll_freertos

Copy Cancel Link

Figure 35. Importing the Temp Coll-OTAP demo on the MCUXpresso workspace

2. Open the end_text.1dt linker script located at the linkscripts folder in the workspace. Locate the section placement and
remove the FILL and BYTE statements, as shown in Figure 36. This step is needed only to build the SREC image file to
reprogram the device.

/* Remowve this section to keep the nym section on writting the device */
NV
1
e
. = ORIGIN(NVM_region) + LENGTH{NVM region) - 1;
o i
T ox NVM_region

Figure 36. Preparing the linker file

3. Clean and build the project.

4. Deploy the Binaries icon in the workspace. Right-click the .axf file and select Binary Utilities -> Create S-Record. The
S—Record file will be saved at the Debug folder in the workspace with the .s79 extension.

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020
Application Note 35/46

NXP Semiconductors

Testing the Temp Coll-OTAP demo

% Project Exp... % % Peripherals+ ! Registers ¥ Faults ~ ~
SIE-Y] B~ v
v & frdmkw36_TempCollOtap_wireless_examples_bluetoott A
€ Project Settings
v 3 Binaries
%5 frdmkw36_TempCollC New ’
&l Includes Open
@ CMSIS Open With >
< bluetooth Show in Local Terminal >
& board)
2 drivers = Copy Ctrl+C
8 framework ; Paste Ctrl+V
& freertos Delete Delete
2 linkscripts iz
&8 source Rename... F2
2 startup &1 |Import...
2 utilities 1 Export...
& Debug Build Project
& doc 21 Refresh F5
& libs
< © RunAs >
1 Debug As >
Y Quickstart Panel 2 - Variables Profile As >
MCUXpresso IDE - Utiities ?
"= Project: frdmkw36_TempCc Binary Utilities > Create hex
~ Create or import a project Tools > Create binary
o et Validate Create S-Record
) EW project... % Run C/C++ Code Analysis Disassemble
Import SDK example(s).. T 5
¥ Import project(s) from fi s =5 ez fen
Compare With > Foe
~ Build your project Replace With > S P T
/frdmkw36_TempCollOtap_wireles Properties Alt+Enter Process symdefs file
Figure 37. Creating the SREC file

5. Save this file in a known location on your smartphone.

5.3 Creating a Temp Coll S-Record image to update the software

1. Open MCUXpresso IDE. In the Quickstart Panel view, click the Import SDK example(s), and the device selection
perspective will appear. Click twice on the frdmkw36 icon.

2. In the Examples text box, type temp_coll and select wireless_examples -> bluetooth -> temp_coll ->freertos. Click Finish.

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020
Application Note 36/46

NXP Semiconductors

Testing the Temp Coll-OTAP demo

. SDK Import Wizard

| X
Tl

The source from the SDK will be copied into the workspace.
If you want to use linked files, please unzip the 'SDK_2.x_FRDM-KW36' SDK.

. Import projects

Project name prefix; frdmkw36 £ Project name suffix: i
Use default location
C\Users\nxf46726\Documents\MCUXpressolDE_11.1.0_3209\workspace\frdmkw36 Browse...
Project Type Project Options

®cC Project C++ Project C Static Library C++ Static Library SDK Debug Console (® Semihost (O UART Example default
Copy sources
Import other files

Examples | 2 M %| @B
|temp_co|| I |
Name Description Version

v [m] £ wireless_examples
v [m] £ bluetooth
v [m] E temp_coll
[]1=bm
- freertos

@ < Back Next > Cancel

Figure 38. Importing the Temp Coll project on the workspace

3. Open the app_preinclude.h file under the source folder at the MCUXpresso workspace. Locate the
cPWR_UsePowerDownMode macro and change its value to zero. This step is not mandatory, but it is useful at running
time to confirm whenever the software update has been successfully programmed by the OTAP bootloader.

/* Enable/Disable PowerDown functionality in PwrLib */
#define cPWR UsePowerDownMode 0

4. Navigate to Project -> Properties -> C/C++ Build -> MCU settings. Configure the following fields and save the changes.

Flash PROGRAM_FLASH Flash (%2000 (x79800 FTFE_2K_PD.cfx
Flash NVM_region Flash2 (x7b300 (4000 FTFE_2K_PD.cfx
Flash FREESCALE_PROD_DATA Flash3 x7£800 (%3800 FTFE_2K_PD.cfx

Figure 39. Configuring the memory layout

5. Navigate to the workspace. Locate the /inkscripts folder and include into it the main_text section.ldt linker script. You
can copy and paste from the OTAP client SDK example.

