

© 2019 NXP B.V.

PMSM Field-Oriented Control on FRDM-

KV31F with Hall and Encoder Sensors

1. Introduction

This document describes the implementation of the

sensor (hall and encoder sensors) and sensorless speed

motor-control software for 3-phase Permanent Magnet

Synchronous Motors (PMSM), including the motor

parameters identification algorithm, on the

FRDM-KV31F development platform.

The FRDM-MC-LVPMSM NXP Freedom board is

used as a hardware platform for the PMSM control

reference solution. The hardware-dependent part of the

motor-control software is addressed as well, including

a detailed peripheral setup and driver description. The

motor parameters identification theory and the

algorithms are also described in this document.

The last part of this document introduces and explains

the user interface represented by the Motor Control

Application Tuning (MCAT) page based on the

FreeMASTER runtime debugging tool. These tools

represent a simple and user-friendly way of the motor

parameters identification, algorithm tuning, software

control, debugging, and diagnostics.

NXP Semiconductors Document Number: AN12374

Application Note Rev. 0 , 03/2019

Contents

1. Introduction .. 1
2. Hardware setup .. 2

2.1. FRDM-KV31F MCU board 2
2.2. FRDM-MC-LVPMSM power stage 2
2.3. Linix 45ZWN24-40 motor 3
2.4. Teknic M-2310P motor ... 4
2.5. NXP Freedom system assembling 5

3. KV31F MCU features and peripheral settings 5
3.1. KV31F MCU .. 6

4. Project file structure ... 10
4.1. PMSM project structure .. 10

5. Tools .. 12
6. Building and debugging applications 12

6.1. IAR Embedded Workbench IDE 13
6.2. MCUXpresso IDE ... 14
6.3. Arm-MDK Keil Vision 18
6.4. OpenSDA debugger .. 19
6.5. Compiler warnings .. 20

7. Motor-control peripheral initialization 20
8. User interface ... 22
9. Remote control using FreeMASTER 23

9.1. Establishing FreeMASTER communication 23
9.2. MCAT FreeMASTER interface (Motor Control

Application Tuning) .. 25
9.3. Identifying parameters of your motor using MCAT

 30
10. Conclusion ... 49
11. Acronyms and abbreviations .. 49
12. References .. 50
13. Useful links .. 50

Hardware setup

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

2 NXP Semiconductors

2. Hardware setup

The PMSM Field-Oriented Control (FOC) application runs on the FRDM-MC-LVPMSM development

platform with the FRDM-KV31F development tool, in combination with the Teknic M-2310P-LN or

Linix 45ZWN24-40 permanent magnet synchronous motors.

2.1. FRDM-KV31F MCU board

The FRDM-KV31F board is a low-cost development tool for Kinetis KV3x family of MCUs built

around the Arm® Cortex®-M4 core. The FRDM-KV31F board is form-factor compatible with the

Arduino™ R3 pin layout, providing a broad range of expansion board options, including

FRDM-MC-LVPMSM and FRDM-MC-LVBLDC for permanent-magnet and brushless-DC motor

control.

The FRDM-KV31F board features OpenSDA (NXP open-source hardware embedded serial and debug

adapter) running an open-source bootloader. This circuit offers several options for serial communication,

flash programming, and run-control debugging.

Figure 1. FRDM-KV31F development board

2.2. FRDM-MC-LVPMSM power stage

The FRDM-MC-LVPMSM low-voltage, 3-phase Permanent Magnet Synchronous Motor (PMSM)

Freedom development platform board has the power supply input voltage of 24-48 VDC with a reverse

polarity protection circuitry. The auxiliary power supply of 5.5 VDC is created to supply the FRDM

MCU boards. The output current is up to 5 A RMS. The inverter itself is realized by a 3-phase bridge

inverter (six MOSFETs) and a 3-phase MOSFET gate driver. The analog quantities (such as the 3-phase

motor currents, DC-bus voltage, and DC-bus current) are sensed on this board. There is also an interface

for speed and position sensors (encoder, hall). The block diagram of a complete NXP Freedom

motor-control development kit is shown in Figure 2.

Hardware setup

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

NXP Semiconductors 3

Figure 2. Motor-control development platform block diagram

Figure 3. FRDM-MC-LVPMSM

The FRDM-MC-LVPMSM board does not require a complicated setup and there is only one way to

connect this shield board to the Freedom MCU board. For more information about the NXP Freedom

development platform, see www.nxp.com/freedom.

2.3. Linix 45ZWN24-40 motor

Linix 45ZWN24-40 is the default low-voltage 3-phase motor (described in Table 1) used in PMSM

applications.

http://www.nxp.com/freedom

Hardware setup

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

4 NXP Semiconductors

Table 1. Linix 45ZWN24-40 motor parameters

Characteristic Symbol Value Units

Rated voltage Vt 24 V

Rated speed @ Vt — 4000 RPM

Rated torque T 0.0924 Nm

Rated power P 40 W

Continuous current Ics 2.34 A

Number of pole pairs pp 2 —

Figure 4. Linix motor

The motor has two types of connectors (cables). The first cable has three wires and is designated to

power the motor. The second cable has five wires and is designated for the hall sensors’ signal sensing.

For the PMSM sensorless application, only the power input wires are needed.

2.4. Teknic M-2310P motor

The Teknic M-2310P-LN-04K motor is another low-voltage 3-phase permanent-magnet motor used in

PMSM applications. When you are using this motor, rename the

M1_params_pmsm_frdm-kv31f-hall_teknic.txt file located in the freemaster\mcat\param_files\ folder to

M1_params_pmsm_frdm-kv31f-hall.txt. Rename also the m1_pmsm_appconfig_teknic.h header file

located in \src\projects\frdmkv31f\ to m1_pmsm_appconfig.h. Then rebuild and download the project to

the target device, as shown in Section 6, “Building and debugging applications”. The motor has two

feedback sensors (hall and encoder sensors). For the feedback sensors’ wiring, see the datasheet on the

manufacturer web pages. The motor parameters are summarized in Table 2.

Table 2. Teknic M-2310P motor parameters

Characteristic Symbol Value Units

Rated voltage Vt 40 V

Rated speed @ Vt — 6000 RPM

Rated torque T 0.274 Nm

Rated power P 170 W

Continuous current Ics 7.1 A

Number of pole pairs pp 4 —

KV31F MCU features and peripheral settings

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

NXP Semiconductors 5

Figure 5. Teknic M-2310P permanent-magnet synchronous motor

For the sensorless control mode, only the power input wires are needed. When using hall or encoder

sensors, connect also the sensor wires to the NXP Freedom power stage.

2.5. NXP Freedom system assembling

1. Connect the FRDM-MC-LVPMSM shield on top of the FRDM-KV31F board

(there is only one possible option).

1. Connect the Teknic or Linix motor 3-phase wires into the screw terminals on the board.

2. If you want to use a feedback sensor, connect the encoder (or hall) sensor to the connector on the

board.

3. Plug the USB cable from the USB host to the OpenSDA micro-USB connector.

4. Plug the 24 VDC power supply to the DC power connector.

Figure 6. Assembled NXP Freedom system

3. KV31F MCU features and peripheral settings

The peripherals used for motor control are dependent on the Kinetis V series MCU used. The following

sections describe the peripheral settings and application timing for the Kinetis KV31F MCU.

KV31F MCU features and peripheral settings

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

6 NXP Semiconductors

3.1. KV31F MCU

The KV31F MCU is a highly scalable member of the Kinetis V series and provides a high-performance

and cost-competitive motor-control solution. Built upon the Arm Cortex-M4 core running at 120 MHz

with up to 512 KB of flash and up to 96 KB of RAM and combined with the floating-point unit, it

delivers a platform enabling customers to build a scalable solution portfolio. The additional features

include dual 16-bit ADCs sampling at up to 1.2 MS/s in a 12-bit mode, 20 channels of flexible

motor-control timers (PWMs) across four independent time bases, and a large RAM block, enabling

local execution of fast control loops at a full clock speed. For more information, see the KV31F

Sub-Family Reference Manual (document KV31P100M120SF7RM).

3.1.1. Hardware timing and synchronization

Correct and precise timing is crucial in motor-control applications. The motor-control-dedicated

peripherals handle the timing and synchronization on the hardware layer. In addition, you can set the

PWM frequency as a multiple of the ADC interrupt (FOC calculation) frequency; in this case,

FOCfreq = PWMfreq/2. The timing diagram is shown in Figure 7.

Figure 7. Hardware timing and synchronization on KV31F

• The top signal (PWM counter) shows the FTM counter reloads. The dead time is emphasized

on the PWM top and PWM bottom signals. The FTM_TRIG is generated at the PWM
reload, which triggers the PDB (resets the PDB counter).

• The PDB generates a first pre-trigger for the first ADC (phase current) sample with a delay of

approximately Tdeadtime / 2. This delay ensures correct current sampling at duty cycles close to

100 %.

• When the conversion of the first ADC sample (phase current) is completed, the ADC ISR is

entered. At first, the next FTM_TRIG is disabled (TRIG off). This ensures that the PDB

PWM

reload

PWM

reload

ADC ISR

PDB ISR

PDB counter

PWM bottom

PWM top

PWM counter

TRIG

off

TRIG

on

Tdeadtime

PDB

delay

pre-

trig 0
pre-

trig 1

https://www.nxp.com/doc/KV31P100M120SF7RM

KV31F MCU features and peripheral settings

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

NXP Semiconductors 7

counter does not reset at the next PWM reload. The FOC is then calculated.

• In the middle of the next PWM period (PDB delay), the PDB ISR is called. This interrupt

enables the FTM_TRIG (TRIG on) at the next PWM reload. The PDB ISR has lower priority

than the ADC ISR. The PDB delay length determines the ratio between the PWM and FOC

frequencies.

• The PDB uses a back-to-back mode to automatically generate the pre-trig 1 (to measure the

DC-bus voltage) immediately after the first conversion is completed.

3.1.2. Peripheral settings

This section describes only the peripherals used for motor control. KV31F uses a 6-channel FlexTimer

(FTM) to generate a 6-channel PWM and two 16-bit SAR ADCs to measure the phase currents and

the DC-bus voltage. The FTM and ADC are synchronized via the Programmable Delay Block (PDB).

One channel from another independent FTM is used for slow-loop interrupt generation.

Table 3. FRDM-KV31F peripheral settings

Peripheral Feature Freedome

FTM0

PWM polarity
High sides active high

Low side active high

Fault source FAULT1, CMP1 out

Fault polarity Active high

Dead time 0.5 s

PDB Pre-trigger 0 delay 0.25 s

3.1.2.1. PWM generation—FTM0

• The FTM is clocked from the 60-MHz bus clock.

• Only six channels are used, the other two are masked in the OUTMASK register.

• Channels 0+1, 2+3, and 4+5 are combined in pairs and running in a complementary mode.

