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1. Introduction

This application note describes the design of a 3-phase 

Permanent Magnet Synchronous Motor (PMSM) vector 

control (Field Oriented Control - FOC) drive with 2-

shunt current sensing with and without position sensor.  

This design serves as an example of motor control 

design using S32K1 family of automotive motor 

control MCUs based on a 32-bit ARM® CortexTM-M4F 

optimized for a full range of automotive applications. 

Following are the supported features: 

• 3-phase PMSM speed Field Oriented Control.

• Current sensing with two shunt resistors.

• Shaft position and speed estimated by sensorless

algorithm and encoder position sensor

• Application control user interface using

FreeMASTER debugging tool.

• Motor Control Application Tuning (MCAT)

tool.
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2. System concept 

The system is designed to drive a 3-phase PM synchronous motor. The application meets the following 

performance specifications: 

• Targeted at the S32K144EVB Evaluation Board (refer to dedicated user manual for 

S32K144EVB available at www.nxp.com). See section References for more information. 

• S32 Software Development Kit (SDK) and Processor Expert (PEx) used as S32K144 device 

configuration and control tool being a part of the S32 Design Studio (see section References) 

• MC34GD3000 MOSFETs pre-driver with extensive set of functions and condition monitoring 

(see section References) 

• Control technique incorporating: 

o Field Oriented Control of 3-phase PM synchronous motor without position sensor 

o Closed-loop speed control with action period 1ms 

o Closed-loop current control with action period 100µs  

o Bi-directional rotation 

o Flux and torque independent control 

o Field weakening control extending speed range of the PMSM beyond the base speed  

o Position and speed is estimated by Extended BEMF observer or obtained by Encoder 

sensor  

o Open-loop start up with alignment 

o Reconstruction of three-phase motor currents from two shunt resistors 

o FOC state variables sampled with 100 μs period 

• Automotive Math and Motor Control Library (AMMCLIB) - FOC algorithm built on blocks of 

precompiled SW library (see section References) 

• FreeMASTER software control interface (motor start/stop, speed setup) 

• FreeMASTER software monitor 

• FreeMASTER embedded Motor Control Application Tuning (MCAT) tool (motor parameters, 

current loop, sensorless parameters, speed loop) (see section References) 

• FreeMASTER software MCAT graphical control page (required speed, actual motor speed, 

start/stop status, DC-Bus voltage level, motor current, system status) 

• FreeMASTER software speed scope (observes actual and desired speeds, DC-Bus voltage and 

motor current) 

• FreeMASTER software high-speed recorder (reconstructed motor currents, vector control 

algorithm quantities) 

• DC-Bus over-voltage and under-voltage, over-current, overload and start-up fail protection 

 

http://www.nxp.com/
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3. PMSM field oriented control 

3.1. Fundamental principle of PMSM FOC 

High-performance motor control is characterized by smooth rotation over the entire speed range of the 

motor, full torque control at zero speed, and fast acceleration/deceleration. To achieve such control, 

Field Oriented Control is used for PM synchronous motors.  

The FOC concept is based on an efficient torque control requirement, which is essential for achieving a 

high control dynamic. Analogous to standard DC machines, AC machines develop maximal torque 

when the armature current vector is perpendicular to the flux linkage vector. Thus, if only the 

fundamental harmonic of stator magnetomotive force is considered, the torque Te developed by an AC 

machine, in vector notation, is given by the following equation: 

𝑇𝑒 = 
3

2
⋅ 𝑝𝑝 ⋅ 𝜓𝑠

̅̅ ̅ × 𝑖𝑠̅ 

Equation 1 

where pp is the number of motor pole-pairs, is is stator current vector and ψs represents vector of the 

stator flux. Constant 3/2 indicates a non-power invariant transformation form.  

In instances of DC machines, the requirement to have the rotor flux vector perpendicular to the stator 

current vector is satisfied by the mechanical commutator. Because there is no such mechanical 

commutator in AC Permanent Magnet Synchronous Machines (PMSM), the functionality of the 

commutator has to be substituted electrically by enhanced current control. This reveal that stator current 

vector should be oriented in such a way that component necessary for magnetizing of the machine (flux 

component) shall be isolated from the torque producing component. 

This can be accomplished by decomposing the current vector into two components projected in the 

reference frame, often called the dq frame that rotates synchronously with the rotor. It has become a 

standard to position the dq reference frame such that the d-axis is aligned with the position of the rotor 

flux vector, so that the current in the d-axis will alter the amplitude of the rotor flux linkage vector. The 

reference frame position must be updated so that the d-axis should be always aligned with the rotor flux 

axis. 

Because the rotor flux axis is locked to the rotor position, when using PMSM machines, a mechanical 

position transducer or position observer can be utilized to measure the rotor position and the position of 

the rotor flux axis. When the reference frame phase is set such that the d-axis is aligned with the rotor 

flux axis, the current in the q-axis represents solely the torque producing current component. 

What further resulted from setting the reference frame speed to be synchronous with the rotor flux axis 

speed is that both d and q axis current components are DC values. This implies utilization of simple 

current controllers to control the demanded torque and magnetizing flux of the machine, thus 

simplifying the control structure design. 

Figure 1 shows the basic structure of the vector control algorithm for the PM synchronous motor. To 

perform vector control, it is necessary to perform the following four steps: 
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• Measure the motor quantities (DC link voltage and currents, rotor position/speed). 

• Transform measured currents into the two-phase orthogonal system (α, β) using a Clarke 

transformation. After that transform the currents in α, β coordinates into the d, q reference frame 

using a Park transformation. 

• The stator current torque (isq) and flux (isd) producing components are separately controlled in d, 

q rotating frame. 

• The output of the control is stator voltage space vector and it is transformed by an inverse Park 

transformation back from the d, q reference frame into the two-phase orthogonal system fixed 

with the stator. The output three-phase voltage is generated using a space vector modulation. 

Clarke/Park transformations discussed above are part of the Automotive Math and Motor Control 

Library set (see section References).  

To be able to decompose currents into torque and flux producing components (isd, isq), position of the 

motor-magnetizing flux has to be known. This requires knowledge of accurate rotor position as being 

strictly fixed with magnetic flux. This application note deals with the sensorless FOC control where the 

position and velocity is obtained by either a position/velocity estimator or incremental Encoder sensor.  

 

Figure 1. Field oriented control transformations 

3.2. PMSM model in quadrature phase synchronous reference frame 

Quadrature phase model in synchronous reference frame is very popular for field oriented control 

structures, because both controllable quantities, current and voltage, are DC values. This allows to 

employ only simple controllers to force the machine currents into the defined states. Furthermore, full 

decoupling of the machine flux and torque can be achieved, which allows dynamic torque, speed and 

position control. 

The equations describing voltages in the three phase windings of a permanent magnet synchronous 

machine can be written in matrix form as follows: 

[

𝑢𝑎

𝑢𝑏

𝑢𝑐

] = 𝑅𝑠 [
𝑖𝑎
𝑖𝑏
𝑖𝑐

] +
𝑑

𝑑𝑡
[

𝜓𝑎

𝜓𝑏

𝜓𝑐

] 

Equation 2 

where the total linkage flux in each phase is given as: 



PMSM field oriented control 

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020 

NXP Semiconductors  5 

  

[

𝜓𝑎

𝜓𝑏

𝜓𝑐

] = [
𝐿𝑎𝑎 𝐿𝑎𝑏 𝐿𝑎𝑐

𝐿𝑏𝑎 𝐿𝑏𝑏 𝐿𝑏𝑐

𝐿𝑐𝑎 𝐿𝑐𝑏 𝐿𝑐𝑐

] [
𝑖𝑎
𝑖𝑏
𝑖𝑐

] + Ψ𝑃𝑀

[
 
 
 
 

cos (𝜃𝑒)

cos (𝜃𝑒 −
2𝜋

3
)

cos (𝜃𝑒 +
2𝜋

3
)]
 
 
 
 

 

Equation 3 

where Laa, Lbb, Lcc, are stator phase self-inductances and Lab=Lba, Lbc=Lcb, Lca=Lac are mutual 

inductances between respective stator phases. The term ΨPM represents the magnetic flux generated by 

the rotor permanent magnets, and θe is electrical rotor angle. 

 

Figure 2. Orientation of stator (stationary) and rotor (rotational) reference frames, with current 

components transformed into both frames 

The voltage equation of the quadrature phase synchronous reference frame model can be obtained by 

transforming the three phase voltage equations (Equation 2) and flux equations (Equation 3) into a two 

phase rotational frame which is aligned and rotates synchronously with the rotor as shown in Figure 2. 

Such transformation, after some mathematical corrections, yields the following set of equations: 

[
𝑢𝑑

𝑢𝑞
] = 𝑅𝑠 [

𝑖𝑑
𝑖𝑞

] + [
𝐿𝑑 0
0 𝐿𝑞

]
𝑑

𝑑𝑡
[
𝑖𝑑
𝑖𝑞

] + 𝜔𝑒 [
0 −𝐿𝑞

𝐿𝑑 0
] [

𝑖𝑑
𝑖𝑞

] + 𝜔𝑒Ψ𝑃𝑀 [
0
1
] 

Equation 4 

where ωe is electrical rotor speed. It can be seen that Equation 4 

, represents a non-linear cross dependent system, with cross-coupling terms in both d and q axis and 

back-EMF voltage component in the q-axis. When FOC concept is employed, both cross-coupling terms 

shall be compensated in order to allow independent control of current d and q components. Design of the 

controllers is then governed by following pair of equations, derived from Equation 4 after 

compensation: 

 

α

β

d

q

ωe

αβ frame – stator coordinates
dq frame – rotor coordinates

θe

iS

iSd

iSq

iSα

iSβ

torque 
component

flux 
component

PM
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𝑢𝑑 = 𝑅𝑠𝑖𝑑 + 𝐿𝑑

𝑑𝑖𝑑
𝑑𝑡

 

Equation 5 

𝑢𝑞 = 𝑅𝑠𝑖𝑞 + 𝐿𝑞

𝑑𝑖𝑞

𝑑𝑡
 

Equation 6 

This equation describes the model of the plant for d and q current loop. Both equations are structurally 

identical, therefore the same approach of controller design can be adopted for both d and q controllers. 

The only difference is in values of d and q axis inductances, which results in different gains of the 

controllers. Considering closed loop feedback control of a plant model as in either equation, using 

standard PI controllers, then the controller proportional and integral gains can be derived, using a pole-

placement method, as follows: 

𝐾𝑝 = 2𝜉𝜔0𝐿 − 𝑅 

Equation 7 

 
𝐾𝑖 = 𝜔0

2𝐿 

Equation 8 

where ω0 represents the system natural frequency [rad/sec] and ξ is the Damping factor [-] of the current 

control loop.  

 

Figure 3. FOC Control Structure 

3.3. Output voltage actuation and phase current measurement 

The 3-phase voltage source inverter shown in Figure 4 uses three shunt resistors (R56, R57, R58) placed 

in three legs of the inverter as phase current sensors. Stator phase current which flows through the shunt 
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resistor produces a voltage drop which is interfaced to the AD converter of microcontroller through 

conditional circuitry (refer to DEVKIT-MOTORGD Schematic available at nxp.com). 

