
1 Introduction
This application note describes the implementation of the 3-phase
Brushless DC motor (BLDC) control with Hall sensor based on the NXP
S08PB16 processor.

The S08PB MCUs integrate key features like 12-bit ADC, Analog Comparator
(ACMP), Amplifier (OPAMP), Fault Detection and Shutdown (FDS), and
Flexible Timers (FTM) to simplify design and to help reduce system cost.

The 3-phase BLDC motor is widely used in the field of industrial control for its
high efficiency, high reliability and high power density.

Thanks to the optimized design of the 3-phase BLDC control in the chip,
S08PB16 is particularly suitable for some low-end applications that have strict
cost control. For example, cooling fan and water pump.

This application note introduces the principle of BLDC six-step control with hall
sensor, hardware and software implementation, including a detailed peripheral
setup and driver description.

The software of this application is based on CodeWarrior 11.1 IDE. Download
and install the service pack first.

2 S08PB16 features and advantages
The MC9S08PB16 devices are highly-integrated, low-power and low pin count 8-bit microcontrollers based on the S08P
core platform.

The features are as follows:

• Maximum CPU frequency of 20 MHz which is used as bus frequency.

• Scalable memory options, up to 16 KB Flash and 1 KB RAM.

• Operating voltage ranges from 2.7 V to 5.5 V with full functional Flash program/erase/read operations.

• Multiple package options of 20-pin and 16-pin.

• Ambient operating temperature ranges from -40 °C to 105 °C for V part and -40 °C to 125 °C for M part.

Figure 1 shows the system block diagram.

Contents

1 Introduction......................................1
2 S08PB16 features and advantages

.. 1
3 BLDC motor control theory..............2
4 Hardware and software

implementation................................5
4.1 System hardware design............. 5
4.2 System software design...............6
5 Peripheral configurations................ 7
5.1 FTM2..7
5.2 ACMP and FDS........................... 8
5.3 ADC... 9
5.4 MTIM1..9
5.5 IPC...9
5.6 KBI... 10
5.7 PORTA.......................................10
6 Software implementation...............10
6.1 Main function flow chart............. 10
6.2 MTIM1 interrupt..........................11
6.3 FTM2 interrupt........................... 16
7 Application guide...........................20
8 References....................................22

AN12957
3-phase BLDC Control Based on S08PB16
Rev. 0 — 09/2020 Application Note

https://freescaleesd.flexnetoperations.com/337170/907/15206907/com.freescale.mcu11_1.HCS08_PB16.win.sp.v1.0.8.zip?ftpRequestID=7510415907&server=freescaleesd.flexnetoperations.com&dtm=DTM20200107073526MzU4MTMxMjEy&authparam=1578411326_104641368b3cece7142f949f46f54830&ext=.zip%22

Figure 1. S08PB16 system block diagram

For BLDC motor control, the advantages of S08PB16 are:

• Multi-channel PWM signal output.

• Abundant timer and communication interfaces.

• Rich analog IP internal integrated, 12-channel 12-bit ADC, two ACMP and internal OPAMP. The interconnection of these
modules is convenient for overcurrent protection. OPAMP can save the external op amp circuit, saving BOM costs.

• Enhanced FDS fault protection module that optimized for motor control can ensure high system reliability.

3 BLDC motor control theory
The BLDC motor is a rotating electric machine. The stator is similar with the 3-phase stator of a traditional induction motor; the rotor
has surface-mounted permanent magnets. There are no brushes on the rotor and the commutation is performed electronically
at certain rotor positions. The stator is usually made from silicon steel sheets. Figure 2 shows a typical cross section of a BLDC
Motor. The stator-phase windings are inserted in the slots, distributed winding. Because the air-gap magnetic field is produced by
permanent magnets, the rotor magnetic field is constant.

NXP Semiconductors
BLDC motor control theory

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 2 / 23

Figure 2. BLDC motor cross section

The magnetization of the permanent magnets and their displacement on the rotor is chosen so that the Back-EMF shape, the
voltage induced on the stator winding due to rotor movement, is trapezoidal. The DC voltage with a rectangular shape can be used
to create a rotational field with low-torque ripples, as shown in Figure 4.