• The fault mode is enabled for each combined pair with automatic fault clearing (PWM outputs

are re-enabled at the first PWM reload after the fault input returns to zero).

• The PWM period (frequency) is determined as the time for the FTM to count from CNTIN to

MOD. By default, CNTIN = -MODULO / 2 = -3000 and MOD = MODULO / 2 - 1 = 2999. The

FTM is clocked from the 60 MHz system clock, so it takes 0.0001 s (10 kHz).

• Dead time insertion is enabled for each combined pair. The dead time length is calculated as the

system clock 60 MHz × Tdeadtime.

• The FTM generates a trigger for the PDB on counter initialization.

• The FTM fault input is enabled, but its polarity and source vary among platforms.

3.1.2.2. Analog sensing—ADC0 and ADC1

• The ADCs operate as 12-bit, single-ended converters.

• The clock source for both ADCs is the 48-MHz IRC48 clock divided by 2 = 24 MHz.

• For ADC calibration purposes, the ADC clock is set to 6 MHz. The continuous conversion and

KV31F MCU features and peripheral settings

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

8 NXP Semiconductors

averaging with 32 samples are enabled in the SC3 register. After the calibration is done, the SC

register is filled with its default values and the clock is set back to 24 MHz.

• Both ADCs are triggered by the PDB pre-triggers.

• There is an interrupt that serves the FOC fast-loop algorithm and is generated after the first

conversion is completed.

3.1.2.3. PWM and ADC synchronization—PDB0

• Like the FTM, the PDB is clocked from the 60-MHz bus clock.

• The PDB is triggered by the FTM0_TRIG.

• The pre-trigger 0 at each channel is generated 0.5 × Tdeadtime after the FTM0_TRIG.

• The pre-trigger 1 at each channel is generated immediately after the first conversion is completed

using the back-to-back mode.

• The PDB sequence error interrupt is enabled. This interrupt is generated when a certain result

register is not read and the same pre-trigger occurs at the ADC.

• The PDB delay interrupt is enabled. This interrupt is generated when the PDB_IDLY is reached.

This interrupt enables the FTM_TRIG (Figure 4).

• The PDB sequence error and PDB delay interrupts both share a common interrupt vector. Which

event generated the interrupt is determined at the beginning of the interrupt according to the ERR

flag.

3.1.2.4. Over-current detection—CMP1

• The plus input for the CMP is taken from the analog pin.

• The minus input for the CMP is taken from the 6-bit DAC0 reference. The DAC reference is set

to 3.197 V (62 / 64 × VDD), which corresponds to 7.73 A (in the 8.25 A scale).

• The CMP filter is enabled and four consecutive samples must match.

3.1.2.5. Slow-loop interrupt generation—FTM1

• The slow loop is usually ten times slower than the fast loop. Therefore, the FTM1 is clocked

from the system clock / 16 to keep its modulo value reasonably low.

• The FTM counts from CNTIN = 0 to MOD = SPEED_MODULO.

• The interrupt that serves the slow loop is enabled and generated at the reload.

3.1.2.6. Encoder signal processing—FTM2

• The FTM2 in quadrature mode is used for feedback encoder sensor signal processing.

• The counter of the FTM2 runs in the BDM mode.

• The FTM2 modulo counts from CNTIN = 0 to MOD = (number of encoder pulses × 4 – 1).

KV31F MCU features and peripheral settings

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

NXP Semiconductors 9

3.1.2.7. Hall sensors signals processing—FTM2

• The FTM2 is clocked from the 60-MHz bus clock / 128 = 46.875 MHz.

• The FTM2 counter runs in the BDM mode.

• Via the SIM module, the input is set to the XOR of the FTM2_CH0, FTM2_CH1, and

FTM1_CH1 pins applied to FTM2_CH1.

• The FTM counter is reset after the FTM2_CH1 input event is detected.

• The FTM counter is captured on the rising and falling edges.

• The FTM2_CH1 interrupt is enabled.

3.1.3. CPU load and memory usage

The following information apply to the demonstration application built using the IAR Embedded

Workbench® IDE. Table 4 shows the memory usage and CPU load. The memory usage is calculated

from the linker *.map file, including the 2-KB FreeMASTER recorder buffer (allocated in RAM). The

CPU load is measured using the SysTick timer. The CPU load depends on the fast-loop (FOC

calculation) and slow-loop (speed-loop) frequencies. In this case, it applies to the fast-loop frequency of

10 kHz and the slow-loop frequency of 1 kHz. The total CPU load is calculated using these equations:

𝑪𝑷𝑼𝒇𝒂𝒔𝒕 = 𝒄𝒚𝒄𝒍𝒆𝒔𝒇𝒂𝒔𝒕 ∙
𝒇𝒇𝒂𝒔𝒕

𝒇𝑪𝑷𝑼
∙ 𝟏𝟎𝟎 [%] Eq. 1.

𝑪𝑷𝑼𝒔𝒍𝒐𝒘 = 𝒄𝒚𝒄𝒍𝒆𝒔𝒔𝒍𝒐𝒘 ∙
𝒇𝒔𝒍𝒐𝒘

𝒇𝑪𝑷𝑼
∙ 𝟏𝟎𝟎 [%] Eq. 2.

𝑪𝑷𝑼𝒕𝒐𝒕𝒂𝒍 = 𝑪𝑷𝑼𝒇𝒂𝒔𝒕 + 𝑪𝑷𝑼𝒔𝒍𝒐𝒘 [%]
Eq. 3.

Where:

𝑪𝑷𝑼𝒇𝒂𝒔𝒕 —the CPU load taken by the fast loop.

𝒄𝒚𝒄𝒍𝒆𝒔𝒇𝒂𝒔𝒕 —the number of cycles consumed by the fast loop.

𝒇𝒇𝒂𝒔𝒕 —the frequency of the fast-loop calculation (10 kHz).

𝒇𝑪𝑷𝑼 —CPU frequency.

𝑪𝑷𝑼𝒔𝒍𝒐𝒘 —the CPU load taken by the slow loop.

𝒄𝒚𝒄𝒍𝒆𝒔𝒔𝒍𝒐𝒘 —the number of cycles consumed by the slow loop.

𝒇𝒔𝒍𝒐𝒘 —the frequency of the slow-loop calculation (1 kHz).

𝑪𝑷𝑼𝒕𝒐𝒕𝒂𝒍 —the total CPU load consumed by the motor control.

Table 4. KV31 CPU load and memory usage

— MKV31F

CPU load [%] 29,4

Read-only code memory [B] 34386

Read-only data memory [B] 10218

Read-write data memory [B] 11558

Project file structure

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

10 NXP Semiconductors

4. Project file structure

All the necessary files are included in one package, which simplifies the distribution and decreases the

size of the final package. The directory structure of this package is simple, easy to use, and organized in

a logical manner. The folder structure used in the IDE is different from the structure of the PMSM

package installation, but it uses the same files. The different organization is chosen due to a better

manipulation with folders and files in workplaces and due to the possibility to add or remove files and

directories.

4.1. PMSM project structure

The folder tree of the PMSM package installation is shown in Figure 8.

Figure 8. Package structure

The PMSM package is composed of these folders:

• build_ref_solutions.

• freemaster.

• src.

The main project folder /build_ref_solutions/frdmkv31_enc/ contains these folders:

• iar—for the IAR Embedded Workbench IDE.

• mcux—for the MCUXpresso IDE.

• mdk—for the Vision® Keil® IDE.

Project file structure

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

NXP Semiconductors 11

Each folder contains IDE-related configuration files for the PMSM project (project files, output

executable, linker files, and so on). See the step-by-step tutorial on how to open, run, and debug the

PMSM project in Section 6, “Building and debugging applications”.

The /build_ref_solutions/frdmkv31_enc/ folder contains also the main.c, mcdrv_frdmkv31f.c, and

pinmux.c files.

• main.c—contains the basic application initialization (enabling interrupts), subroutines for

accessing the MCU peripherals, and interrupt service routines. The FreeMASTER

communication is performed in the background infinite loop.

• mcdrv_frdmkv31f.c—contains the peripherals’ settings and initializations described in

Section 3.1.2, “Peripheral settings”.

• mcdrv_frdmkv31f.h—header file for the mcdrv_frdmkv31f.c file. This file contains the macros for

changing the PWM period and the ADC channels assigned to the phase currents and the board

voltage.

• pinmux.c—contains the settings of signal multiplexing and pin assignments. It is recommended

to generate these files in the pin tool.

The /freemaster/ folder contains the auxiliary files for the MCAT tool. This folder contains also the

FreeMASTER project file pmsm_frdm_kv31.pmp. Open this file in the FreeMASTER tool and use it to

control the application. This PMSM reference project contains also the motor-identification algorithms

and the scalar-control algorithm which can be used for motor-control tuning. See Section 9, “Remote

control using FreeMASTER” for more information about the Motor Control Application Tuning

(MCAT) tool.

The /src/ folder contains these subfolders with the source and header files for each project:

• common—contains common source and header files used in other motor-control projects.

• projects—contains the MCU-dependent source code.

The /src/common/ folder contains these subfolders common to the other motor-control projects:

• freemaster_drv—contains the FreeMASTER header and source files.

• rtcesl—contains the mathematical functions used in the project. This folder includes the required

header files, source files, and library files used in the project. It contains three subfolders (each

for a different IDE) that contain precompiled library files for the Arm Cortex-CM4 cores. The

rtcesl folder is taken from the RTCESL release 4.5 and fully compatible with the official release.

See www.nxp.com/rtcesl for more information about RTCESL.

• mc_algorithms—contains the main control algorithms used to control the FOC and speed control

loop.

• mc_drivers—contains the source and header files used to initialize and run motor-control

applications.

• mc_identification—contains the source code for the automated parameter-identification routines

of the motor.

• mc_state_machine—contains the software routines that are executed when the application is in a

particular state or state transition.

• sdk—contains the functions for the startup routines, header files, core-specific functions, linker

files used by the IDEs available in this package, and the routines for the core clock settings.

http://www.nxp.com/rtcesl

Building and debugging applications

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

12 NXP Semiconductors

• state_machine—contains the state machine functions for the FAULT, INITIALIZATION,

STOP, and RUN states.

• freemaster_cfg.h—the FreeMASTER configuration file containing the FreeMASTER

communication and features setup.

