
1 Introduction
The K32L2B microcontroller family provides an ultra-low power feature for the
power sensitive market. Several low power modes are implemented in this
MCU family to meet this requirement. This application note show users details
of each power modes and provides user case examples in the SDK power
mode switch example demo. Tips are given for using each of the power modes.

The MCUXpresso SDK provides users with robust peripheral drivers, stacks, middleware,and example applications designed to
simplify and accelerate application development on any NXP MCU. The MCUXpresso SDK is complimentary and includes full
source code under a permissive open-source license for all hardware abstraction and peripheral driver software.

This application note focuses on the Power Management Controller (PMC), System Mode Controller (SMC), Multipurpose Clock
Generator Lite version (MCG-Lite), and Low Leakage Wakeup Unit (LLWU).

2 Power modes on K32L2B MCU

2.1 Basic power modes in Cortex-M0+ core
The Arm® Cortex-M0+ uses the basic power modes of Arm Cortex-M architecture: Run, Sleep, and Deep Sleep. The Cortex-M0+
processor sleep modes reduce power consumption.

• Sleep mode: It stops the processor clock.

• Deep sleep mode: It stops the system clock and switches off the PLL and flash memory.

The system can generate spurious wakeup events, for example, a debug operation wakes up the processor. For this reason,
software must be able to put the processor back into the sleep mode after such an event. A program might have an idle loop to
put the processor back into sleep mode. To enter the low power modes (sleep/deep sleep), there are three instructions to inform
the processor:

• Wait For Interrupt (WFI): The WFI instruction causes immediate entry to the sleep mode. When the processor executes a
WFI instruction, it stops executing instructions and enters the sleep mode.

• Wait For Event (WFE): The WFE instruction causes entry to the sleep mode conditional on the value of a one-bit event
register (set by SEV instruction). When the processor executes a WFE instruction, it checks the value of the event register
as below:

— 0 = The processor stops executing instructions and enters the sleep mode.

— 1 = The processor sets the register to zero and continues executing instructions without entering the sleep mode.

• Send the EVent (SEV): The SEV instuction causes an event to be signaled to all processors within a multiprocessor
system. It also sets the local event register.

In the Cortex-M0+ core, the SCB register controls the behavior of entering low power modes after the WFI/WFE instruction.

Contents

1 Introduction.. 1

2 Power modes on K32L2B MCU.............1

3 Application - measuring the current
in various power modes...................... 7

4 Conclusion... 17

AN12736
K32L2B Power Mode Switch Application
Rev. 0 — 02/2020 Application Note

Figure 1. SCB register in Arm core

• SCB[SLEEPDEEP] bit controls whether the processor uses sleep mode or deep sleep mode as its low power mode:

— 0 = Sleep

— 1 = Deep sleep

• SCB[SLEEPONEXIT] bit indicates sleep-on-exit when returning from Handler mode (Interrupt Service Routine) to Thread mode
(the main() function):

— 0 = Do not sleep when returning to Thread mode, back to the main() function directly.

— 1 = Enter the sleep or deep sleep again, on return from an ISR to Thread mode, never back to the main() function
any more. Setting this bit to 1 enables an interrupt driven application to avoid returning to an empty main application.

• SCB[SEVONPEND] bit send Event on Pending bit:

— 0 = Only enabled interrupts or events can wake up the processor and disabled interrupts are excluded.

— 1 = Enabled events and all interrupts, including disabled interrupts, can wake up the processor. When an event or
interrupt becomes pending, the event signal wakes up the processor from WFE. If the processor is not waiting for an
event, the event is registered and affects the next WFE. The processor also wakes up on execution of an SEV
instruction or an external event.

Here tells the WFE as a light weight version of WFI to pend the CPU's execution, but not restore and recover context, which
saves more cycles to enter and exit the low power modes.

The WFE instruction causes entries to sleep mode conditional on the value of a one- bit event register. When the processor
executes a WFE instruction, it checks the value of the event register:

• 0 = The processor stops executing instructions and enters the sleep mode.

• 1 = The processor sets the register to zero and continues executing instructions without entering the sleep mode.

If the event register is 0, WFE suspends execution until one of the following events occurs:

• An exception, unless masked by the exception mask registers or the current priority level.

• An exception enters the Pending state, if SEVONPEND in the System Control Register is set.