Controlling BLDC motor requires a 3-phase inverter circuit. The 3-phase bridge is composed of six power switch components (Q1
- Q6). Six-step commutation control is usually used to drive each switch component, as shown in Figure 3.

Figure 3. 3-phase inverter circuit

NXP Semiconductors
BLDC motor control theory

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 3 / 23

Figure 4. 3-phase voltage system of BLDC motor

There are multiple PWM modulation modes for six-step commutate control. Considering that there is no automatic dead-time
insertion function in the S08PB16 FTM module, it is decided to use HPWM_LON mode modulation, as shown in Figure 5.

NXP Semiconductors
BLDC motor control theory

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 4 / 23

Figure 5. HPWM-LON modulation modes

4 Hardware and software implementation

4.1 System hardware design
The application hardware includes the following parts:

• S08PB16-EVK

The S08PB16-EVK is cost-effective development hardware for the NXP S08PB and S08PLS 5 V 8-bit MCUs. It is small,
yet powerful, with rich integrated peripherals to evaluate all features of S08PB and S08PLS MCUs. S08PB16-EVK supports
OSBDM to flash program and run-control debug without an external debug tool.

• FRDM-MC-LVBLDC

The FRDM-MC-LVBLDC low-voltage, 3-phase BLDC Freedom development board platform adds BLDC motor control
capabilities, such as rotational or linear motion, to your design applications.

LINIX 45ZVN24-40 BLDC motor is selected.

The motor control development platform block diagram and actual demo picture are as shown in Figure 6 and Figure 7.

NXP Semiconductors
Hardware and software implementation

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 5 / 23

Figure 6. Motor control development platform block diagram

Figure 7. Actual demo picture

4.2 System software design
The software and hardware application meet the following design requirements:

• Select S08PB16 as controller.

• Full-speed closed-loop control based on Hall sensor.

• Overvoltage, undervoltage and overcurrent faults protection based on hardware and software.

• Minimal speed of 300 rpm, maximal speed of 2500 rpm (depending on motor used).

• Set limit current to 4 A by default.

• Support two directions of rotation.

• Start from any motor position without rotor alignment.

• SW3 button control the demo mode.

NXP Semiconductors
Hardware and software implementation

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 6 / 23

• Real-time motor status monitoring based on FreeMASTER.

Figure 8 shows the system block diagram.

Figure 8. System block diagram

As shown in Figure 8, the overall control process is completed in three interrupts.

• FTM2 ISR

Hall signal acquisition, commutation control, PWM duty update and actual speed measurement are done in FTM2 ISR (10
KHz). The sector where the rotor is located is determined by polling the GPIO values connected to hall signals in this interrupt.

• MTIM1 ISR

Speed PI controller calculation, application state machine update and software fault protection are completed in the MTIM1
ISR (1 KHz). The output PWM duty cycle of speed PI controller is updated in FTM2 ISR. ADC samples DC-bus current and
DC-bus voltage to detect the overcurrent, overvoltage and undervoltage faults, to implement software protect the system.

• ACMP1 interrupt

System hardware overcurrent fault is caused by ACMP1 interrupt. In ACMP1 ISR, the corresponding flag of the overcurrent
fault, ACMP1 interrupt flag, is clear.

5 Peripheral configurations
This section describes the configuration of peripherals used for the motor control on S08PB16, including FTM 2 , ACMP1 & FDS,
ADC, KBI, MTIM1, IPC, PORTA.

5.1 FTM2
Configuring FTM to generate 6 PWM outputs to drive the BLDC motor, enables the PWM overflow interrupt, reads the HALL signal
in real time during the interrupt to obtain the rotor position signal, and performs the corresponding commutation operation.

FTM2 configuration:

• System clock source

• Running frequency of 10 kHz with 100 μs period

• Output edge-aligned and high-true pulses PWM

• Configure FTM2 channel 0 - 5 to drive BLDC motor.