The /src/projects/ folder contains the reference solution software files. They specify the peripheral

initialization routines, FreeMASTER initialization, motor definitions, and state machines. The source

code contains a lot of comments. The functions of the files are explained in this list:

• frdmkv31f/m1_pmsm_appconfig.h—contains the definitions of constants for the application

control processes, parameters of the motor and regulators, and the constants for other vector

control-related algorithms. When you tailor the application for a different motor using the Motor

Control Application Tuning (MCAT) tool, the tool generates this file at the end of the tuning

process. The “m1_” (meaning motor 1) process is used in single-motor applications. This number

designates the motor number in multi-motor applications. There are three of these files in the

frdmkv31f folder. The m1_pmsm_appconfig.h file is valid for the Linix motor

(m1_pmsm_appconfig.h is the same as m1_pmsm_appconfig_linix.h). If you are using the Teknic

motor, rename the m1_pmsm_appconfig_teknic.h file to m1_pmsm_appconfig.h. Also, rename

the M1_params_pmsm_frdm-kv31f-hall_teknic.txt file located in the

freemaster\mcat\param_files\ folder to M1_params_pmsm_frdm-kv31f-hall. Then rebuild and

download the project to the target device, as shown in Section 6, “Building and debugging

applications”.

• board/board.c—contains the functions for the UART, GPIO, and SysTick initialization.

• board/board.h—contains the definitions of the board LEDs, buttons, UART instance used for

FreeMASTER, and so on.

• board/clock_config—contains the CPU clock setup functions. These files are going to be

generated by the clock tool in the future.

• board/char_pwrstg—contains the power-stage characterization.

5. Tools

Install the FreeMASTER Run-Time Debugging Tool 2.0 and one of the following IDEs on your PC to

run and control the PMSM application properly:

• IAR Embedded Workbench IDE v8.30.2 or higher.

• MCUXpresso v10.2.1.

• ARM-MDK - Keil μVision version 5.25.2.

• FreeMASTER Run-Time Debugging Tool 2.0.

6. Building and debugging applications

The package contains the PMSM reference project for the IAR Embedded Workbench, MCUXpresso,

and Vision Keil IDEs. The release configuration is the default one and there are no special

requirements to run and debug the demonstration applications.

https://www.iar.com/iar-embedded-workbench/
http://www.nxp.com/mcuxpresso
http://www2.keil.com/mdk5/
http://www.nxp.com/freemaster

Building and debugging applications

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

NXP Semiconductors 13

6.1. IAR Embedded Workbench IDE

The first step is to open the project file. The project for the solution with the encoder sensor is in the

build_ref_solutions/frdmkv31_enc/iar folder. To open the project, double-click the pmsm_ref_sol.eww

file. The project opened in the IAR Embedded Workbench IDE is fully configured and includes all the

necessary source and header files required by the application, such as startup code, clock configuration,

and peripherals configuration. Point 1 in Figure 9 shows the IAR IDE workspace with the opened

project.

Figure 9. IAR Embedded Workbench IDE

The project opened in the IAR Embedded Workbench IDE is fully configured and includes all necessary

source and header files required by the application, such as startup code, clock configuration, and

peripherals configuration. You can choose between two compiling conditions (Debug or Release), as

shown in Figure 9, point 2. Each of the two conditions has its own setting:

• Debug—used for debugging, optimization has the “None – turned off” flag.

• Release—used for releasing, optimization has the “High – Highest optimization for speed” flag.

The source code (shown in Figure 9) includes these source files and folders:

• Point 3—the rtcesl library source folder contains header files for the mathematical and control

functions used in this project. The theory about using and applying these functions is described

in the user’s guides specific for each library. The user’s guides are at www.nxp.com/rtcesl.

http://www.nxp.com/rtcesl

Building and debugging applications

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

14 NXP Semiconductors

• Point 4—the /sdk/ folder contains the startup routines, system initialization and clock definition,

linker file, and header file for the MCU. It also contains the basic CMSIS routines for interrupt

handling.

• Point 5—the /src/ folder contains the application source code. The structure of this folder is

different from that described in Section 4, “Project file structure”. However, it is composed of

the same files and organized to fit into the IDE workspace.

• Point 6—shows the output file generated by the compiler and ready to be used with the default

debugger (P&E Micro—OpenSDA). This debugger is set as the default one and can be changed

in the project options by right-clicking Point 1, selecting “Options”, and clicking “Debugger”.

• Point 7—start the project debugging by clicking Point 7.

6.2. MCUXpresso IDE

Firstly, the MCUXpresso SDK must be imported into the MCUXpresso IDE:

1. Go to mcuxpresso.nxp.com/en/welcome and click “Select Development Board”.

2. Select the “FRDM-KV31F” board. On the right-hand side, click “Build MCUXpresso SDK”.

Figure 10. MCUXpresso SDK builder

3. Select the host OS and IDE and click “Request Build”, as shown in Figure 11. It is also possible

to add the MC_PMSM software component that contains the SDK motor-control examples for

several Kinetis and i.MX boards.

https://mcuxpresso.nxp.com/en/welcome

Building and debugging applications

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

NXP Semiconductors 15

Figure 11. MCUXpresso SDK—"Request Build” button

4. After building, download the SDK archive and open the MCUXpresso IDE. At the bottom of the

workspace, there is a panel with several tools. Click the “Installed SDKs” tab (Figure 12) and

drag and drop the downloaded file into the “SDKs” field.

Figure 12. MCUXpresso installed SDKs

5. After the import, the SDK successfully installs into the MCUXpresso IDE.

The second step is to import the project to the IDE. At the top of the MCUXpresso IDE, click

“File->Import”. When the new dialog box appears, select “Existing Projects into Workspace” and click

the “Next” button (Figure 13).

Building and debugging applications

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

16 NXP Semiconductors

Figure 13. MCUXpresso import

The next step is selecting the folder that contains the project files. Click the “Browse” button and find

the mcux folder on your hard disk. For the PMSM project, it is in the

build_ref_solutions/frdmkv31f_hall/mcux folder (Figure 14). Confirm the import by clicking the

“Finish” button in the bottom right-hand corner.

Figure 14. MCUXpresso import

Now you see the MCUXpresso workspace with the PMSM project imported (Figure 15). The project in

the MCUXpresso IDE is fully configured and includes all necessary source and header files required by

the application, such as the startup code, clock configuration, and peripherals’ configuration.

• Point 1—the imported project file structure.

Building and debugging applications

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

NXP Semiconductors 17

• Point 2—the “Build” button. You may also choose the build configuration using the little arrow

on this button. There are two build configurations available (Debug and Release). Each of the

two conditions has its own settings (described below).

• Point 3—the “Debug” button. This button downloads the compiled project into the

RAM/FLASH MCU memory. It also creates the debug configuration (if it does not exist).

Figure 15. MCUXpresso workspace

There are two project configurations:

• Debug—used for debugging. The optimization has the “None—turned off” flag.

• Release—used for releasing. The optimization has the “High—highest optimization for speed”

flag.

To run an application, choose your configuration, build the project, and click the “Debug” button to

enter the debug session. In debug section, use “Resume”, “Suspend”, and “Terminate” buttons to control

the application (Figure 16).

Figure 16. MCUXpresso debug workspace

Building and debugging applications

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

18 NXP Semiconductors

6.3. Arm-MDK Keil Vision

The Arm-MDK Keil Vision (Keil) is an IDE that you can use to develop and test software for

NXP MCUs. It supports a wide range of Kinetis devices, such as the powerful K series, low-power KL

series, and KV series targeted at motor control. Keil includes tools for compiling, linking, and

debugging of source code. Keil supports a wide range of debuggers, such as P&E Micro or J-Link

(and others). You can download the latest release of Keil from the official Keil website

www2.keil.com/mdk5/uvision. For installation and configuration, see the Kinetis Design Studio V3.0.0

User’s Guide (document KDSUG).

To open a project, double-click the pmsm_ref_sol.uvprojx project file located in the

build_ref_solutions/frdmkv31_enc/mdk folder:

Figure 17. Keil project location

Now the project is open. Click the “Build” button (Point 1) to compile the project. Click the

“Download” button (Point 2) to download the code to the target. Then click the “Debug” button to enter

the debug session (Point 3):

Figure 18. Keil PMSM project

Before downloading the code to the target, select the proper target device. If you are using the P&E

OpenSDA debugger, select the KV31M512M12 device.

There are two project configurations:

• Debug—used for debugging. The optimization has the “None – turned off” flag.

• Release—used for releasing. The optimization has the “High – highest optimization for speed”

flag.

Use the predefined debugger (such as P&E Micro—OpenSDA) or choose a different debugger from the

menu. In the top list menu, select “Project-> Options for Target release/debug -> Debug” to define a

different type of debugger. You can open this menu also using the “Alt+F7” key shortcut. To run an

application in the debug session, press the “F5” key.

http://www2.keil.com/mdk5/uvision/
http://www.fsls.co/doc/KDSUG

Building and debugging applications

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

NXP Semiconductors 19

Figure 19. Keil—"Options for Target”

6.4. OpenSDA debugger

NXP development boards include the OpenSDA serial and debugger adapter, which is used as a bridge

for serial and debug communication between the target processor and the host computer. This debugger

provides a virtual serial port on the host computer, which can be accessed as a “COM” port.

The embedded target is connected to the UART peripheral. In the same time, you can control the debug

interface that controls the JTAG or SWD debug interfaces in the target development platform.

The OpenSDA debug interface provides the Mass Storage Device Flash Programmer (MSD Flash

Programmer), which is an easy way to program applications into the flash memory of the target

processor. It appears as a removable drive in the host operating system, with a volume label that matches

the board name. The raw binary Motorola S-Record files that are copied to the drive are programmed

directly into the target device memory. The MSD Flash Programmer is designed to program a specific

target configuration. It does not support verification or configuration, and it is not recommended as a

production programmer.

Figure 20. OpenSDA MSD

Motor-control peripheral initialization

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

20 NXP Semiconductors

To load the generated application directly to the target MCU, perform these steps (applicable for

Windows® OS):

1. Open Windows Explorer.

2. Locate the generated S-record file (*.srec, *.s19, or *.bin file extension), Point 1 (Figure 20).

3. Drag/drop or copy/paste the selected S-record file (Figure 20Point 2) to the MSD removable

drive with the volume labelled as the target hardware (Point 3).

4. After successful programming, the embedded application executes automatically.

5. Reconnect the target device.

6.5. Compiler warnings

Warnings are diagnostic messages that report constructions that are not inherently erroneous and warn

about potential runtime, logic, and performance errors. In some cases, warnings can be suspended and

these warnings do not show during the compiling process. An example of a special case is the

“unused function” warning, where the function is implemented in the source code with its body, but this

function is not used. This case can occur in situations where you implement the function as a supporting

function for better usability, but you do not use the function for any special purposes for a while.

In these projects (in IDEs), some warnings are suppressed. These warnings are mentioned below and the

other warnings are set to a standard configuration.

The IAR Embedded Workbench IDE suppresses these warnings:

• Pa082—undefined behavior; the order of volatile accesses is not defined in this statement.

The MCUXpresso IDE suppresses these warnings:

• Unused function—function is defined, but not used.

• Uninitialized—variable is used, but not initialized.

• Main—due to optimization, main is void (not integer). It does not return a value.

The Arm-MDK Keil uVision IDE suppresses these warnings:

• 66—enumeration value is out of “int” range.

