AN12957
3-phase BLDC Control Based on SO8PB16

Rev. 0 — 09/2020

1 Introduction

This application note describes the implementation of the 3-phase
Brushless DC motor (BLDC) control with Hall sensor based on the NXP
S08PB16 processor.

The S08PB MCUs integrate key features like 12-bit ADC, Analog Comparator
(ACMP), Amplifier (OPAMP), Fault Detection and Shutdown (FDS), and
Flexible Timers (FTM) to simplify design and to help reduce system cost.

The 3-phase BLDC motor is widely used in the field of industrial control for its
high efficiency, high reliability and high power density.

Thanks to the optimized design of the 3-phase BLDC control in the chip,
S08PB16 is particularly suitable for some low-end applications that have strict
cost control. For example, cooling fan and water pump.

This application note introduces the principle of BLDC six-step control with hall
sensor, hardware and software implementation, including a detailed peripheral
setup and driver description.

The software of this application is based on CodeWarrior 11.1 IDE. Download
and install the service pack first.

2 S08PB16 features and advantages

Application Note

Contents
1 Introduction..........ccceeeeeiieceenseceennnns 1
2 S08PB16 features and advantages
.. 1
3 BLDC motor control theory.............. 2
4 Hardware and software
implementation...........ccccccveeeiciennann 5
41 System hardware design............. 5
4.2 System software design............... 6
5 Peripheral configurations................ 7
5.1 FTM2..ooiiiieeeeeceee e 7
5.2 ACMP and FDS........ccccccvevvvennn. 8
5.3 ADC.....oiiiiieeee et 9
5.4 MTIMT . 9
5.5 IPC..oeeee e 9
5.6 KBl oottt 10
5.7 PORTA. ...t 10
6 Software implementation............... 10
6.1 Main function flow chart............. 10
6.2 MTIM1 interrupt..........cccooveeeennns 11
6.3 FTM2 interrupt........ccccoeveeenneenn. 16
7 Application guide...........ccccevreeennen 20
8 References..........cccoeeecenecececnniennn. 22

The MC9S08PB16 devices are highly-integrated, low-power and low pin count 8-bit microcontrollers based on the SO8P

core platform.
The features are as follows:
* Maximum CPU frequency of 20 MHz which is used as bus frequency.

» Scalable memory options, up to 16 KB Flash and 1 KB RAM.

» Operating voltage ranges from 2.7 V to 5.5 V with full functional Flash program/erase/read operations.

» Multiple package options of 20-pin and 16-pin.

* Ambient operating temperature ranges from -40 °C to 105 °C for V part and -40 °C to 125 °C for M part.

Figure 1 shows the system block diagram.

h
P

https://freescaleesd.flexnetoperations.com/337170/907/15206907/com.freescale.mcu11_1.HCS08_PB16.win.sp.v1.0.8.zip?ftpRequestID=7510415907&server=freescaleesd.flexnetoperations.com&dtm=DTM20200107073526MzU4MTMxMjEy&authparam=1578411326_104641368b3cece7142f949f46f54830&ext=.zip%22

NXP Semiconductors

BLDC motor control theory

Core/System System Protection

lllegal Opcode/Address Detection

HCSO08 core
20MHz
Flash and RAM Access Protection
Unique ID 27~55V Watchdog FDS
CRC BDM POR LVD
Timers Analog Interfaces
2 x16-bit FTM 1xUART
6-ch+2-ch 12-ch 12-bit ADC (LIN Capable)
1x 16-bit RTC 1xI2C
2 x ACMP
2xMTIM
1xPWT 1x OPAMP

Package options: 16-TSSOP, 20-TSSOP

Figure 1. SO8PB16 system block diagram

Clocks Memories
Internal OSC
Flash
Up to 32KHz 8KBto 16KB
FLL
Clock Multiplier RAM
1KB
Ext Low Speed OSC
(32KHz)

Ext High Speed OSC
(4-20MHz)

1/0 Ports
Up to 18 GPIO 8 KBI
1 x True Open RQ

Drain

For BLDC motor control, the advantages of SO8PB16 are:

* Multi-channel PWM signal output.

* Abundant timer and communication interfaces.

» Rich analog IP internal integrated, 12-channel 12-bit ADC, two ACMP and internal OPAMP. The interconnection of these
modules is convenient for overcurrent protection. OPAMP can save the external op amp circuit, saving BOM costs.

» Enhanced FDS fault protection module that optimized for motor control can ensure high system reliability.

3 BLDC motor control

theory

The BLDC motor is a rotating electric machine. The stator is similar with the 3-phase stator of a traditional induction motor; the rotor
has surface-mounted permanent magnets. There are no brushes on the rotor and the commutation is performed electronically

at certain rotor positions. The stator is usually made from silicon steel sheets. Figure 2 shows a typical cross section of a BLDC
Motor. The stator-phase windings are inserted in the slots, distributed winding. Because the air-gap magnetic field is produced by
permanent magnets, the rotor magnetic field is constant.

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020

Application Note

2/23

NXP Semiconductors

BLDC motor control theory

Stator

Stator winding
(in slots)

Shaft

Rotor

Air gap

[T

Permanent magnets

Figure 2. BLDC motor cross section

The magnetization of the permanent magnets and their displacement on the rotor is chosen so that the Back-EMF shape, the
voltage induced on the stator winding due to rotor movement, is trapezoidal. The DC voltage with a rectangular shape can be used
to create a rotational field with low-torque ripples, as shown in Figure 4.

