
1 Introduction
The K32L2B is highly-integrated, market leading ultra low-power 32-bit
microcontroller based on the enhanced Cortex-M0+ (CM0+) core platform. The
family derivatives contain the following features:

• Core platform clock up to 48 MHz, bus clock up to 24 MHz.

• Memory option is up to 256 KB flash and 32 KB RAM.

• Two SPI modules.

• Two inter-integrated circuit (I2C) modules.

• One FlexIO module.

Over-The-Air (OTA) is a procedure to update the firmware without the use of physical wires, so it can be a solution for the current
Bluetooth LE Audio System. When a product is ready and released in the field, OTA can be used to upload new firmware that
brings new features.

• From the point view of a customer, OTA is convenient because the Headset does not need to be connected to a PC.

• From the point view of a manufacturer, OTA reduces the BOM cost as no USB hardware needs to be present.

This document provides OTA Operation Steps to support users who would like to use the NXH3670_SDK_Gaming_G3.0 tool to
update firmware in memory of K32L2B easily.

For more specific OTA introductions, including HAPI and Concept, refer to HAPI OTA of KL27.

Contents

1 Introduction.. 1

2 Concepts..2

3 Using Flashtool...................................... 5

4 Software design..................................... 9

5 Conclusion... 11

AN12649
OTA Process Introduction
Rev. 0 — 01/2020 Application Note

https://www.nxp.com/products/wireless/2.4-ghz-audio-streaming/low-latency-ultra-low-power-wireless-gaming-headphone-solution:NXH3670?tab=Design_Tools_Tab

2 Concepts

2.1 OTA update process

Figure 1. OTA setup

The setup requires a Dongle, Headset, PC and a USB cable connecting the Dongle and PC.

A typical scenario based on K32L2B + NxH3670 is described as below:

1. Dongle and Headset are initially programmed over the USB interface.

2. Dongle and Headset are paired.

• Pairing Data (PD) of Headset is independent on the PD of Dongle.

Once booted up, the Headset retrieves PD from its own Memory written in advance and will not store extra PD.

• PD of Dongle is dependent on the PD of Headset.

Once booted up, the Dongle retrieves PD and pair with Headset, and then stores the Headset device information in
Dongle’s PD section (eg. Partition3: Device Info & Bonding Data).

3. Dongle is re-flashed with the OTA_Dongle application, which is the start of the OTA process.

• OTA_Dongle can be used as VCOM to transfer data between PC and K32L2B through the USB.

• Before re-flashing operation, make sure that PD is not erased.(Dongle is responsible for getting Headset’s device
information and OTA_Dongle is not). Two NXH devices are paired firstly and then connected, so they can’t be
connected if the user has erased PD date stored in Dongle’s Flash.

• In the Debug mode, the code takes up much space. The Headset board does not have eough spaces to store the
binary data of Headset and OTA_Headset at the same time. So users can re-flash the Headset board with the
OTA_Headset application to test the OTA function. User may need choose Release mode to make sure Flash has
enough spaces to store firmware.

4. OTA process is triggered by PC application.

5. OTA finishes, firmware of Headset is updated.

6. Re-flash the Dongle with Gaming application.

NXP Semiconductors
Concepts

OTA Process Introduction, Rev. 0, 01/2020
Application Note 2 / 12

2.2 Second Storage Bootloader (SSB)

The SSB is automatically bootstrapped by the (ROM) first stage bootloader.

You can store multiple firmware in flash according to your requirements and inform SSB which firmware to boot.

For example, considering Headset board has no USB port in the K32L2B Bluetooth LE Audio System, developers store at least
three firmware in advance, including:

• SSB: To decide which firmware to boot.

• OTA firmware: To receive new firmware.

• Application firmware: An actual application, including specific Headset functions.

Taking the current demos as an example, SSB functions include:

1. Set the VTOR to the application vector table address.

2. Set stack pointers to the application stack pointer.

3. Jump to the application (PC now point to application).

The current design uses NXH3670 to transfer data over the air and program K32L2B via the SPI interface assisted
by the SSB code.

