
3-Phase Sensorless PMSM Motor Control

Kit with S32K144

Featuring Motor Control Application Tuning (MCAT) Tool

by: NXP Semiconductors

1. Introduction

This application note describes the design of a 3-phase

Permanent Magnet Synchronous Motor (PMSM) vector

control (Field Oriented Control - FOC) drive with 2-

shunt current sensing with and without position sensor.

This design serves as an example of motor control

design using S32K1 family of automotive motor

control MCUs based on a 32-bit ARM® CortexTM-M4F

optimized for a full range of automotive applications.

Following are the supported features:

• 3-phase PMSM speed Field Oriented Control.

• Current sensing with two shunt resistors.

• Shaft position and speed estimated by sensorless

algorithm and encoder position sensor

• Application control user interface using

FreeMASTER debugging tool.

• Motor Control Application Tuning (MCAT)

tool.

NXP Semiconductors Document Number:AN12235

Application Notes Rev. 1 , 06/2020

Contents

1. Introduction ..1

2. System concept ...2

3. PMSM field oriented control ..3

3.1. Fundamental principle of PMSM FOC 3

3.2. PMSM model in quadrature phase synchronous

reference frame .. 4

3.3. Output voltage actuation and phase current

measurement .. 6

3.4. Rotor position/speed estimation............................... 8

3.5. Field weakening... 9

4. Software implementation on the S32K144 11

4.1. S32K144 – Key modules for PMSM FOC control 11

4.2. S32K144 Device initialization 15

4.3. Software architecture ... 29

5. FreeMASTER and MCAT user interface 44

5.1. MCAT Settings and Tuning................................... 45

5.2. MCAT application Control 48

6. Conclusion .. 49

7. References .. 49

8. Revision history .. 49

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/s32k-automotive-mcus/s32k1-microcontrollers-for-general-purpose:S32K1?utm_medium=AN-2021

System concept

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

2 NXP Semiconductors

2. System concept

The system is designed to drive a 3-phase PM synchronous motor. The application meets the following

performance specifications:

• Targeted at the S32K144EVB Evaluation Board (refer to dedicated user manual for

S32K144EVB available at www.nxp.com). See section References for more information.

• S32 Software Development Kit (SDK) and Processor Expert (PEx) used as S32K144 device

configuration and control tool being a part of the S32 Design Studio (see section References)

• MC34GD3000 MOSFETs pre-driver with extensive set of functions and condition monitoring

(see section References)

• Control technique incorporating:

o Field Oriented Control of 3-phase PM synchronous motor without position sensor

o Closed-loop speed control with action period 1ms

o Closed-loop current control with action period 100µs

o Bi-directional rotation

o Flux and torque independent control

o Field weakening control extending speed range of the PMSM beyond the base speed

o Position and speed is estimated by Extended BEMF observer or obtained by Encoder

sensor

o Open-loop start up with alignment

o Reconstruction of three-phase motor currents from two shunt resistors

o FOC state variables sampled with 100 μs period

• Automotive Math and Motor Control Library (AMMCLIB) - FOC algorithm built on blocks of

precompiled SW library (see section References)

• FreeMASTER software control interface (motor start/stop, speed setup)

• FreeMASTER software monitor

• FreeMASTER embedded Motor Control Application Tuning (MCAT) tool (motor parameters,

current loop, sensorless parameters, speed loop) (see section References)

• FreeMASTER software MCAT graphical control page (required speed, actual motor speed,

start/stop status, DC-Bus voltage level, motor current, system status)

• FreeMASTER software speed scope (observes actual and desired speeds, DC-Bus voltage and

motor current)

• FreeMASTER software high-speed recorder (reconstructed motor currents, vector control

algorithm quantities)

• DC-Bus over-voltage and under-voltage, over-current, overload and start-up fail protection

http://www.nxp.com/

PMSM field oriented control

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 3

3. PMSM field oriented control

3.1. Fundamental principle of PMSM FOC

High-performance motor control is characterized by smooth rotation over the entire speed range of the

motor, full torque control at zero speed, and fast acceleration/deceleration. To achieve such control,

Field Oriented Control is used for PM synchronous motors.

The FOC concept is based on an efficient torque control requirement, which is essential for achieving a

high control dynamic. Analogous to standard DC machines, AC machines develop maximal torque

when the armature current vector is perpendicular to the flux linkage vector. Thus, if only the

fundamental harmonic of stator magnetomotive force is considered, the torque Te developed by an AC

machine, in vector notation, is given by the following equation:

𝑇𝑒 =
3

2
⋅ 𝑝𝑝 ⋅ 𝜓𝑠

̅̅ ̅ × 𝑖𝑠̅

Equation 1

where pp is the number of motor pole-pairs, is is stator current vector and ψs represents vector of the

stator flux. Constant 3/2 indicates a non-power invariant transformation form.

In instances of DC machines, the requirement to have the rotor flux vector perpendicular to the stator

current vector is satisfied by the mechanical commutator. Because there is no such mechanical

commutator in AC Permanent Magnet Synchronous Machines (PMSM), the functionality of the

commutator has to be substituted electrically by enhanced current control. This reveal that stator current

vector should be oriented in such a way that component necessary for magnetizing of the machine (flux

component) shall be isolated from the torque producing component.

This can be accomplished by decomposing the current vector into two components projected in the

reference frame, often called the dq frame that rotates synchronously with the rotor. It has become a

standard to position the dq reference frame such that the d-axis is aligned with the position of the rotor

flux vector, so that the current in the d-axis will alter the amplitude of the rotor flux linkage vector. The

reference frame position must be updated so that the d-axis should be always aligned with the rotor flux

axis.

Because the rotor flux axis is locked to the rotor position, when using PMSM machines, a mechanical

position transducer or position observer can be utilized to measure the rotor position and the position of

the rotor flux axis. When the reference frame phase is set such that the d-axis is aligned with the rotor

flux axis, the current in the q-axis represents solely the torque producing current component.

