
1 Introduction
The LPC5500 is an Arm

®
 Cortex

®
-M33-based micro-controller for embedded

applications. These devices include:

• up to 320 KB of on-chip SRAM

• up to 640 KB on-chip flash

• high-speed and full-speed USB host

• device interface with crystal-less full-speed operations

• five general-purpose timers

• one SCTimer/PWM

• one RTC/alarm timer

• one 24-bit Multi-Rate Timer (MRT)

• one Windowed WatchDog Timer (WWDT)

• eight flexible serial communication peripherals (each can be an USART, SPI, I2C, or I2S interface)

• one 16-bit 1.0 Msps ADC

• one temperature sensor

The Arm Cortex- M33 provides a security foundation, offering isolation to protect valuable IP and data with TrustZone
®
 technology.

In the embedded system application, a shell function is helpful to output log information and easily debug some standalone function
API. Natural Tiny Shell (NT-Shell, written by Shinichiro Nakamura, is a C library for embedded systems. It provides VT100
compatible terminal control feature and needs only serial read/write functions for the porting.

This application note describes how to integrate NT-Shell files on the NXP LPC5500 with SDK and how to use the shell function.
NT-Shell uses the USART0 to print information and get commands from the terminal. We have added how to control the led toggle
status command based on the basic NT-Shell demonstration.

The sample software is tested on LPCXpresso55S69 EVK evaluation board. The software is available for three IDE’s/toolchains:

• MCUXpresso

• Keil μVision

• IAR EWARM

2 NT-Shell overview

2.1 Features

NT-Shell contains the following features:

Contents

1 Introduction..1

2 NT-Shell overview................................1

3 NT-Shell on LPC5500 demo................4

4 Porting and using NT-Shell.................8

5 Conclusion... 13

6 Reference..13

AN12456
Shell Solution on NXP LPC5500 Series
Rev. 0 — June, 2019 Application Note

https://twitter.com/shintamainjp

• Compatible with VT100

• Really simple

• Highly portable

— Compatible with C89

— No dependencies (even libc!)

— No dynamic memory allocation (no need for an operation system!)

• Small code foot print

— ROM: 10 KB

— RAM: 1 KB

2.2 License claim

The license of NT-Shell is MIT. For details, refer to http://opensource.org/licenses/mit-license.php.

vtparse and vtparse_table are in the public domain.

ntshell, ntopt, ntlibc, text_editor, and text_history are in the MIT license.

You can also select TOPPERS license. For details, refer to https://www.cubeatsystems.com/ntshell/license.html.

2.3 Source code download

Users can download NT-Shell source codes from https://www.cubeatsystems.com/ntshell/download.html.

2.4 Architecture

NT-Shell have two part: core and util.

The core branch includes four parts, as shown in Figure 1. on page 3.

• Top interface module (ntshell.c/.h)

• VT100 sequence controller (vtsend.c/.h, vtrecv.c/.h, and vtparse_table.c/.h)

• Text controller (text_editor.c/.h and text_history.c/.h)

• C Runtime Library (ntlibc.c/.h)

The Utility branch only contains ntopt.c/.h and ntstdio.c/.h.

NXP Semiconductors

NT-Shell overview

Shell Solution on NXP LPC5500 Series, Rev. 0, June, 2019
Application Note 2 / 14

http://opensource.org/licenses/mit-license.php
https://www.cubeatsystems.com/ntshell/license.html
https://www.cubeatsystems.com/ntshell/download.html

Figure 1. NT-Shell architecture

Figure 2. on page 4 shows the NT-Shell functions call graph. NT-Shell function APIs are quite simple.

To enable the NT-Shell function in a real application, users only need to call the following function APIs in thr main or RTOS thread.

• func_read()

• func_write()

• func_callback()

• func_init()

• func_set_prompt()

• func_execute()

When porting the NT-Shell to a new MCU platform, check the following codes carefully:

• uart_getc()

• uart_putc()

For the porting activities, refer to Porting NE-Shell to a new platform on page 8.

NXP Semiconductors

NT-Shell overview

Shell Solution on NXP LPC5500 Series, Rev. 0, June, 2019
Application Note 3 / 14

Figure 2. NT-Shell function call graph

3 NT-Shell on LPC5500 demo

3.1 LPC55S69Xpresso board

The LPC55S69Xpresso board supports a VCOM serial port connection via P6. To observe debug messages from the board, set
the terminal program to the appropriate COM port and use the setting of 115200-8-N-1-none. To make the debug messages
easier to read, set the new line receive to auto.