 

Figure 4. 3-phase DC/AC inverter with shunt resistors for current measurement  

Figure 5 shows a gain setup and input signal filtering circuit for operational amplifier which provides 

the conditional circuitry and adjusts voltages to fit into the ADC input voltage range. 

 

Figure 5. Phase current measurement conditional circuitry 

The phase current sampling technique is a challenging task for detection of phase current differences 

and for acquiring full three phase information of stator current by its reconstruction. Phase currents 

flowing through shunt resistors produces a voltage drop which needs to be appropriately sampled by the 

AD converter when low-side transistors are switched on. The current cannot be measured by the current 

shunt resistors at an arbitrary moment. This is because that the current only flows through the shunt 

resistor when the bottom transistor of the respective inverter leg is switched on. Therefore, considering 

Figure 4, phase A current is measured using the R56 shunt resistor and can only be sampled when the 

low side transistor Q2 is switched on. Correspondingly, the current in phase B can only be measured if 

the low side transistor Q3 is switched on, and the current in phase C can only be measured if the low 

side transistor Q4 is switched on. To get an actual instant of current sensing, voltage waveform analysis 

has to be performed. 

Generated duty cycles (phase A, phase B, phase C) of two different PWM periods are shown in Figure 

6. These phase voltage waveforms correspond to a center-aligned PWM with sine-wave modulation. As 

shown in the following figure, (PWM period I), the best sampling instant of phase current is in the 

middle of the PWM period, where all bottom transistors are switched on. However, not all three currents 

can be measured at an arbitrary voltage shape. PWM period II in the following figure shows the case 
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when the bottom transistor of phase A is ON for a very short time. If the ON time is shorter than a 

certain critical time (depends on hardware design), the current cannot be correctly measured. 

 

Figure 6. Generated phase duty cycles in different PWM periods 

In standard motor operation, where the supplied voltage is generated using the space vector modulation, 

the sampling instant of phase current takes place in the middle of the PWM period in which all bottom 

transistors are switched on. If the duty cycle goes to 100%, there is an instant when one of the bottom 

transistors is switched on for a very short time period. Therefore, only two currents are measured and the 

third one is calculated from equation: 

𝑖𝐴 + 𝑖𝐵 + 𝑖𝐶 = 0 

Equation 9 

NOTE 

Although, there are three shunt resistors available on the power stage 

board (R56, R57, R58), S32K144 has only two AD converters that 

measure two currents simultaneously in this application. Third stator 

current is calculated based on Equation 9. To measure two stator currents 

in two inverter legs correctly, minimum ON times for the low-side 

switches are ensured by appropriate duty cycle limit. 

3.4. Rotor position/speed estimation 

In this application, rotor position and speed are either estimated by back-EMF observer or obtained by 

Encoder sensor. Back-EMF observer as well as incremental Encoder sensor provide only relative 

position. To get absolute position, initial position must be known. This application uses mechanical rotor 

alignment when the rotor is moved from unknown to known position applying DC voltage. 

The alignment algorithm applies DC voltage to d-axis resulting full DC voltage applied to phase A and 

negative half of the DC voltage applied to phase B, C for a certain period. This will cause the rotor to 

move to "align" position, where stator and rotor fluxes are aligned. The rotor position in which the rotor 

stabilizes after applying DC voltage is set as zero position. Motor is ready to produce full startup torque 

once the rotor is properly aligned. 

Application in Sensorless mode must start with open loop start-up sequence to move the motor up to a 

speed value where the observer provides sufficiently accurate speed and position estimations. As soon as 
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the observer provides appropriate estimates, application transits to closed-loop mode, when the rotor 

speed and position calculation is based on the estimation of a BEMF in the stationary reference frame 

using a Luenberger type of observer. BEMF observer is as a part of the NXP’s Automotive Math and 

Motor Control library. Structure and implementation details are discussed in section 4.3.4.  

3.5. Field weakening 

Field weakening is an advanced control approach that extends standard FOC to allow electric motor 

operation beyond a base speed. The back electromotive force (EMF) is proportional to the rotor speed 

and counteracts the motor supply voltage. If a given speed is to be reached, the terminal voltage must be 

increased to match the increased stator back-EMF. A sufficient voltage is available from the inverter in 

the operation up to the base speed. Beyond the base speed, motor voltages ud and uq are limited and 

cannot be increased because of the ceiling voltage given by inverter. Base speed defines the rotor speed 

at which the back-EMF reaches maximal value and motor still produces the maximal torque. 

As the difference between the induced back-EMF and the supply voltage decreases, the phase current 

flow is limited, hence the currents id and iq cannot be controlled sufficiently. Further increase of speed 

would eventually result in back-EMF voltage equal to the limited stator voltage, which means a 

complete loss of current control. The only way to retain the current control even beyond the base speed 

is to lower the generated back-EMF by weakening the flux that links the stator winding. Base speed 

splits the whole speed motor operation into two regions: constant torque and constant power, see Figure 

7. 

 

Figure 7. Constant torque/power operating regions 

Operation in constant torque region means that maximal torque can be constantly developed while the 

output power increases with the rotor speed. The phase voltage increases linearly with the speed and the 

current is controlled to its reference. The operation in constant power region is characterized by a rapid 

decrease in developed torque while the output power remains constant. The phase voltage is at its limit 

while the stator flux decreases proportionally with the rotor speed, see Figure 8. 

Mechanical power

Torque

Constant Torque region Constant Power region

Base speed

Pmech = Te*m

Te =Pmax /m

Pmech=Pmax

Te=Tmax

Speed
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Figure 8. Constant flux/voltage operational regions 

FOC splits phase currents into the q-axis torque component and d-axis flux component. The flux current 

component Id is used to weaken the stator magnetic flux linkage ΨS. Reduced stator flux ΨS yields to 

lower Back-EMF and condition of Field Weakening is met. More details can be seen from the following 

phasor diagrams of the PMSM motor operated exposing FOC control without (left) and with FW (right), 

Figure 9. 

 

Figure 9. Steady-state phasor diagram of PMSM operation up to base speed (left) and above speed (right) 

FOC without FW is operated demanding d-axis current component to be zero (Id=0) to excite electric 

machine just by permanent magnets mounted on the rotor. This is an operation within constant torque 

region (see Figure 7), since whole amount of the stator current consists of the torque producing 

component Iq only (see Figure 9 left). Stator magnetic flux linkage ΨS1 is composed of rotor magnetic 

flux linkage ΨPM, which represents the major contribution and small amount of the magnetic flux 

linkage in q-axis LqIq produced by q-axis current component Iq. Based on the Faraday’s law, rotor 

magnetic flux linkage ΨPM and stator magnetic flux linkage ΨS1 produce back-EMF voltage 

EPM1=ωe1ΨPM perpendicularly oriented to rotor magnetic flux ΨPM in q-axis and back EMF voltage 

ES1=ωe1ΨS1 perpendicularly oriented to stator magnetic flux ΨS1, respectively (see Figure 9 left). Both 

voltages are directly proportional to the rotor speed ωe1. If the rotor speed exceeds the base speed, the 

back-EMF voltage ES1=ωe1ΨS1 approaches the limit given by VSI and Iq current cannot be controlled. 

Hence, field weakening has to take place. 

Voltage control range

Base speed SpeedBase speed

Stator voltage  VS

Stator flux  S

Field-weakening control Field-weakening control

q- axis

d- axis

IS = Iq

EPM1 = e1PM

VS1

S1

RS IS
jXSIS

q- axis

d- axis

IS Iq

Id

VS2

S2

RS IS

jXSIS

-Ld Id

IMAX IMAX

ES2 = e2S2
ES1 = e1S1

Lq Iq
Lq Iq

VSI voltage capability VSI voltage capability

EPM2 = e2PM

PMPM

e1 < e2

EPM1 < EPM2



Software implementation on the S32K144 

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020 

NXP Semiconductors  11 

  

In FW operation, Id current is controlled to negative values to “weaken” stator flux linkage ΨS2 by -LdId 

component as shown in Figure 9 right. Thanks to this field weakening approach, back-EMF voltage 

induced in the stator windings ES2 is reduced below the VSI voltage capability even though EPM2 

exceeds it. Iq current can be controlled again to develop torque as demanded. Unlike the previous case, 

this is an operation within constant power region (see Figure 7), where Iq current is limited due to Is 

current vector size limitation (see Figure 9 right). In FW operation, stator magnetic flux linkage ΨS 

consists of three components now: rotor magnetic flux linkage ΨPM, magnetic flux linkage in q-axis Ψq= 

LqIq produced by q-axis current component Iq and magnetic flux linkage in d-axis Ψd= -LdId produced by 

negative d-axis Id current component that counteracts to ΨPM. 

There are some limiting factors that must be taken into account when operating FOC control with field 

weakening: 

• Voltage amplitude u_max is limited by power as shown in Figure 10 left 

• Phase current amplitude i_max is limited by capabilities of power devices and motor thermal 

design as shown in Figure 10 right 

• Flux linkage in d-axis is limited to prevent demagnetization of the permanent magnets 

 

Figure 10. Voltage (left) and current (right) limits for PMSM drive operation 

NXP’s Automotive Math and Motor Control library offers a software solution for the FOC with field 

weakening respecting all limitations discussed above. This library based function is discussed in section 

4.3.4. 

4.  Software implementation on the S32K144 

4.1. S32K144 – Key modules for PMSM FOC control 

The S32K144 device includes modules such as the FlexTimer Module (FTM), Trigger MUX Control 

(TRGMUX), Programmable Delay Block (PDB) and Analogue-to-Digital Converter (ADC) suitable for 

control applications, in particular, motor control applications. These modules are directly interconnected 

and can be configured to meet various motor control application requirements. Figure 11 shows module 

interconnection for a typical PMSM FOC application working in Sensorless or Sensorbased mode using 

dual shunt current sensing. The modules are described below and a detailed description can be found in 

the S32K1xx Series Reference Manual (see section References). 
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4.1.1. Module interconnection 

The modules involved in output actuation, data acquisition and the synchronization of actuation and 

acquisition, form the so-called Control Loop. This control loop consists of the FTM, TRGMUX, PDB, 

and ADC modules. The control loop is very flexible in operation and can support static, dynamic or 

asynchronous timing.  

Each control loop cycle can be initiated either by FTM initialization trigger init_trig or by FTM external 

trigger ext_trig. While init_trig signal is generated at beginning of PWM cycle, ext_trig can be 

generated any time within the PWM period based on the value defined in the corresponding FTM 

Channel Value register CnV.  

FTM trigger signal is routed to hardware trigger input of the PDB module through flexible TRGMUX 

unit. In S32K14x, there are two ADC modules and two PDB modules that work in pairs. This means 

that PDB0 is linked with ADC0 and PDB1 is linked with ADC1.  