What further resulted from setting the reference frame speed to be synchronous with the rotor flux axis

speed is that both d and q axis current components are DC values. This implies utilization of simple

current controllers to control the demanded torque and magnetizing flux of the machine, thus

simplifying the control structure design.

Figure 1 shows the basic structure of the vector control algorithm for the PM synchronous motor. To

perform vector control, it is necessary to perform the following four steps:

PMSM field oriented control

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

4 NXP Semiconductors

• Measure the motor quantities (DC link voltage and currents, rotor position/speed).

• Transform measured currents into the two-phase orthogonal system (α, β) using a Clarke

transformation. After that transform the currents in α, β coordinates into the d, q reference frame

using a Park transformation.

• The stator current torque (isq) and flux (isd) producing components are separately controlled in d,

q rotating frame.

• The output of the control is stator voltage space vector and it is transformed by an inverse Park

transformation back from the d, q reference frame into the two-phase orthogonal system fixed

with the stator. The output three-phase voltage is generated using a space vector modulation.

Clarke/Park transformations discussed above are part of the Automotive Math and Motor Control

Library set (see section References).

To be able to decompose currents into torque and flux producing components (isd, isq), position of the

motor-magnetizing flux has to be known. This requires knowledge of accurate rotor position as being

strictly fixed with magnetic flux. This application note deals with the sensorless FOC control where the

position and velocity is obtained by either a position/velocity estimator or incremental Encoder sensor.

Figure 1. Field oriented control transformations

3.2. PMSM model in quadrature phase synchronous reference frame

Quadrature phase model in synchronous reference frame is very popular for field oriented control

structures, because both controllable quantities, current and voltage, are DC values. This allows to

employ only simple controllers to force the machine currents into the defined states. Furthermore, full

decoupling of the machine flux and torque can be achieved, which allows dynamic torque, speed and

position control.

The equations describing voltages in the three phase windings of a permanent magnet synchronous

machine can be written in matrix form as follows:

[

𝑢𝑎

𝑢𝑏

𝑢𝑐

] = 𝑅𝑠 [
𝑖𝑎
𝑖𝑏
𝑖𝑐

] +
𝑑

𝑑𝑡
[

𝜓𝑎

𝜓𝑏

𝜓𝑐

]

Equation 2

where the total linkage flux in each phase is given as:

PMSM field oriented control

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 5

[

𝜓𝑎

𝜓𝑏

𝜓𝑐

] = [
𝐿𝑎𝑎 𝐿𝑎𝑏 𝐿𝑎𝑐

𝐿𝑏𝑎 𝐿𝑏𝑏 𝐿𝑏𝑐

𝐿𝑐𝑎 𝐿𝑐𝑏 𝐿𝑐𝑐

] [
𝑖𝑎
𝑖𝑏
𝑖𝑐

] + Ψ𝑃𝑀

[

cos (𝜃𝑒)

cos (𝜃𝑒 −
2𝜋

3
)

cos (𝜃𝑒 +
2𝜋

3
)]

Equation 3

where Laa, Lbb, Lcc, are stator phase self-inductances and Lab=Lba, Lbc=Lcb, Lca=Lac are mutual

inductances between respective stator phases. The term ΨPM represents the magnetic flux generated by

the rotor permanent magnets, and θe is electrical rotor angle.

Figure 2. Orientation of stator (stationary) and rotor (rotational) reference frames, with current

components transformed into both frames

The voltage equation of the quadrature phase synchronous reference frame model can be obtained by

transforming the three phase voltage equations (Equation 2) and flux equations (Equation 3) into a two

phase rotational frame which is aligned and rotates synchronously with the rotor as shown in Figure 2.

Such transformation, after some mathematical corrections, yields the following set of equations:

[
𝑢𝑑

𝑢𝑞
] = 𝑅𝑠 [

𝑖𝑑
𝑖𝑞

] + [
𝐿𝑑 0
0 𝐿𝑞

]
𝑑

𝑑𝑡
[
𝑖𝑑
𝑖𝑞

] + 𝜔𝑒 [
0 −𝐿𝑞

𝐿𝑑 0
] [

𝑖𝑑
𝑖𝑞

] + 𝜔𝑒Ψ𝑃𝑀 [
0
1
]

Equation 4

where ωe is electrical rotor speed. It can be seen that Equation 4

, represents a non-linear cross dependent system, with cross-coupling terms in both d and q axis and

back-EMF voltage component in the q-axis. When FOC concept is employed, both cross-coupling terms

shall be compensated in order to allow independent control of current d and q components. Design of the

controllers is then governed by following pair of equations, derived from Equation 4 after

compensation:

α

β

d

q

ωe

αβ frame – stator coordinates
dq frame – rotor coordinates

θe

iS

iSd

iSq

iSα

iSβ

torque
component

flux
component

PM

PMSM field oriented control

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

6 NXP Semiconductors

𝑢𝑑 = 𝑅𝑠𝑖𝑑 + 𝐿𝑑

𝑑𝑖𝑑
𝑑𝑡

Equation 5

𝑢𝑞 = 𝑅𝑠𝑖𝑞 + 𝐿𝑞

𝑑𝑖𝑞

𝑑𝑡

Equation 6

This equation describes the model of the plant for d and q current loop. Both equations are structurally

identical, therefore the same approach of controller design can be adopted for both d and q controllers.

The only difference is in values of d and q axis inductances, which results in different gains of the

controllers. Considering closed loop feedback control of a plant model as in either equation, using

standard PI controllers, then the controller proportional and integral gains can be derived, using a pole-

placement method, as follows:

𝐾𝑝 = 2𝜉𝜔0𝐿 − 𝑅

Equation 7

𝐾𝑖 = 𝜔0

2𝐿

Equation 8

where ω0 represents the system natural frequency [rad/sec] and ξ is the Damping factor [-] of the current

control loop.

