
1 Introduction
The LPC5500 is an Arm

®
 Cortex

®
-M33-based micro-controller for embedded

applications. These devices include:

• up to 320 KB of on-chip SRAM

• up to 640 KB on-chip flash

• high-speed and full-speed USB host

• device interface with crystal-less full-speed operations

• five general-purpose timers

• one SCTimer/PWM

• one RTC/alarm timer

• one 24-bit Multi-Rate Timer (MRT)

• one Windowed WatchDog Timer (WWDT)

• eight flexible serial communication peripherals (each can be an USART, SPI, I2C, or I2S interface)

• one 16-bit 1.0 Msps ADC

• one temperature sensor

The Arm Cortex- M33 provides a security foundation, offering isolation to protect valuable IP and data with TrustZone
®
 technology.

In the embedded system application, a shell function is helpful to output log information and easily debug some standalone function
API. Natural Tiny Shell (NT-Shell, written by Shinichiro Nakamura, is a C library for embedded systems. It provides VT100
compatible terminal control feature and needs only serial read/write functions for the porting.

This application note describes how to integrate NT-Shell files on the NXP LPC5500 with SDK and how to use the shell function.
NT-Shell uses the USART0 to print information and get commands from the terminal. We have added how to control the led toggle
status command based on the basic NT-Shell demonstration.

The sample software is tested on LPCXpresso55S69 EVK evaluation board. The software is available for three IDE’s/toolchains:

• MCUXpresso

• Keil μVision

• IAR EWARM

2 NT-Shell overview

2.1 Features

NT-Shell contains the following features:
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• Compatible with VT100

• Really simple

• Highly portable

— Compatible with C89

— No dependencies (even libc!)

— No dynamic memory allocation (no need for an operation system!)

• Small code foot print

— ROM: 10 KB

— RAM: 1 KB

2.2 License claim

The license of NT-Shell is MIT. For details, refer to http://opensource.org/licenses/mit-license.php.

vtparse and vtparse_table are in the public domain.

ntshell, ntopt, ntlibc, text_editor, and text_history are in the MIT license.

You can also select TOPPERS license. For details, refer to https://www.cubeatsystems.com/ntshell/license.html.

2.3 Source code download

Users can download NT-Shell source codes from https://www.cubeatsystems.com/ntshell/download.html.

2.4 Architecture

NT-Shell have two part: core and util.

The core branch includes four parts, as shown in Figure 1. on page 3.

• Top interface module (ntshell.c/.h)

• VT100 sequence controller (vtsend.c/.h, vtrecv.c/.h, and vtparse_table.c/.h)

• Text controller (text_editor.c/.h and text_history.c/.h)

• C Runtime Library (ntlibc.c/.h)

The Utility branch only contains ntopt.c/.h and ntstdio.c/.h.
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Figure 1. NT-Shell architecture

Figure 2. on page 4 shows the NT-Shell functions call graph. NT-Shell function APIs are quite simple.

To enable the NT-Shell function in a real application, users only need to call the following function APIs in thr main or RTOS thread.

• func_read()

• func_write()

• func_callback()

• func_init()

• func_set_prompt()

• func_execute()

When porting the NT-Shell to a new MCU platform, check the following codes carefully:

• uart_getc()

• uart_putc()

For the porting activities, refer to Porting NE-Shell to a new platform on page 8.
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Figure 2. NT-Shell function call graph

3 NT-Shell on LPC5500 demo

3.1 LPC55S69Xpresso board

The LPC55S69Xpresso board supports a VCOM serial port connection via P6. To observe debug messages from the board, set
the terminal program to the appropriate COM port and use the setting of 115200-8-N-1-none. To make the debug messages
easier to read, set the new line receive to auto.

3.2 Board setup

The LPCXpress55S69 development board is used for customer evaluation. Figure 3. on page 5 shows the board functions
and setup.
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Figure 3. LPCpresso55S69 EVK

The board ships with CMSIS-DAP debug firmware programmed. For more information on CMSIS_DAP debug firmware, visit the
following FAQ:

https://www.nxp.com/downloads/en/software/lpc_driver_setup.exe

To debug and terminate debug messages, connect a USB cable to P6 USB connector, as shown in Figure 4. on page 6. Board
schematics are available on https://www.nxp.com.
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Figure 4. Connecting LPCpresso55S69 with PC

3.3 Software setup

Three IDEs were used to verify the NT-Shell example projects:

• KEIL MDK

• IAR Embedded Workbench v8.32.1

• MCUXpresso IDE v10.3.1 (it can be downloaded from https://www.nxp.com)

Terminal software:

Tera Term or other terminal support uart serial port is suggested (they can be downloaded from https://ttssh2.osdn.jp/
index.html.en).