PDB pre-triggers ch0pretrigx are used as a precondition for ADC module. They are directly connected 

to ADHWTS ports to select ADC channels as well as order of the channels by configurable pre-triggers 

delays. When ADC receives rising edge of the trigger, ADC will start conversion according to the order 

defined by pre-triggers ch0pretrigx.  

PDB pre-trigger delays must be properly set to allow reliable operation between PDB and corresponding 

ADC module. When the first pre-trigger is asserted, associated lock of the pre-trigger becomes active 

until corresponding conversion is not completed. This associated lock is released by corresponding ADC 

conversion complete flag ADC_SC1[COCOx]. This means that next pre-trigger can be generated only if 

the ongoing conversion is completed. 

Second FTM module can work in Quadrature Decoder mode counting rising/falling edges of the Phase 

A and Phase B Encoder signals to determine the rotor position and speed independently from the control 

loop (see section 4.2.2.2). 

Detailed description can be found in the S32K1xx Series Reference Manual (see section References).  
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Figure 11.  S32K144 module interconnection 

4.1.2. S32K144 and FETs pre-driver interconnection 

Excitation of power FETs is ensured by NXP MC34GD3000 pre-driver. This analog device is equipped 

with charge pump that ensures external FETs drive at low power supply voltages. Moreover, three 

external bootstrap capacitors provide gate charge to the high-side FETs (see section References).  

Configuration of MC34GD3000 pre-driver is realized via LPSPI0 module. The MC34GD3000 allows 

different operating modes to be set and locked by SPI commands. SPI commands also report condition 

of the MC34GD3000 based on the internal monitoring circuits and fault detection logic. S32K144 

detects fault state of the MC34GD3000 by means of interrupt signal on PTE10 pin. Integrated current 

sensing amplifier with analog comparator allow to measure DC bus current and detect overcurrent. 

Interconnection between S32K144 and MC34GD3000 is briefly depicted in Figure 11. 

4.1.3. Module involvement in digital PMSM Sensorless control loop 

This section will discuss timing and modules synchronization to accomplish PMSM Sensorless FOC on 

the S32K144 and the internal hardware features. 

The time diagram of the automatic synchronization between PWM and ADC in the PMSM application 

is shown in Figure 12. 
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Figure 12. Time Diagram of PWM and ADC Synchronization 

The PMSM Sensorless FOC control with two shunt current measurement is based on static timing; 

meaning the trigger point instances of the ADC conversions are located at same place within one control 

loop cycle. 

Each control cycle starts with FTM3 initialization trigger init_trig, which is generated at beginning of 

the PWM cycle as shown in Figure 12. Initialization trigger restarts PDB0 and PDB1 modules and 

updates their double buffered registers. ADC0 and ADC1 channels are triggered based on the PDB0 and 

PDB1 pre-trigger delays. When PDB counter reaches first pre-trigger delay value, PDB initiates first 

ADC channel measurement. 

DC bus voltage measurement is triggered first by PDB1, at beginning of the PWM cycle (pretrig0). 

Phase A and Phase B stator currents are measured simultaneously in the middle of the PWM cycle, 

when bottom transistors of both inverter legs are closed, and currents flow through shunt resistors. 

While PDB0 triggers Phase A current measurement at pretrig0, Phase B current measurement is 

triggered by PDB1 at pretrig1. The ADC conversion results are automatically stored into a predefined 

queue in memory. 

The CPU is triggered by the ADC1 conversion complete interrupt service routine. Based on the stored 

ADC0 and ADC1 values, the current PI controllers calculate new PWM duty cycles. These are then sent 

as a new reference for PWM module (FTM3) and become effective in the next PWM cycle. 

FTM3 initialization trigger is disabled in ADC1 Conversion Complete interrupt service routine. As a 

consequence, PDB0 and PDB1 are not triggered in the next PWM period due to the missing init_trig 
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signal. FTM3 initialization trigger is reenabled again in PDB1 interrupt service routine as soon as the 

opportunity for generating init_trig signal elapses. This strategy ensures ADC0 and ADC1 sampling 

every second opportunity as depicted in Figure 12. 

4.2. S32K144 Device initialization 

To simplify and accelerate application development, embedded part of the PMSM Sensorless motor 

control application has been created using S32 Software Development Kit – S32 SDK. S32K144 can be 

configured either by means of the Processor Expert extension, or programmed directly using SDK 

drivers. Peripherals are initialized at beginning of the main() function. For each S32K144 module, there 

is a specific configuration function that uses S32 SDK APIs and configuration structures generated by 

PEx to configure the MCU. 

• McuClockConfig()  – MCU clock configuration  

• McuPowerConfig()  – MCU power management configuration 

• McuTrigmuxConfig() – TRGMUX module configuration 

• McuPinsConfig() – PINs and PORT modules configuration 

• McuLpuartConfig() – LPUART module configuration 

• McuAdcConfig() – ADC modules configuration 

• McuPdbConfig() – PDB modules configuration 

• McuFtmConfig() – FTM modules configuration  

Detailed SDK documentation can be found in folder created with S32 Design Studio installation.  

(References). 

4.2.1. Clock configuration and power management  

S32K144 features a complex clocking sourcing, distribution and power management. To run a core of 

the S32K144 as well as some MCU peripherals at maximum frequency 80 MHz in normal RUN mode, 

S32K144 is supplied externally by 8 MHz crystal. This clock source supplies Phase-lock-loop (PLL), 

which circuit multiplies frequency by 40 and divides by 2 resulting 160 MHz frequency on output. PLL 

output is then divided by 2 to supply core and system (80 MHz), further divided by two and three to 

supply bus clock (40 MHz) and flash clock (26.67 MHz), respectively. This clock configuration belongs 

to one of the typical and recommended. It is summarized in Table 1. 

Table 1. S32K144 clock configuration in RUN mode 

Clock Frequency 

CORE_CLOCK 80 MHz 

SYS_CLK
 

80 MHz 

BUS_CLK
 

40 MHz 

FLASH_CLK
 

26.67 MHz (max freq. in RUN 

mode) 

This clock configuration and power management can be setup by S32 Processor Expert.  Preview of the 

S32K144 clock sourcing and distribution is shown in Figure 13. 
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Figure 13. S32K144 clock configuration in Processor Expert 

Once the clock configuration is set, Processor Expert generates static configuration structure 

clockMan1_InitConfig0, that is called by SDK’s CLOCK_SYS_Init function through array of the 

configuration pointers g_clockManConfigsArr, Example 1. 

Example 1. S32K144 clock configuration controlled by S32 SDK   
void McuClockConfig(void) 
{ 
    /* Clock configuration for MCU and MCU's peripherals */ 
    CLOCK_SYS_Init(g_clockManConfigsArr, 
                   CLOCK_MANAGER_CONFIG_CNT, 
                   g_clockManCallbacksArr, 
                   CLOCK_MANAGER_CALLBACK_CNT); 
 
    /* Clock configuration update */ 
    CLOCK_SYS_UpdateConfiguration(0, CLOCK_MANAGER_POLICY_FORCIBLE); 
} 
 
... 
 
/*! @brief Array of pointers to User configuration structures */ 
clock_manager_user_config_t const * g_clockManConfigsArr[] = { 
    &clockMan1_InitConfig0 
}; 
/*! @brief Array of pointers to User defined Callbacks configuration structures */ 
clock_manager_callback_user_config_t * g_clockManCallbacksArr[] = {(void*)0}; 
/* END clockMan1. */ 

 

As discussed at beginning of this chapter, power management of the S32K144 is configured for normal 

RUN mode. This power mode can be forced by Processor Expert as well, Figure 14. 
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Figure 14. S32K144 power management configuration in Processor Expert 

Static configuration generated by Processor Expert is called by SDK’s POWER_SYS_Init function to 

update power mode of the S32K144 device, Example 2.  

Example 2. S32K144 power management controlled by S32 SDK   
void McuPowerConfig(void) 
{ 
    /* Power mode configuration for RUN mode */ 
    POWER_SYS_Init(&powerConfigsArr, 0, &powerStaticCallbacksConfigsArr,0); 
    /* Power mode configuration update */ 
    POWER_SYS_SetMode(0,POWER_MANAGER_POLICY_AGREEMENT); 
} 
 
... 

 
/*! @brief User Configuration structure power_managerCfg_0 */ 
power_manager_user_config_t pwrMan1_InitConfig0 = { 
    .powerMode = POWER_MANAGER_RUN,                                  /*!< Power manager mode  */ 
    .sleepOnExitValue = false,                                       /*!< Sleep on exit value */ 
}; 
 
/*! @brief Array of pointers to User configuration structures */ 
power_manager_user_config_t * powerConfigsArr[] = { 
    &pwrMan1_InitConfig0 
}; 
/*! @brief Array of pointers to User defined Callbacks configuration structures */ 

 

Same mechanism between Processor Expert and S32 SDK works for all S32K144 peripherals, which are 

discussed below. 

4.2.2. FlexTimer Module (FTM) 

FlexTimer module (FTM) is built upon a timer with a 16-bit counter. It contains an extended set of 

features that meet the demands of motor control, including the signed up-counter, dead time insertion 

hardware, fault control inputs, enhanced triggering functionality, and initialization and polarity control.  
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 Center-aligned PWM mode 

FTM3 instance is used in PMSM Sensorless motor control application to generate center-align PWM by 

six, complementary oriented channels to control power MOSFETs of the DEVKIT-MOTORGD board.  

As depicted in Figure 12, up-down counting mode is selected as a dedicated counting mode for center-

align PWM. Due to the inverted logic of the high-side control inputs of the MC34GD3000 pre-driver, 

even channels of the FTM3 must have inverted polarity. 20 kHz PWM frequency is adjusted by FTM3 

Modulo register (FTM3_MOD = 2000) taking 80MHz clock source frequency into account. To protect 

power MOSFETs against short circuit, deadtime 0.4μs is inserted for each complementary channels pair 

in number of clock ticks 32 with default deadtime prescaler 1. This FTM3 configuration can be carried 

out by using Processor Expert, Figure 15.     

         

Figure 15. S32K144 FTM3 configuration in Processor Expert 

While Initialization tab on the left allows to configure general features of the FTM module such as clock 

sourcing, counter mode and register synchronization method, more specific settings related to the PWM 

modulation such as PWM frequency, deadtime value, channels pairs setting are configured in 

Configuration tab on the right, Figure 15. 

As discussed in chapter 4.1.3, to initiate control loop every second PWM cycle at beginning of the PWM 

period, initialization trigger is enabled. To be able to synchronize PWM and update FTM double 

buffered registers at certain synchronization point simultaneously, software PWM synchronization and 

Next loading point are enabled in Initialization tab, Figure 15. It should be noticed that Max loading 

point is the time instant, when FTM3 counter equals Modulo register value (FTM3_MOD = 2000). 
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Once the FTM3 setting is completed, Processor Expert generates two configuration structures 

flexTimer_pwm3_InitConfig and flexTimer_pwm3_PwmConfig that access and set corresponding FTM3 

registers executing FTM_DRV_Init and FTM_DRV_InitPwm functions, Example 3. 