Figure 3. FOC Control Structure

3.3. Output voltage actuation and phase current measurement

The 3-phase voltage source inverter shown in Figure 4 uses three shunt resistors (R56, R57, R58) placed

in three legs of the inverter as phase current sensors. Stator phase current which flows through the shunt

PMSM field oriented control

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 7

resistor produces a voltage drop which is interfaced to the AD converter of microcontroller through

conditional circuitry (refer to DEVKIT-MOTORGD Schematic available at nxp.com).

Figure 4. 3-phase DC/AC inverter with shunt resistors for current measurement

Figure 5 shows a gain setup and input signal filtering circuit for operational amplifier which provides

the conditional circuitry and adjusts voltages to fit into the ADC input voltage range.

Figure 5. Phase current measurement conditional circuitry

The phase current sampling technique is a challenging task for detection of phase current differences

and for acquiring full three phase information of stator current by its reconstruction. Phase currents

flowing through shunt resistors produces a voltage drop which needs to be appropriately sampled by the

AD converter when low-side transistors are switched on. The current cannot be measured by the current

shunt resistors at an arbitrary moment. This is because that the current only flows through the shunt

resistor when the bottom transistor of the respective inverter leg is switched on. Therefore, considering

Figure 4, phase A current is measured using the R56 shunt resistor and can only be sampled when the

low side transistor Q2 is switched on. Correspondingly, the current in phase B can only be measured if

the low side transistor Q3 is switched on, and the current in phase C can only be measured if the low

side transistor Q4 is switched on. To get an actual instant of current sensing, voltage waveform analysis

has to be performed.

Generated duty cycles (phase A, phase B, phase C) of two different PWM periods are shown in Figure

6. These phase voltage waveforms correspond to a center-aligned PWM with sine-wave modulation. As

shown in the following figure, (PWM period I), the best sampling instant of phase current is in the

middle of the PWM period, where all bottom transistors are switched on. However, not all three currents

can be measured at an arbitrary voltage shape. PWM period II in the following figure shows the case

PMSM field oriented control

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

8 NXP Semiconductors

when the bottom transistor of phase A is ON for a very short time. If the ON time is shorter than a

certain critical time (depends on hardware design), the current cannot be correctly measured.

Figure 6. Generated phase duty cycles in different PWM periods

In standard motor operation, where the supplied voltage is generated using the space vector modulation,

the sampling instant of phase current takes place in the middle of the PWM period in which all bottom

transistors are switched on. If the duty cycle goes to 100%, there is an instant when one of the bottom

transistors is switched on for a very short time period. Therefore, only two currents are measured and the

third one is calculated from equation:

𝑖𝐴 + 𝑖𝐵 + 𝑖𝐶 = 0

Equation 9

NOTE

Although, there are three shunt resistors available on the power stage

board (R56, R57, R58), S32K144 has only two AD converters that

measure two currents simultaneously in this application. Third stator

current is calculated based on Equation 9. To measure two stator currents

in two inverter legs correctly, minimum ON times for the low-side

switches are ensured by appropriate duty cycle limit.

3.4. Rotor position/speed estimation

In this application, rotor position and speed are either estimated by back-EMF observer or obtained by

Encoder sensor. Back-EMF observer as well as incremental Encoder sensor provide only relative

position. To get absolute position, initial position must be known. This application uses mechanical rotor

alignment when the rotor is moved from unknown to known position applying DC voltage.

The alignment algorithm applies DC voltage to d-axis resulting full DC voltage applied to phase A and

negative half of the DC voltage applied to phase B, C for a certain period. This will cause the rotor to

move to "align" position, where stator and rotor fluxes are aligned. The rotor position in which the rotor

stabilizes after applying DC voltage is set as zero position. Motor is ready to produce full startup torque

once the rotor is properly aligned.

Application in Sensorless mode must start with open loop start-up sequence to move the motor up to a

speed value where the observer provides sufficiently accurate speed and position estimations. As soon as

PMSM field oriented control

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 9

the observer provides appropriate estimates, application transits to closed-loop mode, when the rotor

speed and position calculation is based on the estimation of a BEMF in the stationary reference frame

using a Luenberger type of observer. BEMF observer is as a part of the NXP’s Automotive Math and

Motor Control library. Structure and implementation details are discussed in section 4.3.4.

3.5. Field weakening

Field weakening is an advanced control approach that extends standard FOC to allow electric motor

operation beyond a base speed. The back electromotive force (EMF) is proportional to the rotor speed

and counteracts the motor supply voltage. If a given speed is to be reached, the terminal voltage must be

increased to match the increased stator back-EMF. A sufficient voltage is available from the inverter in

the operation up to the base speed. Beyond the base speed, motor voltages ud and uq are limited and

cannot be increased because of the ceiling voltage given by inverter. Base speed defines the rotor speed

at which the back-EMF reaches maximal value and motor still produces the maximal torque.

As the difference between the induced back-EMF and the supply voltage decreases, the phase current

flow is limited, hence the currents id and iq cannot be controlled sufficiently. Further increase of speed

would eventually result in back-EMF voltage equal to the limited stator voltage, which means a

complete loss of current control. The only way to retain the current control even beyond the base speed

is to lower the generated back-EMF by weakening the flux that links the stator winding. Base speed

splits the whole speed motor operation into two regions: constant torque and constant power, see Figure

7.

Figure 7. Constant torque/power operating regions

Operation in constant torque region means that maximal torque can be constantly developed while the

output power increases with the rotor speed. The phase voltage increases linearly with the speed and the

current is controlled to its reference. The operation in constant power region is characterized by a rapid

decrease in developed torque while the output power remains constant. The phase voltage is at its limit

while the stator flux decreases proportionally with the rotor speed, see Figure 8.

Mechanical power

Torque

Constant Torque region Constant Power region

Base speed

Pmech = Te*m

Te =Pmax /m

Pmech=Pmax

Te=Tmax

Speed

PMSM field oriented control

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

10 NXP Semiconductors

Figure 8. Constant flux/voltage operational regions

FOC splits phase currents into the q-axis torque component and d-axis flux component. The flux current

component Id is used to weaken the stator magnetic flux linkage ΨS. Reduced stator flux ΨS yields to

lower Back-EMF and condition of Field Weakening is met. More details can be seen from the following

phasor diagrams of the PMSM motor operated exposing FOC control without (left) and with FW (right),

Figure 9.