Controlling BLDC motor requires a 3-phase inverter circuit. The 3-phase bridge is composed of six power switch components (Q1
- Q6). Six-step commutation control is usually used to drive each switch component, as shown in Figure 3.

O

Qi 3 5
N i 7

T3T
13T
I3T

Ubc_bus

Q; Q4 a Qs
_

3T
>
[
IX

P
[
3T
>

RsaunT

-
/ DC_bus

Figure 3. 3-phase inverter circuit

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 3/23

NXP Semiconductors

BLDC motor control theory

| |] 1 | |
Phasc A | ; ~ ; -
| | I I I | |
e vt | | TN B AoceTHTIER
| |] | | I |
Phase C I'\I l | | L_,..-—"': : |
i I Pl ! — | i i I
I I | | | | |
| J I I | |
Qi I I | l I |
I I i i i i I
' ' l i |
o NI | | | S
I I | | | | |
| | | | |
Qs i l | : l
| | I : I I |
: l l l I
Q n | | | | |
' l | i | i | I
| | I I | | |
ol ! ; ; = :
| | I I I : I
| L I | |
e ety BRI
0 60 120 180 240 300 360

Figure 4. 3-phase voltage system of BLDC motor

There are multiple PWM modulation modes for six-step commutate control. Considering that there is no automatic dead-time
insertion function in the SO8PB16 FTM module, it is decided to use spwM_LON mode modulation, as shown in Figure 5.

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 4/23

NXP Semiconductors

Hardware and software implementation

! A
Q2
Qs

—— e e — — —

LA

—— el e —— e ——— e ——————

Q DELALER:

oI I: nn

od I (ARNARE HAR0ER ANRIN
MEEN A INEc T TEA R G
0 solllillzeb il ksclili2ao i zoolil=co

Electrical Angle (r)
H PWM-L ON

Figure 5. HPWM-LON modulation modes

4 Hardware and software implementation

4.1 System hardware design
The application hardware includes the following parts:
» S08PB16-EVK

The S08PB16-EVK is cost-effective development hardware for the NXP SO8PB and SO8PLS 5 V 8-bit MCUs. It is small,
yet powerful, with rich integrated peripherals to evaluate all features of SO8PB and SO8PLS MCUs. S08PB16-EVK supports
OSBDM to flash program and run-control debug without an external debug tool.

* FRDM-MC-LVBLDC

The FRDM-MC-LVBLDC low-voltage, 3-phase BLDC Freedom development board platform adds BLDC motor control
capabilities, such as rotational or linear motion, to your design applications.

LINIX 45ZVN24-40 BLDC motor is selected.

The motor control development platform block diagram and actual demo picture are as shown in Figure 6 and Figure 7.

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 5/23

NXP Semiconductors

Hardware and software implementation

FRDM-MC-BLDC S08PB16-EVK
5.5V .
12V¢ Polarity 3 Power] 3.3y] Power Supply
DC Protection .‘!’: Supply % l l
il (e
P o — 0SBDM
T 6x ———— MOSFET 6xPWM
tii MOSFET {——— Predriver
P BEMF_A}B}C +— Buttons
3-ph t iy Analog P Target
BLDC i-..’ Sensing U, lde » MCU — leds
Maotor
—+ Accel
Hall N Hall Hall N

Figure 6. Motor control development platform block diagram

Figure 7. Actual demo picture

4.2 System software design
The software and hardware application meet the following design requirements:
» Select SO8PB16 as controller.
 Full-speed closed-loop control based on Hall sensor.
» Overvoltage, undervoltage and overcurrent faults protection based on hardware and software.
» Minimal speed of 300 rpm, maximal speed of 2500 rpm (depending on motor used).
 Set limit current to 4 A by default.
» Support two directions of rotation.
« Start from any motor position without rotor alignment.

* SWa3 button control the demo mode.

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 6/23

NXP Semiconductors

» Real-time motor status monitoring based on FreeMASTER.

Figure 8 shows the system block diagram.

Peripheral configurations

FRDM-MC-LVBLDC
DC Bus Voltage & - R ki @E
Current Sensing . ol -1)@y__
- s Hall D Peripheral
Signals
Udk| | ldc le
i 6 PWMSs AlB|C Function
ADC | | ACMP1 | AcwPL] o | Fault
Interrugt Faul FTIM2 GPIO
Buttons KBI -rF-——F-——-———-- — -
; - Shees! | Software fault detect } : |
| [l ‘
BOM speed | Speed + . Speed | Speed PI puty] Duty : Hall \
FreeMASTER Gomman Ramp “eror ! Controller Cydle i\ Update Cummutation | Pr— |
‘ Actual Speed | }
[Mmmise o o I Fazisk L
SO8PB16-EVK

Figure 8. System block diagram

As shown in Figure 8, the overall control process is completed in three interrupts.

« FTM2 ISR

Hall signal acquisition, commutation control, PWM duty update and actual speed measurement are done in FTM2 ISR (10
KHz). The sector where the rotor is located is determined by polling the GPIO values connected to hall signals in this interrupt.

« MTIM1 ISR

Speed PI controller calculation, application state machine update and software fault protection are completed in the MTIM1
ISR (1 KHz). The output PWM duty cycle of speed PI controller is updated in FTM2 ISR. ADC samples DC-bus current and
DC-bus voltage to detect the overcurrent, overvoltage and undervoltage faults, to implement software protect the system.

* ACMP1 interrupt

System hardware overcurrent fault is caused by ACMP1 interrupt. In ACMP1 ISR, the corresponding flag of the overcurrent

fault, ACMP1 interrupt flag,

is clear.