Example 3. S32K144 FTM3 configured by S32 SDK   
void McuFtmConfig(void) 
{ 
    /* FTM3 module initialized as PWM signals generator */ 
    FTM_DRV_Init(INST_FLEXTIMER_PWM3, &flexTimer_pwm3_InitConfig, &statePwm); 
 
    /* FTM3 module PWM initialization */ 
    FTM_DRV_InitPwm(INST_FLEXTIMER_PWM3, &flexTimer_pwm3_PwmConfig); 
 
    /* Mask all FTM3 channels to disable PWM output */ 
    FTM_DRV_MaskOutputChannels(INST_FLEXTIMER_PWM3, 0x3F, true); 
} 

 

FTM_DRV_MaskOutputChannels function disables PWM output masking all FTM channels. 

 Quadrature decoder mode 

The FTM module offers a Quadrature decoder mode to decode the quadrature signals generated by 

rotary sensors used in motor control domain. This mode is used to process encoder signals and 

determine rotor position and speed. 

There are three output signals generated by incremental encoder as shown in Figure 16. Phase A and 

Phase B signals consist of a series of pulses which are phase-shifted by 90° (therefore the term 

“quadrature” is used). The third signal (called “Index”) provides the absolute position information. In 

the motion control, it is used to check the pulse-counting consistency. 

 

Figure 16. Output signals of the 1024 pulses Encoder  

To process the Phase A and Phase B signals from the encoder sensor, Quadrature decoder mode with 

Phase encode mode have to be enabled in Processor Expert, Figure 17. In addition, Maximum Count 

Value has to be set according to the number of the encoder edges. In Quadrature decoder mode, the 

Phase A and Phase B signals indicate the counting direction as well as the counting rate. If the Phase B 

signal lags the Phase A signal, the FTM2 counter increments after every detected rising/falling edge of 

both signals. If the Phase B signal leads the Phase A signal, the FTM2 counter decrements after every 

detected rising/falling edge of both signals and the QUADIR bit in the FTM_QDCTRL register indicates 

the counting direction. 
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Figure 17. S32K144 FTM2 configuration in Processor Expert 

Configuration structures of the Quadrature decoder mode generated by Processor Expert are shown in 

Example 4. While more general structure flexTimer_qd2_InitConfig takes effect calling 

McuFtmConfig() function at very beginning in the initialization phase (see section 4.2), more specific 

structure for Quadrature decoder mode quadrature_decoder_configuration takes effect calling function 

FTM_DRV_QuadDecodeStart as soon as motor is aligned into d-axis (see section 3.4). FTM2 counter is 

reset in this stage, thus initial rotor position is zero. 

Example 4. S32K144 FTM2 configured by S32 SDK   
ftm_quad_decode_config_t flexTimer_qd2_QuadDecoderConfig = 
    { 
        FTM_QUAD_PHASE_ENCODE, 
        0U, 
        2047U, 
        { 
            false, 
            0U, 
            FTM_QUAD_PHASE_NORMAL, /* Phase A polarity */ 
        }, 
        { 
            false, 
            0U, 
            FTM_QUAD_PHASE_NORMAL, /* Phase B polarity */ 
        } 
    }; 
 
    /* Global configuration of flexTimer_qd2 */ 
    ftm_user_config_t  flexTimer_qd2_InitConfig = 
    { 
        { 
            true,   /* Software trigger state */ 
            false,  /* Hardware trigger 1 state */ 
            false,  /* Hardware trigger 2 state */ 
            false,  /* Hardware trigger 3 state */ 
            false, /* Max loading point state */ 
            false, /* Min loading point state */ 
            FTM_SYSTEM_CLOCK, /* Update mode for INVCTRL register */ 
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            FTM_SYSTEM_CLOCK, /* Update mode for SWOCTRL register */ 
            FTM_SYSTEM_CLOCK, /* Update mode for OUTMASK register */ 
            FTM_SYSTEM_CLOCK, /* Update mode for CNTIN register */ 
            false, /* Automatic clear of the trigger*/ 
            FTM_UPDATE_NOW, /* Synchronization point */ 
        }, 
         FTM_MODE_QUADRATURE_DECODER, /*!< Mode of operation for FTM */ 
         FTM_CLOCK_DIVID_BY_1, /* FTM clock prescaler */ 
         FTM_CLOCK_SOURCE_SYSTEMCLK,   /* FTM clock source */ 
         FTM_BDM_MODE_11, /* FTM debug mode */ 
         false, /* Interrupt state */ 
         false /* Initialization trigger */ 
}; 

 

NOTE 

S32K144EVB and DEVKIT-MOTORGD boards are designed to process 

encoder signals through FTM2 module. Software example contains 

routine for encoder signal processing. This routine is disabled by default, 

since PM motor of the S32K144 motor control kit is not equipped with 

encoder sensor. To enable encoder signal processing routine, set 

ENCODER macro to true. 

4.2.3. Trigger MUX Control (TRGMUX) 

The TRGMUX provides an extremely flexible mechanism for connecting various trigger sources to 

multiple pins/peripherals. With the TRGMUX, each peripheral that accepts external triggers usually has 

one specific 32-bit trigger control register. Each control register supports up to four triggers, and each 

trigger can be selected from the available input triggers. 

To trigger PDB0 and PDB1 modules by FTM3 initialization trigger signal init_trig, selection bit field 

SEL0 of the TRGMUX_PDB0 and TRGMUX_PDB1 registers have to be specified to define trigger 

source. 

Processor Expert allows to generate configuration structure trgmux1_InitConfig0 that sets all TRGMUX 

registers to assign trigger inputs with trigger outputs as demanded, Figure 18 and Example 5. 

 

Figure 18. S32K144 TRGMUX configuration in Processor Expert 

In particular, FTM3 initialization trigger signal as a source is assigned to three targets namely: PDB0, 

PDB1 trigger inputs and TRGMUX output 2. PDB1 channel 0 trigger is routed to TRGMUX output 3 

and ADC1 conversion complete flag COCO is assigned to TRGMUX output 6. TRGMUX outputs are 

directly assigned to chip pins, so that triggering scheme between FTM3, PDB1 and ADC1 can be 

visualized by means of oscilloscope as depicted in Figure 12. 

Example 5. S32K144 TRGMUX module controlled by S32 SDK   
void McuTrigmuxConfig(void) 
{ 
    /* TRGMUX module initialization */ 
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    TRGMUX_DRV_Init(INST_TRGMUX1, &trgmux1_InitConfig0); 
} 
 
... 

 
const trgmux_inout_mapping_config_t trgmux1_InOutMappingConfig0[5] = 
{ 
    {TRGMUX_TRIG_SOURCE_FTM3_INIT_TRIG, TRGMUX_TARGET_MODULE_PDB0_TRG_IN, false}, 
    {TRGMUX_TRIG_SOURCE_FTM3_INIT_TRIG, TRGMUX_TARGET_MODULE_PDB1_TRG_IN, false}, 
    {TRGMUX_TRIG_SOURCE_FTM3_INIT_TRIG, TRGMUX_TARGET_MODULE_TRGMUX_OUT2, false}, 
    {TRGMUX_TRIG_SOURCE_PDB1_CH0_TRIG, TRGMUX_TARGET_MODULE_TRGMUX_OUT3, false}, 
    {TRGMUX_TRIG_SOURCE_ADC1_SC1A_COCO, TRGMUX_TARGET_MODULE_TRGMUX_OUT6, false}, 
}; 
 
/*! trgmux1 configuration structure */ 
const trgmux_user_config_t trgmux1_InitConfig0 = { 
   .numInOutMappingConfigs = 5, 
   .inOutMappingConfig = trgmux1_InOutMappingConfig0, 
}; 

 

4.2.4. Programmable delay block (PDB) 

The Programable Delay Block (PDB) is intended to completely avoid CPU involvement in the timed 

acquisition of state variables during the control cycle. The PDB module contains a 16-bit programmable 

delay counter that delays FTM3 initialization trigger and schedules ADC channels sampling through 

PDB pre-triggers delays. When FTM3 initialization trigger is detected on the PDB0 and PDB1 trigger 

input, PDB0 and PDB1 generate hardware signal to trigger ADC0 and ADC1 channels in order defined 

by pre-trigger delays, Figure 19. 

 

Figure 19. PDB pre-triggers and trigger output  

PDB pre-trigger delays can be set independently using CHnDLYm registers. Since the PDB0, PDB1 and 

FTM3 modules are synchronized and share the same source frequency 80MHz, values of the 

CHnDLYm registers are set using the same time base as for PWM. Table 2 shows all PDB0 and PDB1 

pre-triggers used in PMSM Sensorless FOC motor control application. 

Table 2.  PDB0 and PDB1 pre-triggers 

FOC state variable  PDB pre-trigger CHnDLYm value [ticks] Relation to PWM 

Phase A stator current  pdb0_ch0_pretrig0 2000 In ½ of the PWM  

DC bus voltage pdb1_ch0_pretrig0
 

0 At beginning of the PWM  

Phase B stator current pdb1_ch0_pretrig1
 

2000 In ½ of the PWM 

To initiate control loop every second PWM cycle, PDB1 modulo is intentionally greater than FTM3 

modulo. While modulo of the FTM3 is set to 4000 clock ticks, PDB1 modulo is set to 5000 clock ticks 

to be able to adjust Interrupt Delay register PDB1_IDLY to 4999. This allows to invoke PDB1 interrupt 

in the next PWM cycle and enable FTM initialization trigger in PDB1 ISR which was disabled in the 
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ADC1 ISR. This mechanism generates the init_trig signal every second reload opportunity, so that PDB 

and ADC instances are triggered every second PWM, Figure 12. 

PDB Sequence Error Interrupt is activated as redundancy to protect triggering mechanism once blocked 

due to the wrong PDB pre-trigger delay timing. Pre-triggers delays must respect ADC conversion time 

that typically takes ~1.25µs considering short ADC sample time and 40MHz ADC input frequency. This 

time can be converted to PDB pre-trigger delay format defined in number of ticks 100.  

Pre-triggers delays are static values defined only once at the initialization phase respecting ADC 

conversion time, hence PDB Sequence Error does not take place. 

It should be also noticed that MOD, IDLY and CHnDLYx are double buffered registers, meaning values 

are loaded from their buffers based on the selected updating method. In this application, double 

buffering approach is bypassed, since the values are static values, defined only once. 

General settings of the PDB module such as clock pre-scaler, input trigger source, loading mechanism 

for double buffered registers as well as operation mode for pre-triggers can be configured by means of 

Processor Expert as shown in Figure 20.    

 

Figure 20. S32K144 PDB1 module and pre-triggers configuration in Processor Expert 

Processor Expert generates configuration structures pdbN_InitConfigX and pdbN_AdcTrigInitConfigX 

that access appropriate PDB registers Example 6. To set PDB modulo and PDB pre-triggers delays, 

PDB_DRV_SetTimerModulusValue and PDB_DRV_SetAdcPreTriggerDelayValue are used and 

specified by values listed in Table 2. This configuration is loaded calling McuPdbConfig() entering 

main() function. 