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020
Application Note 371746

NXP Semiconductors

Testing the Temp Coll-OTAP demo

v & frdmkw36_wireless_examples_bluetooth_temp_coll_freertos
© Project Settings
Binaries
& Includes
£ CMSIS
2 bluetooth
2 board
£ drivers
& framework
2 freertos
v & linkscripts
end_text.Idt
I # mai;_text_section.ldtl
main_text.Idt
symbols.ldt

= source

Figure 40. Importing linker scripts

6. Open the end text.1dt linker script located at the linkscripts folder in the workspace. Locate the section placement and
remove the FILL and BYTE statements, as shown in Figure 41.

* Remove this secticn to keep the nym secticn on writting the device */
- NV
1
e
. = ORIGIN({NWM_region) 4+ LENGTH{NVM_ regicn) - 1;
BT e
T » NVM_region

Figure 41. Preparing the linker file

7. Include the OfaSupportfolder and its files in the framework folder. Include the Exfernalfolder and its files in the
framework->Flash folder. This step can be done in the same way as explained in Importing the OTAP service and
framework services into the Temp Coll example.

8. Clean and build the project.

9. Deploy the Binaries icon in the workspace.Right-click the .axffile and select Binary Utilities -> Create S-Record. The
S-Record file will be saved at the Debug folder in the workspace with the .s79 extension.

10. Save this file in a known location on your smartphone.

5.4 Testing the Temp Coll-OTAP software

Figure 42 exemplifies the testing case of this section. The FRDM-KW36 contains the OTAP client software. The OTAP client
will request a software update from the OTAP server, the smartphone. This software image is the Temp Coll-OTAP demo. The
FRDM-KW36 at this point has been updated and can handle all the incoming communication from a Temperature Sensor Example
or the OTAP server. To demonstrate that you can continue updating the software of the KW36 device, you can connect the Temp
Coll-OTAP to an OTAP server and request a software update that only contains the Temp Coll example. From this point, you
cannot continue updating the software since the OTAP service was not included in the last software upgrade, demonstrating the
importance of including OTAP in the software update sent over the air. This example was designed to understand the key points
of the OTAP integration. However, the main purpose of this application note is to create software updates that include the OTAP
service and continue upgrading and improving the KW36 device.

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020
Application Note 38/46

NXP Semiconductors

Testing the Temp Coll-OTAP demo

First Update (Temp
Coll-OTAP)

FRDM-KW36 OTAP Client profile

OTAP Client Software

Smartphone OTAP Server

Software Update for Client

OTAP Client Software

Second Update
(only Temp Coll)

FRDM-KW36 Temp Coll-OTAP profile

OTAP Client Software

Smartphone OTAP Server
Software Update for Client

KW36 can not request
another update from
the server since OTAP
service was not
integrated in the
software update. It
shows the
importance of
integrating OTAP in

FRDM-KW36 Temp Coll profile

Smartphone OTAP Server
Software Update for Client

Figure 42. Proposed test

1. Open the loT Toolbox App and select the OTAP demo. Click the SCAN to start scanning for a suitable advertiser.

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020

Application Note

39/46

NXP Semiconductors

Testing the Temp Coll-OTAP demo

loT Toolbox

\Z

Cycling Speed Running Speed Blood Pressure

© ®
® i®

Glucose Thermometer Heart Rate

Proximity Beacons Sensor
OTAP QPP Wireless UART
»

Z

£

Figure 43. loT Toolbox interface

2. Press the ADV button, SW2, on the FRDM-KW36 board to start advertising.
3. Create a connection with the NXP_OTAA device. Then, the OTAP interface will be displayed on your smartphone.

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020
Application Note 40/ 46

NXP Semiconductors

Testing the Temp Coll-OTAP demo

IoT Toclbox sTOP
. File Infomation M
RSSI: -43 dBm File Mame
File Version
File Size
Status File nct loaded
N ==l)
(Firmware Update L]
% 100%
L [veoeo |
h 4 ®
x Status: Connectad 92% -
Figure 44. Connecting the OTAP client and the OTAP server

4. Click the Open button and search for the Temp Coll-OTAP SREC file.

5. Click the Upload button to start the transfer. Wait until the confirmation message is displayed.

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020

Application Note 41/46

NXP Semiconductors

Testing the Temp Coll-OTAP demo

loT Toolbox DISCONNECT

OTAP

i File Infomation)
File Name FSL BLE OTAP Demo Image File
File Version 5.0.0
File Size 514 KB
Status Valid File

LW o

F z b

Firmware Update
0% ' 100%
CANCEL
9 ¥,

Status: Connected 929,

Figure 45. Updating the OTAP client to Temp Coll-OTAP

6. Connect your FRDM-KW36 with any serial terminal software. Wait few seconds until the OTAP bootloader has finished
programming the new image. The Temp Coll-OTAP application will start automatically, when the RGB LED will blink, and
a welcome message will be displayed on the serial terminal.