Figure 9. Steady-state phasor diagram of PMSM operation up to base speed (left) and above speed (right)

FOC without FW is operated demanding d-axis current component to be zero (Id=0) to excite electric

machine just by permanent magnets mounted on the rotor. This is an operation within constant torque

region (see Figure 7), since whole amount of the stator current consists of the torque producing

component Iq only (see Figure 9 left). Stator magnetic flux linkage ΨS1 is composed of rotor magnetic

flux linkage ΨPM, which represents the major contribution and small amount of the magnetic flux

linkage in q-axis LqIq produced by q-axis current component Iq. Based on the Faraday’s law, rotor

magnetic flux linkage ΨPM and stator magnetic flux linkage ΨS1 produce back-EMF voltage

EPM1=ωe1ΨPM perpendicularly oriented to rotor magnetic flux ΨPM in q-axis and back EMF voltage

ES1=ωe1ΨS1 perpendicularly oriented to stator magnetic flux ΨS1, respectively (see Figure 9 left). Both

voltages are directly proportional to the rotor speed ωe1. If the rotor speed exceeds the base speed, the

back-EMF voltage ES1=ωe1ΨS1 approaches the limit given by VSI and Iq current cannot be controlled.

Hence, field weakening has to take place.

Voltage control range

Base speed SpeedBase speed

Stator voltage VS

Stator flux S

Field-weakening control Field-weakening control

q- axis

d- axis

IS = Iq

EPM1 = e1PM

VS1

S1

RS IS
jXSIS

q- axis

d- axis

IS Iq

Id

VS2

S2

RS IS

jXSIS

-Ld Id

IMAX IMAX

ES2 = e2S2
ES1 = e1S1

Lq Iq
Lq Iq

VSI voltage capability VSI voltage capability

EPM2 = e2PM

PMPM

e1 < e2

EPM1 < EPM2

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 11

In FW operation, Id current is controlled to negative values to “weaken” stator flux linkage ΨS2 by -LdId

component as shown in Figure 9 right. Thanks to this field weakening approach, back-EMF voltage

induced in the stator windings ES2 is reduced below the VSI voltage capability even though EPM2

exceeds it. Iq current can be controlled again to develop torque as demanded. Unlike the previous case,

this is an operation within constant power region (see Figure 7), where Iq current is limited due to Is

current vector size limitation (see Figure 9 right). In FW operation, stator magnetic flux linkage ΨS

consists of three components now: rotor magnetic flux linkage ΨPM, magnetic flux linkage in q-axis Ψq=

LqIq produced by q-axis current component Iq and magnetic flux linkage in d-axis Ψd= -LdId produced by

negative d-axis Id current component that counteracts to ΨPM.

There are some limiting factors that must be taken into account when operating FOC control with field

weakening:

• Voltage amplitude u_max is limited by power as shown in Figure 10 left

• Phase current amplitude i_max is limited by capabilities of power devices and motor thermal

design as shown in Figure 10 right

• Flux linkage in d-axis is limited to prevent demagnetization of the permanent magnets

Figure 10. Voltage (left) and current (right) limits for PMSM drive operation

NXP’s Automotive Math and Motor Control library offers a software solution for the FOC with field

weakening respecting all limitations discussed above. This library based function is discussed in section

4.3.4.

4. Software implementation on the S32K144

4.1. S32K144 – Key modules for PMSM FOC control

The S32K144 device includes modules such as the FlexTimer Module (FTM), Trigger MUX Control

(TRGMUX), Programmable Delay Block (PDB) and Analogue-to-Digital Converter (ADC) suitable for

control applications, in particular, motor control applications. These modules are directly interconnected

and can be configured to meet various motor control application requirements. Figure 11 shows module

interconnection for a typical PMSM FOC application working in Sensorless or Sensorbased mode using

dual shunt current sensing. The modules are described below and a detailed description can be found in

the S32K1xx Series Reference Manual (see section References).

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

12 NXP Semiconductors

4.1.1. Module interconnection

The modules involved in output actuation, data acquisition and the synchronization of actuation and

acquisition, form the so-called Control Loop. This control loop consists of the FTM, TRGMUX, PDB,

and ADC modules. The control loop is very flexible in operation and can support static, dynamic or

asynchronous timing.

Each control loop cycle can be initiated either by FTM initialization trigger init_trig or by FTM external

trigger ext_trig. While init_trig signal is generated at beginning of PWM cycle, ext_trig can be

generated any time within the PWM period based on the value defined in the corresponding FTM

Channel Value register CnV.

FTM trigger signal is routed to hardware trigger input of the PDB module through flexible TRGMUX

unit. In S32K14x, there are two ADC modules and two PDB modules that work in pairs. This means

that PDB0 is linked with ADC0 and PDB1 is linked with ADC1.

PDB pre-triggers ch0pretrigx are used as a precondition for ADC module. They are directly connected

to ADHWTS ports to select ADC channels as well as order of the channels by configurable pre-triggers

delays. When ADC receives rising edge of the trigger, ADC will start conversion according to the order

defined by pre-triggers ch0pretrigx.

PDB pre-trigger delays must be properly set to allow reliable operation between PDB and corresponding

ADC module. When the first pre-trigger is asserted, associated lock of the pre-trigger becomes active

until corresponding conversion is not completed. This associated lock is released by corresponding ADC

conversion complete flag ADC_SC1[COCOx]. This means that next pre-trigger can be generated only if

the ongoing conversion is completed.

Second FTM module can work in Quadrature Decoder mode counting rising/falling edges of the Phase

A and Phase B Encoder signals to determine the rotor position and speed independently from the control

loop (see section 4.2.2.2).

Detailed description can be found in the S32K1xx Series Reference Manual (see section References).