Example 6. S32K144 PDB instances controlled by S32 SDK   
void McuPdbConfig(void) 
{ 
    /* PDB0 module initialization */ 
    PDB_DRV_Init(INST_PDB0, &pdb0_InitConfig0); 
    /* PDB1 module initialization */ 
    PDB_DRV_Init(INST_PDB1, &pdb1_InitConfig0); 
  
    /* PDB0 CH0 pre-trigger0 initialization */ 
    PDB_DRV_ConfigAdcPreTrigger(INST_PDB0, 0, &pdb0_AdcTrigInitConfig0); 
    /* PDB1 CH0 pre-trigger0 initialization */ 
    PDB_DRV_ConfigAdcPreTrigger(INST_PDB1, 0, &pdb1_AdcTrigInitConfig0); 
    /* PDB1 CH0 pre-trigger1 initialization */ 
    PDB_DRV_ConfigAdcPreTrigger(INST_PDB1, 0, &pdb1_AdcTrigInitConfig1); 
 
    /* Set PDB0 modulus value */ 
    PDB_DRV_SetTimerModulusValue(INST_PDB0, 5000); 
    /* Set PDB1 modulus value */ 
    PDB_DRV_SetTimerModulusValue(INST_PDB1, 5000); 
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    /* PDB0 CH0 pre-trigger0 delay set to sense PhaseA stator current in the middle of the PWM cycle */ 
    PDB_DRV_SetAdcPreTriggerDelayValue(INST_PDB0, 0, 0, 2000); 
    /* PDB1 CH0 pre-trigger0 delay set to sense DC bus voltage at the beginning of the PWM cycle */ 
    PDB_DRV_SetAdcPreTriggerDelayValue(INST_PDB1, 0, 0, 0); 
    /* PDB1 CH0 pre-trigger2 delay set to sense PhaseB stator current in the middle of the PWM cycle */ 
    PDB_DRV_SetAdcPreTriggerDelayValue(INST_PDB1, 0, 1, 2000); 
 
    /* Set PDB1 interrupt delay value */ 
    PDB_DRV_SetValueForTimerInterrupt(INST_PDB1, 4999); 
 
    // enable PDB before LDOK 
    PDB_DRV_Enable(INST_PDB0); 
    // enable PDB before LDOK 
    PDB_DRV_Enable(INST_PDB1); 
 
    /* Load PDB0 configuration */ 
    PDB_DRV_LoadValuesCmd(INST_PDB0); 
    /* Load PDB1 configuration */ 
    PDB_DRV_LoadValuesCmd(INST_PDB1); 
} 

 

4.2.5. Analog-to-Digital Converter (ADC) 

The S32K144 device has two 12-bit Analog-to-Digital Converters (ADCs). These are 32-channel 

multiplexed input successive approximation ADCs with 16 result registers. 

Both ADC instances are triggered independently by two PDBs. ADC channels are sampled in the order 

defined by PDB pre-triggers. When the first pre-trigger is asserted, associated lock of the pre-trigger 

becomes active waiting for the conversion complete flag COCO generated by the corresponding ADC 

channel. This sequence is repeated for each PDB pre-trigger and ADC channel couple. 

Clock source of the ADC module is derived from the system clock frequency, further divided by 2 

resulting 40MHz supply frequency. To combine high conversion resolution and short conversion time, 

12-bit resolution mode with sample time 12 clock cycles are set in the Converter Configuration tab in 

the Processor Expert, Figure 21. 

  

Figure 21. S32K144 ADC1 module and channels configuration in Processor Expert 

ADC0 measures only the Phase A stator current through adc_ch0. Other analog values, namely DC bus 

voltage, and Phase B stator current are measured by ADC1_CH0 and ADC1_CH1 respectively. 

Conversion complete interrupt is activated for ADC1_CH1 to invoke interrupt as soon as last conversion 

is completed. To measure Phase B stator current, ADC_INPUTCHAN_EXT15 is selected as an input 

channel, Figure 21.     
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Example 7 shows ADC0 and ADC1 modules configuration. Processor Expert generates module 

configuration structures adConvN_ConvConfigX as well as channel configuration structures 

adConvN_ChnConfigX, which are present at the bottom of the example. These configuration structures 

take effect calling SDK APIs in McuAdcConfig function, Example 7.  

Example 7. S32K144 ADC instances and channels controlled by S32 SDK   
    void McuAdcConfig(void) 
    { 
 /* ADC0 module initialization */ 
        ADC_DRV_ConfigConverter(INST_ADCONV0, &adConv0_ConvConfig0); 
 /* ADC1 module initialization */ 
        ADC_DRV_ConfigConverter(INST_ADCONV1, &adConv1_ConvConfig0); 
 
        /* AD4 input channel is used for PhaseA stator current sensing */ 
        ADC_DRV_ConfigChan(INST_ADCONV0, 0, &adConv0_ChnConfig0); 
        /* AD7 input channel is used for DC bus voltage sensing */ 
        ADC_DRV_ConfigChan(INST_ADCONV1, 0, &adConv1_ChnConfig0); 
        /* AD15 input channel is used for PhaseB stator current sensing */ 
        ADC_DRV_ConfigChan(INST_ADCONV1, 1, &adConv1_ChnConfig1); 
    } 
     
    … 
 
    /*! adConv1 configuration structure */ 
    const adc_converter_config_t adConv1_ConvConfig0 = { 
      .clockDivide = ADC_CLK_DIVIDE_1, 
      .sampleTime = 12U, 
      .resolution = ADC_RESOLUTION_12BIT, 
      .inputClock = ADC_CLK_ALT_1, 
      .trigger = ADC_TRIGGER_HARDWARE, 
      .pretriggerSel = ADC_PRETRIGGER_SEL_PDB, 
      .triggerSel = ADC_TRIGGER_SEL_PDB, 
      .dmaEnable = false, 
      .voltageRef = ADC_VOLTAGEREF_VREF, 
      .continuousConvEnable = false, 
      .supplyMonitoringEnable = false, 
    }; 
 
    const adc_chan_config_t adConv1_ChnConfig0 = { 
      .interruptEnable = false, 
      .channel = ADC_INPUTCHAN_EXT7, 
    }; 
 
    const adc_chan_config_t adConv1_ChnConfig1 = { 
      .interruptEnable = true, 
      .channel = ADC_INPUTCHAN_EXT15, 
    }; 

 

4.2.6. Low Power Serial Peripheral Interface (LPSPI) and FETs pre-driver 

(MC34GD3000) 

LPSPI is used as communication interface between S32K144 processor and analog FET pre-driver 

MC34GD3000. NXP’s Three-Phase Brushless Motor Pre-Driver Software Driver (TPP), based on the 

S32 SDK is used to configure LPSPI of the S32K144 as well as MC34GD3000 properly. Included 

embedded driver provides access to all features of MC34GD3000 FETs driver such as writing/reading 

status registers, dead time insertion and fault protection.  

Example 8 represents initialization of the S32K144 LPSPI0, MC34GD3000 and some important 

S32K144 GPIOs. TPP configures and later controls GPIO pins to enable/disable or reset MC34GD3000 
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in the application. Operation mode, deadtime and interrupt mask of the MC34GD3000 are specified at 

next paragraphs. Parameters, such as LPSPI instance, chip select pin are defined at bottom of the 

Example 8. 

LPSPI0 communication frequency 2MHz is derived from the LPSPI0 input frequency 8MHz sourced 

from the system oscillator clock (SOSC_CLK). 

GPIOs, LPSPI0 and MC34GD3000 are configured and enabled by TPP_ConfigureGpio and 

TPP_ConfigureSpi, TPP_Init functions, respectively. 

Detailed description of the MC34GD3000 and its software driver (TPP) can be found at www.nxp.com.  

Example 8. S32K144 LPSPI0 and MC34GD3000 controlled by TPP (S32 SDK)   
void GD3000_Init(void) 
{ 
    /* GD3000 pin configuration - EN1:PTA2 EN2:PTA2 & RST:PTA3 */ 
    tppDrvConfig.en1PinIndex  = 2U; 
    tppDrvConfig.en1PinInstance = instanceA; 
    tppDrvConfig.en2PinIndex  = 2U; 
    tppDrvConfig.en2PinInstance = instanceA; 
    tppDrvConfig.rstPinIndex  = 3U; 
    tppDrvConfig.rstPinInstance = instanceA; 
 
    /* GD3000 device configuration */ 
    tppDrvConfig.deviceConfig.deadtime =  INIT_DEADTIME; 
    tppDrvConfig.deviceConfig.intMask0 =  INIT_INTERRUPTS0; 
    tppDrvConfig.deviceConfig.intMask1 =  INIT_INTERRUPTS1; 
    tppDrvConfig.deviceConfig.modeMask =  INIT_MODE; 
 
    tppDrvConfig.deviceConfig.statusRegister[0U] = 0U; 
    tppDrvConfig.deviceConfig.statusRegister[1U] = 0U; 
    tppDrvConfig.deviceConfig.statusRegister[2U] = 0U; 
    tppDrvConfig.deviceConfig.statusRegister[3U] = 0U; 
 
    tppDrvConfig.csPinIndex =    5U; 
    tppDrvConfig.csPinInstance =   instanceB; 
    tppDrvConfig.spiInstance =    0; 
    tppDrvConfig.spiTppConfig.baudRateHz =  2000000U; 
    tppDrvConfig.spiTppConfig.sourceClockHz =  8000000U; 
 
    TPP_ConfigureGpio(&tppDrvConfig); 
    TPP_ConfigureSpi(&tppDrvConfig, NULL); 
    TPP_Init(&tppDrvConfig, tppModeEnable); 
} 

 

4.2.7. Low Power Universal Asynchronous Receiver/Transmitter (LPUART) 

LPUART1 is used as a communication interface between S32K144 processor and FreeMASTER run-

time debugging and visualization tool. Function McuLpuartConfig initializes LPUART1 module with 

baud rate 115200, 1 stop bit and 8 bits per channel. This configuration is carried out by SDK’s LPUART 

driver, Example 9. 

Example 9. S32K144 LPUART1 controlled by S32 SDK   
void McuLpuartConfig(void) 
{ 
    /* LPUART module initialization */ 
    LPUART_DRV_Init(INST_LPUART1, &lpuart1_State, &lpuart1_InitConfig0); 
} 
 
/*! lpuart1 configuration structure */ 
const lpuart_user_config_t lpuart1_InitConfig0 = { 

http://www.nxp.com/
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  .transferType = LPUART_USING_INTERRUPTS, 
  .baudRate = 115200U, 
  .parityMode = LPUART_PARITY_DISABLED, 
  .stopBitCount = LPUART_ONE_STOP_BIT, 
  .bitCountPerChar = LPUART_8_BITS_PER_CHAR, 
  .rxDMAChannel = 0U, 
  .txDMAChannel = 0U, 
}; 

 

Configuration structure lpuart1_InitConfig0 can be modified manually or configured by means of 

Processor Expert as shown in Figure 22. 

