
by: NXP Semiconductors

1 Introduction
The S32R274 is a 32-bit Power Architecture

®
 based Microcontroller (MCU) unit

for automotive applications. It extends the MPC5775K family by a value device
optimized for surround RADAR sensors and midrange front RADAR sensors.
The MCU family is designed to address advanced RADAR signal processing
capabilities and merge it with microcontroller capabilities for generic software
tasks and bus interfacing.

This application note describes the procedure that needs to be followed during
powerup to main function entry on the S32R274. It also describes the software
requirements for initializing the device and starting code execution on multiple
cores.

1.1 Objective
After reading this application note you can understand the following:

• The reset and boot procedure of the MCU and the transition to execute user software

• How to select the boot mode

• How to search boot location and configure them

• How to use DCF records to control initial device configurations

• How to process serial boot by BAM

• How to create, understand and configure the startup code for software requirement

• How to initialize SRAM memories

• How to start Z7 core

1.2 Register instantiations in C
C code in Application note based on MCU header files, which use unions to define MCU memory-mapped registers and to provide
a structure that puts all register definitions for a particular hardware component together under one structure name.

There are two different instantiations that could be used in a C program:

<MODULE>.<REGISTER>.R = 0x00000001

<MODULE>.<REGISTER>.B.<BIT> = 1

2 Reset and boot procedure
The reset process is a sequence of several reset phases. Each reset phase has a specific entry condition, a specific exit condition,
and a specific device reset behavior, which is different among the reset phases. The reset phases are executed in an order, thus
building the actual reset process.

Contents

1 Introduction..1

2 Reset and boot procedure.................. 1

3 Boot mode.. 5

4 Device configuration........................... 7

5 Boot location..9

6 Serial boot by BAM............................ 11

7 Software startup.................................14

8 Start Z7 core.......................................23

AN12553
S32R274 initialization Process - from MCU Powerup to Main
Function Entry
Rev. 0 — August, 2019 Application Note

2.1 Relevant module

2.1.1 Reset Generation Module

The reset generation module (MC_RGM) generates and manages the reset process sequence of the chip, which ensures that
the relevant parts of the chip are reset based on the reset source event. It provides a register interface and a reset sequencer.
Various registers are available to monitor and control the chip reset sequence .

2.1.2 System Status and Configuration Module

The System Status and Control Module (SSCM) is enabled by RGM. SSCM reads the Device Configuration Format (DCF) records
during boot from the flash memory and distributes the read values via an internal DCF bus to the related modules to configure
certain registers in the chip during system boot, while the reset signal is asserted. It parses this data to see if valid boot code
exists.

2.1.3 Boot Assist Module

The Boot Assist Module (BAM) is a block of read-only memory containing VLE code which is executed according to the boot mode
of the device. The code stored in the BAM is not executed when booting in single chip mode. Except when entering the "static
mode", in case no valid bootable section has been found, in case the lifecycle is failure analysis, if invalid address or password
is downloaded through serial boot or in case of any communication error over serial interface.

2.1.4 Other modules

There are some other modules (PMC, STUC2, MC_ME) related to reset and boot, see the S32R274 Reference Manual for detailed
description.

2.2 Reset state machine
The reset sequence is comprised of five phases managed by a state machine, which ensures that all phases are correctly
processed through waiting for a minimum duration, until all processes that needs to occur during that phase have been completed
before proceeding to the next phase. The state machine is used to produce the reset sequence as shown in the following figure.

NXP Semiconductors

Reset and boot procedure

S32R274 initialization Process - from MCU Powerup to Main Function Entry, Rev. 0, August, 2019
Application Note 2 / 26

Figure 1. Reset state machine diagram

You can observe that in Figure1 there are different types of reset that may be generated when the device has reached an
operational state.These different levels of reset (destructive, functional, and short) allow some system resources to be maintained
in their last state during the reset event.

2.3 Boot sequence overview
The following is a high-level summary of the boot sequence.

1. When power is applied to a properly programmed device, the Power Management Controller (PMC) takes control of the
device.

2. After the system power supplies have reached predefined levels, the PMC signals the RGM to begin the boot sequence.

3. During the boot sequence (reset phase two), flash is initialized is by the hardware.

4. RGM enables the SSCM to read the DCF records.

5. SSCM writes the configuration information to the specified registers.

6. In a single chip boot mode SSCM searches for the boot location.

7. After registers are initialized, the SSCM passes the control of the boot sequence back to the RGM, which directs the STCU2
to start the memory and logic built in self tests (MBIST and LBIST).

8. After MBIST and LBIST are complete, RGM releases reset and device starts code execution from reset vector.

NXP Semiconductors

Reset and boot procedure

S32R274 initialization Process - from MCU Powerup to Main Function Entry, Rev. 0, August, 2019
Application Note 3 / 26

Figure 2. Boot sequence flow diagram

2.4 External signal
The following pins are associated with reset:

• VREG_POR_B

• RESET_B

2.4.1 VREG_POR_B

The VREG_POR_B is connected to P16 pin. In reset POWERUP state, VREG_POR_B pin is driven low. When VREG_POR_B
pin is high, the reset state is allowed to enter into PHASE 0.

2.4.2 RESET_B

The RESET_B is connected to T17 pin, which is a bidirectional pin. The voltage level on this pin can either be driven low by an
external reset generator or by the device internal reset circuitry. A high level on this pin can only be generated by an external
pullup resistor which should be strong enough to overdrive the weak internal pulldown resistor.

