
1 Introduction
The I2C module is popular in most applications. Kinetis MCUs provide strong
features on the I2C module, which is compatible with the I2C-bus specification
and easy to interface with other devices. However, incorrect configuration may
cause potential timing issues. This document shows how to configure the I2C
timing of a slave device to meet application needs which apply to Kinetis parts
that contain I2C IP instead of LPI2C.

2 Overview
The I2C specification defines detailed timing specifications to enable the I2C
device to follow the same standard and make different devices working
together. Figure 1. on page 1 shows the timing definition for tSU:DAT.

Figure 1. Definition of I2C timing

The Kinetis IP provides register I2Cx_F to tune the timing. The reference manual provides the reference table on how to impact
the I2C baud rate and data hold time. For the slave mode, this register also heavily impacts the timing and incorrect settings may

Contents

1 Introduction..1

2 Overview...1

3 Timing issues caused by
incorrect settings.............................. 2

4 Tuning the timing using register
I2Cx_F.. 3

5 Conclusion... 5

6 References... 5

7 Revision history...................................5

AN12377
Tuning I2C Timing In Slave Mode
Rev. 1 — April 2019 Application Note

cause timing issues. There might not be a clear explanation in the reference manual, but it must be consulted to get a correct
configuration.

3 Timing issues caused by incorrect settings
When configuring the I2C for a master device, most users know how to configure the I2Cx_F register to get the expected baud
rate. However, when enabling it in the slave mode, users are not aware of the I2Cx_F function during the timing tuning and do
nothing with the I2Cx_F register. In most customer applications, this possibly causes a timing issue. For example, when it works
in the slave mode after events (interrupt of receiving new data or transmitting complete) occur, the slave device drives the SCL
low by clock stretching and waits to handle I2C events. It releases the SCL together with the SDA after writing/reading the I2C
data register when the I2Cx_F is set to 0. This causes the master to detect a wrong signal and fail to meet the SDA setup time
requirement.

Figure 2. on page 2 shows the captured waveform.

Figure 2. I2C signals with clock stretching

Figure 3. on page 3 shows the clock stretching timing.

NXP Semiconductors

Timing issues caused by incorrect settings

Tuning I2C Timing In Slave Mode, Rev. 1, April 2019
Application Note 2 / 6

Figure 3. Clock stretching timing

Figure 3. on page 3 shows the SDA and SCL release at almost the same time. For the I2C timing definition to match the values
in Figure 4. on page 3, the tSU:DAT minimum value must be around 100 ns in the fast mode and 250 ns in the standard mode.
Therefore, the above timing violates the specification.

The tSU:DAT timing and the I2C specification give the characteristic parameters shown in Figure 4. on page 3.

Figure 4. Characteristics of tSU:DAT

4 Tuning the timing using register I2Cx_F
Configure the I2Cx_F register to fix the timing issue and get the tSU:DAT using this formula:

SDA setup time = I2C module clock period (s) x mul x SDA setup value

NXP Semiconductors

Tuning the timing using register I2Cx_F

Tuning I2C Timing In Slave Mode, Rev. 1, April 2019
Application Note 3 / 6

Note to keep the SBRC bit field to be 0 in the I2Cx_C2 register when using this solution. Get the SDA setup value from Table 1.
I2C setup value on page 4.

Table 1. I2C setup value

ICR

(hex)

SDA Setup
Value

ICR

(hex)

SDA Setup
Value

ICR

(hex)

SDA Setup
Value

ICR

(hex)

SDA Setup
Value

0 2 10 16 20 64 30 256

1 3 11 20 21 80 31 320

2 3 12 20 22 80 32 320

3 4 13 24 23 96 33 384

4 4 14 24 24 96 34 384

5 5 15 28 25 112 35 448

6 6 16 32 26 128 36 512

7 9 17 44 27 176 37 704

8 6 18 32 28 128 38 512

9 8 19 40 29 160 39 640

0A 10 1A 40 2A 160 3A 640

0B 12 1B 48 2B 192 3B 768

0C 12 1C 48 2C 192 3C 768

0D 14 1D 56 2D 224 3D 896

0E 16 1E 64 2E 256 3E 1024

0F 22 1F 88 2F 352 3F 1408

ICR : register value of bit field ICR of I2C_F

SDA Setup Value : number of I2C function clock

Table 1. I2C setup value on page 4 is just for reference. Set the I2Cx_F to have a sufficient margin to meet the I2C

timing.