• Enable counter overflow interrupt

NXP Semiconductors
Peripheral configurations

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 7 / 23

The most important thing in BLDC motor control is commutation. For HPWM_LON modulation mode, at any moment, only one
MOSFET is in PWM modulation, For S08PB16, we can use SYS_SOPT8 and SYS_SOPT7 to conveniently control the output of
each bridge without affecting the actual FTM timing. Take sector 1 as an example (A+B- conduction):

SYS_SOPT8 = SYS_SOPT8_FTM2CH3OCV_MASK;//Q4 active
SYS_SOPT7 = SYS_SOPT7_FTM2CH1OC_MASK | SYS_SOPT7_FTM2CH2OC_MASK | SYS_SOPT7_FTM2CH3OC_MASK |
SYS_SOPT7_FTM2CH4OC_MASK | SYS_SOPT7_FTM2CH5OC_MASK;//Q1 PWM output

The 6 PWM outputs are also controlled by FDS module. Once the overcurrent fault signal is generated to trigger FDS, FDS will shut
down the 6 PWM signals and control the outputs of the 6 pins. Figure 9 shows the generate and control process for PWM signals.

Figure 9. Generate and control process for PWM signals

5.2 ACMP and FDS
The system hardware overcurrent fault signal is generated by internal ACMP1 interrupt.

External OPAMP output is connected to ACMP1+ input, ACMP1- is connected to the internal DAC output of ACMP1, ACMP1 can
compare the OPAMP output with the voltage of the internal DAC. At the same time, we can configure ACMP1_C1_DACVAL to
change the DAC output value to adjust the limit current value. When OPAMP output is larger than DAC output value, ACMP1
interrupt flag is set, the overcurrent fault signal is generated.

FDS fault input2 source (FIN2) is ACMP1 interrupt output. Once the overcurrent fault signal occurs, FDS will shut down the output
of 6 PWM channels and set the corresponding port pins to output pre-defined value 0. For specific information about internal
OPAMP, ACMP and FDS, see How to Use the Interconnection of OPAMP, ACMP1 and FDS for S08PB16 (document AN12836).

ACMP1 configurations:

• ACMP1+ input source: PTA3/ACMP1IN0/OPAMP+, the PTA3 pin connects to external OPAMP output.

• ACMP1- input source: DAC output value.

• ACMP1 output enable, used to determine whether the hardware overcurrent fault flag, FDS interrupt flag, should be
removed.

• ACMP1 interrupt enable and ACMP1 interrupt on output rising edge.

FDS configurations:

• FDS input 2 enable (FIN2), ACMP1 interrupt output as input.

• Configure FDS FDSOUT0 - FDSOUT5 channels: Enable the corresponding six pins configuration, the direction of the 6 pins
set as output and the output values of the 6 pins set to 0.

Figure 10 shows the interconnection of ACMP1 and FDS.

NXP Semiconductors
Peripheral configurations

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 8 / 23

https://www.nxp.com/docs/en/application-note/AN12836.pdf

Figure 10. Interconnection of ACMP1 and FDS

• There is already an external OPAMP on FRDM-MC-LVBLDC board, the bus current is not sampled by S08PB16 internal
OPAMP in this application. Customers can choose to use external OPAMP or S08PB16 internal OPAMP to sample
according to their needs in practical applications.

5.3 ADC
The ADC samples the DC-bus voltage and DC-bus current, and the sampled values will be used to compare with the overcurrent
value, overvoltage value, and undervoltage value given by the user, to realize the software protection of the motor control system.

ADC configurations：

• Bus clock source, clock divide value is 1.

• 12-bit sampling accuracy, long sample time

• Configure two sampling channels, PTA3/ADP3 channel is configured to sample DC-bus current, PTB3/ADP7 channel is
configured to sample DC-bus voltage.

5.4 MTIM1
Use the MTIM1 module to generate a 1ms interrupt to implement the state machine detect, speed loop control and so on.