NXP Semiconductors

Reset and boot procedure

S32R274 initialization Process - from MCU Powerup to Main Function Entry, Rev. 0, August, 2019
Application Note 4 / 26

Figure 3. Reset sequence

2.5 Module status during reset process
The following figure shows the status of device modules during the reset process.

Figure 4. Module Status during reset states

RST: Module is held in reset by the global reset process

BIST: Module is being tested or held in a non-functional state during self-test execution as controlled by the STCU.

ON : Module is functional.

3 Boot mode
The device supports the following boot modes for the main boot core:

• Single Chip (SC) - The device boots from the first bootable section of the flash memory main array.

• Serial Boot Loader (SBL) - The device downloads boot code from either SCI or CAN interface and then execute it.

3.1 Boot mode selection
If booting is not possible with the selected configuration then the device will enter static mode. Boot mode is selected depending
on:

• Life Cycle (LC):

— Serial boot only possible in NXP production (MCU_PROD) or customer delivery (CUST_DEL) LC

— No boot in failure analysis LC (requires test mode)

• FAB and ABS pin states

NXP Semiconductors

Boot mode

S32R274 initialization Process - from MCU Powerup to Main Function Entry, Rev. 0, August, 2019
Application Note 5 / 26

Table 1. Module status during reset states

LC FAB pin ABS pin SSCM_STATUS(BMO
DE)

Functionality

MCU_PROD,
CUST_DEL

0 x Single chip/Flash boot Flash boot

MCU_PROD,
CUST_DEL

1 0 SCI serial boot loader UART boot (BAM)

MCU_PROD,
CUST_DEL

1 1 CAN serial boot loader CAN boot (BAM)

OEM_PROD,
IN_FIELD

x x Singlechip/Flash boot Flash boot

FA x x - Static mode

3.2 External signal pin
The pins associated with boot mode select are:

• FAB

• ABS

3.3 Boot mode select flow
The following is the S32R274 boot mode select flow:

1. To boot either from FlexCAN or LINFlex, the chip must be forced into an Alternate Boot Loader mode via the FAB pin which
must be asserted before initiating the reset sequence. The type of alternate boot mode is selected according to the Alternate
Boot Selector (ABS) pin. Boot from FlexCAN or LinFLEX is only available when LifeCycle is MCU_PROD or CUST_DEL.

2. If FAB is not asserted and LifeCycle is MCU_PROD or CUST_DEL, the device boots from the first flash-memory sector
which contains a valid boot signature.

3. If LifeCycle is OEM_PROD or IN_FIELD, then FAB and ABS pins are ignored and device always boots from Flash.

4. If no flash memory sector contains a valid boot signature, the device will go into static mode.

5. If Life cycle (LC) = Failure Analysis (FA), then device will go into static mode.

Static mode means the chip enters the low power SAFE mode and the processor executes a wait instruction.

 NOTE

NXP Semiconductors

Boot mode

S32R274 initialization Process - from MCU Powerup to Main Function Entry, Rev. 0, August, 2019
Application Note 6 / 26

Figure 5. Boot mode selection

3.4 Life cycle status
The SSCM determines the Life Cycle (LC) of the device by reading the LC slots. The read operation is done during the reset
phase with normal timings and is protected by operating monitors and ECC check. In addition, a set of sanity checks executed
over the LC read data guarantees the integrity of the final LC value. At the end of the reset phase, the LC can have one of the
following values:

• MCU production

• Customer delivery

• OEM production

• In field

• Failure analysis

4 Device configuration
SSCM controls the device configuration. DCF records are used by the SSCM to configure certain registers in the chip during
system boot while the reset signal is asserted. The DCF records are intended to be programmed by user and contain various
configurations for chip boot up. Some UTEST DCF records are written in factory and programmed during production testing.
Others are written by the end user and programmed at the same time when application code is programmed into the flash memory.

4.1 DCF records structure
A DCF record is a double-word (64-bit) wide data field consisting of the following:

• Data - 32 bits of data to be written to the DCF client

• Chip select - For each DCF record, one chip select bit is asserted

• Address - Address of the DCF client within the selected module

• Parity - Parity Bit for the DCF record

• Stop - Stop bit indicates the end of the list of DCF records.

NXP Semiconductors

Device configuration

S32R274 initialization Process - from MCU Powerup to Main Function Entry, Rev. 0, August, 2019
Application Note 7 / 26

Figure 6. DCF record structure

4.2 DCF memory map
Factory-written DCF records start at the first address in the UTEST flash memory area. Initial records are programmed by NXP.

Table 2. Module Status during reset states

Start address End address Size(byte) Description

0x00400300 0x00400307 8 DCF start
record(0x05AA55AF0000000
0)

0x00400308 0x00400AFF 2040 UTEST DCF records

0x00400B00 0x00403FFF 13568 Reserved for customer OTP
data

UTEST DCF records may be added at the next location in the UTEST memory map immediately following the factory (NXP)
written UTEST DCF records to the end of the list by the customer.

4.3 DCF client
DCF clients are 32-bit wide hardware registers inside a module that receive and store the data from a DCF record. This stored
data is used to initialize registers and configure features.