5 Peripheral configurations

This section describes the configuration of peripherals used for the motor control on SO8PB16, including FTM 2, ACMP1 & FDS,
ADC, KBI, MTIM1, IPC, PORTA.

5.1 FTM2

Configuring FTM to generate 6 PWM outputs to drive the BLDC motor, enables the PWM overflow interrupt, reads the HALL signal
in real time during the interrupt to obtain the rotor position signal, and performs the corresponding commutation operation.

FTM2 configuration:

» System clock source

* Running frequency of 10 kHz with 100 ps period

» Output edge-aligned and high-true pulses PWM

» Configure FTM2 channel 0

- 5 to drive BLDC motor.

» Enable counter overflow interrupt

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020

Application Note

7/23

NXP Semiconductors

Peripheral configurations

The most important thing in BLDC motor control is commutation. For HPWM_LON modulation mode, at any moment, only one
MOSFET is in PWM modulation, For SO8PB16, we can use SYS_SOPT8 and SYS_SOPT?7 to conveniently control the output of
each bridge without affecting the actual FTM timing. Take sector 1 as an example (A+B- conduction):

SYS SOPT8 = SYS SOPT8 FTM2CH30CV_MASK;//Q4 active
SYS SOPT7 = SYS SOPT7 FTM2CH1OC MASK | SYS SOPT7 FTM2CH20C MASK | SYS SOPT7_ FTM2CH30C MASK |
SYS SOPT7_ FTM2CH40C MASK | SYS SOPT7_ FTM2CH50C_MASK;//Ql PWM output

The 6 PWM outputs are also controlled by FDS module. Once the overcurrent fault signal is generated to trigger FDS, FDS will shut
down the 6 PWM signals and control the outputs of the 6 pins. Figure 9 shows the generate and control process for PWM signals.

CPWIVS
CHn W
Chanmel [n]
MSE
Chianinel [
MSA FDEM
- R
Chanine in) FTM[mICH[n}OCV FINER)
Channel [n) - _
ELSE FTR[mCH (nfOC FPCV(n]
FRCDn}
FPCE(n)
Input capture 1
Output ot
- campare generation of software FOS module port pin output
FThA[m] channgl [n} —— output [fault contral) | erE-dEinas vale
EFAM output signal control - -
CPWM

Channeln} outpurt

Figure 9. Generate and control process for PWM signals

5.2 ACMP and FDS

The system hardware overcurrent fault signal is generated by internal ACMP1 interrupt.

External OPAMP output is connected to ACMP1+ input, ACMP1- is connected to the internal DAC output of ACMP1, ACMP1 can
compare the OPAMP output with the voltage of the internal DAC. At the same time, we can configure ACMP1_C1_DACVAL to
change the DAC output value to adjust the limit current value. When OPAMP output is larger than DAC output value, ACMP1
interrupt flag is set, the overcurrent fault signal is generated.

FDS fault input2 source (FIN2) is ACMP1 interrupt output. Once the overcurrent fault signal occurs, FDS will shut down the output
of 6 PWM channels and set the corresponding port pins to output pre-defined value 0. For specific information about internal
OPAMP, ACMP and FDS, see How to Use the Interconnection of OPAMP, ACMP1 and FDS for SO8PB 16 (document AN12836).

ACMP1 configurations:
* ACMP1+ input source: PTA3/ACMP1INO/OPAMP+, the PTA3 pin connects to external OPAMP output.
* ACMP1- input source: DAC output value.

* ACMP1 output enable, used to determine whether the hardware overcurrent fault flag, FDS interrupt flag, should be
removed.

* ACMP1 interrupt enable and ACMP1 interrupt on output rising edge.
FDS configurations:
* FDS input 2 enable (FIN2), ACMP1 interrupt output as input.

» Configure FDS FDSOUTO - FDSOUTS5 channels: Enable the corresponding six pins configuration, the direction of the 6 pins
set as output and the output values of the 6 pins set to 0.

Figure 10 shows the interconnection of ACMP1 and FDS.

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 8/23

https://www.nxp.com/docs/en/application-note/AN12836.pdf

NXP Semiconductors

Peripheral configurations

FDS

FDSOUTO control

FiNg CEINFO™

FINL
FINEZ
N2),

ACMP1 interrupt @utp

FDS fault input | _ELN@;D OR

[T T

—
[FINL7[FINLBF INLSFINLA|FINL3|FINLAFINLIFINLO]

FDSOUTY control

FOF . INT_REQ,

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
FDIE ‘

Figure 10. Interconnection of ACMP1 and FDS

» There is already an external OPAMP on FRDM-MC-LVBLDC board, the bus current is not sampled by SO8PB16 internal
OPAMP in this application. Customers can choose to use external OPAMP or SO8PB16 internal OPAMP to sample
according to their needs in practical applications.

5.3 ADC

The ADC samples the DC-bus voltage and DC-bus current, and the sampled values will be used to compare with the overcurrent
value, overvoltage value, and undervoltage value given by the user, to realize the software protection of the motor control system.

ADC configurations :
« Bus clock source, clock divide value is 1.
» 12-bit sampling accuracy, long sample time

» Configure two sampling channels, PTA3/ADP3 channel is configured to sample DC-bus current, PTB3/ADP7 channel is
configured to sample DC-bus voltage.

5.4 MTIM1

Use the MTIM1 module to generate a 1ms interrupt to implement the state machine detect, speed loop control and so on.
MTIM1 configurations:

» Fixed-frequency clock source

» No prescaler, the modulo value is 16, MTIM1 interval frequency is set to 1 kHz.