• 1035—single-precision operand implicitly converted to double-precision.

There are no other warnings shown during the compiling process by default.

7. Motor-control peripheral initialization

The motor-control peripherals are initialized by calling the MCDRV_Init_M1() function during MCU

startup and before the peripherals are used. All initialization functions are in the mcdrv_frdmkv31f.c

source file and the mcdrv_ frdmkv31f.h header file. The definitions specified by the user are also in these

files. The features provided by the functions are the 3-phase PWM generation and 3-phase current

measurement, as well as the DC-bus voltage and auxiliary quantity measurement. The principles of both

the 3-phase current measurement and the PWM generation using the Space Vector Modulation (SVM)

technique are described in Sensorless PMSM Field-Oriented Control (document DRM148).

http://www.nxp.com/doc/DRM148

Motor-control peripheral initialization

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

NXP Semiconductors 21

The mcdrv_ frdmkv31f.h header file provides several macros, which can be defined by the user:

• M1_PWM_FREQ—the value of this definition sets the PWM frequency.

• M1_FOC_FREQ_VS_PWM_FREQ—enables you to call the fast loop interrupt at every first,

second, third, or nth PWM reload. This is convenient when the PWM frequency must be higher

than the maximal fast-loop interrupt.

• M1_SPEED_LOOP_FREQ—the value of this definition sets the speed-loop frequency

(TMR1 interrupt).

• M1_PWM_PAIR_PH[A..C]—these macros enable a simple assignment of the physical motor

phases to the PWM periphery channels (or submodules). Change the order of the motor phases

this way.

• M1_ADC[1,2]_PH_[A..C]—these macros are used to assign the ADC channels for the phase

current measurement. The general rule is that at least one of the phase currents must be

measurable on both ADC converters and the two remaining phase currents must be measurable

on different ADC converters. The reason for this is that the selection of the phase-current pair to

measure depends on the current SVM sector. If this rule is broken, a preprocessor error is issued.

For more information about the 3-phase current measurement, see Sensorless PMSM Field-

Oriented Control (document DRM148).

• M1_ADC[1,2]_UDCB—this define is used to select the ADC channel for the measurement of

the DC-bus voltage.

In the motor-control software, these API-serving ADC and PWM peripherals are available:

• The available APIs for the ADC are:

— mcdrv_adc_t—MCDRV ADC structure data type.

— bool_t M1_MCDRV_ADC_PERIPH_INIT()—this function is by default called during the

ADC peripheral initialization procedure invoked by the MCDRV_Init_M1() function and

should not be called again after the peripheral initialization is done.

— bool_t M1_MCDRV_CURR_3PH_CHAN_ASSIGN(mcdrv_adc_t*)—calling this function

assigns proper ADC channels for the next 3-phase current measurement based on the

SVM sector. This function always returns true.

— bool_t M1_MCDRV_CURR_3PH_CALIB_INIT(mcdrv_adc_t*)—this function initializes

the phase-current channel-offset measurement. This function always returns true.

— bool_t M1_MCDRV_CURR_3PH_CALIB(mcdrv_adc_t*)—this function reads the

current information from the unpowered phases of a standstill motor and filters them

using moving average filters. The goal is to obtain the value of the measurement offset.

The length of the window for moving the average filters is set to eight samples by

default. This function always returns true.

— bool_t M1_MCDRV_CURR_3PH_CALIB_SET(mcdrv_adc_t*)—this function asserts the

phase-current measurement offset values to the internal registers. Call this function after

a sufficient number of M1_MCDRV_CURR_3PH_CALIB() calls. This function always

returns true.

— bool_t M1_MCDRV_ADC_GET(mcdrv_adc_t*)—this function reads and calculates the

actual values of the 3-phase currents, DC-bus voltage, and auxiliary quantity. This

function always returns true.

http://www.nxp.com/doc/DRM148

User interface

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

22 NXP Semiconductors

• The available APIs for the PWM are:

— mcdrv_pwma_pwm3ph_t—MCDRV PWM structure data type.

— bool_t M1_MCDRV_PWM_PERIPH_INIT—this function is by default called during the

PWM periphery initialization procedure invoked by the MCDRV_Init_M1() function.

— bool_t M1_MCDRV_PWM3PH_SET(mcdrv_pwma_pwm3ph_t*)—this function updates

the PWM phase duty cycles based on the required values. This function always returns

true.

— bool_t M1_MCDRV_PWM3PH_EN(mcdrv_pwma_pwm3ph_t*)—calling this function

enables all PWM channels. This function always returns true.

— bool_t M1_MCDRV_PWM3PH_DIS (mcdrv_pwma_pwm3ph_t*)—calling this function

disables all PWM channels. This function always returns true.

— bool_t M1_MCDRV_PWM3PH_FLT_GET(mcdrv_pwma_pwm3ph_t*)—this function

returns the state of the over-current fault flags and automatically clears the flags (if set).

This function returns true when an over-current event occurs. Otherwise, it returns false.

• The available APIs for the FlexTimer encoder are:

— mcdrv_ftm_enc_t—MCDRV FTM encoder structure data type.

— bool_t M1_MCDRV_TMR_SENSOR_INIT()—this function is by default called during the

FTM periphery initialization procedure invoked by the MCDRV_Init_M1() function.

— bool_t M1_MCDRV_QD_GET(mcdrv_qd_enc_t*)—this function returns the actual

position and speed. This function always returns true.

— bool_t M1_MCDRV_QD_CLEAR(mcdrv_qd_enc_t*)—this function clears the internal

variables and decoder counter. This function always returns true.

• The available APIs for the FlexTimer hall sensors are:

— mcdrv_ftm_enc_t—MCDRV FTM encoder structure data type.

— bool_t M1_MCDRV_TMR_SENSOR_INIT()—this function is by default called during the

FTM periphery initialization procedure invoked by the MCDRV_Init_M1() function.

— bool_t M1_MCDRV_FTM_HALL_GET_SPEED_POS(mcdrv_ftm_hs_t*)—this function

returns the actual position and speed. This function always returns true.

— bool_t M1_MCDRV_FTM_HALL_SET_INIT_POS(mcdrv_ftm_hs_t*)—this function

calculates the electrical position based on the current hall state. This function always

returns true.

— bool_t M1_MCDRV_HALL_CLEAR(mcdrv_ftm_hs_t*)—this function clears the internal

variables. This function always returns true.

8. User interface

The application contains the demo mode to demonstrate motor rotation. You can operate it either using

the user button, or using FreeMASTER. NXP Freedom boards include a user button associated with a

port interrupt (generated whenever one of the buttons is pressed). At the beginning of the ISR, a simple

logic executes, and the interrupt flag clears. When you press the button, the demo mode starts. When

you press the same button again, the application stops and transitions back to the STOP state.

Remote control using FreeMASTER

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

NXP Semiconductors 23

The other way to interact with the demo mode is to use the FreeMASTER tool. The FreeMASTER

application consists of two parts: the PC application used for variable visualization and the set of

software drivers running in the embedded application. Data is transferred between the PC and the

embedded application via the serial interface. This interface is provided by the OpenSDA debugger

included in the boards.

The application can be controlled the using these two interfaces:

• The button on the FRDM-KV31F development board—SW2 (controlling the demo mode).

• Remote control using FreeMASTER:

— Using the Motor Control Application Tuning (MCAT) interface in the “Control

Structure” tab or the “Application control” tab (controlling the demo mode).

— By setting a variable in the FreeMASTER Variable Watch.

If you are using your own motor (different from the default motors), make sure to identify all motor

parameters. The automated parameter identification is described in the following sections.

9. Remote control using FreeMASTER

This section provides information about the tools and recommended procedures to control the

sensor/sensorless PMSM Field-Oriented Control (FOC) application using FreeMASTER. The

application contains the embedded-side driver of the FreeMASTER real-time debug monitor and data

visualization tool for communication with the PC. It supports non-intrusive monitoring, as well as the

modification of target variables in real time, which is very useful for the algorithm tuning. Besides the

target-side driver, the FreeMASTER tool requires the installation of the PC application as well. You can

download FreeMASTER 2.0 at www.nxp.com/freemaster. To run the FreeMASTER application

including the MCAT tool, double-click the pmsm_frdm_kv31.pmp file located in the freemaster/ folder.

The FreeMASTER application starts and the environment is created automatically, as defined in the

*.pmp file.

9.1. Establishing FreeMASTER communication

The remote operation is provided by FreeMASTER via the USB interface. Perform these steps to control

a PMSM motor using FreeMASTER:

1. Download the project from your chosen IDE to the MCU and run it, as shown in Section 6,

“Building and debugging applications”.

2. Open the FreeMASTER file pmsm_frdm_kv31.pmp located in the freemaster/ folder. The PMSM

project uses the TSA by default, so it is not necessary to select a symbol file for FreeMASTER.

3. Click the communication button (the red “STOP” button in the top left-hand corner) to establish

the communication.

2.

Figure 21. Red “STOP” button placed in top left-hand corner

http://www.nxp.com/freemaster

Remote control using FreeMASTER

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

24 NXP Semiconductors

4. If the communication is established successfully, the FreeMASTER communication status in the

bottom right-hand corner changes from “Not connected” to “RS232 UART Communication;

COMxx; speed=115200”. Otherwise, the FreeMASTER warning popup window appears.

Figure 22. FreeMASTER—communication is established successfully

5. Control the PMSM motor using the MCAT “Control structure” tab, the MCAT “Application

demo control” tab, or by directly writing to a variable in a variable watch. (Section 9.2.1,

“Control structure—“Control Struc” tab” and Section 9.2.2, “Application demo control—“App

control” tab”)

6. If you rebuild and download the new code to the target, turn the FreeMASTER application off

and on.

If the communication is not established successfully, perform these steps:

1. Go to the “Project -> Options -> Comm” tab and make sure that “SDA” is set in the “Port”

option and the communication speed is set to 115200 bps.

Figure 23. FreeMASTER communication setup window

2. If “OpenSDA-CDC Serial Port” is not printed out in the message box next to the “Port”

dropdown menu, unplug and then plug in the USB cable and reopen the FreeMASTER project.

Make sure to supply your development board from a sufficient energy source. Sometimes the PC USB

port is not sufficient to supply the development board.

Remote control using FreeMASTER

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

NXP Semiconductors 25

9.2. MCAT FreeMASTER interface (Motor Control Application Tuning)

The PMSM sensor/sensorless FOC application can be easily controlled and tuned using the Motor

Control Application Tuning (MCAT) plug-in for PMSM. The MCAT for PMSM is a user-friendly

modular page, which runs within FreeMASTER. The tool consists of the tab menu, tuning mode

selector, and workspace shown in Figure 24. Each tab from the tab menu represents one sub-module

which enables you to tune or control different aspects of the application. Besides the MCAT page for

PMSM, several scopes, recorders, and variables in the project tree are predefined in the FreeMASTER

project file to further simplify the motor parameter tuning and debugging. When the FreeMASTER is

not connected to the target, the “App ID” line shows “offline”. When the communication with the target

MCU is established using a correct software, the “App ID” line displays the board name

“pmsm_frdm-kv31f-hall” and all stored parameters for the given MCU are loaded.