MTIM1 configurations:

• Fixed-frequency clock source

• No prescaler, the modulo value is 16, MTIM1 interval frequency is set to 1 kHz.

• Enable the interrupt

5.5 IPC
The Interrupt Priority Controller (IPC) module is used to configure FTM2 and MTIM1 interrupt priority level to implement interrupt
nested. It needs to configure FTM2 interrupt priority level higher than MTIM1 interrupt priority level in this BLDC motor control
application code.

MTIM1 interrupt priority level is set to 0 and FTM2 interrupt priority level is set to 3. FTM2 interrupt request can preempt MTIM1
interrupt being serviced, and the MTIM1 interrupt request is blocked when executing FTM2 ISR.

NXP Semiconductors
Peripheral configurations

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 9 / 23

IPC configurations:

• Interrupt priority controller enable.

• FTM2 interrupt priority level set to 3 and MTIM1 interrupt priority level set to 0.

5.6 KBI
The manual interface button (onboard SW3) is used to control the demo mode on or off. As known as the S08PB16-EVK
schematic, PTB2/KBI0P6 pin is configured as the SW3 button input channel.

KBI configurations:

• Only detect the falling edge.

• KBI interrupt is disabled.

• PTB2 is enabled as KBI pin.

5.7 PORTA
3-phase hall sensor signals connect to PTA0, PTA1, PTA2. The sector where the rotor is located is determined by polling the GPIO
values connected to hall signals in this interrupt.

When the motor is working, the position of the rotor is determined by continuously reading the values of the three pins.

PORTA configurations:

• Configure PTA0, PTA1, PTA2 data direction as input to read hall values

6 Software implementation
This section describes the software design of the BLDC motor application. The description of the software includes the
following parts:

• Main function flow chart

• MTIM1 interrupt

• FTM2 interrupt

6.1 Main function flow chart
After a reset, the application initializes all used peripherals and enters the endless loop. Figure 11 shows the flowchart of main().

NXP Semiconductors
Software implementation

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 10 / 23

Figure 11. Main function flow chat

6.2 MTIM1 interrupt
Figure 12 shows the detailed process of the MTIM1 interrupt service routine.

NXP Semiconductors
Software implementation

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 11 / 23

Figure 12. MTIM1 interrupt service routine

6.2.1 State machine switch
The main state machine consists of the following sub-states: init, stop, run, fault. Figure 13 shows the main state machine switch.

NXP Semiconductors
Software implementation

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 12 / 23

Figure 13. Main state machine flowchart

6.2.2 Speed PI closed loop
As shown in Figure 12, speed PI control loop is realized in AppRun function. There is a detailed description about the speed control
process. Figure 14 shows the block diagram of speed PI control.

Figure 14. Speed PI control bock diagram

1. Speed ramp

Since the overall application is a system with large inertia, the speed command must be refined during the application,
otherwise, the system may be overloaded. One method is to generate a ramp, to make the speed ramp approach the speed
command (required speed value) by step increments defined in the code.

In this application, it needs three parameters in ECLIB_Ramp16 function to get actual speed ramp.

• Predefined ramp value (RAMP_SPEED)

• Required speed (w16Speed_req)

• Speed ramp (w16Speed_ramp)

RAMP_SPEED is defined as follows.

/* Speed ramp value settings for close loop */
#define SLOW_PERIOD_US 1000.0//us
#define RAMP_SPEED_S 10000.0//(rpm/s)
#define RAMP_SPEED (RAMP_SPEED_S*SLOW_PERIOD_US*32768.0/1000000.0/N_MAX)

NXP Semiconductors
Software implementation

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 13 / 23

The RAMP_SPEED parameter is scaled. For the description of speed scale, see Actual speed measure.

 NOTE

Figure 15 shows the process of ECLIB_Ramp16 function to increment or decrement the ramp speed value by a defined
step to bring the ramp value closer to the required value.