 

Figure 22. S32K144 LPUART1 module configuration in Processor Expert 

4.2.8. Port control and pin multiplexing 

PMSM FOC Sensorless motor control application requires following on chip pins assignment, Table 3. 

 

Table 3. Pins assignment for S32K144 PMSM Sensorless FOC control  

Module Signal name  Pin name / Functionality Description 

FTM3 

PWMA_HS_B PTB8 / FTM3_CH0 PWM signal for phase A high-side driver 

(inverted) 

PWMA_LS PTB9 / FTM3_CH1
 

PWM signal for phase A low-side driver 

PWMB_HS_B PTB10 / FTM3_CH2
 

PWM signal for phase B high-side driver 

(inverted) 

PWMB_LS PTB11 / FTM3_CH3
 

PWM signal for phase B low-side driver 

PWMC_HS_B PTC10 / FTM3_CH4 PWM signal for phase C high-side driver 

(inverted) 

PWMC_LS PTC11 / FTM3_CH5 PWM signal for phase C low-side driver 

FTM2 
ENC_A PTD11 / FTM2_QD_PHA Phase A signal of the Encoder sensor  

ENC_B PTD10 / FTM2_QD_PHB Phase B signal of the Encoder sensor 

ADC0 

PHA_I PTB0 / ADC0_SE4 Phase A stator current measurement 

PHC_I PTA6 / ADC0_SE2 Phase C stator current measurement. 

Available on pin, but not used in this app. 

For more details see chapter 3.3 

ADC1 

DCBI PTD4 / ADC1_SE6 DC bus current measurement 

Available on pin, but not used in this app. 

For more details see chapter 3.3 

DCBV PTB12 / ADC1_SE7 DC bus voltage measurement 

PHB_I PTB1 / ADC1_SE15 Phase B stator current measurement 

LPSPI0 

SPI_SCLK PTB2 / LPSPI0_SCK  SPI clock (2MHz) 

SPI_MISO PTB3 / LPSPI0_SIN SPI input data from GD3000 

SPI_MOSI PTB4 / LPSPI0_SOUT SPI output data for GD3000 

LPUART1 
SDA_SPI0_SOUT PTC6 / LPUART1_RX UART transmit data (FreeMASTER) 

SDA_SPI0_SIN PTC7 / LPUART1_TX UART receive data (FreeMASTER) 
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Module Signal name  Pin name / Functionality Description 

TRGMUX 

PTD1 PTD1 / TRGMUX_OUT2 FTM3 initialization trigger 

PTA0 PTA0 / TRGMUX_OUT3 PBD1 channel 0 trigger output 

PTE15 PTE15 / TRGMUX_OUT6 ADC1 conversion complete flag 

GPIO 

GD_EN PTA2 / PTA2  Enable signal for GD3000 

GD_RST_B PTA3 / PTA3 Reset signal for GD3000 

SPI_CS_B PTB5 / PTB5 Chip select signal for GD3000 

BTN0 PTC12 / PTC12 Application control via board button  

BTN1 PTC13 / PTC13 Application control via board button  

RGB_BLUE PTD0 / PTD0 RGB_BLUE indicating run state 

PTD2 PTD2 / PTD2 GPIO toggling to measure execution time 

BRAKE_PWM PTD14 / PTD14 Connecting / disconnecting braking resistor 

RGB_RED PTD15 / PTD15 RGB_RED indicating fault state 

RGB_GREEN PTD16 / PTD16 RGB_GREEN indicating ready/calib state 

GD_INT PTE10 / PTE10 Interrupt signal indicating GD3000 fault 

 

This pins assignment can be carried out by means of Processor Expert opening pin_mux:PinSetting 

component. Pin assignment of the FTM3 module is shown in Figure 23 as an example. 

 

Figure 23. S32K144 Pins assignment for FTM3 in Processor Expert 

Once the pins are properly assigned meaning functionality for each pin is selected, Processor Expert 

generates array of the configuration structures g_pin_mux_InitConfigArr that individually accesses Pin 

Control Register PCR and GPIO registers. 

One of the configuration structure is shown at bottom of Example 10. It defines that PTE10 pin works as 

GPIO with input direction. In addition, interrupt on rising edge is enabled to be able to detect and 

monitor fault conditions of the MC34GD3000 FET pre-driver, see chapter 4.1.2. 

Pins of the S32K144 are configured calling PINS_DRV_Init function at the top of the Example 10. 

Example 10. S32K144 pins configuration controlled by S32 SDK   
void McuPinsConfig(void) 
{ 
    /* MCU Pins configuration */ 
    PINS_DRV_Init(NUM_OF_CONFIGURED_PINS, g_pin_mux_InitConfigArr); 
 
} 
 
 
pin_settings_config_t g_pin_mux_InitConfigArr[NUM_OF_CONFIGURED_PINS] = 
{ 
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...   
 
    { 
        .base          = PORTE, 
        .pinPortIdx    = 10u, 
        .pullConfig    = PORT_INTERNAL_PULL_NOT_ENABLED, 
        .passiveFilter = false, 
        .driveSelect   = PORT_LOW_DRIVE_STRENGTH, 
        .mux           = PORT_MUX_AS_GPIO, 
        .pinLock       = false, 
        .intConfig     = PORT_INT_RISING_EDGE, 
        .clearIntFlag  = false, 
        .gpioBase      = PTE, 
        .direction     = GPIO_INPUT_DIRECTION, 
        .digitalFilter = false, 
    }, 
... 
 
} 

 

4.3. Software architecture  

4.3.1. Introduction 

This section describes the software design of the Sensorless PMSM Field Oriented Control framework 

application. The application overview and description of software implementation are provided. The aim 

of this chapter is to help in understanding of the designed software. 

4.3.2. Application data flow overview 

The application software is interrupt driven running in real time. There is one periodic interrupt service 

routine associated with the ADC conversion complete interrupt, executing all motor control tasks. This 

includes both fast current and slow speed loop control. All tasks are performed in an order described by 

the application state machine shown in Figure 26, and application flowcharts shown in Figure 24 and 

Figure 25. 
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Figure 24. Flow chart diagram of main function with background loop. 

To achieve precise and deterministic sampling of analog quantities and to execute all necessary motor 

control calculations, the state machine functions are called within a periodic interrupt service routine. 

Hence, in order to actually call state machine functions, the peripheral causing this periodic interrupt 

must be properly configured and the interrupt enabled. As described in section S32K144 Device 

initialization, all peripherals are initially configured and all interrupts are enabled after a RESET of the 

device. As soon as interrupts are enabled and all S32K144 peripherals are correctly configured, the state 

machine functions are called from the ADC end of sequence interrupt service routine. The background 

loop handles non-critical timing tasks, such as the FreeMASTER communication polling. 

while(1) 

Application peripherals                              
reset & configuration 

MAIN 

FMSTR_Poll (); 

END 

true 

false 

FreeMASTER polling function 

Enable external interrupts  

All  peripherals required by the    

application  are reset and configured 

Initial state machine settings 
 

Enable Interrupts; 

event = e_init;  
state = init; 
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Figure 25. Flow chart diagram of periodic interrupt service routine. 

4.3.3. State machine 

The application state machine is implemented using a two-dimensional array of pointers to the functions 

using variable called StateTable[][](). The first parameter describes the current application event, and 

the second parameter describes the actual application state. These two parameters select a particular 

pointer to state machine function, which causes a function call whenever StateTable[][]() is called. 
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Figure 26. Application state machine 

The application state machine consists of following six states, which are selected using variable state 

defined as: 

AppStates: 

• INIT - state = 0 

• FAULT - state = 1 

• READY - state = 2 

• CALIB - state = 3 

• ALIGN - state = 4 

• RUN - state = 5  

INIT

READY

CALIB

FAULT

ALIGN

Power on / hw. reset

Application peripherals                              
reset & configuration

e_init

RUN

e_init_done e_app_off

e_app_on

e_app_off e_app_off

e_calib_done

e_align_done

e_aligne_calib

e_ready e_run

e_fault

e_fault

e_fault_clear

e_fault e_fault

e_fault e_fault

/* Enable external interrupts

/* Disable all external interrupts

executed in ISR
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To signalize/initiate a change of state, eleven events are defined, and are selected using variable event 

defined as: 

AppEvents: 

• e_fault - event = 0 

• e_fault_clear - event = 1 

• e_init - event = 2 

• e_init_done - event = 3 

• e_ready - event = 4 

• e_app_on - event = 5 

• e_app_off - event = 11 

• e_calib - event = 6 

• e_calib_done - event = 7 

• e_align - event = 8 

• e_align_done - event = 9 

• e_run - event = 10 

 State – FAULT 

Figure 27. FAULT state with transitions 

The application goes immediately to this state when a fault is detected. The system allows all states to 

pass into the FAULT state by setting cntrState.event = e_fault. State FAULT is a state that transitions 

back to itself if the fault is still present in the system and the user does not request clearing of fault flags. 

There are two different variables to signal fault occurrence in the application. The warning register 

tempFaults represents the current state of the fault pin/variable to warn the user that the system is getting 

close to its critical operation. And the fault register permFaults represents a fault flag, which is set and 

put the application immediately to fault state. Even if fault source disappears, the fault remains set until 

manually cleared by the user. Such mechanisms allow for stopping the application and analyzing the 

cause of failure, even if the fault was caused by a short glitch on monitored pins/variables. State FAULT 

can only be left when application variable switchFaultClear is manually set to true (using 

FreeMASTER) or by simultaneously pressing the user buttons (BTN0 and BTN1) on the S32K144EVB 

evaluation board. That is, the user has acknowledged that the fault source has been removed and the 

application can be restarted. When the user sets switchFaultClear = true; the following sequence is 

automatically executed, Example 11. 

 

FAULT

e_fault

e_fault_clear

e_fault
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Example 11. Fault clearing sequence 
if (cntrState.usrControl.switchFaultClear) 
{ 
    // Clear permanent and temporary SW faults 
    permFaults.mcu.R           = 0;       // Clear mcu faults 
    permFaults.motor.R  = 0;     // Clear motor faults 
    permFaults.stateMachine.R  = 0;     // Clear state machine faults 
    gd3000Status.B.gd3000ClearErr = true;  // Clear GD3000 faults 
    pdbStatus.PDB0_SeqErrFlags  = 0;   // Clear PDB0 sequence error flags 
    pdbStatus.PDB1_SeqErrFlags  = 0;   // Clear PDB1 sequence error flags 
 
    // When all Faults cleared prepare for transition to next state. 
    cntrState.usrControl.readFault             = true; 
    cntrState.usrControl.switchFaultClear      = false; 
    cntrState.event                            = e_fault_clear; 
 
    // Read ADCs Results registers to unlock PDB pre-triggers lock states 
    ADC_DRV_GetChanResult(INST_ADCONV0, 0, &adc_r); 
    ADC_DRV_GetChanResult(INST_ADCONV1, 0, &adc_r); 

ADC_DRV_GetChanResult(INST_ADCONV1, 1, &adc_r); 
 

    // Enable FTM init trigger for PDBs after cleared PDBs sequence errors 
    // and unlocked PDBs pre-triggers 
    FTM_RMW_EXTTRIG_REG(FTM3, 0x00, 0x40); 
} 

 

Setting event to cntrState.event = e_fault_clear while in FAULT state represents a new request to 

proceed to INIT state. This request is purely user action and does not depend on actual fault status. In 

other words, it is up to the user to decide when to set switchFaultClear true. However, according to the 

interrupt data flow diagram shown in Figure 25, function faultDetection() is called before state machine 

function state_table[event][state](). Therefore, all faults will be checked again and if there is any fault 

condition remaining in the system, the respective bits in permFaults and tempFaults variables will be 

set. As a consequence of permFaults not equal to zero, function faultDetection() will modify the 

application event from e_fault_clear back to e_fault, which means jump to fall state when state machine 

function state_table[event][state]() is called. Hence, INIT state will not be entered even though the user 

tried to clear the fault flags using switchFaultClear. When the next state (INIT) is entered, all fault bits 

are cleared, which means no fault is detected (permFaults = 0x0) and application variable 

switchFaultClear is manually set to true. 