Figure 24. MCAT layout

In the default configuration, these tabs are available:

• “Introduction”—welcome page with the PMSM sensor/sensorless FOC diagram and a short

description of the application.

• “Motor Identif”—PMSM semi-automated parameter measurement control page. The PMSM

parameter identification is more closely described further on in this document.

• “Parameters”—this page enables you to modify the motor parameters, specification of hardware

and application scales, alignment, and fault limits.

• “Current Loop”—current loop PI controller gains and output limits.

• “Speed & Pos”—this tab contains fields for the specification of the speed controller proportional

and integral gains, as well as the output limits and parameters of the speed ramp. The position

proportional controller constant is also set here.

Remote control using FreeMASTER

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

26 NXP Semiconductors

• “Sensors”—this page contains the encoder parameters and position observer parameters.

• “Sensorless”—this page enables you to tune the parameters of the BEMF observer, tracking

observer, and open-loop startup.

• “Control Struc”—this application control page enables you to select and control the PMSM

using different techniques (scalar—Volt/Hertz control, voltage FOC, current FOC, speed FOC,

and position FOC). The application state is also shown in this tab.

• “Output file”—this tab shows all the calculated constants that are required by the PMSM

sensor/sensorless FOC application. It is also possible to generate the m1_acim_appconfig.h file,

which is then used to preset all application parameters permanently at the project rebuild.

• “App page”—this tab contains the graphical elements like the speed gauge, DC-bus voltage

measurement bar, and variety of switches which enable a simple, quick, and user-friendly

application control. The fault clearing and the demo mode (which sets various predefined

required speeds and positions over time) can be also controlled from here.

Most tabs offer the possibility to immediately load the parameters specified in the MCAT into the target

using the “Update target” button and save (or restore) them from the hard drive file using the “Reload

Data” and “Store Data” buttons.

The following sections provide simple instructions on how to identify the parameters of a connected

PMSM motor and how to appropriately tune the application.

9.2.1. Control structure—“Control Struc” tab

The application can be controlled through the “Control Struc” tab, which is shown in Figure 25. The

state control area on the left side of the screen shows the current application state and enables you to

turn the main application switch on or off (turning a running application off disables all PWM outputs).

The “Cascade Control Structure” area is placed in the right-hand side of the screen. Here you can choose

between the scalar control and the FOC control using the appropriate buttons. The selected parts of the

FOC cascade structure can be enabled by selecting “Voltage FOC”, “Current FOC”, and “Speed FOC”

(sensor/sensorless). This is useful for application tuning and debugging.

Remote control using FreeMASTER

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

NXP Semiconductors 27

Figure 25. MCAT for PMSM control page

The scalar control diagram is shown in Figure 26. It is the simplest type of motor-control techniques.

The ratio between the magnitude of the stator voltage and the frequency must be kept at the nominal

value. Hence, the control method is sometimes called Volt per Hertz (or V/Hz). Pay attention when

entering the required voltage and frequency in the “Expert” tuning mode. The ratio is kept constant in

the “Basic” mode and the only required inputs are voltage and frequency. The position estimation

BEMF observer and tracking observer algorithms (see Sensorless PMSM Field-Oriented Control

(document DRM148) for more information) run in the background, even if the estimated position

information is not directly used. This is useful for the BEMF observer tuning.

Figure 26. Scalar control modes

The block diagram of the voltage FOC is in Figure 27. Unlike the scalar control, the position feedback is

closed using the BEMF observer and the stator voltage magnitude is not dependent on the motor speed.

Both the d-axis and q-axis stator voltages can be specified in the “Ud_req” and “Uq_req” fields. This

control method is useful for the BEMF observer functionality check.

http://www.nxp.com/doc/DRM148

Remote control using FreeMASTER

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

28 NXP Semiconductors

Figure 27. Voltage FOC control mode

The current FOC (or torque) control requires the rotor position feedback and the currents transformed

into a d-q reference frame. There are two reference variables (“Id_req” and “Iq_req”) available for the

motor control, as shown in the block diagram in Figure 28. The d-axis current component isd_req is

responsible for the rotor flux control. The q-axis current component of the current isq_req generates torque

and, by its application, the motor starts running. By changing the polarity of the current isq_req, the motor

changes the direction of rotation. Supposing that the BEMF observer is tuned correctly, the current PI

controllers can be tuned using the current FOC control structure.

Figure 28. Current (torque) control mode

The speed PMSM sensor/sensorless FOC (its diagram is shown in Figure 29) is activated by enabling

the speed FOC control structure. Enter the required speed into the “Speed_req” field. The d-axis current

reference is held at 0 during the entire FOC operation.

Remote control using FreeMASTER

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

NXP Semiconductors 29

Figure 29. Speed FOC control mode

9.2.2. Application demo control—“App control” tab

After launching the application and performing all necessary settings, you can control the PMSM motor

using the FreeMASTER application demo control page. This page contains:

• Speed gauge—shows the actual and required speeds.

• Required speed slider—sets up the required speed.

• DC-bus voltage—shows the actual DC-bus voltage.

• Current iq—shows the actual torque-producing current.

• Current limitation—sets up the torque-producing current limit.

• Demo mode on/off button—turns the demonstration mode on/off.

• RUN/STOP PWM button—runs/stops the whole application (sets the PWM on and off).

• Notification—shows the notification about the actual application state (or faults).

Remote control using FreeMASTER

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

30 NXP Semiconductors

Figure 30. FreeMASTER control page

Here are basic instructions for motor control:

• To start the motor, set the required speed using the speed slider.

• In case of a fault, click on the fault notification to clear the fault.

• Click the “Demo Mode On/Off” button to turn the demonstration mode on/off.

• Click the “RUN/STOP” button to stop the motor.

9.3. Identifying parameters of your motor using MCAT

This section provides a guide on how to run your own motor or tune the default motor in several steps. It

is highly recommended to go through all the steps carefully to eliminate any possible issues during the

tuning process. The state diagram in Figure 31 shows a typical PMSM sensor/sensorless control tuning

process. Each tuning phase is described in more detail in the following sections.

Remote control using FreeMASTER

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

NXP Semiconductors 31

Figure 31. Running a new PMSM

9.3.1. PMSM parameters identification

Because the model-based control methods of the PMSM drives are the most effective and usable,

obtaining an accurate model of a motor is an important part of the drive design and control. For the

implemented FOC algorithms, it is necessary to know the value of the stator resistance Rs, direct

inductance Ld, quadrature inductance Lq, and BEMF constant Ke. If your connected PMSM motor is not

the default Teknic or Linix motor described in Section 2, “Hardware setup”, you have to identify the

parameters of your motor first.

9.3.1.1. Power stage characterization

Each inverter introduces the total error voltage Uerror, which is caused by the dead time, current clamping

effect, and transistor voltage drop. The total error voltage Uerror depends on the phase current is and this

dependency is measured during the power stage characterization process. An example of the inverter

error characteristic is shown in Figure 32. The power stage characterization is a part of the MCAT and

can be controlled from the “Motor Identif” tab. To perform the characterization, connect the motor with

a known stator resistance Rs and enter this value into the “Calib Rs” field. Then specify the “Calibration

Range”, which is the range of the stator current is, in which the measurement of Uerror is performed. Start

the characterization by pressing the “Calibrate” button. The characterization gradually performs 65 isd

current steps (from is = -Is,calib to is = Is,calib) with each taking 300 ms, so be aware that the process takes

Connect motor

Motor params.

identification

Application parameters

specification

- Enter (or keep default)

parameters at all tabs

- Click Store Data and

Update Target

Select Scalar Control and

spin the motor

Motor aligns

properly with

the two stage

alignment

false

Increase V/rpm factor if

motor spins with glitches

Parameters tab:

- Switch to Expert

- Tune Alignment

parameters

- Click update

Select Speed FOC and

spin the motor

Amplitude and

shape of all currents

similar

false

true

Estimated speed

without significant

noise or glitches

false Sensorless tab:

- Switch to Expert

- Tune BEMF and

Tracking observer

- Click update

true

Check HW

true

Motor starts and

smoothly switches

to closed loop

false
Sensorless tab:

- Switch to Expert

- Tune Open Loop

Start-up

- Click update

Estimated Speed

follows the Required

speed well

false
Speed tab:

- Switch to Expert

- Tune Speed PI

controller

- Click update

true

Motor runs with

required dynamics

false
Tune:

- Current Loop

- BEMF & Tracking

observers

- Speed Loop

parameters

true

Generate output

Header file with

final configuration

true

Remote control using FreeMASTER

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

32 NXP Semiconductors

about 20 seconds and the motor must withstand this load. The acquired characterization data is saved to

a file and used later for the phase voltage correction during the Rs measurement process. The following

Rs measurement can be done with the Is,calib maximum current. It is recommended to use a motor with a

low Rs for characterization purposes.

Figure 32. Example power stage characteristic

The power stage characterization is necessary only for the user hardware board. When the NXP

power stages (TWR, FRDM, or HVP) are used with the application, the characterization process can be

omitted. The acquired characterization data is saved into a file, so it is necessary to do it only once for a

given hardware.

9.3.1.2. Stator resistance measurement

The stator resistance Rs is measured using the DC current IphN value, which is applied to the motor for

1200 ms. The DC voltage UDC is held using current controllers. Their parameters are selected

conservatively to ensure stability. The stator resistance Rs is calculated using the Ohm’s law as:

𝑹𝒔 =
𝑼𝑫𝑪−𝑼𝒆𝒓𝒓𝒐𝒓

𝑰𝒑𝒉𝑵
 [Ω] Eq. 4.

9.3.1.3. Stator inductance

For the stator inductance (LS) identification purposes, a sinusoidal measurement voltage is applied to the

motor. During the LS measurement, the voltage control is enabled. The frequency and amplitude of the

sinusoidal voltage are obtained before the actual measurement, during the tuning process. The tuning

process begins with a 0-V amplitude and the F start frequency, which are applied to the motor. The

amplitude is gradually increased by Ud inc up to a half of the DC-bus voltage (DCbus/2), until Id ampl

is reached. If Id ampl is not reached even with the DCbus/2 and F start, the frequency of the measuring

signal is gradually decreased by F dec down to F min again, until Id ampl is reached. If Id ampl is still

not reached, the measurement continues with DCbus/2 and F min. The tuning process is shown in

Figure 33.

Remote control using FreeMASTER

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

NXP Semiconductors 33

Figure 33. Tuning Ls measuring signal

When the tuning process is complete, the sinusoidal measurement signal (with the amplitude and

frequency obtained during the tuning process) is applied to the motor. The total impedance of the RL

circuit is then calculated from the voltage and current amplitudes and LS is calculated from the total

impedance of the RL circuit.