 NOTE

2.3 Partition table

The Dongle, OTA_Dongle, Headset and OTA_Headset applications and their locations are required to be mapped in Flash. This
mapping is present in the Partition Table stored at a fixed offset in the Flash memory of the Host controller. For more information,
refer to HAPI OTA.

Figure 2 shows the partitions and offsets.

NXP Semiconductors
Concepts

OTA Process Introduction, Rev. 0, 01/2020
Application Note 3 / 12

Figure 2. K32L2B Flash Layout example of a K32L2B Headset

• Partition 0 is the Gaming Application. It contains the firmware for the K32L2B Host Controller firmware, the NxH3670 ARM
image, the NxH3670 Audio Radio Vectors, and NxH3670 CoolFlux image.

• Partition 1 is the OTA application. It contains the Host Controller (K32L2B) firmware and NxH3670 ARM Image.

For OTA_Dongle, user only need to Flash ota_app and NxH_Binary (ARM.phOtaDongle.ihex.eep).

— rfmac (rfmac.eep) is added already in to Nxh image,

— CF (phStereoInterleavedAsrcTx.eep) is not required/used.

• Partition 2 contains Application data. As general-purpose data storage for the Gaming application, it is currently unused.

• Partition 3 contains the Device info and Bonding data. Device information contains Bluetooth LE specific attributes that
need to be present for the air interface to work. Bonding data makes sure that Dongle and Headset automatically
reconnect. Bonding data is only relevant for the Dongle.

NXP Semiconductors
Concepts

OTA Process Introduction, Rev. 0, 01/2020
Application Note 4 / 12

3 Using Flashtool
This document lists the operation steps of how to use .BAT to update firmware easily and quickly. For more information of
Flashtool, refer to the HAPI OTA and tools sections in NXH3670_SDK_Gaming_G3.0.

3.1 Modification introduction

1. ota_update_headset.bat

Figure 3. ota_update_headset.bat modification introduction

With JLink, perform the following steps to convert .yml of Partition table to .BIN that will be downloaded to Flash.

a. Open a command line interface

b. Go to your NXH3670_SDK_Gaming_G3.0 folder

c. Run flash_scripts\flashtool.cmd -> dev table.bin -> connection export -> layout

kinetis_democode\apps\kl_dongle\script\layout_debug_sdk.yml

Figure 4. Convert .yml to bin

However, first 2560 (0xA00) bytes of this table.bin are all 0x00. This document introduces two methods to handle it.

• Make sure that table.bin is flashed before flashing the SSB located in 0x00. Otherwise, the table.bin will
overwrite the SSB. So for OTA, user have to port the kl_ssb application or flash SSB file as well.

• Or, you can delete 2560 (0xA00) bytes of this table.bin and then download the changed table.bin to Partition
table address.(In our software, we put it to 0x3f400).

NXP Semiconductors
Using Flashtool

OTA Process Introduction, Rev. 0, 01/2020
Application Note 5 / 12

2. flashlist_release_sdk.yml

Figure 5. flashlist_release_sdk.yml modification introduction

flashlist_release_sdk.yml (kl_headset) lists the binaries and offset_index of Partition to be used to operate OTA.
In this example, the user want update ‘kl_headset_sdk.bin.eep’ to offset_index_0 of the current Partition.

3. layout_release_sdk.yml

NXP Semiconductors
Using Flashtool

OTA Process Introduction, Rev. 0, 01/2020
Application Note 6 / 12

Figure 6. layout_release_sdk.yml modification introduction

You can design your own layout_release_sdk.yml to meet the use of Flash. In the software design, MCU reads
NXH_Binaries from specified location and then transfer data to NXH3670 through the SPI interface. Make sure the design
of Flash layout is correct.

Perform the following step to convert .BIN to .EEP that will be used in OTA process.