Figure 15. Flow chart for getting speed ramp

2. PI controller

The speed PI control algorithm attempts to correct the speed error between required speed and actual speed,
w16Speed_error = w16Speed_ramp - w16Speed_Act_flt. The PI controller output is passed to the PWM generator
(FTM2) as a newly corrected value of the applied motor voltage.

The Proportional-Integral (PI) algorithm in the continuous time domain is as shown in Equation 1.

Equation 1. PI algorithm

Where:

• e(t): Input error in the continuous time domain.

• u(t): Controller output in the continuous time domain.

• Kp: Proportional gain in the continuous time domain.

• Kp: Integral gain in the continuous time domain.

Equation 2 describes the discrete equation.

Equation 2. Doscrete equation

NXP Semiconductors
Software implementation

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 14 / 23

Where:

• Ts: Sample time.

• e(k): Input error in the discrete time domain.

• u(k): Controller output in the discrete time domain.

• Kp: Proportional gain in the discrete time domain.

• Ki': Integral gain in the discrete time domain.

The speed PI controller routine is executed in the AppRun() function which is called every 1 ms, the sample time (Ts) of PI
controller is 1 ms.

One input of the PI controller is speed error (w16Speed_error), and the other input is pointer to the structure
of the PI controller parameters sSpeedPiParams (Kp, Ki, …). All these parameters are used in the PI controller
function, CTR_ControllerPI16.

The output of the CTR_ControllerPI16 function is uw16Duty, which is used to update PWM duty in FTM2 ISR.

Kp is configured to 10 and Ki is configured to 1 in this application. These parameters must be reconfigured if the speed scale
or the motor is changed.

Figure 16 shows the PI control process by using the CTR_ControllerPI16 function to get the duty cycle.

Figure 16. Flow chart of getting duty cycle

6.2.3 Limit current calculation
The DC-Bus current sensing circuit is in FRDM-DC-LVBLDC board, as shown in Figure 17.

NXP Semiconductors
Software implementation

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 15 / 23

Figure 17. DC-Bus current sensing circuit

As shown in Figure 17, the reference voltage for the above OPAMP is 1.65 V, the gain is 0.2 V/A, and the output will connect to
ACMP1+ input of S08PB16. If we the set limit current value to i, it follows the equation:

ACMP1 positive input voltage = 1.65 + 0.2 × i

According to the ACMP1 configuration in ACMP and FDS, we can know that DAC output, (ACMP1_C1_DACVAL + 1) / 64 × Vin,
is configured as ACMP1- input. ACMP + input should be smaller than ACMP- input. We can get the equation:

(ACMP1_C1_DACVAL + 1) / 64 × Vin > 1.65 + 0.2 × i

Where:

• Vin: The reference voltage of DAC. Select VDDA (5 V) as the reference voltage in this application note.

• i: The desired limit current.

Therefore, the current limit value can be changed by changing the ACMP1_C1_DACVAL value according to the above equation.

6.3 FTM2 interrupt
Figure 18 shows the detailed process of the FTM2 interrupt service routine.

NXP Semiconductors
Software implementation

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 16 / 23

Figure 18. FTM2 interrupt service routine

As shown in Figure 18, the commutation and actual speed measurement are realized in FTM2 ISR, described in details as below.

6.3.1 Commutation
The definition of the correct commutation table is the key point of the application porting for the customer-specific BLDC motor.

In this application note, when the motor rotates clockwise and counterclockwise, the corresponding relationship between hall
values and the power sequence of three phases is determined by manual test. Customers can obtain hall signals by voltage align
or refer to motor manufacturer-provided commutation table.

This chapter gives a detailed description of how to implement commutation. Figure 19 shows the definition of the commutation
table in this application note.

The hall signals of different motors will change according to the different installation positions and 3-phase phase
sequence. In actual use, we can use the open-loop align method to determine the hall signals corresponding to
each rotor sector.