* Enable the interrupt

5.5 IPC

The Interrupt Priority Controller (IPC) module is used to configure FTM2 and MTIM1 interrupt priority level to implement interrupt
nested. It needs to configure FTM2 interrupt priority level higher than MTIM1 interrupt priority level in this BLDC motor control
application code.

MTIM1 interrupt priority level is set to 0 and FTM2 interrupt priority level is set to 3. FTM2 interrupt request can preempt MTIM1
interrupt being serviced, and the MTIM1 interrupt request is blocked when executing FTM2 ISR.

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 9/23

NXP Semiconductors

Software implementation

IPC configurations:
* Interrupt priority controller enable.

* FTM2 interrupt priority level set to 3 and MTIM1 interrupt priority level set to 0.

5.6 KBI

The manual interface button (onboard SW3) is used to control the demo mode on or off. As known as the S08PB16-EVK
schematic, PTB2/KBIOP6 pin is configured as the SW3 button input channel.

KBI configurations:
» Only detect the falling edge.
» KBl interrupt is disabled.
* PTB2 is enabled as KBI pin.

5.7 PORTA

3-phase hall sensor signals connectto PTAO, PTA1, PTA2. The sector where the rotor is located is determined by polling the GPIO
values connected to hall signals in this interrupt.

When the motor is working, the position of the rotor is determined by continuously reading the values of the three pins.
PORTA configurations:
» Configure PTAOQ, PTA1, PTA2 data direction as input to read hall values

6 Software implementation

This section describes the software design of the BLDC motor application. The description of the software includes the
following parts:

» Main function flow chart
e MTIM1 interrupt
* FTM2 interrupt

6.1 Main function flow chart

After a reset, the application initializes all used peripherals and enters the endless loop. Figure 11 shows the flowchart of main ().

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 10/23

NXP Semiconductors

Software implementation

Start

System initialize
stem/Bus dock: 16M

ADCinitialize
PTA3/ADP3: sample |4
FTE3/ADP7: sample Ua:

ACMPLinitialize
ACMP L+ PTAZ
ACNP 1-: DAC output
Imterrupt enable

L

Hall initialize
FTAQ/PTAL/PTAZ: input enable

FOS initialize
FD5 input 2 enable
FOSOUTO™S output value setto O

IPC initialize
FTh 2 interrupt priority higher
than MTIM1 interupt priorty

I

Figure 11. Main function flow chat

button intialize
FTB2: KBlinterupt pin
MTIMI intialize
Period: 1 kHz

|H1I"ﬁt enable

FTM2Z intiglize
Period: 10 kHz
configures F\WhA channets
Interrupt enable

6.2 MTIM1 interrupt

Figure 12 shows the detailed process of the MTIM1 interrupt service routine.

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020

Application Note

11/23

NXP Semiconductors

Software implementation

MTIM1 ISR
Period: 1 ms

Demo mode detect ’—‘
it current
Change detect

=
State machine
detect and switch

SW3 is pressed to turn on or off the demo mode.

Demo mode on:

Motor run speed cycle is:

1000 -> 2000 -> 1000 > -1000 -> -2000 > -1000 -> __.
(rpm)

Demo mode off:

Motor speed is changed according to the given

required speed.

-Determine whether the limit current value needs to be
updated by detecting variable Limit_Current

- Update the ACMPI_C1_DACVAL will change the limit
current value.

Applnit

- intialize all variables

- ADC samples Idc and Udc

- enter to Fault state in next MTIM1

1SR loop

AppStop:

- ADC samples Idc and Ude

- Required speed detect, if required speed larger than given min speed, enter
to Run state in next MTIM1 ISR loop

- Software fault detect, if fault, enter to Fault state in next MTIM1. ISR loop

AppRun:

- ADC samples Idc and Udc

- Calculate speed ramp and speed error, the two parameters are used in PI
speed controller to get PWM duty cycle

- Required speed / speed ramp detect, if the values smaller than given min
speed, enter to Stop state in next MTIM1 ISR loop

AppFault:
- Disable the 6 PWM channels
- ADC samples Idc and Udc
- Determine whether the overcurrent hardware fault and
over tage faults are

- ACMP1 interrupt flag is clear, ACMP1 output value equal to 0, software
faultis removed.

- Idc and Udc sampled by ADC are within the limited range, hardware fault
is removed.
- If the faults are remaved, enter to Fault state in next MTIM1 ISR loop
Please note: when the state machine change form Fault state to Stop state,
all variables should be reintialized

Figure 12. MTIM1 interrupt service routine

Speed ramp:
Execute ramp function EQLIB_Rampl6 to generate ramp speed.

Speed error:
Speed error is cakculated by comparing required speed and actual speed.
Actual speed is got from FIM2 ISR.

PWM duty cycle:

The speed error enters the Pl speed controller te adjust the duty cycle of the
PWM pulses, which corresponds to the voltage amplitude required to
maintain the correct speed.

Pl speed controller function: CTR_ControllerPI16

6.2.1 State machine switch

The main state machine consists of the following sub-states: init, stop, run, fault. Figure 13 shows the main state machine switch.

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020

Application Note

12/23

NXP Semiconductors

Software implementation

Start ,
AppInitToStop

If(fault_flag==0)
AppFaultToStop ()

f(Speed_req
AppRunT:

speed_min)
yStop()
If(Speed_req > speed_min)
AppStopToRun()

If(fAult_flag)
AppStopToFault()

If(fault_flag)
AppRunToFault()

Figure 13. Main state machine flowchart

6.2.2 Speed PI closed loop

As shown in Figure 12, speed PI control loop is realized in AppRun function. There is a detailed description about the speed control
process. Figure 14 shows the block diagram of speed PI control.