• A Debug Entry request, if debug is enabled.

• An event signaled by a peripheral or another processor in a multiprocessor system using the SEV instruction.

2.2 Extend power modes in K32L2B
In the K32L2B, this core uses WFI instruction to invoke Sleep and Deep Sleep modes, but also extends power modes and their
relationship, as presented in Table 1.

NXP Semiconductors
Power modes on K32L2B MCU

K32L2B Power Mode Switch Application, Rev. 0, 02/2020
Application Note 2 / 18

Table 1. Power modes on K32L2B MCU

Arm CM0+ power modes K32L2B MCU power mode Wakeup module Reset or not?

RUN RUN, VLPR — —

RUN CPO AWIC/NVIC No

SLEEP WAIT, VLPW NVIC No

DEEP SLEEP STOP, VLPS WIC No

DEEP SLEEP PSTOP1 AWIC No

DEEP SLEEP PSTOP2 AWIC/NVIC No

DEEP SLEEP LLS LLWU No

DEEP SLEEP VLLSx (x=0/1/3) LLWU Yes

NVIC means any interrupt source can wake up an MCU from WAIT/VLPW mode. AWIC means only the AWIC wake-up source
in the reference manual can wake up the MCU from STOP/VLPS mode. LLWU means only the LLWU wake-up source in the
reference manual can wake up the MCU from LLS/VLLSx modes. To wake up from VLLSx mode, go through a reset flow and
call LLWU reset. For Compute Operation mode (CPO), Arm core is in the run mode. Any asynchronous interrupt and Arm core
synchronous interrupt can wake up the MCU to the run mode. Table 2 shows the detailed descriptions about each power mode.

Table 2. Power mode description

Mode Description

RUN The MCU can be run at full speed and the internal supply is fully regulated, that is, in run
regulation. This mode is also referred to as Normal Run mode.

WAIT The core clock is gated off. The system clock continues to operate. Bus clocks, if enabled,
continue to operate. Run regulation is maintained.

STOP The core clock is gated off. System clocks to other masters and bus clocks are gated off after
all stop acknowledge signals from supporting peripherals are valid.

VLPR
The core, system, bus, and flash clock maximum frequencies are restricted in this mode. See
the Power Management chapter in KL43 Sub-Family Reference Manual (document
KL43P64M48SF6RM) for details about the maximum allowable frequencies.

VLPW

The core clock is gated off. The system, bus, and flash clocks continue to operate, although
their maximum frequency is restricted. See the Power Management chapter in KL43 Sub-
Family Reference Manual (document KL43P64M48SF6RM) for details about the maximum
allowable frequencies.

VLPS The core clock is gated off. System clocks to other masters and bus clocks are gated off after
all stop acknowledge signals from supporting peripherals are valid.

LLS The core clock is gated off. System clocks to other masters and bus clocks are gated off after
all stop acknowledge signals from supporting peripherals are valid. The MCU is placed in a
low leakage mode by reducing the voltage to internal logic. All system RAM contents, internal
logic and I/O states are retained.

VLLS3 The core clock is gated off. System clocks to other masters and bus clocks are gated off after
all stop acknowledge signals from supporting peripherals are valid. The MCU is placed in a
low leakage mode by powering down the internal logic. All system RAM contents are retained
and I/O states are held. Internal logic states are not retained.

Table continues on the next page...

NXP Semiconductors
Power modes on K32L2B MCU

K32L2B Power Mode Switch Application, Rev. 0, 02/2020
Application Note 3 / 18

https://www.nxp.com/docs/en/reference-manual/KL43P64M48SF6RM.pdf
https://www.nxp.com/docs/en/reference-manual/KL43P64M48SF6RM.pdf

Table 2. Power mode description (continued)

Mode Description

VLLS1 The core clock is gated off. System clocks to other masters and bus clocks are gated off after
all stop acknowledge signals from supporting peripherals are valid. The MCU is placed in a
low leakage mode by powering down the internal logic and all system RAM. I/O states are
held. Internal logic states are not retained.

VLLS0 The core clock is gated off. System clocks to other masters and bus clocks are gated off after
all stop acknowledge signals from supporting peripherals are valid. The MCU is placed in a
low leakage mode by powering down the internal logic and all system RAM. I/O states are
held. Internal logic states are not retained. The 1 kHz LPO clock is disabled and the power
on reset (POR) circuit can be optionally enabled using STOPCTRL[PORPO].