𝒁𝐑𝐋 =
𝑼𝐝

𝑰𝐝 𝐚𝐦𝐩𝐥
 [𝛀]

Eq. 5.

𝑿𝐋𝐬 = √𝒁𝐑𝐋
𝟐−𝑹𝐒

𝟐 [Ω]
Eq. 6.

𝑳𝐬 =
𝑿𝐋𝐬

𝟐𝛑𝐟
 [𝛀]

Eq. 7.

The direct inductance Ld and quadrature inductance Lq measurements are made in the same way as LS.

Before the Ld and Lq measurement is made, DC current is applied to the D-axis, which aligns the rotor.

For the Ld measurement, the sinusoidal voltage is applied in the D-axis. For the Lq measurement, the

sinusoidal voltage is applied in the Q-axis.

9.3.1.4. BEMF constant measurement

Before the actual BEMF constant (Ke) measurement, the MCAT tool calculates the current controllers

and BEMF observer constants from the previously measured Rs, Ld, and Lq. To measure Ke, the motor

must spin. Id is controlled through Id meas and the electrical open-loop position is generated by integrating

the required speed, which is derived from Nnom. When the motor reaches the required speed, the BEMF

voltages obtained by the BEMF observer are filtered and Ke is calculated:

Ud inc

Ud inc

Ud inc

Ud

UDCbus/2

300 ms

F start

300 ms

F start

300 ms

F start

300 ms

F start – F dec

300 ms 300 ms 300 ms

F start – 2*F dec F start – 3*F dec F min

Amplitude tuning Frequency tuning

t

Remote control using FreeMASTER

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

34 NXP Semiconductors

𝑲𝐞 =
𝑼𝐁𝐄𝐌𝐅

𝝎𝐞𝐥
 [𝛀] Eq. 8.

When Ke is being measured, you have to visually check to determine whether the motor is spinning

properly. If the motor is not spinning properly, perform these steps:

• Ensure that the number of pp is correct. The required speed for the Ke measurement is also

calculated from pp. Therefore, inaccuracy in pp causes inaccuracy in the resulting Ke.

• Increase Id meas to produce higher torque when spinning during the open loop.

• Decrease Nnom to decrease the required speed for the Ke measurement.

9.3.1.5. Number of pole-pair assistant

The number of pole-pairs cannot be measured without a position sensor. However, there is a simple

assistant to determine the number of pole-pairs (pp). The number of the pp assistant performs one

electrical revolution, stops for a few seconds, and then repeats it. Because the pp value is the ratio

between the electrical and mechanical speeds, it can be determined as the number of stops per one

mechanical revolution. It is recommended not to count the stops during the first mechanical revolution

because the alignment occurs during the first revolution and affects the number of stops. During the pp

measurement, the current loop is enabled and the Id current is controlled to Id meas. The electrical position

is generated by integrating the open-loop speed. If the rotor does not move after the start of the number

of pp assistant, stop the assistant, increase Id meas, and restart the assistant.

9.3.1.6. Mechanical parameters measurement

The moment of inertia J and the viscous friction B can be identified using a test with the known

generated torque T and the loading torque Tload.

𝐝𝝎𝐦

𝐝𝐭
=

𝟏

𝑱
(𝑻 − 𝑻𝒍𝒐𝒂𝒅 − 𝑩𝝎𝐦) [𝐫𝐚𝐝/𝒔𝟐]

Eq. 9.

The ωm character in the equation is the mechanical speed. The mechanical parameter identification

software uses the torque profile, as shown in Figure 34. The loading torque is (for simplicity reasons)

said to be 0 during the whole measurement. Only the friction and the motor-generated torque are

considered. During the first phase of measurement, the constant torque 𝑇meas is applied and the motor

accelerates to 50 % of its nominal speed in time 𝑡1. These integrals are calculated during the period from

𝑡0 (the speed estimation is accurate enough) to 𝑡1:

𝑻𝒊𝒏𝒕 = ∫ 𝑻𝒅𝒕 [𝑵𝒎𝒔]
𝒕𝟏

𝒕𝟎

Eq. 10.

𝝎𝐢𝐧𝐭 = ∫ 𝝎𝐦𝒅𝒕 [𝒓𝒂𝒅/𝒔]
𝒕𝟏

𝒕𝟎

Eq. 11.

Remote control using FreeMASTER

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

NXP Semiconductors 35

During the second phase, the rotor decelerates freely with no generated torque, only by friction. This

enables you to simply measure the mechanical time constant 𝜏m=𝐽/𝐵 as the time in which the rotor

decelerates from its original value by 63 %.

The final mechanical parameter estimation can be calculated by integrating:

𝝎𝐦(𝒕𝟏) =
𝟏

𝑱
𝑻𝒊𝒏𝒕 − 𝑩𝝎𝐢𝐧𝐭 + 𝝎𝐦(𝒕𝟎) [𝒓𝒂𝒅/𝒔]

Eq. 12.

The moment of inertia is:

𝑱 =
𝝉𝒎𝑻𝒊𝒏𝒕

𝝉𝒎[𝝎𝐦(𝒕𝟏) − 𝝎𝐦(𝒕𝟎)] + 𝝎𝐢𝐧𝐭
 [𝒌𝒈𝒎𝟐] Eq. 13.

The viscous friction is then derived from the relation between the mechanical time constant and the

moment of inertia. To use the mechanical parameters measurement, the current control loop bandwidth

f0,Current, the speed control loop bandwidth f0,Speed, and the mechanical parameters measurement torque

Trqm must be set.

Figure 34. PMSM identification tab

9.3.2. PMSM electrical and mechanical parameters measurement process

The motor identification process can be controlled and set up in the MCAT “Motor Identif” tab, which is

shown in Figure 35. To measure your own motor, follow these steps:

• Select your hardware board. Choose between the standard NXP hardware or use your own. If

you use your own hardware, specify its scales (“I max” and “U DCB max” in the “Parameters”

menu tab).

• If you don’t know the number of motor’s pole-pairs, use the number of pole-pair assistant

described in Section 9.3.1.5, “Number of pole-pair assistant”.

Remote control using FreeMASTER

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

36 NXP Semiconductors

• If you use your own hardware for the first time, perform the power stage characterization

described in Section 9.3.1.1, “Power stage characterization”.

• Enter the motor measurement parameters and start the measurement by pressing the “Measure

electrical” or “Measure mechanical” buttons. You can observe which parameter is being

measured in the “Status” bar.

Figure 35. PMSM identification tab

Figure 36. Measurement process diagram

Remote control using FreeMASTER

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

NXP Semiconductors 37

During the measurement, measurement faults and warnings may occur. Do not confuse these faults for

the application faults, such as overcurrent, undervoltage, and so on. The list of these faults with their

description and possible troubleshooting is shown in Table 5.

Table 5. Measurement faults and warnings

Fault no. Fault description Fault reason Troubleshooting

1 Motor not connected.
Id > 50 mA cannot be reached with the

available DC-bus voltage.
Check that the motor is connected.

2
Rs too high for

calibration.

The calibration cannot be reached with

the available DC-bus voltage.

Use a motor with a lower Rs for the

power stage characterization.

3
Current measurement

Is DC not reached.

The user-defined Is DC was not reached,

so the measurement was taken with a

lower Is DC.

Raise the DC-bus voltage to reach the

Is DC or lower the Is DC to avoid this

warning.

4

Current amplitude

measurement Is AC

not reached.

The user-defined Is AC was not reached,

so the measurement was taken with a

lower Is AC.

Raise the DC-bus voltage or lower the

Fmin to reach the Is AC or lower the Is AC

to avoid this warning.

5
Wrong characteristic

data.

The characteristic data, which is used for

the voltage correction, does not

correspond to the actual power stage.

Select the user hardware and perform

the calibration.

6
Mechanical

measurement timeout.

The mechanical measurement takes too

long.

Repeat the measurement process with a

different setup.

9.3.3. Initial configuration setting and update

1. Open the PMSM control application FreeMASTER project containing the dedicated MCAT

plug-in module.

2. Select the “Parameters” tab.

3. Leave the measured motor parameters or specify the parameters manually. The motor parameters

can be obtained from the motor data sheet or using the PMSM parameters measurement

procedure described in PMSM Electrical Parameters Measurement (document AN4680). All

parameters provided in Table 6 are accessible. The motor inertia J expresses the overall system

inertia and can be obtained using a mechanical measurement. The J parameter is used to

calculate the speed controller constant. However, the manual controller tuning can also be used

to calculate this constant.

Table 6. MCAT motor parameters

Parameter Units Description Typical range

pp [-] Motor pole pairs 1 – 10

Rs [Ω] 1-phase stator resistance 0.3 – 50

Ld [H] 1-phase direct inductance 0.00001 – 0.1

Lq [H] 1-phase quadrature inductance 0.00001 – 0.1

Ke [V.sec/rad] BEMF constant 0.001 – 1

J [kg.m2] System inertia 0.000001 – 1

Iph nom [A] Motor nominal phase current 0.5 – 8

Uph nom [V] Motor nominal phase voltage 10 – 300

N nom [rpm] Motor nominal speed 1000 – 2000

4. Set the hardware scales—the modification of these two fields is not required when a reference to

the standard power stage board is used. These scales express the maximum measurable current

and voltage analog quantities.

5. Check the fault limits—these fields are not accessible in the “Basic” mode and are calculated

http://www.nxp.com/doc/AN4680

Remote control using FreeMASTER

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

38 NXP Semiconductors

using the motor parameters and hardware scales (see Table 7).

Table 7. Fault limits

Parameter Units Description Typical range

U DCB trip [V] Voltage value at which the external braking resistor switch turns on U DCB Over ~ U DCB max

U DCB under [V] Trigger value at which the undervoltage fault is detected 0 ~ U DCB Over

U DCB over [V] Trigger value at which the overvoltage fault is detected U DCB Under ~ U max

N over [rpm] Trigger value at which the overspeed fault is detected N nom ~ N max

N min [rpm] Minimal actual speed value for the sensorless control (0.05~0.2) *N max

6. Check the application scales—these fields are not accessible in the “Basic” mode and are

calculated using the motor parameters and hardware scales.

Table 8. Application scales

Parameter Units Description Typical range

N max [rpm] Speed scale >1.1 * N nom

E max [V] BEMF scale ke* Nmax

kt [Nm/A] Motor torque constant —

7. Check the alignment parameters—these fields are not accessible in the “Basic” mode and are

calculated using the motor parameters and hardware scales. The parameters express the required

voltage value applied to the motor during the rotor alignment and its duration.

8. Click the “Store Data” button to save the modified parameters into the inner file.

9.3.4. Control structure modes

1. Select the scalar control by clicking the “DISABLED” button in the “Scalar Control” section.

The button color changes to red and the text changes to “ENABLED”.