NXP Semiconductors

Device configuration

S32R274 initialization Process - from MCU Powerup to Main Function Entry, Rev. 0, August, 2019
Application Note 8 / 26

Table 3. DCF client modules

CS[14:0] Assignment DCF Client Target module

CS[0] SSCM

CS[1] IPS

CS[2] STCU

CS[3] RAM

CS[4] TAMPER DETECT

CS[5] TSENS/RCOSC

CS[6] PASS

CS[7] Miscellaneous

CS[8] Reserved

CS[9] PMC/AFE

4.4 Programming DCF records
The developer must maintain a history of DCF which had been programmed. The flash programming tool used in the development
environment must be configured to program the DCF record memory for new records only, compared to a standard erase/program
sequence. Attempting to erase or overprogram OTP flash may result in a program failure, or other unpredictable behavior, and
could leave the UTEST flash in an indeterminate state. In some extreme cases, this may even leave the device inaccessible by
the debugger. Please consult with your tool vendor before programming DCF records to ensure that the DCF records are
programmed as expected and without errors.

During a typical application development, the way DCF records are used may be changed once or more before the final software
release.

4.5 Overwriting existing DCF records
As the UTEST flash memory is OTP (one time programable) user cannot simply rewrite already programmed data. For this
purpose, S32R274 implements overwrite function.

Figure 7. Overwriting DCF records

More than one DCF record can be written to the same DCF client. In this case the later record usually overrides a DCF client
value set by a previous record. However, not all DCF clients allow overwrites, this depends on the DCF client implementation.

5 Boot location
For getting a vlaid boot ID a lot locations are searched in the chip. The lowest sector that starts with a valid boot ID is used to
boot the device. For the flash memory locations that are searched on the chip, please refer to the chip-specific details about boot
locations in flash memory in the chip reference manual.

NXP Semiconductors

Boot location

S32R274 initialization Process - from MCU Powerup to Main Function Entry, Rev. 0, August, 2019
Application Note 9 / 26

5.1 Potential boot sectors
S32R274 series MCU boots from eight specified flash locations:

1. 0x00F98000,Flash block 0 -boot location 0, Partition 2 -16KB

2. 0x00F9C000,Flash block 1 -boot location 1, Partition 3 -16KB

3. 0x00FA0000,Flash block 2 -boot location 2, Partition 2 -64KB

4. 0x00FB0000,Flash block 3 -boot location 3, Partition 2 -64KB

5. 0x01000000,Flash block 8 -boot location 4, Partition 6 -256KB

6. 0x01040000,Flash block 9 -boot location 5, Partition 6 -256KB

7. 0x01080000,Flash block 10 -boot location 6, Partition 6 -256KB

8. 0x010C0000,Flash block 11 -boot location 7, Partition 7 -256KB

SSCM scans these eight locations during boot in reset state.

5.2 Reset configuration half-word
Each boot sector in flash memory contains the reset configuration half-word (RCHW) at offset 00h. If the RCHW field BOOT_ID
holds the value 5Ah (0X01011010b), then the sector is considered bootable. In addition, there is a flag which indicates that the
code is a VLE code, all other bits are reserved.

Table 4. Reset configuration half-word

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 VLE Boot identifier

Reserved 1 0 1 0 1 1 0 1 0

When the chip detects that it needs to boot from flash memory and also needs to find a valid BOOT_ID, the device boots from
the application start address at offset 04h within the boot sector.

5.3 Boot and alternate boot sectors
Some applications require an alternate boot sector so that the main boot can be erased and reprogrammed in the field. The user
can create two bootable sectors when an alternate boot is needed. The lowest sector is the main boot sector and the highest
shall be the alternate boot sector. The alternate boot sector does not needs to be together with the main boot sector. This scheme
ensures that there is always one active boot sector by erasing one of the boot sectors only.

• Sector is activated (that is, program a valid BOOT_ID instead of FFh as initially programmed).

• Sector is deactivated by writing 0 to some bits of the BOOT_ID field (bit 1 and/or bit 3, and/or bit 4, and/or bit 6).

5.4 Configure boot location
The RCHW occupies the most significant 16 bits of the first 32-bit internal memory word at the boot location. The next 32 bits
contain the boot vector address. After applying the RCHW, the SSCM branches to this boot vector. During software initialization,
reserve space for both of these 32-bit locations in the linker directive file are as follows:

MEMORY
{
 flash_rchw : org = 0x00FA0000, len = 0x4
 cpu_reset_vector : org = 0x00FA0000+0x04, len = 0x4
……
}

NXP Semiconductors

Boot location

S32R274 initialization Process - from MCU Powerup to Main Function Entry, Rev. 0, August, 2019
Application Note 10 / 26

In the initialization code file, these two locations are generated with a valid RCHW encoding and the start address symbol for
code entry point.

SECTIONS
{
.rchw : { } > flash_rcw
.reset_vector : { } > cpu_reset_vector
…
}

6 Serial boot by BAM
SBL boot mode is managed by BAM. If some conditions are true, the device fetches code at location 0xFFFF_C000 and the BAM
application starts.

6.1 Cases for executing BAM
Single chip boot mode (selecting the first bootable Flash sector) is managed by hardware and BAM do not participate in it.

BAM is executed in any of the following cases:

• Serial boot mode has been selected by FAB pin

• Hardware has not found a valid Boot ID in any flash memory boot locations

• If lifecycle is Failure Analysis.

If one of these conditions is true, the chip fetches code at location 0xFFFF_C000 and the BAM application starts.

6.2 BAM boot flow
The SSCM_STATUS[BMODE] field indicates which boot has to be executed. BMODE reset value depends on the device status
after leaving reset.

BMODE:

• 001 FlexCAN (FlexCAN_0) Serial Boot Loader

• 010 LINFlex-UART (LINFlex_1) Serial Boot Loader

• Other values are reserved

If BMODE field shows the reserved values, the Boot mode is not considered valid and the BAM pushes the device into Static
mode.