For K32L2B family devices, the NMI pin can wake up all power modes, while the reset pin resets MCU power mode into default
RUN mode if the reset pin is not filtered by the bus clock.

Figure 2 shows the power mode state transitions available on the chip. Any reset always brings the MCU back to the normal RUN
state.

NXP Semiconductors
Power modes on K32L2B MCU

K32L2B Power Mode Switch Application, Rev. 0, 02/2020
Application Note 4 / 18

Figure 2. Power mode state transitions

To enter the target power mode from RUN/VLPR mode:

• Disable the Low Voltage Detection (LVD) functions in Power Management Controller (PMC) module, to ignore the warning
when the LDO reduces the power supply in some ultra low power modes.

• Disable the unnecessary modules/pins to save power in target low power mode, and set up the clock wakeup source
module to trigger the low power exit event.

• Set up the clock source for target power mode, so that the surviving module still be working with an available clock source.

• Unlock the indicated the power modes in SMC -> PMPROT (Power Mode Protection) reigister, so that the target power
mode can be entered.

• Set up the target mode in SMC -> PMCTRL (Power Mode Control) register and the SMC -> STOPCTRL (Stop Control).

NXP Semiconductors
Power modes on K32L2B MCU

K32L2B Power Mode Switch Application, Rev. 0, 02/2020
Application Note 5 / 18

• Call the WFI or WFE to invoke into the low power mode.

To exit from the low power mode:

• Wait for the pre-setup wakeup source to be triggered by wakeup event.

• For the VLLSx modes, LLWU is specially desigend as a wakeup module to collect all available wakeup source.

For some wake-up routine from reset, it is also necessary to clear the PMC -> REGSC[ACKISO] bit to unlock the port pins, which
is locked and kept stable in some ultra-low power modes.

About the wake-up source, Table 3 shows the surviving modules in the ultra low power modes (LLS and VLLSx).

Table 3. Surviving modules in ultra low power modes

Modules VLPR VLPW Stop VLPS LLS VLLSx

Core modules

NVIC FF FF static static static OFF

System modules

Mode Controller FF FF FF FF FF FF

LLWU static static static static FF FF

Regulator low power low power ON low power low power low power in
VLLS3, OFF in
VLLS0/1

Brown-out
Detection

ON ON ON ON ON ON in VLLS1/3,

optionally
disabled in
VLLS0

Clocks

1 kHz LPO ON ON ON ON ON ON in VLLS1/3,

OFF in VLLS0

System
oscillator (OSC)

OSCERCLK

max of 16 MHz
crystal

OSCERCLK

max of 16 MHz
crystal

OSCERCLK

optional

OSCERCLK

max of 16 MHz
crystal

OSCERCLK

max of 16 MHz
crystal

OSCERCLK

max of 16 MHz
crystal in
VLLS1/3, OFF
in VLLS0

Memory and memory interfacesSystem modules

SRAM_U and
SRAM_L

low power low power low power low power low power low power in
VLLS3,

OFF in VLLS0/1

System register
file

powered powered powered powered powered powered

Timers

LPTMR FF FF Async operation Async operation Async operation Async operation

Table continues on the next page...

NXP Semiconductors
Power modes on K32L2B MCU

K32L2B Power Mode Switch Application, Rev. 0, 02/2020
Application Note 6 / 18

Table 3. Surviving modules in ultra low power modes (continued)

Modules VLPR VLPW Stop VLPS LLS VLLSx

FF in PSTOP2

RTC FF

Async operation
in CPO

FF Async operation

FF in PSTOP2

Async operation Async operation Async operation

Human-machine interfaces

RTC FF

Async operation
in CPO

FF Async operation

FF in PSTOP2

Async operation Async operation Async operation

OFF in VLLS0

3 Application - measuring the current in various power modes
In the document, an application software is designed for measuring the current of K32L2B MCU working in various power modes.
The FRDM-K32L2B board is used as main hardware platform. The two buttons on the board are used to switch the target power
mode selection on SLCD screen.