• Use …\tools\to_eep.cmd by inputting -i XXX.bin -o XXX.bin.eep

Figure 7. Converting .BIN to .EEP

NXP Semiconductors
Using Flashtool

OTA Process Introduction, Rev. 0, 01/2020
Application Note 7 / 12

3.2 Test process

When users change ota_update_headset.bat, flashlist_release_sdk.yml and layout_release_sdk.yml correctly, OTA
can work.

Assuming that Dongle and Headset have already paired successfully, follow the steps as below.

1. Download OTA_Dongle and make sure that the PC can recognize it as a USB Serial Device.

Figure 8. VCOM USB serial device

As shown in Figure 8, PC recognize it as COM36.

2. This document list two cases:

a. Case 1: Users are running app instead of ota_app.

• In the Release mode, Active_flag of APP_Partition is 0 (Partition 0 – Gaming Application) currently, which
indicates that users need send command to switch Active_Partition from 0 to 1 (Partition 1 – OTA
Application).

Figure 9. Need Switch operation

• If users use phOtaHeadset.ihex.eep instead of phGamingRx.ihex.eep in the app case, it means they have
boot and start NXH3670 as OTA function (users can use OTA-related tool to communicate with Dongle board
with firmware phOtaHeadset.ihex.eep) and do not need switch remote Active_Partition actually.
However, the hci_table of app do not have OTA related code, so it cannot be used to operate OTA .

b. Case 2: Users are running ota_app and NXH_Binary is phOtaHeadset.ihex.eep.

• In the Debug mode, Active_flag of OTA_Partition is 1 (Partition 1 – OTA Application) currently, whcih
indicates that the code is ready for OTA process and do not need switch remote Active_Partition.

The folowing example assumes that user is using Case 1.

Open a command line interface and go to the flash_scripts folder. Input:

• ota_demo_sdk.bat (Uses may change it and rename it)

• board (this document uses the SDK board to test, so input S)

• USB port name (COM36).

NXP Semiconductors
Using Flashtool

OTA Process Introduction, Rev. 0, 01/2020
Application Note 8 / 12

Figure 10. CMD of OTA process

As shown in Figure 10, [##..##] 100% indicates the update progress.

3. LOG information

To view OTA progress better, users can download OTA_Headset_Debug_mode code that can provide the LOG information.

Figure 11. OTA_Headset WriteToPartition event

4 Software design
In order to describe the software design clearly, some programs are attached for user as reference.

4.1 Code of SSB

enum _vector_table_entries { kInitialSP = 0,kInitialPC };

uint32_t *appVectorTable = NULL;
uint32_t applicationAddress = 0;
uint32_t stackPointer = 0;

appVectorTable = (uint32_t *)(entry.startAddress + entry.imageOffsets[0] +
NVMMGR_EEP_INITIAL_HEADER_SIZE);
applicationAddress = appVectorTable[kInitialPC];
stackPointer = appVectorTable[kInitialSP];

NXP Semiconductors
Software design

OTA Process Introduction, Rev. 0, 01/2020
Application Note 9 / 12

JumpToApplication(applicationAddress, stackPointer);

void JumpToApplication(uint32_t applicationAddress, uint32_t stackPointer)
{
 /* Static variables are needed as we need to ensure the values we are using are not stored on the
previous stack */
 static uint32_t s_stackPointer = 0;
 s_stackPointer = stackPointer;
 static void (*farewellBootloader)(void) = 0;
 farewellBootloader = (void (*)(void))applicationAddress;

 /* Set the VTOR to the application vector table address */
 SCB->VTOR = applicationAddress;

 /* Set stack pointers to the application stack pointer */
 __set_MSP(s_stackPointer);
 __set_PSP(s_stackPointer);

 /* Jump to the application */
 farewellBootloader();
}

bootValidApp PROC
 EXPORT bootValidApp
 LDR r1, [r0, #0] ; Get app stack pointer
 MOV sp,r1 ;
 LDR r1, [r0, #4] ; Get app reset vector
 BX r1 ; PC now point to App_Firmware
 ENDP

4.2 Code of OTA receive

To let users understand the OTA receive process easily, this section provides an event handler in the OTA_Headset code:
HCI_VS_WRITE_TO_PARTITION_SUB_EVENT, to introduce how to write firmware to Flash.