 NOTE

NXP Semiconductors
Software implementation

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 17 / 23

Figure 19. Commutation definition

The hall sensors are installed at a 120° electrical degree apart in our used BLDC motor, they detect the rotor flux. Combining the
outputs of all the three sensors that will give 6 status, except 111 and 000. The commutation is repeated per 60° electrical degrees.
We defined a hall signal calculation pattern to get Vector, then execute the commutate process according to Vector value. The
steps of commutation are:

• Hall signal calculation:

Hall_signal = PTA2_Hall3 × 0x04 + PTA2_Hall3 × 0x02 + PTA2_Hall1 × 0x01

• Vector definition:

The Vector value can be got by the defined array: vector_Table[HALL_signal] = {0,4,2,3,6,5,1,0}

• Commutation:

Commutation is achieved by changing the energization direction of phase A, B, and C voltage according to the vector value,
as shown in Figure 19.

Commutation provides the creation of a rotating magnetic field. The angle between the stator flux and the rotor flux should be kept
as close to 90° as possible, to get the maximum torque. For the proper operation of a BLDC motor, it is necessary to keep the
angle between the stator flux and rotor flux close to 90°, the real angle varies from 60° to 120°.

With six-step control, we get a total of six possible stator flux vectors. The stator flux vector must be changed at a certain rotor
position. The rotor position is usually sensed by the six states of hall effect sensors. Each of the six states corresponds to a certain
stator flux vector. As shown in Figure 19, all the six hall sensor states with corresponding stator flux vectors are illustrated in
Figure 20.

Figure 20. Stator flux vectors at six-step control

NXP Semiconductors
Software implementation

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 18 / 23

The rotor rotates in a direction that reduces the angle between the stator flux and rotor flux.

As shown in (a) in Figure 21, when the rotor is in Vector 1, A+B- commutation is performed. The rotor will run from Vector 1 to
Vector 2 to reduce the angle between the stator and rotor flux to achieve clockwise rotation.

As shown in (b) in Figure 21, when the rotor is in Vector 1, B+A- commutation is performed. The rotor will run from Vector 1 to
Vector 6 to reduce the angle between the stator and rotor flux to achieve counterclockwise rotation.

Figure 21. A commutation process when the rotor position is in vector 1

The 3-phase voltage is modulated by six PWMs. The modulation method is the HPWM_LON mode. If the rotating direction of the
motor is clockwise, with the power sequence of (A+B-) -> (A+C-) -> (B+C-) -> (B+A-) -> (C+A-) -> (C+B-)), in one electrical angle
cycle, the commutation process and the timing of the six PWMs are as shown in Figure 22.

Figure 22. Commutation process and the timing of the 6 PWMs

6.3.2 Actual speed measure
All speed constants are scaled in this application code. All speed constants divided by the pre-defined maximum value, N_MAX
= 100000 rpm, convert the signed fractional number in the range of [-1,1) into a fixed point 16-bit number (* 32768) in the
format Q1.15.

The actual speed value is calculated by using the commutation period of per 60° electrical degrees, uw16Comm_Period,
and a scale constant NUMERATOR_FOR_SPEED which enables time value conversion to speed value. The actual speed
w16Speed_Act_flt is the filtered value of w16Speed_Act. w16Speed_Act can be calculated with Equation 3.

NXP Semiconductors
Software implementation

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 19 / 23

Equation 3. Actual speed

NUMERATOR_FOR_SPEED is pre-defined as follows:

Where:

• PWM_FREQUENCY_KHZ: 10 kHz

• N_MAX: 100000 rpm

• PP: 2 (pole pairs)

7 Application guide
The BLDC motor control application can be controlled by the FreeMASTER with PC or use the button SW3 on the EVK board to
control the speed.

Please strictly follow the steps below to set up hardware and software and then start the BLDC demo:

1. Set the jumper according to the position of the red mark in Figure 23.

Figure 23. Jumper settings of S08PB16-EVK

2. Rework the S08PB16-EVK board. By default, PTA0/PTA1/PTA2/PTA3/PTB3 are connected to peripherals on the
S08PB16-EVK board. But now, these pins need to connect to motor control signals from the FRDM-LVBLDC board.
Remove 0 Ω resistances from R1/R4/R7/R10/R11and weld 0 Ω to R3/R6/R9/R12/R13. See Figure 24 for the circuit rework.