3.1 Board settings
FRDM-K32L2B board has the measuring socket but need a little additional hardware work to make it available in application. In
the schematic, J20 is the expected measurement socket, as shown in Figure 3.

Figure 3. Schematic of measuring socket on FRDM-K32L2B board

However, J20 is shorted on the board by default. To measure the current going through into the VDD, we need to cut off this
connection and put the multimeter (in current measurement mode) into the series connection, as shown in Figure 4.

NXP Semiconductors
Application - measuring the current in various power modes

K32L2B Power Mode Switch Application, Rev. 0, 02/2020
Application Note 7 / 18

Figure 4. FRDM-K32L2B measuring socket

To enable the SLCD displaying during the low power modes, use the on-board buttons (SW1 and SW3) and SLCD screen to
switch the power mode and show the status, as shown in Figure 5.

NXP Semiconductors
Application - measuring the current in various power modes

K32L2B Power Mode Switch Application, Rev. 0, 02/2020
Application Note 8 / 18

Figure 5. Use button to switch power mode

3.2 Software design
MCUXpresso SDK software package provides the driver for SMC, PMC, LLWU and clock modules. In the application software,
we can use these driver APIs to operate the power modes with other peripheral drivers.

NXP Semiconductors
Application - measuring the current in various power modes

K32L2B Power Mode Switch Application, Rev. 0, 02/2020
Application Note 9 / 18

3.2.1 Switch power modes with software
Totally 10 power modes are covered in this application demo:

/* Power mode definition used in application. */
typedef enum _app_power_mode
{
 kAPP_PowerModeRun, /* Normal RUN mode */
 kAPP_PowerModeWait, /* WAIT mode. */
 kAPP_PowerModeStop, /* STOP mode. */
 kAPP_PowerModeVlpr, /* VLPR mode. */
 kAPP_PowerModeVlpw, /* VLPW mode. */
 kAPP_PowerModeVlps, /* VLPS mode. */
 kAPP_PowerModeLls, /* LLS mode. */
 kAPP_PowerModeVlls0, /* VLLS0 mode. */
 kAPP_PowerModeVlls1, /* VLLS1 mode. */
 kAPP_PowerModeVlls3, /* VLLS3 mode. */
 kAPP_PowerModeMax
} app_power_mode_t;

The APP_PowerModeSwitch() function is the most important function to execute the power mode switch. It uses the SMC driver's
API to control the target power mode:

void APP_PowerModeSwitch(smc_power_state_t curPowerState, app_power_mode_t
targetPowerMode)
{
 smc_power_mode_vlls_config_t vlls_config;
 vlls_config.enablePorDetectInVlls0 = true;

 switch (targetPowerMode)
 {
 case kAPP_PowerModeVlpr:
 APP_SetClockVlpr(); /* setup the lower clock source for VLPR. */
 SMC_SetPowerModeVlpr(SMC);
 while (kSMC_PowerStateVlpr != SMC_GetPowerModeState(SMC))
 {
 }
 break;

 case kAPP_PowerModeRun:

 /* Power mode change. */
 SMC_SetPowerModeRun(SMC);
 while (kSMC_PowerStateRun != SMC_GetPowerModeState(SMC))
 {
 }

 /* If enter RUN from VLPR, change clock after the power mode change.
*/
 if (kSMC_PowerStateVlpr == curPowerState)
 {
 APP_SetClockRunFromVlpr(); /* setup the higher clock source for
RUN. */
 }
 break;

 case kAPP_PowerModeWait:
 SMC_PreEnterWaitModes();
 SMC_SetPowerModeWait(SMC);
 SMC_PostExitWaitModes();

NXP Semiconductors
Application - measuring the current in various power modes

K32L2B Power Mode Switch Application, Rev. 0, 02/2020
Application Note 10 / 18

 break;

 case kAPP_PowerModeStop:
 SMC_PreEnterStopModes();
 SMC_SetPowerModeStop(SMC, kSMC_PartialStop);
 SMC_PostExitStopModes();
 break;

 case kAPP_PowerModeVlpw:
 SMC_PreEnterWaitModes();
 SMC_SetPowerModeVlpw(SMC);
 SMC_PostExitWaitModes();
 break;

 case kAPP_PowerModeVlps:
 SMC_PreEnterStopModes();
 SMC_SetPowerModeVlps(SMC);
 SMC_PostExitStopModes();
 break;