In all other cases data is downloaded in Serial Boot mode and saved in the correct SRAM location.

NXP Semiconductors

Serial boot by BAM

S32R274 initialization Process - from MCU Powerup to Main Function Entry, Rev. 0, August, 2019
Application Note 11 / 26

Figure 8. BAM process flow

The first action is to save the initial device configuration. In this way it is possible to restore the initial configuration after downloading
the new code before executing it. This allows the new code to be executed as the device was just coming out of reset.

The initial device configuration is then restored and the code jumps to the address provided from the downloaded code. At this
point BAM has just finished its task. If there is any error (that is, communication error, wrong boot mode selected, etc.), BAM
restores the default configuration and puts the device into Static mode. It is needed only when the chip is unable boot in the mode
which was selected.

During and after the BAM execution, the mode reported by ME_GS[S_CURRENT_MODE] in the module MC_ME Module is
"DRUN".

6.3 Serial boot sequence
From high level perspective, the download protocol follows the steps shown in the following figure.

NXP Semiconductors

Serial boot by BAM

S32R274 initialization Process - from MCU Powerup to Main Function Entry, Rev. 0, August, 2019
Application Note 12 / 26

Figure 9. Serial boot flow

Each step must be completed before the next step starts. A more detailed description of these steps is given in the following sub
sections.

6.3.1 Transmission mode

The communication is done in half duplex manner, any transmission from host is followed by the MCU transmission:

• Host sends data to MCU and waits

• MCU echoes to host, the data has been received

• Host verifies if echoes are correct

— if data is correct, the host can continue to send data

— if data is not correct, the host stops transmission and MCU must be reset.

All multi-byte data structures are sent with MSB first.

6.3.2 Download 64-bit password and password check

The first 64-bits received represent the password. This password is compared with PUBLIC password
0xFEEDFACECAFEBEEF. If password matches, the download continues otherwise BAM puts device into Safe mode.

6.3.3 Download start address VLE bit and code size

The next 8 bytes received by the MCU contain a 32-bit Start Address, the Variable Length Instruction (VLE) bit and a 31-bit code
length.

The VLE bit is used to indicate the instruction set for which the code has been compiled. The BAM supports the download of VLE
code.

The Start Address defines the location at which the received data will be stored and location at which the MCU will branch after
the download is complete. The two LSB bits of the start address are ignored by the BAM program, such that the loaded code
should be 32-bit word aligned.

The Code Length defines the number of data bytes to be loaded. BAM code allows code length of up to 150 KB.

6.3.4 Download data

Each byte of data received is stored in the chip SRAM, starting from the address specified in the previous protocol step. It is not
verified whether the provided address in SRAM is a valid address or is writable.

NXP Semiconductors

Serial boot by BAM

S32R274 initialization Process - from MCU Powerup to Main Function Entry, Rev. 0, August, 2019
Application Note 13 / 26

The address increments until the number of bytes of data received matches the number of bytes specified in the previous protocol
step.

Since the SRAM is protected by a 64-bit wide Error Correction Code (ECC). for the downloaed data, the BAM performs a series
of 64 bit writes to initialize the SRAM. The actual writes are performed in chunks of 32-bit. If the last byte received does not fall
onto a 32-bit boundary, the BAM fills it with 0 bytes.

Finally a "dummy" word (0x0000_0000) is written to avoid a possible ECC error during core prefetch.

6.3.5 Execute code

The BAM program waits for the last echo message transmission to get completed.

Then it restores the initial MCU configuration and jumps to the code loaded at Start Address which was received in step 2 of the
protocol. At this point BAM has finished its tasks and MCU is controlled by new code executed from SRAM.

6.3.6 Serial interface

The BAM downloads code into internal SRAM through the following serial protocols and executes it afterwards:

• FlexCAN (CAN_0)

• LINFlex-UART (LINFlex_1)

Depending on the selected boot mode, any download is performed with a fixed baud rate.

6.3.6.1 UART Baud rate

The LINFlexD controller is configured to operate at a baud rate of f XOSC / 833, using 8 bit data frame without parity bit and 1
stop bit.

6.3.6.2 CAN Baud rate

Boot from FlexCAN uses the system clock driven by the external oscillator. The FlexCAN controller is configured to operate at a
baud rate = system clock frequency/40.

6.3.7 Inhibiting BAM operation

Under certain circumstances, you may want to inhibit BAM operation. To do this, set the SSCM_ERROR[RAE]. The default value
of RAE bit is 0, which means allow access to BAM memory block.

Figure 10. BAM memory block

The example C code is used to inhibit BAM operation.

{……
SSCM.ERROR.B.RAE = 0x1; //set SSCM_ERROR_RAE value;
……}

Any attempt to access the memory range occupied by the BAM will then result in an access error.

7 Software startup
Started from reset vector or program’s entry point, the initialization procedure executes and performs the minimal setup for
preparation of C code execution later.

NXP Semiconductors

Software startup

S32R274 initialization Process - from MCU Powerup to Main Function Entry, Rev. 0, August, 2019
Application Note 14 / 26

7.1 Software execution conditions
For the user application the software needs to be executed and it is necessary to achieve the following conditions when releasing
reset (RESET_B pin is high):

• The related module finish reset operations:

— The SSCM module indicates device configuration is done.

— The FCCU module has completed its configuration sequence.