2. Turn the application switch on. The application state changes to “RUN”.

3. Set the required frequency value in the “Freq_req” field; for example, 15 Hz in the “Scalar

Control” section. The motor starts running (Figure 37).

Figure 37. MCAT scalar control

4. Select the “Phase Currents” recorder from the “Scalar & Voltage Control” FreeMASTER project

tree.

Remote control using FreeMASTER

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

NXP Semiconductors 39

5. The optimal ratio for the V/Hz profile can be found by changing the V/Hz factor directly or

using the “UP/DOWN” buttons. The shape of the motor currents should be close to a sinusoidal

shape (Figure 38).

Figure 38. Phase currents

6. Select the “Position” recorder to check the observer functionality. The difference between the

“Position Electrical Scalar” and the “Position Estimated” should be minimal (see Figure 39) for

the Back-EMF position and speed observer to work properly. The position difference depends on

the motor load. The higher the load, the bigger the difference between the positions due to the

load angle.

Figure 39. Generated and estimated positions

7. If an opposite speed direction is required, set a negative speed value into the “Freq_req” field.

8. The proper observer functionality and the measurement of analog quantities is expected at this

step.

9. Enable the voltage FOC mode by clicking the “DISABLED” button in the “Voltage FOC”

section while the main application switch is turned off.

10. Switch the main application switch on and set a non-zero value in the “Uq_req” field. The FOC

algorithm uses the estimated position to run the motor.

Remote control using FreeMASTER

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

40 NXP Semiconductors

9.3.5. Encoder sensor setting

The encoder sensor settings are in the “Sensors” tab. The encoder sensor enables you to compute speed

and position for the sensored speed. For a proper encoder counting, set the number of encoder pulses per

one revolution and the proper counting direction. The number of encoder pulses is based on information

about the encoder from its manufacturer. If the encoder sensor has more pulses per revolution, the speed

and position computing is more accurate. The counting direction is provided by connecting the encoder

signals to the NXP Freedom board but also by connecting the motor phases. The direction of rotation

can be determined as follows:

1. Select the scalar control by clicking the DISABLED button in the “Scalar Control” section of the

“Control Struct” tab. The button color changes to red, and the text to “ENABLED”.

2. Turn the application switch on. The application state changes to “RUN”.

3. Set the required frequency value in the “Freq_req” field; for example, 15 Hz in the “Scalar

control” section. The motor starts running.

4. Check the encoder direction. Select the “Encoder Direction Scope” from the “Scalar & Voltage

Control” project tree. If the encoder direction is right, the estimated speed is equal to the

measured mechanical speed. If the measured mechanical speed is opposite to the estimated

speed, the direction must be changed by inverting the encoder wires—phase A and phase B (or

the other way round).

Figure 40. Encoder direction—right direction

Figure 41. Encoder direction—wrong direction

Remote control using FreeMASTER

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

NXP Semiconductors 41

9.3.6. Hall sensors setting

The hall sensors settings are in the “Sensors” tab. The hall sensors enable you to compute the speed and

position for the sensor speed control. For proper sensing, it is necessary to calibrate the position of the

hall sensors. There are two options of hall sensor calibration.

Automatic hall sensors calibration:

• For automatic calibration, click the “Calibrate Hall Sensors” button in the MCAT “Sensors” tab.

The calibration is performed in one minute. In scalar control, the position of hall sensors

calibrates the positive and negative speeds.

Figure 42. Hall sensors calibration

Manual hall sensors calibration:

• Open the Sensor/Hall Sensor/ folder in the FreeMASTER project tree.

• Run the motor in the sensorless speed control. In the FreeMASTER Variable Watch, write

number 3 to the “M1 MCAT Control” variable (SPEED FOC) and write 0 (Sensorless) to the

“M1 MCAT POSPE Sensor” variable. Then write a positive speed to “M1 Speed Required” (for

example, 1000 rpm). Turn the application on by writing 1 to “M1 Application Switch”. The

motor’s rotor starts spinning.

• Set the positive speed direction of calibration—write 1 to “M1 HS Calibration direction”.

• Turn the hall sensor calibration on by writing 1 to “M1 HS Calibration” and wait at least 30

seconds.

• Turn the calibration off by writing 0 to “M1 HS Calibration” and run the motor with negative

speed by writing -1000 to “M1 Speed Required” (1000 rpm).

• Set the negative speed direction of calibration—write 0 to “M1 HS Calibration direction”.

• Turn the hall sensor calibration on by writing 1 to “M1 HS Calibration” and wait at least 30

seconds.

• Turn the calibration off. The hall sensors calibration is completed.

Remote control using FreeMASTER

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

42 NXP Semiconductors

NOTE

The application support now only three hall sensors.

9.3.7. Alignment tuning

For the alignment parameters, navigate to the “Tab” menu and select “Parameters”. The alignment

procedure sets the rotor to an accurate initial position and enables you to apply full start-up torque to the

motor. The rotor-alignment parameters are available for editing in the “Expert” mode. A correct initial

position is needed mainly for high start-up loads (compressors, washers, and so on). The aim of the

alignment is to have the rotor in a stable position, without any oscillations before the startup.

1. The alignment voltage is the value applied to the d-axis during the alignment. Increase this value

for a higher shaft load.

2. The alignment duration expresses the time when the alignment routine is called. Tune this

parameter to eliminate rotor oscillations or movement at the end of the alignment process.

9.3.8. Current loop tuning

The parameters for the current D, Q PI controllers are fully calculated in the “Basic” mode using the

motor parameters and no action is required in this mode. If the calculated loop parameters do not

correspond to the required response, the bandwidth and attenuation parameters can be tuned.

1. Switch the tuning mode to “Expert”.

2. Lock the motor shaft.

3. Set the required loop bandwidth and attenuation and click the “Update Target” button in the

“Current Loop” tab. The tuning loop bandwidth parameter defines how fast the loop response is

whilst the tuning loop attenuation parameter defines the actual quantity overshoot magnitude.

4. Select the “Current Controller Id” recorder.

5. Select the “Control Structure” tab, switch to “Current FOC”, set the “Iq_req” field to a very low

value (for example 0.01), and set the required step in “Id_req”. The control loop response is

shown in the recorder (see Figure 32).

6. Tune the loop bandwidth and attenuation until you achieve the required response. The example

waveforms show the correct and incorrect settings of the current loop parameters:

— The loop bandwidth is low (110 Hz) and the settling time of the Id current is long

(Figure 43).

Remote control using FreeMASTER

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

NXP Semiconductors 43

Figure 43. Slow step response of the Id current controller

— The loop bandwidth (400 Hz) is optimal and the response time of the Id current is

sufficient (see Figure 44).

Figure 44. Optimal step response of the Id current controller

— The loop bandwidth is high (700 Hz) and the response time of the Id current is very fast,

but with oscillation and overshoot (see Figure 45).

Remote control using FreeMASTER

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

44 NXP Semiconductors

Figure 45. Fast step response of the Id current controller

9.3.9. Speed ramp tuning

1. The speed command is applied to the speed controller through a speed ramp. The ramp function

contains two increments (up and down) which express the motor acceleration and deceleration

per second. If the increments are very high, they can cause an overcurrent fault during

acceleration and an overvoltage fault during deceleration. In the “Speed” scope, you can see

whether the “Speed Actual Filtered” waveform shape equals the “Speed Ramp” profile.

2. The increments are common for the scalar and speed control. The increment fields are in the

“Speed & Pos” tab and accessible in both tuning modes. Clicking the “Update Target” button

applies the changes to the MCU. An example speed profile is shown in Figure 46. The ramp

increment down is set to 500 rpm/sec and the increment up is set to 3000 rpm/sec.

3. The start-up ramp increment is in the “Sensorless” tab and its value is usually higher than that for

the speed loop ramp.

Figure 46. Speed profile

Remote control using FreeMASTER

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

NXP Semiconductors 45

9.3.10. Open loop startup

1. The start-up process can be tuned by a set of parameters located in the “Sensorless” tab. Two of

them (ramp increment and current) are accessible in both tuning modes. The start-up tuning can

be processed in all control modes besides the scalar control. Setting the optimal values results in

a proper motor startup. An example start-up state of low-dynamic drives (fans, pumps) is shown

in Figure 47.

2. Select the “Startup” recorder from the FreeMASTER project tree.

3. Set the start-up ramp increment typically to a higher value than the speed-loop ramp increment.

4. Set the start-up current according to the required start-up torque. For drives such as fans or

pumps, the start-up torque is not very high and can be set to 15 % of the nominal current.

5. Set the required merging speed—when the open-loop and estimated position merging starts, the

threshold is mostly set in the range of 5 % ~ 10 % of the nominal speed.

6. Set the merging coefficient—in the position merging process duration, 100 % corresponds to a

half of an electrical revolution. The higher the value, the faster the merge is done. The values

close to 1 % are set for the drives where a high start-up torque and smooth transitions between

the open loop and the closed loop are required.

7. Click the “Update Target” button to apply the changes to the MCU.

8. Switch to the “Control Structure” tab, and enable the “Speed FOC”.

9. Set the required speed higher than the merging speed.

10. Check the start-up response in the recorder.

11. Tune the start-up parameters until you achieve an optimal response.

12. If the rotor does not start running, increase the start-up current.

13. If the merging process fails (the rotor is stuck or stopped), decrease the start-up ramp increment,

increase the merging speed, and set the merging coefficient to 5 %.

Figure 47. Motor startup

Remote control using FreeMASTER

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

46 NXP Semiconductors

9.3.11. BEMF observer tuning

1. In the “Basic” mode, the parameters of the BEMF observer and the tracking observer are fully

calculated using the motor parameters and no action is required. If the calculated loop parameters

do not correspond to the optimal response, the bandwidth and attenuation parameters can be

tuned.

2. Switch the tuning mode to “Expert”.

3. Select the “Observer” recorder from the FreeMASTER project tree.

4. Set the required bandwidth and attenuation of the BEMF observer—the bandwidth is typically

set to a value close to the current loop bandwidth.

5. Set the required bandwidth and attenuation of the tracking observer—the bandwidth is typically

set in the range of 10 – 20 Hz for most low-dynamic drives (fans, pumps).

6. Click the “Update Target” button to apply the changes to the MCU.

7. Check the observer response in the recorder.

9.3.12. Speed PI controller tuning

The motor speed control loop is a first-order function with a mechanical time constant that depends on

the motor inertia and friction. Obtaining these mechanical constants using the PMSM electrical and

mechanical parameter measurement process is described in Section 9.3.1.6, “Mechanical parameters

measurement” and Section 9.3.2, “PMSM electrical and mechanical parameters measurement process”.

If these mechanical constants are available, the PI controller constants can be tuned using the loop

bandwidth and attenuation. Otherwise, the manual tuning of the P and the I portions of the speed

controllers is available to obtain the required speed response (see the example response in Figure 48).