Speed PI Duty Cyzle
Controller

Zpeed Command Speed
(Required spead) Ramp

-

Actusl Spesd

Figure 14. Speed PI control bock diagram

1. Speed ramp

Since the overall application is a system with large inertia, the speed command must be refined during the application,
otherwise, the system may be overloaded. One method is to generate a ramp, to make the speed ramp approach the speed
command (required speed value) by step increments defined in the code.

In this application, it needs three parameters in ECLIB_Ramp16 function to get actual speed ramp.
* Predefined ramp value (RaMP_SPEED)
* Required speed (wl16Speed req)
+ Speed ramp (w16Speed_ramp)

raMP_SPEED is defined as follows.

/* Speed ramp value settings for close loop */

#define SLOW_PERIOD_ US 1000.0//us
#define RAMP SPEED S 10000.0// (rpm/s)
#define RAMP SPEED (RAMP_SPEED_S*SLOW PERIOD US*32768.0/1000000.0/N MAX)

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 13/23

NXP Semiconductors

Software implementation

NOTE
The RAMP_SPEED parameter is scaled. For the description of speed scale, see Actual speed measure.

Figure 15 shows the process of ECLIB_Ramp16 function to increment or decrement the ramp speed value by a defined
step to bring the ramp value closer to the required value.

{ECLIB_Rampis)

.

wlgSpeed_ramp + RAMP_SPEED |

YEs
Samller than wlgSpeed_req

Return: wilg5peed ramp + RAMP_SPEED

wilE5peed_ramp — RAMP_SPEED |

YES
Larger than wilEspe=d_req

L

Return: wilgspesd_req Return: wilgspead_ramp — RAMP_SPEED

Figure 15. Flow chart for getting speed ramp

2. Pl controller

The speed PI control algorithm attempts to correct the speed error between required speed and actual speed,
w16Speed_error = w16Speed_ramp - w16Speed_Act_fit. The Pl controller output is passed to the PWM generator
(FTM2) as a newly corrected value of the applied motor voltage.

The Proportional-Integral (PI) algorithm in the continuous time domain is as shown in Equation 1.

u(e) = Kp-dt)+ K, Te(e)de

Equation 1. PI algorithm

Where:
* ¢(t): Input error in the continuous time domain.
* u(t). Controller output in the continuous time domain.
* K} Proportional gain in the continuous time domain.
* K Integral gain in the continuous time domain.

Equation 2 describes the discrete equation.

k
u(k) = K, () + KT,) ()

ji=1

Equation 2. Doscrete equation

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 14/23

NXP Semiconductors

Software implementation

Where:

» Ts Sample time.

* e(k): Input error in the discrete time domain.

* u(k): Controller output in the discrete time domain.
* K Proportional gain in the discrete time domain.
* K;! Integral gain in the discrete time domain.

The speed PI controller routine is executed in the apprun () function which is called every 1 ms, the sample time (7) of Pl
controller is 1 ms.

One input of the PI controller is speed error (w16speed error), and the other input is pointer to the structure
of the Pl controller parameters sSpeedpiParans (K), Kj ...). All these parameters are used in the Pl controller
function, CTR_ControllerPI16.

The output of the CTR_ControllerP116 function is uw16Dputy, which is used to update PWM duty in FTM2 ISR.

Kpis configured to 10 and Kjis configured to 1 in this application. These parameters must be reconfigured if the speed scale
or the motor is changed.

Figure 16 shows the PI control process by using the CTR_ControllerPI116 function to get the duty cycle.

CTR_ControllerPI16)

r

Megative/Positive error chack

Calculate proportional portion:
K. * wlGSpesd_error

!

Caculate integral portion:
K. * wlGSpead_srmor+ pravious
integral portion value
]

-
Calculate duty cycle:
proportiona portion + integral portion

Dty cycle output limitation check:
0 =< duty oycle <= P modulo

Return: uwlgDuty

Figure 16. Flow chart of getting duty cycle

6.2.3 Limit current calculation
The DC-Bus current sensing circuit is in FRDM-DC-LVBLDC board, as shown in Figure 17.

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 15/23

NXP Semiconductors

Software implementation

R33

7

TP6

uzB
FAN4852

20K

€22 ||0.01uF
1[50V
ADC MID R4‘g 20K
L C5DCBH
R37 K 15
b R36
0.010
12w R33 1K
L CSDCBL
GEDM Gain=1*001*20k/1k=02VI/A
FS Cument = 1.65V / 0.2V/A = +/-8 25A
F=1/2*Pi*20k * 10nF = 786Hz

C23

||D.01uF

ql50v

> CUR_DCB 5

DCB Current Sense

Figure 17. DC-Bus current sensing circuit

As shown in Figure 17, the reference voltage for the above OPAMP is 1.65 V, the gain is 0.2 V/A, and the output will connect to
ACMP1+ input of SO8PB16. If we the set limit current value to i, it follows the equation:

ACMP1 positive input voltage = 1.65 + 0.2 x /

According to the ACMP1 configuration in ACMP and FDS, we can know that DAC output, (ACMP1_C1_DACVAL + 1) | 64 x Vin,
is configured as ACMP1- input. ACMP + input should be smaller than ACMP- input. We can get the equation:

(ACMP1_C1_DACVAL+1)/64 xVin>1.65+0.2x%/
Where:

« Vin: The reference voltage of DAC. Select VDDA (5 V) as the reference voltage in this application note.

* [The desired limit current.