— The PMC module indicates it has finished its internal self-test.

— The FLASH module indicates the availability of array accesses.

• Reset status transfers to Idle, turn on the boot core

• The following must be properly programed to the respective flash memories before releasing reset:

— User application code.

— Reset vectors for CPU.

— DCF records.

— Life cycle records.

7.2 Generating example code
This typical examples code file (startup.s) is generated through S32 DS.Power wizard taking certain initialization steps.

1. Install S32DS.Power.

2. Choose S32DS Application Project.

Figure 11. New project

3. Choose S32R274 Processors.

NXP Semiconductors

Software startup

S32R274 initialization Process - from MCU Powerup to Main Function Entry, Rev. 0, August, 2019
Application Note 15 / 26

Figure 12. Select S32R274 processor

4. Choose Flash and SRAM start address and size as per the application demands, it can be adjusted here or adjusted in
the link file.

Figure 13. SRAM and Flash selection

5. Click Finish to generate the project file.

6. Startup.s file can be found under the /Project_Setting/Startup_code/ folder.

NXP Semiconductors

Software startup

S32R274 initialization Process - from MCU Powerup to Main Function Entry, Rev. 0, August, 2019
Application Note 16 / 26

Figure 14. Startup code location

7.3 Assembly language initialization sequence
The initialization sequence implemented in the examples code is written in assembler, and the initialization flow is shown in the
following figure.

Figure 15. Initialization sequence diagram

7.4 Inhibit interrupt

NXP Semiconductors

Software startup

S32R274 initialization Process - from MCU Powerup to Main Function Entry, Rev. 0, August, 2019
Application Note 17 / 26

7.4.1 Disable interrupts

Before software initialization interrupts need to be disabled.

wrteei 0 ;# Disable interrupts

7.4.2 Clear reservations on external interrupt

;#************** Clear reservations on external interrupt *****************;
Set ICR in HID0
 e_lis r3, 0x2
 mtspr 1008, r3
 se_isync

7.4.3 Enable interrupts

Before jump to main() interrupts can be enabled.

wrteei 1 ;# Enable interrupts

7.5 Core configuration

7.5.1 Initialize core registers

The two lock-steps e200z4 cores needs to initialize their registers before they are used otherwise, two lockstep cores will contain
different random data. If this is the case when a value is stored to memory (e.g. stacked) it will cause a lock step error.

#---#
Initialize Core Registers
#---#
GPRs 0-31
 e_li r0, 0
 e_li r1, 0
 e_li r2, 0
 e_li r3, 0
 e_li r4, 0
 e_li r5, 0
 e_li r6, 0
 e_li r7, 0
 e_li r8, 0
 e_li r9, 0
 e_li r10, 0
 e_li r11, 0
 e_li r12, 0
 e_li r13, 0
 e_li r14, 0
 e_li r15, 0
 e_li r16, 0
 e_li r17, 0
 e_li r18, 0
 e_li r19, 0
 e_li r20, 0
 e_li r21, 0
 e_li r22, 0
 e_li r23, 0
 e_li r24, 0
 e_li r25, 0
 e_li r26, 0
 e_li r27, 0

NXP Semiconductors

Software startup

S32R274 initialization Process - from MCU Powerup to Main Function Entry, Rev. 0, August, 2019
Application Note 18 / 26

 e_li r28, 0
 e_li r29, 0
 e_li r30, 0
 e_li r31, 0

Init any other CPU register which might be stacked (before being used).
 mtspr 1, r1 ;#XER
 mtcrf 0xFF, r1
 mtspr CTR, r1
 mtspr 272, r1 ;#SPRG0
 mtspr 273, r1 ;#SPRG1
 mtspr 274, r1 ;#SPRG2
 mtspr 275, r1 ;#SPRG3
 mtspr 58, r1 ;#CSRR0
 mtspr 59, r1 ;#CSRR1
 mtspr 570, r1 ;#MCSRR0
 mtspr 571, r1 ;#MCSRR1
 mtspr 61, r1 ;#DEAR
 mtspr 63, r1 ;#IVPR
 mtspr 256, r1 ;#USPRG0
 mtspr 62, r1 ;#ESR
 mtspr 8, r31 ;#LR

7.5.2 Enable BTB

To resolve branch instructions and improve the accuracy of branch predictions, Z4 implements a dynamic branch prediction
mechanism using 8-entry Branch Target Buffer (BTB). BTB is enabled via SPR1013 BUCSR (Branch Unit Control and Status
Register), which is used for general control and status of BTB.

;#********************************* Enable BTB ******************************
;#Flush & Enable BTB - Set BBFI bit in BUCSR
 e_li r3, 0x201
 mtspr 1013, r3
 se_isync

7.5.3 Enable ME bit in MSR

The Machine State Register defines the state of the processor. The e200z4201n3 MSR is shown in the following figure.

Figure 16. e200z4201n3 MSR

;#*************************** Enable ME Bit in MSR **************************
 mfmsr r6
 e_or2i r6, 0x1000
 mtmsr r6

NXP Semiconductors

Software startup

S32R274 initialization Process - from MCU Powerup to Main Function Entry, Rev. 0, August, 2019
Application Note 19 / 26

7.5.4 Disable watchdog

Usually the Software Watchdog Timer (SWT) is disabled so that it does not interfere with application debug sessions. If the SWT
is enabled, this should be pointed within the initialization procedure that require watchdog service, depending on the timeout
period of the watchdog.