There are dozens of approaches available to tune the PI controller constants. The following steps provide

one of these examples to set and tune the speed PI controller for a PM synchronous motor:

1. Select the “Speed Controller” option from the FreeMASTER project tree.

2. Select the “Speed & Pos” tab.

3. Check the “Manual Constant Tuning” option—that is, the “Bandwidth” and “Attenuation” fields

are disabled and the “SL_Kp” and “SL_Ki” fields are enabled.

4. Tune the proportional gain:

— Set the “SL_Ki” integral gain to zero.

— Set the speed ramp to 1000 rpm/sec (or higher).

— Switch to the “Control Structure” tab and run the motor at a convenient speed (about

30 % of the nominal speed).

— Set a step in the required speed to 40 % of Nnom.

— Switch back to the “Speed loop” tab.

— Adjust the proportional gain “SL_Kp” until the system responds to the required value

properly and without any oscillations or excessive overshoot:

– If the “SL_Kp” field is set low, then the system response is slow.

Remote control using FreeMASTER

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

NXP Semiconductors 47

– If the “SL_Kp” field is set high, then the system response is tighter.

– When the “SL_Ki” field equals 0, then the system most probably does not achieve the

required speed.

— Click the “Update Target” button to apply the changes to the MCU.

5. Tune the integral gain:

— Increase the “SL_Ki” field slowly to minimize the difference between the required and

actual speeds to 0.

— Adjust the “SL_Ki” field such that you do not see any oscillation or large overshoot of

the actual speed value while the required speed step is applied.

— Click the “Update Target” button to apply the changes to the MCU.

6. Tune the loop bandwidth and attenuation until the required response is received. The example

waveforms with the correct and incorrect settings of the speed loop parameters are shown in the

following figures:

— The “SL_Ki” value is low, and the “Speed Actual Filtered” does not achieve the “Speed

Ramp” (see Figure 48).

Figure 48. Speed Controller Response—SL_Ki value is low, Speed Ramp is not achieved

— The “SL_Kp” value is low, the “Speed Actual Filtered” greatly overshoots, and the long

settling time is unwanted (see Figure 49).

Remote control using FreeMASTER

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

48 NXP Semiconductors

Figure 49. Speed Controller Response—SL_Kp value is low, Speed Actual Filtered greatly overshoots

— The speed loop response has a small overshoot and the “Speed Actual Filtered” settling

time is sufficient. Such response can be considered optimal (see Figure 50).

Figure 50. Speed Controller Response—speed loop response with a small overshoot

9.3.13. MCAT output file generation

When you successfully finish tuning the application and want to store all calculated parameters to an

embedded application, navigate to the “Output File” tab. The list of all definitions generated by the

MCAT can be viewed there. Clicking the “Generate Configuration File” button overwrites the old

version of the m1_pmsm_appconfig.h file, which contains these definitions.

Acronyms and abbreviations

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

NXP Semiconductors 49

10. Conclusion

This document describes the implementation of the sensor and sensorless FOC of a 3-phase PMSM on

the NXP FRDM-KV31F board with the FRDM-MC-LVPMSM NXP Freedom development platform.

The hardware setup used is described in Section 2, “Hardware setup”. In the application, it is possible to

use two predefined motors with two types of feedback sensors (hall sensor and encoder) or use your own

motor. The MCU features and peripheral settings (including application timing) are described in

Section 3, “KV31F MCU features and peripheral settings”. Sections 4, 5, and 6 describe the project file

structure, the tools used, and how to build and debug the application. The FreeMASTER user interface

and its web application (MCAT) used to control and tune the application are described in sections 8 and

9. It is also described how to identify the parameters and how to run your own motor.

11. Acronyms and abbreviations
Table 9. Acronyms and abbreviations

Acronym Meaning

ADC Analog-to-Digital Converter

ACIM Asynchronous Induction Motor

ADC_ETC ADC External Trigger Control

AN Application Note

CCM Clock Controller Module

CPU Central Processing Unit

DC Direct Current

DRM Design Reference Manual

ENC Encoder

FOC Field-Oriented Control

GPIO General-Purpose Input/Output

LPUART Universal Asynchronous Receiver/Transmitter

MCAT Motor Control Application Tuning tool

MCDRV Motor Control Peripheral Drivers

MCU Microcontroller

MSD Mass Storage Device

PI Proportional Integral controller

PLL Phase-Locked Loop

PMSM Permanent Magnet Synchronous Machine

PWM Pulse-Width Modulation

QD Quadrature Decoder

TMR Quad Timer

USB Universal Serial Bus

XBAR Inter-Peripheral Crossbar Switch

Useful links

PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors, Application Note, Rev. 0, 03/2019

50 NXP Semiconductors

12. References

These references are available on www.nxp.com:

1. Sensorless PMSM Field-Oriented Control (document DRM148).

2. Motor Control Application Tuning (MCAT) Tool for 3-Phase PMSM (document AN4642).

3. Sensorless PMSM Field-Oriented Control on Kinetis KV (document AN5237).

4. PMSM Field-Oriented Control on MIMXRT10xx EVK (document PMSMFOCRT10xxUG)

5. PMSM Field-Oriented Control on MIMXRT10xx EVK (document AN12214)

13. Useful links

1. PMSM Control Reference Design www.nxp.com/motorcontrol_pmsm

2. BLDC Control Reference Design www.nxp.com/motorcontrol_bldc

3. ACIM Control Reference Design www.nxp.com/motorcontrol_acim

4. FRDM-KV31F Freedome Development Platform

5. FRDM-MC-PMSM Freedome Development Platform

6. MCUXpresso SDK Builder (SDK examples in several IDEs)

www.mcuxpresso.nxp.com/en/builder

http://www.nxp.com/
http://www.nxp.com/doc/DRM148
http://www.nxp.com/doc/AN4642
http://www.nxp.com/doc/AN5237
https://www.nxp.com/docs/en/user-guide/PMSMFOCRT10xxUG.PDF
https://www.nxp.com/docs/en/application-note/AN12214.pdf
http://www.nxp.com/motorcontrol_pmsm
http://www.nxp.com/motorcontrol_bldc
http://www.nxp.com/motorcontrol_acim
https://www.nxp.com/support/developer-resources/evaluation-and-development-boards/freedom-development-boards/mcu-boards/freedom-development-platform-for-kinetis-kv3x-family-mcus:FRDM-KV31F
https://www.nxp.com/support/developer-resources/evaluation-and-development-boards/freedom-development-boards/mcu-boards/nxp-freedom-development-platform-for-low-voltage-3-phase-pmsm-motor-control:FRDM-MC-LVPMSM
http://www.mcuxpresso.nxp.com/en/builder

Document Number: AN12374
Rev. 0

03/2019

How to Reach Us:

Home Page:

www.nxp.com

Web Support:

www.nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright licenses

granted hereunder to design or fabricate any integrated circuits based on the

information in this document. NXP reserves the right to make changes without further

notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does NXP assume any liability arising out of

the application or use of any product or circuit, and specifically disclaims any and all

liability, including without limitation consequential or incidental damages. “Typical”

parameters that may be provided in NXP data sheets and/or specifications can and do

vary in different applications, and actual performance may vary over time. All operating

parameters, including “typicals,” must be validated for each customer application by

customer’s technical experts. NXP does not convey any license under its patent rights

nor the rights of others. NXP sells products pursuant to standard terms and conditions

of sale, which can be found at the following address:

www.nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of

their applications and products to reduce the effect of these vulnerabilities on

customer’s applications and products, and NXP accepts no liability for any vulnerability

that is discovered. Customers should implement appropriate design and operating

safeguards to minimize the risks associated with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,

COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES,

MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,

MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK,

SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the

Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware,

the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,

PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the

SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack,

CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names

are the property of their respective owners. Arm, AMBA, Arm Powered, Artisan, Cortex,

Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered trademarks of

Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Arm7, Arm9, Arm11,

big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, Mbed, NEON, POP, Sensinode,

Socrates, ULINK and Versatile are trademarks of Arm Limited (or its subsidiaries) in the

EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of

Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the

Power and Power.org logos and related marks are trademarks and service marks

licensed by Power.org.

© 2019 NXP B.V.

http://www.nxp.com/
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	PMSM Field-Oriented Control on FRDM-KV31F with Hall and Encoder Sensors
	1. Introduction
	2. Hardware setup
	2.1. FRDM-KV31F MCU board
	2.2. FRDM-MC-LVPMSM power stage
	2.3. Linix 45ZWN24-40 motor
	2.4. Teknic M-2310P motor
	2.5. NXP Freedom system assembling

	3. KV31F MCU features and peripheral settings
	3.1. KV31F MCU
	3.1.1. Hardware timing and synchronization
	3.1.2. Peripheral settings
	3.1.2.1. PWM generation—FTM0
	3.1.2.2. Analog sensing—ADC0 and ADC1
	3.1.2.3. PWM and ADC synchronization—PDB0
	3.1.2.4. Over-current detection—CMP1
	3.1.2.5. Slow-loop interrupt generation—FTM1
	3.1.2.6. Encoder signal processing—FTM2
	3.1.2.7. Hall sensors signals processing—FTM2

	3.1.3. CPU load and memory usage

	4. Project file structure
	4.1. PMSM project structure

	5. Tools
	6. Building and debugging applications
	6.1. IAR Embedded Workbench IDE
	6.2. MCUXpresso IDE
	6.3. Arm-MDK Keil Vision
	6.4. OpenSDA debugger
	6.5. Compiler warnings

	7. Motor-control peripheral initialization
	8. User interface
	9. Remote control using FreeMASTER
	9.1. Establishing FreeMASTER communication
	9.2. MCAT FreeMASTER interface (Motor Control Application Tuning)
	9.2.1. Control structure—“Control Struc” tab
	9.2.2. Application demo control—“App control” tab

	9.3. Identifying parameters of your motor using MCAT
	9.3.1. PMSM parameters identification
	9.3.1.1. Power stage characterization
	9.3.1.2. Stator resistance measurement
	9.3.1.3. Stator inductance
	9.3.1.4. BEMF constant measurement
	9.3.1.5. Number of pole-pair assistant
	9.3.1.6. Mechanical parameters measurement

	9.3.2. PMSM electrical and mechanical parameters measurement process
	9.3.3. Initial configuration setting and update
	9.3.4. Control structure modes
	9.3.5. Encoder sensor setting
	9.3.6. Hall sensors setting
	9.3.7. Alignment tuning
	9.3.8. Current loop tuning
	9.3.9. Speed ramp tuning
	9.3.10. Open loop startup
	9.3.11. BEMF observer tuning
	9.3.12. Speed PI controller tuning
	9.3.13. MCAT output file generation

	10. Conclusion
	11. Acronyms and abbreviations
	12. References
	13. Useful links