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 13

Figure 11. S32K144 module interconnection

4.1.2. S32K144 and FETs pre-driver interconnection

Excitation of power FETs is ensured by NXP MC34GD3000 pre-driver. This analog device is equipped

with charge pump that ensures external FETs drive at low power supply voltages. Moreover, three

external bootstrap capacitors provide gate charge to the high-side FETs (see section References).

Configuration of MC34GD3000 pre-driver is realized via LPSPI0 module. The MC34GD3000 allows

different operating modes to be set and locked by SPI commands. SPI commands also report condition

of the MC34GD3000 based on the internal monitoring circuits and fault detection logic. S32K144

detects fault state of the MC34GD3000 by means of interrupt signal on PTE10 pin. Integrated current

sensing amplifier with analog comparator allow to measure DC bus current and detect overcurrent.

Interconnection between S32K144 and MC34GD3000 is briefly depicted in Figure 11.

4.1.3. Module involvement in digital PMSM Sensorless control loop

This section will discuss timing and modules synchronization to accomplish PMSM Sensorless FOC on

the S32K144 and the internal hardware features.

The time diagram of the automatic synchronization between PWM and ADC in the PMSM application

is shown in Figure 12.

S32K144EVB

ADC1

FTM3
Center-Aligned
PWM Mode

ADC0

PDB1

MC34GD3000

ch5

M

LPSPI0

ch4

ch3

ch2

ch1

ch0
PA_HS_G

PA_LS_G

PB_HS_G

PA_LS_G

PC_HS_G

PC_LS_G

PWMAT

PWMAB

PWMBT

PWMBB

PWMCT

PWMCB

16-bit
DELAY
counter

DC bus voltage

DEVKIT-MOTORGD

PDB0
16-bit

DELAY
counter

ADCH0

ADCH1

ADCH2

ADCH0

+

‒

P
h

a
s

e
 A

 c
u

rr
e

n
t

P
h

a
s

e
 B

 c
u

rr
e

n
t

RShunt

RShunt

RShunt

D
C

 b
u

s
 c

u
rr

e
n

t

PORTE
PTE10

fault0

fault7

Pin
interrupt

Phase A current (scaled)

DC bus voltage (scaled)

Phase B current (scaled)

DC bus current (scaled)

ADHWTS A
ch0pretrig0

ADHWTS A
ch0pretrig0

ADHWTS B
ch0pretrig1

ADHWTS C
ch0pretrig2

ADHWT
ch0trig

ch0trig
ADHWT

GD3000 Fault
detection

TRGMUX

init_trig
ext_trig

COCO A

init_trig
ext_trig

init_trig
ext_trig

ACK

COCO A, B, C

ACK

+

‒

+

‒

FTM2
Quadrature
Decoder Mode

QD_PHA

QD_PHB

VCC

ENC_A

ENC_B

ENC_INDEX

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

14 NXP Semiconductors

Figure 12. Time Diagram of PWM and ADC Synchronization

The PMSM Sensorless FOC control with two shunt current measurement is based on static timing;

meaning the trigger point instances of the ADC conversions are located at same place within one control

loop cycle.

Each control cycle starts with FTM3 initialization trigger init_trig, which is generated at beginning of

the PWM cycle as shown in Figure 12. Initialization trigger restarts PDB0 and PDB1 modules and

updates their double buffered registers. ADC0 and ADC1 channels are triggered based on the PDB0 and

PDB1 pre-trigger delays. When PDB counter reaches first pre-trigger delay value, PDB initiates first

ADC channel measurement.

DC bus voltage measurement is triggered first by PDB1, at beginning of the PWM cycle (pretrig0).

Phase A and Phase B stator currents are measured simultaneously in the middle of the PWM cycle,

when bottom transistors of both inverter legs are closed, and currents flow through shunt resistors.

While PDB0 triggers Phase A current measurement at pretrig0, Phase B current measurement is

triggered by PDB1 at pretrig1. The ADC conversion results are automatically stored into a predefined

queue in memory.

The CPU is triggered by the ADC1 conversion complete interrupt service routine. Based on the stored

ADC0 and ADC1 values, the current PI controllers calculate new PWM duty cycles. These are then sent

as a new reference for PWM module (FTM3) and become effective in the next PWM cycle.

FTM3 initialization trigger is disabled in ADC1 Conversion Complete interrupt service routine. As a

consequence, PDB0 and PDB1 are not triggered in the next PWM period due to the missing init_trig

FTM3_CH1

FTM3_CH0

PDB0_MOD

UDCbus

pretrig0

Free for application use

100us

PDB1_MOD

Sample points

Sample points

Conversion
Complete time

UDCbus UDCbus

FOC
Calculation

Free for application use

FTM3_MOD
(2000 ticks)

FTM3_C0V

FTM3

PDB0

PDB1

ADC0

Conversion
Complete time

ADC1

CPU FOC
Calculation

Initialization
triggers

ADC1 interrupt
FTM3 inittrig bit = false

PDB1 interrupt
FTM3 inittrig bit = true

PDB1 interrupt
FTM3 inittrig bit = true

active init_trig inactive init_trig

ADC1 interrupt
FTM3 inittrig bit = false

active init_trig inactive init_trig
FTM3_CNTIN

IPHA

ad
c1

_c
h

0

adc1_ch1
IPHB

adc0_ch0
IPHA

a
d

c1
_

ch
0

adc1_ch1
IPHB

adc0_ch0

ad
c1

_c
h

0

pretrig0

pretrig1

pretrig0

pretrig1

pretrig0

pretrig0 deadtime

PDB1_IDLY (4999 ticks) PDB1_IDLY (4999 ticks)

PWM update
and sync

PWM update
and sync

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 15

signal. FTM3 initialization trigger is reenabled again in PDB1 interrupt service routine as soon as the

opportunity for generating init_trig signal elapses. This strategy ensures ADC0 and ADC1 sampling

every second opportunity as depicted in Figure 12.