#************************* DISABLE WATCHDOG ********************
 e_lis r4, SWT_BASE_ADDR@h ;# Initialize the base address of SWT_0
 e_or2i r4, SWT_BASE_ADDR@l

 e_li r5, SWT_COUNT@l
 mtctr r5 ;# Move to counter number of SWT instances

disable_swt:
 e_li r3, 0xC520
 e_stw r3, 0x10(r4) ;# Write the watchdog unlock value 0xc520

 e_li r3, 0xD928
 e_stw r3, 0x10(r4) ;# Write the watchdog unlock value 0xD928
 e_lis r3, 0xFF00
 e_or2i r3, 0x0102
 e_stw r3, 0(r4)
 e_addi r4,r4, 0x4000 ;# Increase the pointer to the next instance of SWT
 e_bdnz disable_swt ;# Loop for all instance of SWT

7.5.5 SRAM initialization

The internal SRAMs feature Error Correcting Code (ECC). These ECC bits may contain random data after the chip is turned on,
all SRAM locations must be initialized before being read by application code. Initialization is done by executing 64-bit writes to
the entire SRAM block. The value written does not matter at this point, so the Store Multiple Word instruction will be used to write
32 general-purpose registers with each loop iteration.

#********************* Initialise SRAM ECC *********************
Store number of 128Byte (32GPRs) segments in Counter
 e_lis r5, __SRAM_SIZE@h ;# Initialize r5 to size of SRAM (Bytes)
 e_or2i r5, __SRAM_SIZE@l
 e_srwi r5, r5, 0x7 ;# Divide SRAM size by 128
 mtctr r5 ;# Move to counter for use with "bdnz"

;# Base Address of the internal SRAM
 e_lis r5, __SRAM_BASE_ADDR@h
 e_or2i r5, __SRAM_BASE_ADDR@l
;# Fill SRAM with writes of 32GPRs
sram_loop:
 e_stmw r0, 0(r5) ;# Write all 32 registers to SRAM
 e_addi r5, r5, 128 ;# Increment the RAM pointer to next 128bytes
 e_bdnz sram_loop ;# Loop for all of SRAM
#*************** Initialise Local Data SRAM ECC *****************
Store number of 128Byte (32GPRs) segments in Counter
 e_lis r5, __LOCAL_DMEM_SIZE@h ;#Initialize r5 to size of SRAM (Bytes)
 e_or2i r5, __LOCAL_DMEM_SIZE@l
 e_srwi r5, r5, 0x7 ;#Divide SRAM size by 128
 mtctr r5 ;#Move to counter for use with "bdnz"
;# Base Address of the Local SRAM
 e_lis r5, __LOCAL_DMEM_BASE_ADDR@h
 e_or2i r5, __LOCAL_DMEM_BASE_ADDR@l
;# Fill Local SRAM with writes of 32GPRs
ldmem_loop:

NXP Semiconductors

Software startup

S32R274 initialization Process - from MCU Powerup to Main Function Entry, Rev. 0, August, 2019
Application Note 20 / 26

 e_stmw r0,0(r5) ;# Write all 32 registers to SRAM
 e_addi r5,r5,128 ;#Increment the RAM pointer to next 128bytes
 e_bdnz ldmem_loop ;# Loop for all of SRAM

7.5.6 Enable cache

The core instruction and data caches are enabled through the L1 Cache Control and Status Registers 0 & 1 (L1CSR0 and
L1CSR1). The instruction cache is invalidated and enabled by setting the L1CSR1[ICINV] and L1CSR1[ICE]. The data cache is
enabled by setting L1CSR0[DCINV] and L1CSR0[DCE]. The cache invalidation operation takes some time and can be interrupted
or aborted. Because nothing else is going on in the boot-up procedure at this point, it is not interrupted or aborted. User can set
the bits and move on.

#************* Invalidate and enable caches *********************
Instruction cache (I-CACHE)
 e_li r5, 0x3 # Start instruction cache invalidation and enable
 mtspr 1011, r5 # Set L1CSR1.ICINV & ICE bits
Data cache (D-CACHE)
 e_li r5, 0x3 # Start data cache invalidation and enable
 mtspr 1010, r5 # Set L1CSR0.DCINV & DCE bits

The following code represents a more robust cache enable routine that may be used if desired. This code checks to ensure the
invalidation is successfully completed and if not, retries the operation before enabling the cache. This code may be used with
interrupts enabled, provided that those interrupts are properly handled and cleared. If the invalidate operation cannot complete
without being interrupted due to a heavy interrupt load in the system, it is better to disable interrupts first.

#********* Invalidate and Enable the Instruction cache **********
__icache_cfg:
 e_li r5, 0x2
 mtspr 1011, r5

 e_li r7, 0x4
 e_li r8, 0x2
 e_lis r11, 0xFFFF
 e_or2i r11, 0xFFFB

__icache_inv:
 mfspr r9, 1011
 and. r10, r7, r9
 e_beq __icache_no_abort
 and. r10, r11, r9
 mtspr 1011, r10
 e_b __icache_cfg

__icache_no_abort:
 and. r10, r8, r9
 e_bne __icache_inv

 mfspr r5, 1011
 e_ori r5, r5, 0x0001
 se_isync
 mtspr 1011, r5

;#************ Invalidate and Enable the Data cache **************
__dcache_cfg:
 e_li r5, 0x2
 mtspr 1010, r5