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020
Application Note 42 /46

NXP Semiconductors

Testing the Temp Coll-OTAP demo

T COM4 - Tera Term VT — O X
File Edit Setup Control Window Help

#
1
#
1
#
#
#
#
#
#

#

SHELL build: Apr 17 2020

Copyright {(c> 2016 NXP Semiconductors

BLE Temp Collector>

Press SW2 to change the role. Press SW3 to connect either to a Temperature Senso
i or OTAP Server

Figure 46. Welcome message temp Coll-OTAP software

7. You can press the SW2 button on the FRDM-KW36 board to change the GAP role of the device or SW3 to start
scanning or advertising. Verify that the device can be detected by both, Temperature Sensor and OTAP applications.
To connect with a Temperature Sensor, start the scanning. You can program the Temperature Sensor SDK example
on another FRDM-KW36 board, disabling low power, pairing and bonding macros at preinclude file. This example is
located at wireless_examples -> bluetooth -> temp_sens. The RGB will blink in blue when it is scanning. To connect with
OTAP Server, start the advertising, when the RGB is blinking in red. When the device is advertising, it will be named
as NXP_OTAT.

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020
Application Note 43 /46

NXP Semiconductors

Testing the Temp Coll-OTAP demo

T COMY - Tera Term VT - | 4
File Edit 3Setup Control Window Help

[EHELL build: Ape 17 282

opyright <c) 2816 HNXP qem]conductur'

BLE Temp Collector>

Press SW2 to change the role. Press SW3 to connect either to a Temperature Senso
» or OTAP Server

dvertising. ..

canning. .

enperatupe
enperature -
enperatupre
emnperature -
enperatupre
enperature -
enperature @
emperature -

zlrlzlzizizlziy]

File Information
File Hame FSL BLE OTAP Doma nags File
File Verzion
File Size 195 KB
Status Wald Filgy

Firmwrare Update

o
=

il
|

Figure 47. Temp Coll-OTAP device detected by both applications

8. Connect the Temp Coll-OTAP device with the OTAP smartphone application, when the RGB will be ON in green.
Update the software using the Temp Coll SREC file using the OTAP service.

9. Press the SCAN button, SW2, on the FRDM-KW36 board to start scanning. Connect the device with a temperature sensor
and verify that it works as expected. Now, you can’t continue updating the software, as OTAP service was not added to the
software update. It demonstrate the importance of integrating OTAP in the software update.

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020
Application Note 44 [46

NXP Semiconductors

Testing the Temp Coll-OTAP demo

T COM9 - Tera Term VT —

File Edit Setup Control Window Help

o

eSS

SHELL build: Apr 17 2620

Copyright (c)> 2016 NXP Semiconductors

BLE Temp Collector>

Press SCANSYW to connect to a Temperature Sensor?

Scanning...

;ernperature: 38 C

Figure 48. Temp Coll device connected

KW36 - Integrating the OTAP Client Service into a Bluetooth LE Central Device, Rev. 0, 09/2020

Application Note

45/46

How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

arm

Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder
to design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products
for any particular purpose, nor does NXP assume any liability arising out of the application

or use of any product or circuit, and specifically disclaims any and all liability, including

without limitation consequential or incidental damages. “Typical” parameters that may be
provided in NXP data sheets and/or specifications can and do vary in different applications,
and actual performance may vary over time. All operating parameters, including “typicals,”
must be validated for each customer application by customer's technical experts. NXP does
not convey any license under its patent rights nor the rights of others. NXP sells products
pursuant to standard terms and conditions of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC,
MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire,
ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,
PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform
in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, elQ, and Immersive3D
are trademarks of NXP B.V. All other product or service names are the property of their
respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio,
CorelLink, CoreSight, Cortex, DesignStart, DynamlQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled,
NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME,
ULINK-PLUS, ULINKpro, uVision, Versatile are trademarks or registered trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected
by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle

and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and
Power.org word marks and the Power and Power.org logos and related marks are trademarks
and service marks licensed by Power.org.

© NXP B.V. 2020. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 09/2020
Document identifier: AN12970

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 OTAP client software
	2.1 OTAP memory management during the update process
	2.2 Advantages of the OTAP service integration

	3 Prerequisites
	3.1 Downloading and installing the software development kit

	4 Customizing a based Bluetooth LE demo to integrate the OTAP service
	4.1 Importing the OTAP service and framework services into the Temp Coll example
	4.2 Main modifications in the source files
	4.2.1 app_preinclude.h
	4.2.2 app_config.c
	4.2.3 gatt_db.h and gatt_uuid128.h
	4.2.4 temperature_collector.h and temperature_collector.c

	4.3 Modifications in project settings and storage configurations

	5 Testing the Temp Coll-OTAP demo
	5.1 Preparing the OTAP client SDK software
	5.2 Creating a Temp Coll - OTAP S - record image to update the software
	5.3 Creating a Temp Coll S-Record image to update the software
	5.4 Testing the Temp Coll-OTAP software