Therefore, the current limit value can be changed by changing the acMp1_c1_bacvaL value according to the above equation.

6.3 FTM2 interrupt

Figure 18 shows the detailed process of the FTM2 interrupt service routine.

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020

Application Note

16/23

NXP Semiconductors

Software implementation

- Parameter: uwi1bFTM _cntr
FTM2 interrupt - Record the number of FTM2 overflow period, which is
counter used to calculate the actual speed.
Motor vector - Read PTAO/PTAL/PTAZ2 input values,
calculate - Define a pattern to cakulate hall signal value
- Get the hall vector
FTM2 ISR
Period: 0.1 ms - Control PWM channel output value according to the
Commutate detection of motor direction and hall vector
- Use FTM software controlled output function to
control the 6 PWM channels output the desire values.
PWM duty cycle Use the duty cycle obtianed from MTIM1 ISR to update
update the duty of the 6 channels.
" - uwlb6FTM_cntr is used to measure commutation
Actual s 4(interval period (uwi16Comm_Period)
measure . .
- The actual speed is calculated according to the

commutation interval period.

Figure 18. FTM2 interrupt service routine

As shown in Figure 18, the commutation and actual speed measurement are realized in FTM2 ISR, described in details as below.

6.3.1 Commutation
The definition of the correct commutation table is the key point of the application porting for the customer-specific BLDC motor.

In this application note, when the motor rotates clockwise and counterclockwise, the corresponding relationship between hall
values and the power sequence of three phases is determined by manual test. Customers can obtain hall signals by voltage align
or refer to motor manufacturer-provided commutation table.

This chapter gives a detailed description of how to implement commutation. Figure 19 shows the definition of the commutation
table in this application note.

NOTE
The hall signals of different motors will change according to the different installation positions and 3-phase phase
sequence. In actual use, we can use the open-loop align method to determine the hall signals corresponding to
each rotor sector.

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 17/23

NXP Semiconductors

Software implementation

Hall pattern definition Vector Commutation definition Commutation definition
definition Clockwise direction Counterclockwise direction
PTA2 PTAO_ PTAO HALL Vector | Phase | Phase | Phase Phase | Phase | Phase
Hall3 Hall2 Halll signal A B © A B C
1 1 0 6 1 + - NC A+B- - + NC B+A-
0 1 0 2 2 =k NC - A+C- - NC <k C+A-
0 1 1 3 3 NC + - B+C- NC - + C+B-
0 0 1 1 4 - + NC B+A- - + NC A+B-
1 0 1 = = - NC + CH+A- + NC - A+C-
1 0 0 4 6 NC - + C+B- NC + - B+C-

Figure 19. Commutation definition

The hall sensors are installed at a 120° electrical degree apart in our used BLDC motor, they detect the rotor flux. Combining the
outputs of all the three sensors that will give 6 status, except 111 and 000. The commutation is repeated per 60° electrical degrees.
We defined a hall signal calculation pattern to get Vector, then execute the commutate process according to Vector value. The
steps of commutation are:

» Hall signal calculation:

Hall_signal = PTA2_Hall3 x 0x04 + PTA2_Hall3 x 0x02 + PTA2_Hall1 x 0x01
* Vector definition:

The Vector value can be got by the defined array: vector_Table[HALL_signal] = {0,4,2,3,6,5,1,0}
* Commutation:

Commutation is achieved by changing the energization direction of phase A, B, and C voltage according to the vector value,
as shown in Figure 19.

Commutation provides the creation of a rotating magnetic field. The angle between the stator flux and the rotor flux should be kept
as close to 90° as possible, to get the maximum torque. For the proper operation of a BLDC motor, it is necessary to keep the
angle between the stator flux and rotor flux close to 90°, the real angle varies from 60° to 120°.

With six-step control, we get a total of six possible stator flux vectors. The stator flux vector must be changed at a certain rotor
position. The rotor position is usually sensed by the six states of hall effect sensors. Each of the six states corresponds to a certain
stator flux vector. As shown in Figure 19, all the six hall sensor states with corresponding stator flux vectors are illustrated in
Figure 20.

B+A- Weclorb CHh-
Hall: 100

F'hjseﬁk

ﬁ

Vector 1
Hall: 110

Vector 5
Hall: 101

B+C- & = > C+B-
e
Dhase + Phase B
-~ \“\HH
HHTFITDDE Vector 2
Al Hall: 010

Vector 3
A4C- Hall: 01 1 A+E-

Figure 20. Stator flux vectors at six-step control

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 18/23

NXP Semiconductors

Software implementation

The rotor rotates in a direction that reduces the angle between the stator flux and rotor flux.

As shown in (a) in Figure 21, when the rotor is in Vector 1, A+B- commutation is performed. The rotor will run from Vector 1 to
Vector 2 to reduce the angle between the stator and rotor flux to achieve clockwise rotation.

As shown in (b) in Figure 21, when the rotor is in Vector 1, B+A- commutation is performed. The rotor will run from Vector 1 to
Vector 6 to reduce the angle between the stator and rotor flux to achieve counterclockwise rotation.

B+ vector CHA- B+tA Vedors A
=e A hase A
Vector 5 Vector1 Vector 5 Vector 1
B+C- € > CB- B+ € > C+4B-
Phase WE B Phase Phase B
Vector 4 Vector 2 Vectar 4 Wector 2
Wector 3
Wector 3
A+C- A+B- A4C- AtB-
(a) clockwise commutation (b) counterclockwise commutation
Figure 21. A commutation process when the rotor position is in vector 1

The 3-phase voltage is modulated by six PWMs. The modulation method is the rpwM_LoN mode. If the rotating direction of the
motor is clockwise, with the power sequence of (A+B-) -> (A+C-) -> (B+C-) -> (B+A-) -> (C+A-) -> (C+B-)), in one electrical angle
cycle, the commutation process and the timing of the six PWMs are as shown in Figure 22.