4.2. S32K144 Device initialization

To simplify and accelerate application development, embedded part of the PMSM Sensorless motor

control application has been created using S32 Software Development Kit – S32 SDK. S32K144 can be

configured either by means of the Processor Expert extension, or programmed directly using SDK

drivers. Peripherals are initialized at beginning of the main() function. For each S32K144 module, there

is a specific configuration function that uses S32 SDK APIs and configuration structures generated by

PEx to configure the MCU.

• McuClockConfig() – MCU clock configuration

• McuPowerConfig() – MCU power management configuration

• McuTrigmuxConfig() – TRGMUX module configuration

• McuPinsConfig() – PINs and PORT modules configuration

• McuLpuartConfig() – LPUART module configuration

• McuAdcConfig() – ADC modules configuration

• McuPdbConfig() – PDB modules configuration

• McuFtmConfig() – FTM modules configuration

Detailed SDK documentation can be found in folder created with S32 Design Studio installation.

(References).

4.2.1. Clock configuration and power management

S32K144 features a complex clocking sourcing, distribution and power management. To run a core of

the S32K144 as well as some MCU peripherals at maximum frequency 80 MHz in normal RUN mode,

S32K144 is supplied externally by 8 MHz crystal. This clock source supplies Phase-lock-loop (PLL),

which circuit multiplies frequency by 40 and divides by 2 resulting 160 MHz frequency on output. PLL

output is then divided by 2 to supply core and system (80 MHz), further divided by two and three to

supply bus clock (40 MHz) and flash clock (26.67 MHz), respectively. This clock configuration belongs

to one of the typical and recommended. It is summarized in Table 1.

Table 1. S32K144 clock configuration in RUN mode

Clock Frequency

CORE_CLOCK 80 MHz

SYS_CLK

80 MHz

BUS_CLK

40 MHz

FLASH_CLK

26.67 MHz (max freq. in RUN

mode)

This clock configuration and power management can be setup by S32 Processor Expert. Preview of the

S32K144 clock sourcing and distribution is shown in Figure 13.

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

16 NXP Semiconductors

Figure 13. S32K144 clock configuration in Processor Expert

Once the clock configuration is set, Processor Expert generates static configuration structure

clockMan1_InitConfig0, that is called by SDK’s CLOCK_SYS_Init function through array of the

configuration pointers g_clockManConfigsArr, Example 1.

Example 1. S32K144 clock configuration controlled by S32 SDK
void McuClockConfig(void)
{
 /* Clock configuration for MCU and MCU's peripherals */
 CLOCK_SYS_Init(g_clockManConfigsArr,
 CLOCK_MANAGER_CONFIG_CNT,
 g_clockManCallbacksArr,
 CLOCK_MANAGER_CALLBACK_CNT);

 /* Clock configuration update */
 CLOCK_SYS_UpdateConfiguration(0, CLOCK_MANAGER_POLICY_FORCIBLE);
}

...

/*! @brief Array of pointers to User configuration structures */
clock_manager_user_config_t const * g_clockManConfigsArr[] = {
 &clockMan1_InitConfig0
};
/*! @brief Array of pointers to User defined Callbacks configuration structures */
clock_manager_callback_user_config_t * g_clockManCallbacksArr[] = {(void*)0};
/* END clockMan1. */

As discussed at beginning of this chapter, power management of the S32K144 is configured for normal

RUN mode. This power mode can be forced by Processor Expert as well, Figure 14.

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 17

Figure 14. S32K144 power management configuration in Processor Expert

Static configuration generated by Processor Expert is called by SDK’s POWER_SYS_Init function to

update power mode of the S32K144 device, Example 2.

Example 2. S32K144 power management controlled by S32 SDK
void McuPowerConfig(void)
{
 /* Power mode configuration for RUN mode */
 POWER_SYS_Init(&powerConfigsArr, 0, &powerStaticCallbacksConfigsArr,0);
 /* Power mode configuration update */
 POWER_SYS_SetMode(0,POWER_MANAGER_POLICY_AGREEMENT);
}

...

/*! @brief User Configuration structure power_managerCfg_0 */
power_manager_user_config_t pwrMan1_InitConfig0 = {
 .powerMode = POWER_MANAGER_RUN, /*!< Power manager mode */
 .sleepOnExitValue = false, /*!< Sleep on exit value */
};

/*! @brief Array of pointers to User configuration structures */
power_manager_user_config_t * powerConfigsArr[] = {
 &pwrMan1_InitConfig0
};
/*! @brief Array of pointers to User defined Callbacks configuration structures */

Same mechanism between Processor Expert and S32 SDK works for all S32K144 peripherals, which are

discussed below.

4.2.2. FlexTimer Module (FTM)

FlexTimer module (FTM) is built upon a timer with a 16-bit counter. It contains an extended set of

features that meet the demands of motor control, including the signed up-counter, dead time insertion

hardware, fault control inputs, enhanced triggering functionality, and initialization and polarity control.

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

18 NXP Semiconductors

 Center-aligned PWM mode

FTM3 instance is used in PMSM Sensorless motor control application to generate center-align PWM by

six, complementary oriented channels to control power MOSFETs of the DEVKIT-MOTORGD board.

As depicted in Figure 12, up-down counting mode is selected as a dedicated counting mode for center-

align PWM. Due to the inverted logic of the high-side control inputs of the MC34GD3000 pre-driver,

even channels of the FTM3 must have inverted polarity. 20 kHz PWM frequency is adjusted by FTM3

Modulo register (FTM3_MOD = 2000) taking 80MHz clock source frequency into account. To protect

power MOSFETs against short circuit, deadtime 0.4μs is inserted for each complementary channels pair

in number of clock ticks 32 with default deadtime prescaler 1. This FTM3 configuration can be carried

out by using Processor Expert, Figure 15.

Figure 15. S32K144 FTM3 configuration in Processor Expert

While Initialization tab on the left allows to configure general features of the FTM module such as clock

sourcing, counter mode and register synchronization method, more specific settings related to the PWM

modulation such as PWM frequency, deadtime value, channels pairs setting are configured in

Configuration tab on the right, Figure 15.