 case kAPP_PowerModeLls:
 SMC_PreEnterStopModes();
 SMC_SetPowerModeLls(SMC);
 SMC_PostExitStopModes();
 break;

 case kAPP_PowerModeVlls0:
 vlls_config.subMode = kSMC_StopSub0;
 SMC_PreEnterStopModes();
 SMC_SetPowerModeVlls(SMC, &vlls_config);
 SMC_PostExitStopModes();
 break;

 case kAPP_PowerModeVlls1:
 vlls_config.subMode = kSMC_StopSub1;
 SMC_PreEnterStopModes();
 SMC_SetPowerModeVlls(SMC, &vlls_config);
 SMC_PostExitStopModes();
 break;

 case kAPP_PowerModeVlls3:
 vlls_config.subMode = kSMC_StopSub3;
 SMC_PreEnterStopModes();
 SMC_SetPowerModeVlls(SMC, &vlls_config);
 SMC_PostExitStopModes();
 break;

 default:
 break;
 }
}

Entering a new power mode is kind of like switching to a new task with new working condition in OS. Some operations should
be done before the entering to close the current mode and prepare for the new mode. When come to a new mode, some initial
work should be done as well. So, in the application demo code, the function of APP_PowerPreSwitchHook() and
APP_PowerPostSwitchHook() are created to pack these operations. To make the MCU costing as lower power consumption as
possible, the unnecessary peripherals are disabled before entering the wait/stop modes, and recovery after waken up. In the
application demo, the UART peripheral for terminal interaction, and the output pins are disabled in low power modes. during the
MCU is sleep, only the SLCD driven by OSC32 clock and the NVIC/AWIC are still alive.

NXP Semiconductors
Application - measuring the current in various power modes

K32L2B Power Mode Switch Application, Rev. 0, 02/2020
Application Note 11 / 18

3.2.2 Use on-board buttons to select mode
SW1 (PTA4) and SW3 (PTC3) are used to enter the selected target mode and exit. They are driven totally by ISR:

/* PTC3. */
void APP_WAKEUP_BUTTON_IRQ_HANDLER(void)
{
 if ((1U <<APP_WAKEUP_BUTTON_GPIO_PIN) &
PORT_GetPinsInterruptFlags(APP_WAKEUP_BUTTON_PORT))
 {
 /* Disable interrupt. */
 PORT_SetPinInterruptConfig(APP_WAKEUP_BUTTON_PORT,
APP_WAKEUP_BUTTON_GPIO_PIN, kPORT_InterruptOrDMADisabled);
 PORT_ClearPinsInterruptFlags(APP_WAKEUP_BUTTON_PORT, (1U <<
APP_WAKEUP_BUTTON_GPIO_PIN));
 sw3_irq_done = true;
 }
}

/* PTA4. */
void PORTA_IRQHandler(void)
{
 uint32_t flags = PORT_GetPinsInterruptFlags(PORTA);
 PORT_ClearPinsInterruptFlags(PORTA, flags); /* clear flags. */

 /* PTA4. */
 if (0u != ((1u << 4u) & flags))
 {
 sw1_irq_counter = (sw1_irq_counter+1u)% 10u;

 slcd_set_number(0u, sw1_irq_counter, false);
 PRINTF(".");
 }
}

app_power_mode_t APP_GetTargetPowerMode(void)
{
 sw3_irq_done = false;

 /* enable the pin detection. */
 PORT_SetPinInterruptConfig(PORTA, 4u, kPORT_InterruptFallingEdge);

 /* wait for a new sw3_irq. */
 PORT_SetPinInterruptConfig(PORTC, 3u, kPORT_InterruptFallingEdge);
 while (!sw3_irq_done)
 {}
 /* disable the pin detection. */
 PORT_SetPinInterruptConfig(PORTA, 4u, kPORT_InterruptOrDMADisabled);

 PRINTF("%d\r\n", sw1_irq_counter);

 return (app_power_mode_t)(sw1_irq_counter);
}

SW1 is only activated during the APP_GetTargetPowerMode() function is running. After the SW3 is pressed in this function, the
SW1 is locked again. Then the value increased by SW1 previously would be return as the selection.

SW3 is also used as the wakeup source:

• When the NVIC is still alive, SW3 use port interrupt to wakeup the MCU and exit the low power modes.