 NOTE

For example, when the I2CxF is set to 0x02 and the I2C module clock frequency is 48 MHz, the setup time is calculated as:

Setup time = 1/48 MHz * 1 * 3 = 62.5 ns

When the I2Cx_F value and the setup time value are bigger, they can get a longer margin by setting the big value to I2Cx_F.
However, this causes the I2C bus to drop due to clock stretching. Clock stretching happens in the below condition. At the start of
a single-bit communication, the master sends the first SCL clock on the bus and the slave samples this pulse and compares it
with its own I2Cx_F configuration. If the slave’s baud rate is lower than the master’s baud rate, I2C IP begins to stretch the bus.
For example, if the master’s baud rate is 400 kHz and the slave’s baud rate is configured to be 100 kHz by the I2Cx_F register,
the final I2C SCL bus period is composed by the slave’s 100-kHz SCL low period time and master’s 400-kHz SCL high period
time. The bus period is 0.5 * (1 / 100 K + 1 / 400 K) seconds, so the SCL bus is about 160 kHz.

It is recommended to set the slave's baud rate higher than the master baud rate and give a sufficient margin to meet the I2C timing.

NXP Semiconductors

Tuning the timing using register I2Cx_F

Tuning I2C Timing In Slave Mode, Rev. 1, April 2019
Application Note 4 / 6

5 Conclusion
This document introduces a way to tune the I2C timing and meet the specifications by setting I2CxF correctly, which helps
customers to solve I2C timing issues.

6 References
• I²C-bus Specification, Version 6.0, 4th of April 2014

• KL16 Sub-Family Reference Manual with Addendum (document KL16P80M48SF4RM)

• Kinetis KL03 reference manual (document KL03P24M48SF0RM)

7 Revision history
Table 2. Revision history on page 5 summarizes the changes done to this document since the initial release.

Table 2. Revision history

Revision number Date Substantive changes

0 03/2019 Initial release

1 04/2019 Updated Tuning the timing using register
I2Cx_F on page 3.

NXP Semiconductors

Conclusion

Tuning I2C Timing In Slave Mode, Rev. 1, April 2019
Application Note 5 / 6

https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.nxp.com/webapp/Download?colCode=KL16P80M48SF4RM
https://www.nxp.com/doc/KL03P24M48SF0RM

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to

use NXP products. There are no express or implied copyright licenses granted hereunder to

design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for

any particular purpose, nor does NXP assume any liability arising out of the application or use

of any product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters that may be provided in NXP data

sheets and/or specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer's technical experts. NXP does not convey any license under

its patent rights nor the rights of others. NXP sells products pursuant to standard terms and

conditions of sale, which can be found at the following address: nxp.com/

SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of their

applications and products to reduce the effect of these vulnerabilities on customer’s applications

and products, and NXP accepts no liability for any vulnerability that is discovered. Customers

should implement appropriate design and operating safeguards to minimize the risks associated

with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,

EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE

CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,

MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,

ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,

mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,

SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,

BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the

property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan,

big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,

Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK,

ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered

trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related

technology may be protected by any or all of patents, copyrights, designs and trade secrets. All

rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The

Power Architecture and Power.org word marks and the Power and Power.org logos and related

marks are trademarks and service marks licensed by Power.org.

© NXP B.V. 2019. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: April 2019

Document identifier: AN12377

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Tuning I2C Timing In Slave Mode
	Contents
	1 Introduction
	2 Overview
	3 Timing issues caused by incorrect settings
	4 Tuning the timing using register I2Cx_F
	5 Conclusion
	6 References
	7 Revision history