NXP Semiconductors

Software startup

S32R274 initialization Process - from MCU Powerup to Main Function Entry, Rev. 0, August, 2019
Application Note 21 / 26

 e_li r7, 0x4
 e_li r8, 0x2
 e_lis r11, 0xFFFF
 e_or2i r11, 0xFFFB

__dcache_inv:
 mfspr r9, 1010
 and. r10, r7, r9
 e_beq __dcache_no_abort
 and. r10, r11, r9
 mtspr 1010, r10
 e_b __dcache_cfg

__dcache_no_abort:
 and. r10, r8, r9
 e_bne __dcache_inv

 mfspr r5, 1010
 e_ori r5, r5, 0x0001
 se_isync
 msync
 mtspr 1010, r5

7.5.7 C runtime register setup

The Power architecture Enhanced Application Binary Interface (EABI) specifies certain general purpose registers have special
meaning for C code execution. At this point in the initialization code the stack pointer, small data, and small data 2 base pointers
are set up. EABI conformant C compilers generates the code that makes use of these pointers later on.

 e_lis r1, __SP_INIT@h ;# Initialize stack pointer r1 to
 e_or2i r1, __SP_INIT@l ;# value in linker command file.

 e_lis r13, _SDA_BASE_@h ;# Initialize r13 to sdata base
 e_or2i r13, _SDA_BASE_@l ;# (provided by linker).

 e_lis r2, _SDA2_BASE_@h ;# Initialize r2 to sdata2 base
 e_or2i r2, _SDA2_BASE_@l ;# (provided by linker).

 e_stwu r0, -64(r1) ;# Terminate stack

As noted in the comments above, these values are defined in the linker command file for this project.

__DATA_SRAM_ADDR = ADDR(.data);
__SDATA_SRAM_ADDR = ADDR(.sdata);
__DATA_SIZE = SIZEOF(.data);
__SDATA_SIZE = SIZEOF(.sdata);
__DATA_ROM_ADDR = ADDR(.ROM.data);
__SDATA_ROM_ADDR = ADDR(.ROM.sdata);

These values in the internal flash boot case will be used to copy initialized data from flash to SRAM, but first the SRAM must be
initialized.

This runtime setup procedure may vary depending on the compiler, consult your compiler's documentation. There may also be
additional setup required for initializing the C standard library.

Init .data and .bss sections

;# Init .data and .bss sections
 e_bl init_data_bss

NXP Semiconductors

Software startup

S32R274 initialization Process - from MCU Powerup to Main Function Entry, Rev. 0, August, 2019
Application Note 22 / 26

Jump to Main

e_bl main

8 Start Z7 core
This typical project is generated by S32DS, power wizard use Z4 core (core0) as boot core. To turn on the other two Z7 cores,
you should configure Mode Entry Module (MC_ME).

8.1 Enable core
MC_ME have three core control register, MC_ME_CCTL1\MC_ME_CCTL2\MC_ME_CCTL3. They are used to check whether
core is disabled or running during run modes.

These register cannot be written after a mode change request has been made or until the mode transition has completed (i.e.,
while the S_MTRANS bit of the ME_GS register = '1'). A write access to this register during this time will result in the ICONF_CC
flag in the ME_IS register being asserted.

When secondary cores are enabled using CCTL register in target mode for the first time without setting RMC bit, it starts booting
from the BAM location which in turn causes SRAM initialization. If the secondary core is enabled for the first time, the user should
always program the CADDR register and set RMC bit before making transition to target mode.

Figure 17. MC_ME CCTL register

{
……
 /* Enable or disable core 1 (z7a) */
 MC_ME. CCTL2 . R = 0x00FE; /* enable core1 */
 /* Enable or disable core 2 (z7b)*/
 MC_ME. CCTL3 . R = 0x00FE; /* enable core2 */
……
}

8.2 Setup boot address
The MC_ME_CADDR register gives the boot address for core and a bit for controlling whether core is to be reset on the next
mode change or the core is configured to be running in target mode. This register can be written only as a word and cannot be
written after a mode change request has been made until the mode transition has completed (i.e., while the S_MTRANS bit of
the ME_GS register = '1'). A write access to this register during this time will result in the ICONF_CC flag in the ME_IS register
being asserted.

NXP Semiconductors

Start Z7 core

S32R274 initialization Process - from MCU Powerup to Main Function Entry, Rev. 0, August, 2019
Application Note 23 / 26

Figure 18. MC_ME_CADDR register

{
……
 /* Write the core address registers with the address of the first instruction */
 //MC_ME.CADDR1.R = (uint32_t)(&_start); /* Core0 (z4) is already active */
 MC_ME. CADDR2 . R = (uint32_t)(&__START_ADDR_CORE_1)|0x1; /* Core1 (z7a) active on mode change
*/
 MC_ME. CADDR3 . R = (uint32_t)(&__START_ADDR_CORE_2)|0x1; /* Core2 (z7b) active on mode change
*/
……
}

8.3 Change core mode
Mode Control register (MC_ME_MCTL) is used to trigger software-controlled mode changes. z7 cores starts on this mode change.

Figure 19. MC_ME_MCTL register

Target chip bits provide the target chip mode to be entered by software programming, target mode status:

0000 RESET (triggers a 'functional' reset event)
0001 TEST
0010 SAFE
0011 DRUN
0100 RUN0
0101 RUN1
0110 RUN2
0111 RUN3
1000 HALT0
1001 reserved
1010 STOP0
1011 reserved
1100 reserved
1101 reserved
1110 reserved
1111 RESET (triggers a 'destructive' reset event)

The mechanism to enter into any mode by software requires two write operations, first time with key and second time with inverted
key.