As discussed in chapter 4.1.3, to initiate control loop every second PWM cycle at beginning of the PWM

period, initialization trigger is enabled. To be able to synchronize PWM and update FTM double

buffered registers at certain synchronization point simultaneously, software PWM synchronization and

Next loading point are enabled in Initialization tab, Figure 15. It should be noticed that Max loading

point is the time instant, when FTM3 counter equals Modulo register value (FTM3_MOD = 2000).

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 19

Once the FTM3 setting is completed, Processor Expert generates two configuration structures

flexTimer_pwm3_InitConfig and flexTimer_pwm3_PwmConfig that access and set corresponding FTM3

registers executing FTM_DRV_Init and FTM_DRV_InitPwm functions, Example 3.

Example 3. S32K144 FTM3 configured by S32 SDK
void McuFtmConfig(void)
{
 /* FTM3 module initialized as PWM signals generator */
 FTM_DRV_Init(INST_FLEXTIMER_PWM3, &flexTimer_pwm3_InitConfig, &statePwm);

 /* FTM3 module PWM initialization */
 FTM_DRV_InitPwm(INST_FLEXTIMER_PWM3, &flexTimer_pwm3_PwmConfig);

 /* Mask all FTM3 channels to disable PWM output */
 FTM_DRV_MaskOutputChannels(INST_FLEXTIMER_PWM3, 0x3F, true);
}

FTM_DRV_MaskOutputChannels function disables PWM output masking all FTM channels.

 Quadrature decoder mode

The FTM module offers a Quadrature decoder mode to decode the quadrature signals generated by

rotary sensors used in motor control domain. This mode is used to process encoder signals and

determine rotor position and speed.

There are three output signals generated by incremental encoder as shown in Figure 16. Phase A and

Phase B signals consist of a series of pulses which are phase-shifted by 90° (therefore the term

“quadrature” is used). The third signal (called “Index”) provides the absolute position information. In

the motion control, it is used to check the pulse-counting consistency.

Figure 16. Output signals of the 1024 pulses Encoder

To process the Phase A and Phase B signals from the encoder sensor, Quadrature decoder mode with

Phase encode mode have to be enabled in Processor Expert, Figure 17. In addition, Maximum Count

Value has to be set according to the number of the encoder edges. In Quadrature decoder mode, the

Phase A and Phase B signals indicate the counting direction as well as the counting rate. If the Phase B

signal lags the Phase A signal, the FTM2 counter increments after every detected rising/falling edge of

both signals. If the Phase B signal leads the Phase A signal, the FTM2 counter decrements after every

detected rising/falling edge of both signals and the QUADIR bit in the FTM_QDCTRL register indicates

the counting direction.

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

20 NXP Semiconductors

Figure 17. S32K144 FTM2 configuration in Processor Expert

Configuration structures of the Quadrature decoder mode generated by Processor Expert are shown in

Example 4. While more general structure flexTimer_qd2_InitConfig takes effect calling

McuFtmConfig() function at very beginning in the initialization phase (see section 4.2), more specific

structure for Quadrature decoder mode quadrature_decoder_configuration takes effect calling function

FTM_DRV_QuadDecodeStart as soon as motor is aligned into d-axis (see section 3.4). FTM2 counter is

reset in this stage, thus initial rotor position is zero.

Example 4. S32K144 FTM2 configured by S32 SDK
ftm_quad_decode_config_t flexTimer_qd2_QuadDecoderConfig =
 {
 FTM_QUAD_PHASE_ENCODE,
 0U,
 2047U,
 {
 false,
 0U,
 FTM_QUAD_PHASE_NORMAL, /* Phase A polarity */
 },
 {
 false,
 0U,
 FTM_QUAD_PHASE_NORMAL, /* Phase B polarity */
 }
 };

 /* Global configuration of flexTimer_qd2 */
 ftm_user_config_t flexTimer_qd2_InitConfig =
 {
 {
 true, /* Software trigger state */
 false, /* Hardware trigger 1 state */
 false, /* Hardware trigger 2 state */
 false, /* Hardware trigger 3 state */
 false, /* Max loading point state */
 false, /* Min loading point state */
 FTM_SYSTEM_CLOCK, /* Update mode for INVCTRL register */

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 21

 FTM_SYSTEM_CLOCK, /* Update mode for SWOCTRL register */
 FTM_SYSTEM_CLOCK, /* Update mode for OUTMASK register */
 FTM_SYSTEM_CLOCK, /* Update mode for CNTIN register */
 false, /* Automatic clear of the trigger*/
 FTM_UPDATE_NOW, /* Synchronization point */
 },
 FTM_MODE_QUADRATURE_DECODER, /*!< Mode of operation for FTM */
 FTM_CLOCK_DIVID_BY_1, /* FTM clock prescaler */
 FTM_CLOCK_SOURCE_SYSTEMCLK, /* FTM clock source */
 FTM_BDM_MODE_11, /* FTM debug mode */
 false, /* Interrupt state */
 false /* Initialization trigger */
};

NOTE

S32K144EVB and DEVKIT-MOTORGD boards are designed to process

encoder signals through FTM2 module. Software example contains

routine for encoder signal processing. This routine is disabled by default,

since PM motor of the S32K144 motor control kit is not equipped with

encoder sensor. To enable encoder signal processing routine, set

ENCODER macro to true.

4.2.3. Trigger MUX Control (TRGMUX)

The TRGMUX provides an extremely flexible mechanism for connecting various trigger sources to

multiple pins/peripherals. With the TRGMUX, each peripheral that accepts external triggers usually has

one specific 32-bit trigger control register. Each control register supports up to four triggers, and each

trigger can be selected from the available input triggers.

To trigger PDB0 and PDB1 modules by FTM3 initialization trigger signal init_trig, selection bit field

SEL0 of the TRGMUX_PDB0 and TRGMUX_PDB1 registers have to be specified to define trigger

source.