NXP Semiconductors
Application guide

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 20 / 23

Figure 24. S08PB16-EVK rework

3. Combine the S08PB16-EVK board with FRDM-MC-LVBLDC board through the I/O headers.

4. Connect the motor three phase output and HALL signal to the FRDM-MC-LVBLDC board in order.

5. Connect the USB cable to the OSBDM port on the S08PB16-EVK board.

6. Open the project with CodeWarrior (11.1 version or above) then make and download the firmware to chip.

7. Open the S08PB16_BLDC.pmpx with FreeMASTER (3.0 version or above). Select Project -> Options -> Comm –>
Communications -> Plug-in Module to select FreeMASTER BDM as communication. Click Project -> Options -> MAP
Files. Select the .abs file as Default symbol file and File format as Binary ELF with DWARF2 or DWARF4 dbg format. The
configurations are as shown in Figure 25.

Figure 25. FreeMASTER configurations

8. Supply the 12 V DC voltage to the FRDM-MC-LVBLDC board and click the GO button on FreeMASTER. Set the speed
command value(rpm) to Speed_req or drag the Speed Required slider to start the motor.

NXP Semiconductors
Application guide

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 21 / 23

9. Figure 26 shows the FreeMASTER control page, which can be used for speed control, demo mode control, adjustment of
limit current, and real-time monitoring of speed/DC-bus current/DC-bus voltage/state machine/variables.

Figure 26. FreeMASTER control page

8 References
These references are available on https://www.nxp.com.

1. MC9S08PB16 Reference Manual (document MC9S08PB16RM)

2. How to use the interconnection of OPAMP, ACMP1 and FDS for S08PB16 (document AN12836)

3. BLDC Motor Control with Hall Sensors Driven by DSC (document AN4413)

4. BLDC Motor Control with Hall Effect Sensors Using MQX on Kinetis (document AN4376)

NXP Semiconductors
References

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 22 / 23

https://www.nxp.com
https://www.nxp.com.cn/docs/en/reference-manual/MC9S08PB16RM.pdf
https://www.nxp.com.cn/docs/en/application-note/AN12836.pdf
https://www.nxp.com.cn/docs/en/application-note/AN4413.pdf
https://www.nxp.com.cn/docs/en/application-note/AN4376.pdf

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder
to design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products
for any particular purpose, nor does NXP assume any liability arising out of the application
or use of any product or circuit, and specifically disclaims any and all liability, including
without limitation consequential or incidental damages. “Typical” parameters that may be
provided in NXP data sheets and/or specifications can and do vary in different applications,
and actual performance may vary over time. All operating parameters, including “typicals,”
must be validated for each customer application by customer's technical experts. NXP does
not convey any license under its patent rights nor the rights of others. NXP sells products
pursuant to standard terms and conditions of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC,
MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire,
ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,
PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform
in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D
are trademarks of NXP B.V. All other product or service names are the property of their
respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio,
CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled,
NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME,
ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected
by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle
and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and
Power.org word marks and the Power and Power.org logos and related marks are trademarks
and service marks licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 09/2020
Document identifier: AN12957

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 S08PB16 features and advantages
	3 BLDC motor control theory
	4 Hardware and software implementation
	4.1 System hardware design
	4.2 System software design

	5 Peripheral configurations
	5.1 FTM2
	5.2 ACMP and FDS
	5.3 ADC
	5.4 MTIM1
	5.5 IPC
	5.6 KBI
	5.7 PORTA

	6 Software implementation
	6.1 Main function flow chart
	6.2 MTIM1 interrupt
	6.2.1 State machine switch
	6.2.2 Speed PI closed loop
	6.2.3 Limit current calculation

	6.3 FTM2 interrupt
	6.3.1 Commutation
	6.3.2 Actual speed measure

	7 Application guide
	8 References