3.2 Board setup

The LPCXpress55S69 development board is used for customer evaluation. Figure 3. on page 5 shows the board functions
and setup.

NXP Semiconductors

NT-Shell on LPC5500 demo

Shell Solution on NXP LPC5500 Series, Rev. 0, June, 2019
Application Note 4 / 14

Figure 3. LPCpresso55S69 EVK

The board ships with CMSIS-DAP debug firmware programmed. For more information on CMSIS_DAP debug firmware, visit the
following FAQ:

https://www.nxp.com/downloads/en/software/lpc_driver_setup.exe

To debug and terminate debug messages, connect a USB cable to P6 USB connector, as shown in Figure 4. on page 6. Board
schematics are available on https://www.nxp.com.

NXP Semiconductors

NT-Shell on LPC5500 demo

Shell Solution on NXP LPC5500 Series, Rev. 0, June, 2019
Application Note 5 / 14

https://www.nxp.com/downloads/en/software/lpc_driver_setup.exe
https://www.nxp.com

Figure 4. Connecting LPCpresso55S69 with PC

3.3 Software setup

Three IDEs were used to verify the NT-Shell example projects:

• KEIL MDK

• IAR Embedded Workbench v8.32.1

• MCUXpresso IDE v10.3.1 (it can be downloaded from https://www.nxp.com)

Terminal software:

Tera Term or other terminal support uart serial port is suggested (they can be downloaded from https://ttssh2.osdn.jp/
index.html.en).

3.4 Program verification

When downloading the NT-Shell project and pressing the RESET(S4) button to run the code, user can follow the information from
USB Virtual COM (VCOM) port and input the command you want to test. Once the RESET button is pressed, there are prompt
messages on the terminal, as shown in Figure 5. on page 7.

NXP Semiconductors

NT-Shell on LPC5500 demo

Shell Solution on NXP LPC5500 Series, Rev. 0, June, 2019
Application Note 6 / 14

https://www.nxp.com
https://ttssh2.osdn.jp/index.html.en
https://ttssh2.osdn.jp/index.html.en

Figure 5. NT-Shell prompt message

3.5 Demo function instruction

Once programmed NT-Shell demo code on LPCXpresso55S69 board and the demo prompt message shows on terminal. Users
can use the following commands to print system information or control led status. Users can use the Tab key to complete the
commands.

This demo provides multiple commands, such as, help, system information get, and control led. Table 1. NE-Shell demo support
command on page 7 lists all the support commands.

Table 1. NE-Shell demo support command

Action Commands by key input

To show help message help

The system information help message info

To get system information message info sys

To get system version message Info ver

Table continues on the next page...

NXP Semiconductors

NT-Shell on LPC5500 demo

Shell Solution on NXP LPC5500 Series, Rev. 0, June, 2019
Application Note 7 / 14

Table 1. NE-Shell demo support command (continued)

The command help message for LED status color

To toggle RED led color red

To toggle Green led color green

To toggle Blue led color blue

3.6 NT-Shell-supported edit controls

NT-Shell supports multiple edit control hotkeys, such as, search history command, move the cursor to a special position, and so
on. Table 2. NT-Shell-supported edit control hotkeys on page 8 describes the hotkeys and related information.

Table 2. NT-Shell-supported edit control hotkeys

Action Key Input

Move to the start of line CTRL+A or Home

Move to the end of line CTRL+E or End

Move forward one character CTRL+F or Right arrow

Move back one character CTRL+B or Left arrow

Delete previous character Backspace

Delete current character CTRL+D or Delete

Cancel current input line CTRL+C

History search (backward) CTRL+P

History search (forward) CTRL+N

Input suggestion from history record TAB

4 Porting and using NT-Shell

4.1 Porting NE-Shell to a new platform

After the NT-Shell source code package is unzipped, the structure of NT-Shell official sample code file tree is as shown in Figure
6. on page 9.

To port NT-Shell to a new MCU platform, copy the source code files under the lib folder to the new project and add the .c/.h
files under the lib folder to the new project compile list.

You can add a new command into the usrcmd.c by copying the usrcmd.c and usrcmd.h to the new project.

Make sure that the STACK size of the new project is enough. Otherwise, the code will generate hard-fault when

running.