0° 60° 120° 180° 240° 320° 360°

Figure 22. Commutation process and the timing of the 6 PWMs

6.3.2 Actual speed measure

All speed constants are scaled in this application code. All speed constants divided by the pre-defined maximum value, N_MAX
= 100000 rpm, convert the signed fractional number in the range of [-1,1) into a fixed point 16-bit number (* 32768) in the
format Q1.15.

The actual speed value is calculated by using the commutation period of per 60° electrical degrees, uw76Comm_Period,
and a scale constant NUMERATOR_FOR_SPEED which enables time value conversion to speed value. The actual speed
w16Speed Act fitis the filtered value of w76Speed Act. w16Speed_Act can be calculated with Equation 3.

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 19/23

NXP Semiconductors

Application guide

w16Speed_Act =

Equation 3. Actual speed

NUMERATOR_FOR_SPEED

uw16Comm_Period

NUMERATOR_FOR_SPEED is pre-defined as follows:

NUMERATOR_FOR_SPEED= ((PWM_FREQUENCY _KHZ*1000.0*60.0/ 6.0/ PP)/ N_MAX)*32768.0

Where:
* PWM FREQUENCY KHz: 10 kHz
* N Max: 100000 rpm

» pp: 2 (pole pairs)

7 Application guide

The BLDC motor control application can be controlled by the FreeMASTER with PC or use the button SW3 on the EVK board to

control the speed.

Please strictly follow the steps below to set up hardware and software and then start the BLDC demo:

1. Set the jumper according to the position of the red mark in Figure 23.

a *l
L]

Ur .
RIS lal -
¢ I‘ {r'n)

ﬂ*#}.:uhu

Figure 23. Jumper settings of SO8PB16-EVK

u:tlz 3

.|._1

L__J

¥ =i ks2
g 5
Pahras)
#8200
ek vae-
l-hlm

o ”(-pa (e

NGO

Jom NXP B.V.

S08PB16-EVK

o= b flol
*u ki @on

R O
R @dch

=Lt O]_«

—1 Mool
o

2. Rework the S08PB16-EVK board. By default, PTAO/PTA1/PTA2/PTA3/PTB3 are connected to peripherals on the
S08PB16-EVK board. But now, these pins need to connect to motor control signals from the FRDM-LVBLDC board.
Remove 0 Q resistances from R1/R4/R7/R10/R11and weld 0 Q to R3/R6/R9/R12/R13. See Figure 24 for the circuit rework.

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020

Application Note

20/23

NXP Semiconductors

Application guide

PTAD € AN > PTAWBUTTON_1 PTAD &S + Rl " DNP 0 ¢ SSPTAVBUTTON_1
‘—/\ﬁw—« S>PTANMC_ENC_I I&-U_« S>PTAOMC_ENC_|
PTAT K3 AL <> PTAIRGE_BLUE PTAI < >—— < >PTAVRGB_BLUE
¢ S>PTAIMC_ENC_A RE 0e 0 (¢ S>PTAIMC_ENC_A
PTA2 AN < >>PTAZRGB_GREEN == T &) R7 | DNP | 0 ¢ $>PTA2RGB_GREEN
I—w—({ S>PTA2MC_ENC_B R - £ S>PTAZMC_ENC B
PTA3 AAA { D> PTAYANALOG_IN PTA3 K R10 ey © ¢ 3> PTAVANALOG_IN
‘—’\ﬁhﬁ‘—« »> PTAIMC_CUR_DCB [—-—<R‘2 ¢ O)PTAIMC_CUR_DCB
PTB3 <<> YA <>>pTB3F'RGB_RE3 PTB3 << > o R11 - 0 <>>pTE3 RGB_RED
I—w—({ SHPTBIMC_VOLT_DCB R13 - | & S>PTBIMC_VOLT DCB
Default Rework
Figure 24. S08PB16-EVK rework

Combine the S08PB16-EVK board with FRDM-MC-LVBLDC board through the I/O headers.

Connect the motor three phase output and HALL signal to the FRDM-MC-LVBLDC board in order.
Connect the USB cable to the OSBDM port on the S08PB16-EVK board.

Open the project with CodeWarrior (11.1 version or above) then make and download the firmware to chip.

Open the S08PB16_BLDC.pmpx with FreeMASTER (3.0 version or above). Select Project -> Options -> Comm —>

Communications -> Plug-in Module to select FreeMASTER BDM as communication. Click Project -> Options -> MAP
Files. Select the .abs file as Default symbol file and File format as Binary ELF with DWARF2 or DWARF4 dbg format. The

configurations are as shown in Figure 25.

3 S08PB16_BLDC.pmpx - FreeMASTER

FEHOD-<F LGS a2
File Edit View Explorer Project | Tools Help
5 Commands...

= speed

Reload Symbol File Ctri+M
Select Symibol File...

Resource Files...

iﬂnsm

Options

cti+T |

[LS R

oMM | MAP Files | Pack Dir | HTML Pages | Demo Mode | Views & Bars

Communication

C BS232: Port [COMT J|
Speed: [3600 -] Timeouts..

FreeMASTER BDM Communication Plug-in (CortexM, qusrz‘

@ Plug-in Module|

Connect string: | [drv=6iptype=3iprum=1:devid=devock==| Configure...