NXP Semiconductors
Application - measuring the current in various power modes

K32L2B Power Mode Switch Application, Rev. 0, 02/2020
Application Note 12 / 18

• When the NVIC is down in some ultra low power modes, SW3 is routed to the LLWU, which can wakeup the MCU through
AWIC.

3.2.3 Keep memory alive in low-power modes
To show if the memory can still keep the data in various power modes. A variable with software token written inside is used to
indicate the content is lost or not. In the application demo, a token, APP_LOW_POWER_MEM_TOKEN, is written to variable of
app_always_keep_value before entering a low power sleeping mode, then read it after the MCU is waken up again. For the low-
power modes that need the reset routine to wakeup, the software also will read the token variable before writing a new token.
Everytime when the MCU is waken up, either from reset or inplace, the software would read the token variable and compare it
with the expected value, then tell the user on the SLCD screen and UART terminal.

#define APP_LOW_POWER_MEM_TOKEN 0x55555555

volatile uint32_t app_always_keep_value; /* keep the token value during in low
power modes. */

int main(void)
{
 ...

 /* Unlock all the power modes of chip. */
 SMC_SetPowerModeProtection(SMC, kSMC_AllowPowerModeAll);

 /* Clear the low power lock bit. */
 if (kRCM_SourceWakeup & RCM_GetPreviousResetSources(RCM)) /* Wakeup from
VLLS. */
 {
 PMC_ClearPeriphIOIsolationFlag(PMC);
 NVIC_ClearPendingIRQ(LLWU_IRQn);
 PRINTF("\r\nMCU wakeup from VLLS modes...\r\n");

 if (APP_LOW_POWER_MEM_TOKEN == app_always_keep_value)
 {
 slcd_set_number(2, 1, false);
 PRINTF("memory value is kept.\r\n");
 }
 else
 {
 slcd_set_number(2, 0, false);
 PRINTF("memory value is missed.\r\n");
 }
 }
 else
 {
 PRINTF("\r\npower mode switch example.\r\n");
 }

 while (1)
 {
 ...

 /* Wait for user response */
 targetPowerMode = APP_GetTargetPowerMode();

 /* only go next with avaiable and right input. */
 if (1u == APP_CheckPowerMode(curPowerState, targetPowerMode))
 {
 APP_PowerPreSwitchHook(curPowerState, targetPowerMode);

NXP Semiconductors
Application - measuring the current in various power modes

K32L2B Power Mode Switch Application, Rev. 0, 02/2020
Application Note 13 / 18

 /* setup wakeup source. */
 if ((kAPP_PowerModeRun != targetPowerMode)
 && (kAPP_PowerModeVlpr != targetPowerMode))
 {
 APP_SetWakeupConfig(targetPowerMode);
 }

 APP_PowerModeSwitch(curPowerState, targetPowerMode);
 APP_PowerPostSwitchHook(curPowerState, targetPowerMode);
 }
 }

static void APP_PowerPreSwitchHook(smc_power_state_t originPowerState,
app_power_mode_t targetMode)
{
 /* setup a token in memory. */
 app_always_keep_value = APP_LOW_POWER_MEM_TOKEN;
 slcd_set_number(2, SLCD_ON_SHOW_NUMBER_NONE, false);
 PRINTF("Set a token in memory\r\n");

 ...
}

static void APP_PowerPostSwitchHook(smc_power_state_t originPowerState,
app_power_mode_t targetMode)
{
 /* check the token. */
 if (APP_LOW_POWER_MEM_TOKEN == app_always_keep_value)
 {
 slcd_set_number(2, 1, false);
 PRINTF("token value is kept.\r\n");
 }
 else
 {
 slcd_set_number(2, 0, false);
 PRINTF("token value is missed.\r\n");
 }

 ...
}

3.3 Run application demo project
Finally, after building the project and downloading the image to FRDM-K32L2B board, the application demo can run to measure
the working current in different power mode. The UART terminal can output the log information.

Let us try the multimeter first. Just as mentioned previously, put the multimeter (in current measurement mode) into the series
connection of J20. Connect the on-board debugger to PC and open the terminal tool for UART communication (9600, 8, N), as
shown in Figure 6.