KEY: 0101101011110000 (0x5AF0)

NXP Semiconductors

Start Z7 core

S32R274 initialization Process - from MCU Powerup to Main Function Entry, Rev. 0, August, 2019
Application Note 24 / 26

INVERTED KEY: 1010010100001111 (0xA50F)

{
……
 uint32_t mctl = MC_ME.MCTL.R; /* get mode status */
 MC_ME.MCTL.R = (mctl & 0xffff0000ul) | 0x5AF0ul;
 MC_ME.MCTL.R = mctl; /* key value 2 always from MCTL */
……
}

The following example C function routine is used to turn on two Z7 core.

#define KEY_VALUE1 0x5AF0ul
#define KEY_VALUE2 0xA50Ful
voidZ7CoresInit(void)
{
#if defined(TURN_ON_CPU1) || defined(TURN_ON_CPU2)
 uint32_t mctl = MC_ME.MCTL.R;
#endif
#if defined(TURN_ON_CPU1)
 /* enable core 1 in all modes */
 MC_ME.CCTL2.R = 0x00FE;
 /* Set Start address for core 1: Will reset and start */
#if defined(START_FROM_FLASH)
 MC_ME.CADDR2.R = 0x1080000 | 0x1;
#else
 MC_ME.CADDR2.R = 0x4006a800 | 0x1;
#endif /* defined(START_FROM_FLASH) */
#endif

#if defined(TURN_ON_CPU2)
 /* enable core 2 in all modes */
 MC_ME.CCTL3.R = 0x00FE;
 /* Set Start address for core 2: Will reset and start */
#if defined(START_FROM_FLASH)
 MC_ME.CADDR3.R = 0x1100000 | 0x1;
#else
 MC_ME.CADDR3.R = 0x400d5000 | 0x1;
#endif /* defined(START_FROM_FLASH) */
#endif
#if defined(TURN_ON_CPU1) || defined(TURN_ON_CPU2)
 MC_ME.MCTL.R = (mctl & 0xffff0000ul) | KEY_VALUE1;
 MC_ME.MCTL.R = mctl; /* key value 2 always from MCTL */
#endif
}

NXP Semiconductors

Start Z7 core

S32R274 initialization Process - from MCU Powerup to Main Function Entry, Rev. 0, August, 2019
Application Note 25 / 26

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to

use NXP products. There are no express or implied copyright licenses granted hereunder to

design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for

any particular purpose, nor does NXP assume any liability arising out of the application or use

of any product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters that may be provided in NXP data

sheets and/or specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer's technical experts. NXP does not convey any license under

its patent rights nor the rights of others. NXP sells products pursuant to standard terms and

conditions of sale, which can be found at the following address: nxp.com/

SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of their

applications and products to reduce the effect of these vulnerabilities on customer’s applications

and products, and NXP accepts no liability for any vulnerability that is discovered. Customers

should implement appropriate design and operating safeguards to minimize the risks associated

with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,

EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE

CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,

MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,

ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,

mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,

SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,

BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, UMEMS, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V.

All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,

Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,

DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,

SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro,

µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. The related technology may be protected by any or all of patents,

copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered

trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and

the Power and Power.org logos and related marks are trademarks and service marks licensed

by Power.org.

© NXP B.V. 2019. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: August, 2019

Document identifier: AN12553

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	1.1 Objective
	1.2 Register instantiations in C

	2 Reset and boot procedure
	2.1 Relevant module
	2.1.1 Reset Generation Module
	2.1.2 System Status and Configuration Module
	2.1.3 Boot Assist Module
	2.1.4 Other modules

	2.2 Reset state machine
	2.3 Boot sequence overview
	2.4 External signal
	2.4.1 VREG_POR_B
	2.4.2 RESET_B

	2.5 Module status during reset process

	3 Boot mode
	3.1 Boot mode selection
	3.2 External signal pin
	3.3 Boot mode select flow
	3.4 Life cycle status

	4 Device configuration
	4.1 DCF records structure
	4.2 DCF memory map
	4.3 DCF client
	4.4 Programming DCF records
	4.5 Overwriting existing DCF records

	5 Boot location
	5.1 Potential boot sectors
	5.2 Reset configuration half-word
	5.3 Boot and alternate boot sectors
	5.4 Configure boot location

	6 Serial boot by BAM
	6.1 Cases for executing BAM
	6.2 BAM boot flow
	6.3 Serial boot sequence
	6.3.1 Transmission mode
	6.3.2 Download 64-bit password and password check
	6.3.3 Download start address VLE bit and code size
	6.3.4 Download data
	6.3.5 Execute code
	6.3.6 Serial interface
	6.3.6.1 UART Baud rate
	6.3.6.2 CAN Baud rate

	6.3.7 Inhibiting BAM operation

	7 Software startup
	7.1 Software execution conditions
	7.2 Generating example code
	7.3 Assembly language initialization sequence
	7.4 Inhibit interrupt
	7.4.1 Disable interrupts
	7.4.2 Clear reservations on external interrupt
	7.4.3 Enable interrupts

	7.5 Core configuration
	7.5.1 Initialize core registers
	7.5.2 Enable BTB
	7.5.3 Enable ME bit in MSR
	7.5.4 Disable watchdog
	7.5.5 SRAM initialization
	7.5.6 Enable cache
	7.5.7 C runtime register setup

	8 Start Z7 core
	8.1 Enable core
	8.2 Setup boot address
	8.3 Change core mode