[™ Save settings to project file = Saye settings to registry, use it as default.

Commupication state on startup and on project load
 Open port at startup
@ Danot open port at startup
(" Store port state on exit, apply it on startup
I Stgre state to project file, apply upon its load

x

e I B |

Figure 25. FreeMASTER configurations

ription docu

splayeq regé

the Control

Agvanced...

‘ Please specify the URL of the document describing the item currently selected in the project tree.

*

Options

Comm MAP Files | Pack Dir | HTML Pages | Demo Mode | Views & Bars |

(ST Wi W6 164616 BLDC\SOAPA16 BLDC\FLASH\SO0Bph 16 evk fatabs

Eile format: Binary ELF with DWARF2/DWARFA dbg format Edit
List of all valid
symbol files:

N

Note: The file selected in the list will be used as default symbol
file when the project is opened

On Load
r
[¥ Synchranize variables each time the symbol file loads
[¥ List errors (variables using undefined symbols)
® Always Except after project load

o L]

8. Supply the 12 V DC voltage to the FRDM-MC-LVBLDC board and click the GO button on FreeMASTER. Set the speed

command value(rpm) to Speed_req or drag the Speed Required slider to start the motor.

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020

Application Note

21/23

NXP Semiconductors

References

9. Figure 26 shows the FreeMASTER control page, which can be used for speed control, demo mode control, adjustment of
limit current, and real-time monitoring of speed/DC-bus current/DC-bus voltage/state machine/variables.

SOBPB16-BLOC pmpx - FreeMASTER
: File Edit View Explorer Project Tools Help

EEHAD -~ R e DS [Pl S Rt R o |- [0 8 E

| | SO08PBE16 BLDC Motor Control Demo
Demo Mode Control

& S08PB16_BLDC
Scope
eBMdcStateindax: STOP Real-time display state
machine/DC-bus voltage & current

Speed Gauge

Demo Mode

DC-Bus Veltage
0 2 4 6 8 1012 14161820 22 24 26
I

DC-Bus Current
o 1 2 3 4
—_

Require Speed Slider Limit Current Slider
Speed Required Current Limitation

N{P Semiconductors, Inc. 2020. Designed by MCU SE Teaz

www. nxp. com/S08PB16-EVK

prereac=nmes \/ariables scope

Name Value Unit P
\wl6Speed_req rpm 1000

0
R — \wilbSpeed_Act_flt 0 unit 1000
sy st b s wil6Speed_ramp 0 unit 1000
|uwl6Duty 0 DEC 1000

|eBldcStatelndex STOP ENUM 0
HALL_vector 2 DEC 0
|Vdc 12,3352 unit 1000
|1dc -0.0276947 unit 1000
Demo_Mode OFF [0] ENUM 0

Connection Info BDM Communication Plug-in (CortexM, PowerPC, HCS08/12, ColdFire)

Figure 26. FreeMASTER control page

8 References

These references are available on https://www.nxp.com.
1. MC9S08PB16 Reference Manual (document MC9S08PB16RM)
2. How to use the interconnection of OPAMP, ACMP1 and FDS for SO8PB 16 (document AN12836)
3. BLDC Motor Control with Hall Sensors Driven by DSC (document AN4413)
4. BLDC Motor Control with Hall Effect Sensors Using MQX on Kinetis (document AN4376)

3-phase BLDC Control Based on S08PB16, Rev. 0, 09/2020
Application Note 22/23

https://www.nxp.com
https://www.nxp.com.cn/docs/en/reference-manual/MC9S08PB16RM.pdf
https://www.nxp.com.cn/docs/en/application-note/AN12836.pdf
https://www.nxp.com.cn/docs/en/application-note/AN4413.pdf
https://www.nxp.com.cn/docs/en/application-note/AN4376.pdf

How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

arm

Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder
to design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products
for any particular purpose, nor does NXP assume any liability arising out of the application

or use of any product or circuit, and specifically disclaims any and all liability, including

without limitation consequential or incidental damages. “Typical” parameters that may be
provided in NXP data sheets and/or specifications can and do vary in different applications,
and actual performance may vary over time. All operating parameters, including “typicals,”
must be validated for each customer application by customer's technical experts. NXP does
not convey any license under its patent rights nor the rights of others. NXP sells products
pursuant to standard terms and conditions of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC,
MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire,
ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,
PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform
in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, elQ, and Immersive3D
are trademarks of NXP B.V. All other product or service names are the property of their
respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio,
CorelLink, CoreSight, Cortex, DesignStart, DynamlQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled,
NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME,
ULINK-PLUS, ULINKpro, uVision, Versatile are trademarks or registered trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected
by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle

and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and
Power.org word marks and the Power and Power.org logos and related marks are trademarks
and service marks licensed by Power.org.

© NXP B.V. 2020. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 09/2020
Document identifier: AN12957

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 S08PB16 features and advantages
	3 BLDC motor control theory
	4 Hardware and software implementation
	4.1 System hardware design
	4.2 System software design

	5 Peripheral configurations
	5.1 FTM2
	5.2 ACMP and FDS
	5.3 ADC
	5.4 MTIM1
	5.5 IPC
	5.6 KBI
	5.7 PORTA

	6 Software implementation
	6.1 Main function flow chart
	6.2 MTIM1 interrupt
	6.2.1 State machine switch
	6.2.2 Speed PI closed loop
	6.2.3 Limit current calculation

	6.3 FTM2 interrupt
	6.3.1 Commutation
	6.3.2 Actual speed measure

	7 Application guide
	8 References