NXP Semiconductors
Application - measuring the current in various power modes

K32L2B Power Mode Switch Application, Rev. 0, 02/2020
Application Note 14 / 18

Figure 6. UART terminal settings

Now the application demo is running.

The initial power mode is RUN. For the RUN mode, the SLCD shows 0 , as shown in Figure 7.

Figure 7. RUN mode

The UART terminal also shows the menu of the power mode selection, as shown in Figure 8.

NXP Semiconductors
Application - measuring the current in various power modes

K32L2B Power Mode Switch Application, Rev. 0, 02/2020
Application Note 15 / 18

Figure 8. Power mode selection on UART terminal

Then press SW1 to increase the number, which indicates the power mode in the menu. For each press, the number showing on
the SLCD increases one by one. Also, a dot shows in the UART terminal. For example, 2 is for the STOP mode.

Once the selection is done, press SW3 to enter the target mode. The SLCD shows a colon to tell that the MCU is sleeping, as
shown in Figure 9. In such a case, pressing SW1 gets no responses.

Figure 9. STOP mode

Press SW1 again to wake up the MCU. Then the number on the SLCD change to 0 and 1, as shown in Figure 10. The MCU
return to RUN with software token available.

NXP Semiconductors
Application - measuring the current in various power modes

K32L2B Power Mode Switch Application, Rev. 0, 02/2020
Application Note 16 / 18

Figure 10. RUN mode with software token available

The colon disappears and it means that the MCU is now running with no sleep.

0 on th left means the MCU just returns to the RUN mode. It is 3 when the MCU is waken up from VLPS/VLPW
to VLPR.

1 on the right means the token in the variable is still kept. It is 0 when the token value is missed.

There is only one exception for the VLLS0 (code 7). The SLCD shows nothing when the MCU is sleeping. This
mode powers down the SLCD mode. But after SW3 is pressed, the MCU is waken up and the SLCD is back on
line again.

 NOTE

Press SW1 to select other power mode and press SW3 to enter or exit the target modes.

During the operations to switch power modes, users can read the current value on the multimeter, which is showing the real-time
power consumption.

4 Conclusion
Per running this application demo, we measure the power consumption condition of K32L2B on FRDM-K32L2B board. Table 4
displays all the measuring values.

Even in the ultra-low-power modes, the LLWU, SLCD with OSC32 clock source are still active, as they are specially
designed for low-power usage.

 NOTE

Table 4. Power consumption in various power modes of K32L2B

Power Mode VDD_I Memory kept Comment

RUN 6.04 mA Yes 48 MHz CORE clock. UART enabled.

WAIT 3.23 mA Yes CORE sleep. UART disabled. NVIC wakeup.

STOP 0.16 mA Yes CORE sleep. UART disabled. NVIC wakeup.

VLPR 0.21 mA Yes 4 MHz CORE clock. UART enabled.

VLPW 0.10 mA Yes CORE sleep. UART disabled. NVIC wakeup.

VLPS 8.7 uA Yes CORE sleep. UART disabled. NVIC wakeup.

LLS 8.4 uA No CORE sleep. UART disabled. LLWU wakeup. SLCD & OSC32 disabled.

VLPS0 1.2 uA No CORE sleep. UART disabled. LLWU wakeup. SLCD & OSC32 enabled.

VLLS1 7.2 uA No CORE sleep. UART disabled. LLWU wakeup. SLCD & OSC32 enabled.

VLLS3 7.7 uA No CORE sleep. UART disabled. LLWU wakeup. SLCD & OSC32 enabled.

NXP Semiconductors
Conclusion

K32L2B Power Mode Switch Application, Rev. 0, 02/2020
Application Note 17 / 18

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, UMEMS, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V.
All other product or service names are the property of their respective owners. AMBA, Arm,
Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,
DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,
SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro,
µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks
and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 02/2020
Document identifier: AN12736

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Power modes on K32L2B MCU
	2.1 Basic power modes in Cortex-M0+ core
	2.2 Extend power modes in K32L2B

	3 Application - measuring the current in various power modes
	3.1 Board settings
	3.2 Software design
	3.2.1 Switch power modes with software
	3.2.2 Use on-board buttons to select mode
	3.2.3 Keep memory alive in low-power modes

	3.3 Run application demo project

	4 Conclusion