3.4 Program verification

When downloading the NT-Shell project and pressing the RESET(S4) button to run the code, user can follow the information from
USB Virtual COM (VCOM) port and input the command you want to test. Once the RESET button is pressed, there are prompt
messages on the terminal, as shown in Figure 5. on page 7.
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Figure 5. NT-Shell prompt message

3.5 Demo function instruction

Once programmed NT-Shell demo code on LPCXpresso55S69 board and the demo prompt message shows on terminal. Users
can use the following commands to print system information or control led status. Users can use the Tab key to complete the
commands.

This demo provides multiple commands, such as, help, system information get, and control led. Table 1. NE-Shell demo support
command on page 7 lists all the support commands.

Table 1. NE-Shell demo support command

Action Commands by key input

To show help message help

The system information help message info

To get system information message info sys

To get system version message Info ver

Table continues on the next page...
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Table 1. NE-Shell demo support command (continued)

The command help message for LED status color

To toggle RED led color red

To toggle Green led color green

To toggle Blue led color blue

3.6 NT-Shell-supported edit controls

NT-Shell supports multiple edit control hotkeys, such as, search history command, move the cursor to a special position, and so
on. Table 2. NT-Shell-supported edit control hotkeys on page 8 describes the hotkeys and related information.

Table 2. NT-Shell-supported edit control hotkeys

Action Key Input

Move to the start of line CTRL+A or Home

Move to the end of line CTRL+E or End

Move forward one character CTRL+F or Right arrow

Move back one character CTRL+B or Left arrow

Delete previous character Backspace

Delete current character CTRL+D or Delete

Cancel current input line CTRL+C

History search (backward) CTRL+P

History search (forward) CTRL+N

Input suggestion from history record TAB

4 Porting and using NT-Shell

4.1 Porting NE-Shell to a new platform

After the NT-Shell source code package is unzipped, the structure of NT-Shell official sample code file tree is as shown in Figure
6. on page 9.

To port NT-Shell to a new MCU platform, copy the source code files under the lib folder to the new project and add the .c/.h
files under the lib folder to the new project compile list.

You can add a new command into the usrcmd.c by copying the usrcmd.c and usrcmd.h to the new project.

 

Make sure that the STACK size of the new project is enough. Otherwise, the code will generate hard-fault when

running.

  NOTE  
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Figure 6. NT-Shell prompt message
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After adding the required NT-Shell files into the new project, you can complete the uart_getc(), uart_putc(), and uart_puts()
functions with SDK UART API. Figure 7. on page 10 shows the example to implement the three API in the app_printf.c file.

Figure 7. UART operation API

Also, you can add serial_read(), serial_write(), and user_callback() functions into the NT-Shell initialization file. Figure
8. on page 11 shows the example to add the three functions into the main.c.
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Figure 8. NT-Shell serial call API

4.2 Using NT-shell

You can find the functions and examples of NT-Shell key APIs on https://www.cubeatsystems.com/ntshell/api.html.

The following API execution examples are as shown in Figure 9. on page 12.

• To initialize the NT-Shell, you need to initialize the UART port first and then call ntshell_init() API.

• With the ntshell_set_prompt() API, you can set the prompt name.

• ntshell_execute() is the NT-Shell task function. You can call it in a while loop or in a RTOS task.
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Figure 9. NT-Shell execution examples

Figure 10. on page 13 shows how to add a new command.

A new command can be added in the usrcmd.c file. In this AN example, an LED toggle is added with the name of color.

After a color command is created in the cmdlist[], the usrcmd_color() function is achieved.
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Figure 10. Adding a new command

5 Conclusion
This application note describes a shell solution which makes debug and get log information when developing the LPC55S69 with
its SDK. The NT-Shell is easy for porting and it supports VT100.

Great thanks to Shinichiro Nakamura for creating such a beautiful shell code.

6 Reference
• LPC55S6x User Manual, UM11126 (Rev. 1.2), NXP Semiconductors, 3 May 2019

• The NT-Shell official site, https://www.cubeatsystems.com/ntshell/
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