Assuming Dongle board is running the OTA_Dongle demo and Headset board is running OTA_Heatset demo, the NXH3670 of
Headset can receive event from Dongle and transmit event to Host Controller (K32L2B) through the SPI interface.

1. The NXH3670 of Headset receive HCI_VS_WRITE_TO_PARTITION_SUB_EVENT (0Xe1) sent from the NXH3670 of Dongle,
then will run HCI_EvtWriteToPartitionHandler.

 {
 .evtCode = HCI_VS_EVENT_CODE,
 .subEvtCode = HCI_VS_WRITE_TO_PARTITION_SUB_EVENT,
 .evtHandler = HCI_EvtWriteToPartitionHandler,
 .evtParmsLen = HCI_UNDEFINED_PARAMETER_LENGTH,
 },

2. Write the data to the requested partition with offset. This document lists some APIs as below:

• Users need to write outside of the current cached sector, so all data need to be copied in the current sector.

ReadFromFlash(s_Context.cacheBuf, SECTOR_SIZE_IN_BYTES, s_Context.cachedSectorAddr)

NXP Semiconductors
Software design

OTA Process Introduction, Rev. 0, 01/2020
Application Note 10 / 12

• Users can modify Cache with the data sent from NXH3670 of Dongle board.

memcpy(&s_Context.cacheBuf[cacheOffset], data, cpyLen);

• When the data of one packet is copied to cacheBuf, users can program Sector by using Flash write API.

ProgramSector(s_Context.cacheBuf, SECTOR_SIZE_IN_BYTES, s_Context.cachedSectorAddr);

3. The operation is successful to NXH3670 with a command as below:

HCI_CmdDataWritenToPartition(&req);
HCI_SendCmdBlocking(&req)

4.3 Code of OTA send

To let user understand the OTA send process easily, this section uses Pseudo code to introduce how OTA_Dongle sends
firmware to OTA_Headset.

void UsbVcomDataReceived_Cb(uint32_t length, uint8_t *data)
{
 switch (opcode) {
 case HCI_CMD_VS_CONNECT_OPCODE: {
 …
 HCI_CmdPrepareConnect(&hciReq, &connectParams);
 ….
 break;}

 default: {
 ….
 HCI_CmdPrepareHostGenericCmd(&hciReq, data, length);
 ….
 break;}
 }

• Case HCI_CMD_VS_CONNECT_OPCODE

This CMD means that the OTA_Dongle wants to connect OTA_Headset.

• Default CMD

OTA_Dongle will send any other CMD to OTA_Headset by using NXH3670. Actually, the MCU of
OTA_Headset is responsible for writing these data to Flash.

 NOTE

5 Conclusion
Users can implement program update by using the Flashtool and files in NXH3670_SDK_Gaming_G3.0. Changes may be required
on design needs. The firmware update speed via OTA is about 1 KB per second.

NXP Semiconductors
Conclusion

OTA Process Introduction, Rev. 0, 01/2020
Application Note 11 / 12

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan,
big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,
Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK,
ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered
trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related
technology may be protected by any or all of patents, copyrights, designs and trade secrets. All
rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related
marks are trademarks and service marks licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 01/2020
Document identifier: AN12649

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Concepts
	2.1 OTA update process
	2.2 Second Storage Bootloader (SSB)
	2.3 Partition table

	3 Using Flashtool
	3.1 Modification introduction
	3.2 Test process

	4 Software design
	4.1 Code of SSB
	4.2 Code of OTA receive
	4.3 Code of OTA send

	5 Conclusion