The application is scanning for following system warnings and errors: 

• DC bus over voltage 

• DC bus under voltage 

• DC bus over current 

• Phase A and phase B over current  

The thresholds for fault detection can be modified in INIT state. Please see MCAT Settings and Tuning 

for further information on how to set these thresholds using the MCAT. In addition, fault state is entered 

if following errors are detected: 
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• PDB Errors (PDB Sequence error) 

• GD3000 pre-driver errors (overtemperature, desaturation fault, low supply voltage, DC bus 

overcurrent, phase error, framing error, write error after block, existing reset). See section 

References.  

• FOC Error (irrelevant event call in state machine or Back-EMF failure) 

 State – INIT 

 

Figure 28. INIT state with transitions 

State INIT is "one pass" state/function, and can be entered from all states except for READY state, 

provided there are no faults detected. All application state variables are initialized in state INIT.  

 

Figure 29. Flow chart of state INIT 

After the execution of INIT state, the application event is automatically set to 

cntrState.event=e_init_done, and state READY is selected as the next state to enter. 

 State – READY 

 

Figure 30. READY state with transitions 

INIT

e_init

e_init_done e_app_off

Initialization of application variables

e_init

e_init_done

READY 

e_init_done

e_app_one_ready



Software implementation on the S32K144 

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020 

36  NXP Semiconductors 

   

In READY state, application is waiting for user command to start the motor. The application is released 

from waiting mode by pressing the on board button BTN0 or BTN1 or by FreeMASTER interface 

setting the variable switchAppOnOff = true (see flow chart in Figure 31).   

Figure 31. Flow chart of state READY 

 State – CALIB 

 

Figure 32. CALIB state with transitions 

In this state, ADC DC offset calibration is performed. Once the state machine enters CALIB state, all 

PWM output are enabled. Calibration of the DC offset is achieved by generating 50% duty-cycle on the 

PWM outputs, and taking several measurements of the ADC0 and ADC1 channels connected to the 

current sensors. These measurements are then averaged, and the average value for the channel is stored. 

This value will be subtracted from the measured value when in normal operation. This way the half 

range DC offset, caused by voltage shift of 2.5V in conditional circuitry (see Figure 5), is removed in 

the measured phase. State CALIB is a state that allows transition back to itself, provided no faults are 

present, the user does not request stop of the application (by switchAppOnOff=true), and the calibration 

process has not finished. The number of samples for averaging is set by default to 2^10=1024, and can 

be modified in the state INIT. After all 1024 samples have been taken and the averaged values 

successfully saved, the application event is automatically set to cntrState.event=e_calib_done and state 

machine can proceed to state ALIGN (see flow chart in Figure 33). 

CALIB 

e_app_on

e_app_off

e_calib_done
e_calib

state =  ready; 
event =  e_ready ; 

e_init_done 

e_app_on 

/* Fault detection routine 

/* State variable acquisition 

MEAS_GetUdcVoltage(); 
MEAS_GetIdcCurrent(); 
MEAS_Get3phCurrent(); 

faultDetection(); 

switchAppOnOff 

e_app_on e_app_off 

/* User accessible switch  
for stopping application  

ISR /* ADC end of sequence interrupt service routine 

Read HW user controls; 
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Figure 33. Flow chart of state CALIB 

A transition to FAULT state is performed automatically when a fault occurs. A transition to INIT state is 

performed by setting the event to cntrState.event=e_app_off, which is done automatically on falling 

edge of switchAppOnOff=false using FreeMASTER. 

 State – ALIGN 

 

Figure 34. ALIGN state with transitions 

This state shows alignment of the rotor and stator flux vectors to mark zero position. When using a 

model based approach for position estimation, the zero position is not known. The zero position is 

obtained at ALIGN state, where a DC voltage is applied to d-axis voltage for a certain period. This will 

cause the rotor to rotate to "align" position, where stator and rotor fluxes are aligned. The rotor position 

in which the rotor stabilizes after applying this DC voltage is set as zero position. In order to wait for 

rotor to stabilize in an aligned position, a certain time period is selected during which the DC voltage is 

constantly applied. The period of time and the amplitude of DC voltage can be modified in INIT state. 

Timing is implemented using a software counter that counts from a pre-defined value down to zero. 

During this time, the event remains set to cntrState.event=e_align. When the counter reaches zero, the 

ALIGN 

e_app_off

e_align_done

e_calib_done

e_align
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counter is reset back to the pre-defined value, and event is automatically set to 

cntrState.event=e_align_done. This enables a transition to RUN state see flow chart in Figure 35.  

 

Figure 35. Flow chart of state ALIGN 

A transition to FAULT state is performed automatically when a fault occurs. Transition to INIT state is 

performed by setting the event to cntrState.event=e_app_off, which is done automatically on falling 

edge of switchAppOnOff=false using FreeMASTER or using the switch. 

 State – RUN 

 

Figure 36. RUN state with transitions 

In this state, the FOC algorithm is calculated, as described in section PMSM field oriented control.  

RUN

e_app_off

e_align_done

e_run

state =  align; 
event =  e_align ; 

e_calib_done 

EnableOutput (); 

uDQReq.fltArg1 = alignVoltage; 
uDQReq.fltArg2 = 0;       

thTransform.fltArg1  =  GFLIB_Sin (0); 
thTransform.fltArg2  =  GFLIB_Cos (0); 

alignCntr<=0 

true 

false 

GMCLIB_ParkInv (& uAlBeReq ,& thTransform ,& uDQReq ); 

SetDutycycle(); 

ClearVariablesAfterAlign (); 
Set50%Duty(); 

e_align_done 

svmSector = GMCLIB_SvmStd(&(pwmflt),&uAlBeReqDCB); 
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The control is designed such that the drive might be operated in four modes depending on the source of 

the position information: 

1. Force mode: The FOC control is based on the generated position (so called open loop position), 

also this position is supplied to eBEMF observer in order to initialize its state. 

2. Tracking mode: The FOC control is still using the open loop position, however, the eBEMF 

observer is left on its own, meaning that the observer is using its own estimated position and speed 

one calculation step delayed. 

3. Sensorless mode: Both FOC control and eBEMF observer using estimated position. 

4. Encoder mode: FOC control uses position and speed obtained from Encoder sensor. This mode 

is available only if ENCODER macro is set to true. 

Position mode can be controlled by pos_mode variable in FreeMASTER interface. It might be modified 

manually or automatically depending on the state of the variable cntrState.usrControl.controlMode. If 

cntrState.usrControl.controlMode = automatic and switchSensor = Sensorless, application automatically 

transits from Force mode (open loop mode) to Sensorless mode (closed loop mode) through Tracking 

mode based on the actual rotor speed and speed limits defined for each position mode (see section 3.4). 

Variable switchSensor defines whether position/speed feedback comes from back-EMF Observer or 

Encoder sensor. It is automatically set to Sensorless, if Encoder sensor is not present 

(ENCODER=false). 

 

 

Figure 37.  Flow chart of state RUN 

state =  run; 
event =  e_run ; 

e_align_done 

CalcOpenLoop (); 
CalcSensorless (); 

ControlModeSelector (); 

speedLoopCntr >= 
SPEED_LOOP_C 

NTR 

true 

false 

SetDutycycle(); 

FocSlowLoop () 

FocFastLoop () 

e_app_off 

AutomaticMode (); 

controlMode 
manual 

automatic 

pos_mode 

case  force: 

case  sensorless : 

case tracking: 

Control.thRotEl =  OpenLoop.thRotEl ; 
Control.wRotEl = 0; 

Force  eBEMF with open loop  speed 
Force  eBEMF with open loop position 

Control.thRotEl =  OpenLoop.thRotEl ; 
Control.wRotEl = 0; 

Control.thRotEl =  pospeSensorless.thRotEl; 
Control.wRotEl =  pospeSensorless.wRotEl; 

case  encoder : 
Control.thRotEl =  pospeEncoder.thRotEl; 
Control.wRotEl =  pospeEncoder.wRotEl; 
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Calculation of fast current loop is executed every ADC end of sequence interrupt, while calculation of 

slow speed loop is executed every Nth ADC end of sequence interrupt. Arbitration is done using a 

counter that counts from value N down to zero. When zero is reached, the counter is reset back to N and 

slow speed loop calculation is performed. This way, only one interrupt is needed for both loops and 

timing of both loops is synchronized. Slow loop calculations are finished before entering fast loop 

calculations (see flow chart in Figure 37).  

Figure 38 shows implementation of FOC algorithm and used functions and variables. As can be seen 

from the diagram, rotor position and speed are estimated by eBEMF observer. This is a default rotor 

position and speed feedback for FOC. To test Encoder based FOC, ENCODER macro must be set to 

true and PM motor provided with this motor control kit replaced by PM motor of the comparable power 

and equipped with Encoder sensor. As mentioned previously, Encoder based FOC can be 

activated/deactivated by setting switchSensor variable to encoder/sensorless. 

A transition from RUN state to FAULT state is performed automatically when a fault occurs. A 

transition to INIT state is performed by setting the event to cntrState.event=e_app_off, which is done 

automatically on falling edge of switchAppOnOff=false using FreeMASTER or keeping user buttons 

BTN0 and BTN1 pressed. 

 

Figure 38. Sensorless and Sensorbased FOC with FW implementation on S32K144 

4.3.4. AMMCLIB Integration 

Application software of the FOC Sensorless control with field weakening is built using NXP’s 

Automotive Math and Motor Control Library set (AMMCLIB), a precompiled, highly speed-optimized 

off-the-shelf software library designed for motor control applications. The most essential blocks of the 
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FOC structure are presented in Figure 38. AMMCLIB supports all available data type implementations: 

32-bit fixed-point, 16-bit fixed-point and single precision floating-point. In order to achieve high 

performance of the S32K144 core, floating point arithmetic is used as a reference for this motor control 

application. 