 NOTE

NXP Semiconductors

Porting and using NT-Shell

Shell Solution on NXP LPC5500 Series, Rev. 0, June, 2019
Application Note 8 / 14

Figure 6. NT-Shell prompt message

NXP Semiconductors

Porting and using NT-Shell

Shell Solution on NXP LPC5500 Series, Rev. 0, June, 2019
Application Note 9 / 14

After adding the required NT-Shell files into the new project, you can complete the uart_getc(), uart_putc(), and uart_puts()
functions with SDK UART API. Figure 7. on page 10 shows the example to implement the three API in the app_printf.c file.

Figure 7. UART operation API

Also, you can add serial_read(), serial_write(), and user_callback() functions into the NT-Shell initialization file. Figure
8. on page 11 shows the example to add the three functions into the main.c.

NXP Semiconductors

Porting and using NT-Shell

Shell Solution on NXP LPC5500 Series, Rev. 0, June, 2019
Application Note 10 / 14

Figure 8. NT-Shell serial call API

4.2 Using NT-shell

You can find the functions and examples of NT-Shell key APIs on https://www.cubeatsystems.com/ntshell/api.html.

The following API execution examples are as shown in Figure 9. on page 12.

• To initialize the NT-Shell, you need to initialize the UART port first and then call ntshell_init() API.

• With the ntshell_set_prompt() API, you can set the prompt name.

• ntshell_execute() is the NT-Shell task function. You can call it in a while loop or in a RTOS task.

NXP Semiconductors

Porting and using NT-Shell

Shell Solution on NXP LPC5500 Series, Rev. 0, June, 2019
Application Note 11 / 14

https://www.cubeatsystems.com/ntshell/api.html

Figure 9. NT-Shell execution examples

Figure 10. on page 13 shows how to add a new command.

A new command can be added in the usrcmd.c file. In this AN example, an LED toggle is added with the name of color.

After a color command is created in the cmdlist[], the usrcmd_color() function is achieved.

NXP Semiconductors

Porting and using NT-Shell

Shell Solution on NXP LPC5500 Series, Rev. 0, June, 2019
Application Note 12 / 14

Figure 10. Adding a new command

5 Conclusion
This application note describes a shell solution which makes debug and get log information when developing the LPC55S69 with
its SDK. The NT-Shell is easy for porting and it supports VT100.

Great thanks to Shinichiro Nakamura for creating such a beautiful shell code.

6 Reference
• LPC55S6x User Manual, UM11126 (Rev. 1.2), NXP Semiconductors, 3 May 2019

• The NT-Shell official site, https://www.cubeatsystems.com/ntshell/

NXP Semiconductors

Conclusion

Shell Solution on NXP LPC5500 Series, Rev. 0, June, 2019
Application Note 13 / 14

https://twitter.com/shintamainjp
https://www.nxp.com/docs/en/user-guide/UM11126.pdf
https://www.cubeatsystems.com/ntshell/

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to

use NXP products. There are no express or implied copyright licenses granted hereunder to

design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for

any particular purpose, nor does NXP assume any liability arising out of the application or use

of any product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters that may be provided in NXP data

sheets and/or specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer's technical experts. NXP does not convey any license under

its patent rights nor the rights of others. NXP sells products pursuant to standard terms and

conditions of sale, which can be found at the following address: nxp.com/

SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of their

applications and products to reduce the effect of these vulnerabilities on customer’s applications

and products, and NXP accepts no liability for any vulnerability that is discovered. Customers

should implement appropriate design and operating safeguards to minimize the risks associated

with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,

EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE

CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,

MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,

ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,

mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,

SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,

BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the

property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan,

big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,

Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK,

ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered

trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related

technology may be protected by any or all of patents, copyrights, designs and trade secrets. All

rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The

Power Architecture and Power.org word marks and the Power and Power.org logos and related

marks are trademarks and service marks licensed by Power.org.

© NXP B.V. 2019. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: June, 2019

Document identifier: AN12456

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 NT-Shell overview
	2.1 Features
	2.2 License claim
	2.3 Source code download
	2.4 Architecture

	3 NT-Shell on LPC5500 demo
	3.1 LPC55S69Xpresso board
	3.2 Board setup
	3.3 Software setup
	3.4 Program verification
	3.5 Demo function instruction
	3.6 NT-Shell-supported edit controls

	4 Porting and using NT-Shell
	4.1 Porting NE-Shell to a new platform
	4.2 Using NT-shell

	5 Conclusion
	6 Reference