Current Loop function AMCLIB_CurrentLoop unites and optimizes most inner loop of the FOC cascade 

structure Figure 38. It consists of two PI controllers and basic mathematical operations which calculate 

errors between required and feedback currents and limits for PI controllers based on the actual value of 

the DC bus voltage. All functions and data structures are presented in Figure 39.  

 

Figure 39. Functions and data structures in AMCLIB_CurrentLoop 

Required d- and q-axis stator currents can be either manually modified or generated by outer loop of the 

cascade structure consisting of: Speed Loop and Field Weakening (FW) as shown in Figure 38. To 

achieve highly optimized level, AMCLIB_FWSpeedLoop merges two functions of the AMMCLIB, 

namely speed control loop AMCLIB_SpeedLoop and field weakening control AMCLIB_FW, Figure 

40. AMCLIB_SpeedLoop consists of speed PI controller GFLIB_ControllerPIpAW, speed ramp 

GFLIB_Ramp placed in feedforward path and exponential moving average filter GFLIB_FilterMA 

placed in the speed feedback. AMCLIB_FW function is NXP’s patented algorithm (US Patent No. US 

2011/0050152 A1) that extends the speed range of PMSM beyond the base speed by reducing the stator 

magnetic flux linkage as discussed in section 3.5. All functions and data structures used in 

AMCLIB_FW function are shown in Figure 40. 

 

AMCLIB_CurrentLoop
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Figure 40. Functions and data structures in AMCLIB_FWSpeedLoop 

AMCLIB_FW key advantages: 

• Fully utilize the drive capabilities (speed range, load torque) 

• Reduces stator linkage flux only when necessary 

• Supports four quadrant operations 

• The algorithm is very robust - as a result, the PMSM behaves as a separately excited wound field 

synchronous motor drive 

• Allows maximum torque optimal control 

Back-EMF observer AMCLIB_BemfObsrv and Angle tracking observer AMCLIB_TrackObsrv 

constitute important blocks in this application, Figure 38. They estimate rotor position and speed based 

on the inputs, namely stator voltages uαβ and currents iαβ, Figure 41. AMCLIB_BemfObsrv transforms 

inputs quantities from stationary reference frame α/β to quasi-synchronous reference frame γ/δ that 

follows the real synchronous rotor flux frame d/q with an error θerr. AMCLIB_BemfObsrv algorithm is 

based on the mathematical model of the PMSM motor with excluded back-EMF terms eγδ. Back-EMF 

terms are estimated as disturbances in this model, generated by PI controllers. The estimated BEMF 

values are used for calculating the phase error θerr, which is provided as an output of the BEMF 

observer. 

To align both frames and provide accurate estimates, this phase error θerr must be driven to zero. This is 

a main role of the Angle tracking observer AMCLIB_TrackObsrv which is attached to function of the 

back-EMF observer AMCLIB_BemfObsrv, Figure 41. AMCLIB_TrackObsrv is an adopted phase-

locked-loop algorithm that estimates rotor speed and position keeping θerr = 0. This is ensured by a loop 

compensator that is PI controller. While PI controller generates estimated rotor speed, integrator used in 

this phase-locked-loop algorithm serves estimated rotor position.  

AMCLIB_FW

AMCLIB_SpeedLoop

AMCLIB_FWSpeedLoop
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Figure 41. Structure of the AMCLIB_BemfObsrv and AMCLIB_TrackObsrv 

More details related to AMMCLIB FOC functions can be found in S32K14x AMMCLIB User’s manual 

(see section References). Parameters of the PI controllers placed in the speed control loop, current 

control loop, back-EMF and Angle tracking observer can be tuned by using NXP’s Motor Control 

Application Tuning tool (MCAT). Detailed instructions on how to tune parameters of the FOC structure 

by MCAT are presented in AN4912, AN4642 (see section References). 

4.3.5. MCAT Integration 

MCAT (Motor Control Application Tuning) is a graphical tool dedicated to motor control developers 

and the operators of modern electrical drives. The main feature of proposed approach is automatic 

calculation and real-time tuning of selected control structure parameters. Connecting and tuning new 

electric drive setup becomes easier because the MCAT tool offers a possibility to split the control 

structure and consequently to control the motor at various levels of cascade control structure. 

The MCAT tool runs under FreeMASTER online monitor, which allows the real-time tuning of the 

motor control application. Respecting the parameters of the controlled drive, the correct values of 

control structure parameters are calculated, which can be directly updated to the application or stored in 

an application static configuration file. The electrical subsystems are modeled using physical laws and 

parameters of the PI controllers are determined using Pole-placement method. FreeMASTER MCAT 

control and tuning is described in FreeMASTER and MCAT user interface. 

The MCAT tool generates a set of constants to the dedicated header file (for example “{Project 

Location}\Sources\Config\PMSM_appconfig.h”). The names of the constants can be redefined within 

the MCAT configuration file “Header_file_constant_list.xml” (“{Project 

Location}\FreeMASTER_control\ MCAT\src\xml_files\”). The PMSM_appconfig.h contains 

application scales, fault triggers, control loops parameters, speed sensor and/or observer settings and 

FreeMASTER scales. The PMSM_appconfig.h should be linked to the project and the constants should 

be used for the variables initialization. 

The FreeMASTER enables an online tuning of the control variables using MCAT control and tuning 

view. However, the FreeMASTER must be aware of the used control-loop variables. A set of the names 

is stored in “FM_params_list.xml” (“{Project Location}\FreeMASTER_control\MCAT\src\xml_files\”). 

AMCLIB_TrackObsrvAMCLIB_BemfObsrv

GFLIB_IntegratorTR

GFLIB_ControllerPIrAW
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5. FreeMASTER and MCAT user interface 

The FreeMASTER debugging tool is used to control the application and monitor variables during run 

time. Communication with the host PC passes via USB. However, because FreeMASTER supports 

RS232 communication, there must be a driver for the physical USB interface, OpenSDA, installed on 

the host PC that creates a virtual COM port from the USB. The driver shall be installed automatically 

plugging S32K144EVB to USB port. Alternatively, it can be downloaded from 

www.pemicro.com/opensda/. The application configures the LPUART module of the S32K144 for a 

communication speed of 115200bps. Therefore, the FreeMASTER user interface also needs to be 

configured respectively. 

 

Figure 42. FreeMASTER and Motor Control Application Tunning Tool 

 

MCAT Control Page with 
panels, and settings 
(hidden mouse-over 
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Project panel with sub-
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recorders 

 

Variable Watch 
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http://www.pemicro.com/opensda/
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5.1. MCAT Settings and Tuning 

5.1.1. Application configuration and tuning 

FreeMASTER and MCAT interface (Figure 42) enables online application tuning and control. The 

MCAT tuning shall be used before the very first run of the drive to generate the configuration header file 

(PMSM_appconfig.h). Most of the variables are accessible via MCAT online tuning (thus can be 

updated anytime), but some of them (especially the fault limit thresholds) must be set using the 

configuration header file generation, which can be done on the “Output File” panel by clicking the 

“Generate Configuration File” (see Figure 43). 

 

Figure 43. Output File panel and “Generate Configuration File” button 

Parameters runtime update is done using the “Update Target” button (see Figure 44). Changes can be 

also saved using “Store Data” button, or reloaded to previously saved configuration using “Reload Data” 

button. 

Any change of parameters highlights the cells that have not been saved using “Store data”. Changes can 

be reverted using “Reload Data” to previously saved configuration. This button is disabled if no change 

has been made. 

NOTE 

MCAT tool can be configured using hidden mouse-over “Settings” button 

(see Figure 42), where a set of advanced settings, for example PI 

controller types, speed sensors and other blocks of the control structure 

can be changed. However, it is not recommended to change these settings 

since it will force the MCAT to look for a different variables names and to 

 

Generate 
Configuration File 

button 
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generate different set of constants than the application is designed for. See 

MCAT tool documentation available at nxp.com. 

The application tuning is provided by a set of MCAT pages dedicated to every part of the control 

structure. An example of the Application Parameters Tuning page is in Figure 44. Following list of 

settings pages is based on the PMSM sensorless application. 

 

 

 

 

 

• Parameters 

o Motor Parameters 

o Hardware Scales 

o SW Fault Triggers 

o Application Scales 

o Alignment 

• Current Loop 

o Loop Parameters 

o D axis PI Controller 

o Q axis PI Controller 

o Current PI Controller Limits 

o DC-bus voltage IIR filter settings 

• Speed Loop 

o Loop Parameters 

o Speed PI Controller Constants 

o Speed Ramp 

o Speed Ramp Constants 

o Actual Speed Filter 

o Speed PI Controller Limits 

• Sensorless 

o BEMF Observer Parameters 

o BEMF DQ Observer Coefficients 

o Tracking Observer PI Constants 

o Tracking Observer Integrator 

o Open Loop Start-up Parameters 

o BEMF DQ Observer PI Controller 

Constants 

Changes can be tested using MCAT “Control Struc” page (Figure 45), where the following control 

structures can be enabled: 

• Scalar Control 

• Voltage FOC (Position & Speed Feedback is enabled automatically) 

• Current FOC (Position & Speed Feedback is enabled automatically) 

• Speed FOC (Position & Speed Feedback is enabled automatically) 

 

http://www.nxp.com/
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Figure 44. MCAT input application parameters page 

 

Figure 45. MCAT application control structure page 



FreeMASTER and MCAT user interface 

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Application Notes, Rev. 1, 06/2020 

48  NXP Semiconductors 

  

 

5.2. MCAT application Control 

All application state machine variables can be seen on the FreeMASTER MCAT App control page as 

shown in Figure 46. Warnings and faults are signaled by a highlighted red color bar with name of the 

fault source. The warnings are signaled by a round LED-like indicator, which is placed next to the bar 

with the name of the fault source. The status of any fault is signaled by highlighting respective 

indicators. In Figure 46, for example, there is pending fault flag and one warning indicated ("Udcb LO" 

- DC bus voltage is close to its under voltage conditions). That means that the measured voltage on the 

DC bus exceeds the limit set in the MCAT_Init function. The warning indicator is still on if the voltage 

is higher than the warning limit set in INIT state. In this case, the application state FAULT is selected, 

which is shown by a frame indicator hovering above FAULT state. After all actual fault sources have 

been removed, no warning indicators are highlighted, but the fault indicators will remain highlighted. 

The pending faults can now be cleared by pressing the "FAULT" button. This will clear all pending 

faults and will enable transition of the state machine into INIT and then READY state. After the 

application faults have been cleared and the application is in READY state, all variables should be set to 

their default values. The application can be started by selecting APP_ON on application On/Off switch. 

Successful selection is indicated by highlighting the On/Off button in green. 

 

 

Figure 46. FreeMASTER MCAT Control Page for controlling the application 
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6. Conclusion 

Design, described in this application note shows the simplicity and efficiency in using the S32K144 

microcontroller for Sensorless PMSM motor control and introduces it as an appropriate candidate for 

various low-cost applications in the automotive area. MCAT tool provides interactive online tool which 

makes the PMSM drive application tuning friendly and intuitive. 
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