Processor Expert allows to generate configuration structure trgmux1_InitConfig0 that sets all TRGMUX

registers to assign trigger inputs with trigger outputs as demanded, Figure 18 and Example 5.

Figure 18. S32K144 TRGMUX configuration in Processor Expert

In particular, FTM3 initialization trigger signal as a source is assigned to three targets namely: PDB0,

PDB1 trigger inputs and TRGMUX output 2. PDB1 channel 0 trigger is routed to TRGMUX output 3

and ADC1 conversion complete flag COCO is assigned to TRGMUX output 6. TRGMUX outputs are

directly assigned to chip pins, so that triggering scheme between FTM3, PDB1 and ADC1 can be

visualized by means of oscilloscope as depicted in Figure 12.

Example 5. S32K144 TRGMUX module controlled by S32 SDK
void McuTrigmuxConfig(void)
{
 /* TRGMUX module initialization */

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

22 NXP Semiconductors

 TRGMUX_DRV_Init(INST_TRGMUX1, &trgmux1_InitConfig0);
}

...

const trgmux_inout_mapping_config_t trgmux1_InOutMappingConfig0[5] =
{
 {TRGMUX_TRIG_SOURCE_FTM3_INIT_TRIG, TRGMUX_TARGET_MODULE_PDB0_TRG_IN, false},
 {TRGMUX_TRIG_SOURCE_FTM3_INIT_TRIG, TRGMUX_TARGET_MODULE_PDB1_TRG_IN, false},
 {TRGMUX_TRIG_SOURCE_FTM3_INIT_TRIG, TRGMUX_TARGET_MODULE_TRGMUX_OUT2, false},
 {TRGMUX_TRIG_SOURCE_PDB1_CH0_TRIG, TRGMUX_TARGET_MODULE_TRGMUX_OUT3, false},
 {TRGMUX_TRIG_SOURCE_ADC1_SC1A_COCO, TRGMUX_TARGET_MODULE_TRGMUX_OUT6, false},
};

/*! trgmux1 configuration structure */
const trgmux_user_config_t trgmux1_InitConfig0 = {
 .numInOutMappingConfigs = 5,
 .inOutMappingConfig = trgmux1_InOutMappingConfig0,
};

4.2.4. Programmable delay block (PDB)

The Programable Delay Block (PDB) is intended to completely avoid CPU involvement in the timed

acquisition of state variables during the control cycle. The PDB module contains a 16-bit programmable

delay counter that delays FTM3 initialization trigger and schedules ADC channels sampling through

PDB pre-triggers delays. When FTM3 initialization trigger is detected on the PDB0 and PDB1 trigger

input, PDB0 and PDB1 generate hardware signal to trigger ADC0 and ADC1 channels in order defined

by pre-trigger delays, Figure 19.

Figure 19. PDB pre-triggers and trigger output

PDB pre-trigger delays can be set independently using CHnDLYm registers. Since the PDB0, PDB1 and

FTM3 modules are synchronized and share the same source frequency 80MHz, values of the

CHnDLYm registers are set using the same time base as for PWM. Table 2 shows all PDB0 and PDB1

pre-triggers used in PMSM Sensorless FOC motor control application.

Table 2. PDB0 and PDB1 pre-triggers

FOC state variable PDB pre-trigger CHnDLYm value [ticks] Relation to PWM

Phase A stator current pdb0_ch0_pretrig0 2000 In ½ of the PWM

DC bus voltage pdb1_ch0_pretrig0

0 At beginning of the PWM

Phase B stator current pdb1_ch0_pretrig1

2000 In ½ of the PWM

To initiate control loop every second PWM cycle, PDB1 modulo is intentionally greater than FTM3

modulo. While modulo of the FTM3 is set to 4000 clock ticks, PDB1 modulo is set to 5000 clock ticks

to be able to adjust Interrupt Delay register PDB1_IDLY to 4999. This allows to invoke PDB1 interrupt

in the next PWM cycle and enable FTM initialization trigger in PDB1 ISR which was disabled in the

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 23

ADC1 ISR. This mechanism generates the init_trig signal every second reload opportunity, so that PDB

and ADC instances are triggered every second PWM, Figure 12.

PDB Sequence Error Interrupt is activated as redundancy to protect triggering mechanism once blocked

due to the wrong PDB pre-trigger delay timing. Pre-triggers delays must respect ADC conversion time

that typically takes ~1.25µs considering short ADC sample time and 40MHz ADC input frequency. This

time can be converted to PDB pre-trigger delay format defined in number of ticks 100.

Pre-triggers delays are static values defined only once at the initialization phase respecting ADC

conversion time, hence PDB Sequence Error does not take place.

It should be also noticed that MOD, IDLY and CHnDLYx are double buffered registers, meaning values

are loaded from their buffers based on the selected updating method. In this application, double

buffering approach is bypassed, since the values are static values, defined only once.

General settings of the PDB module such as clock pre-scaler, input trigger source, loading mechanism

for double buffered registers as well as operation mode for pre-triggers can be configured by means of

Processor Expert as shown in Figure 20.

Figure 20. S32K144 PDB1 module and pre-triggers configuration in Processor Expert

Processor Expert generates configuration structures pdbN_InitConfigX and pdbN_AdcTrigInitConfigX

that access appropriate PDB registers Example 6. To set PDB modulo and PDB pre-triggers delays,

PDB_DRV_SetTimerModulusValue and PDB_DRV_SetAdcPreTriggerDelayValue are used and

specified by values listed in Table 2. This configuration is loaded calling McuPdbConfig() entering

main() function.

Example 6. S32K144 PDB instances controlled by S32 SDK
void McuPdbConfig(void)
{
 /* PDB0 module initialization */
 PDB_DRV_Init(INST_PDB0, &pdb0_InitConfig0);
 /* PDB1 module initialization */
 PDB_DRV_Init(INST_PDB1, &pdb1_InitConfig0);

 /* PDB0 CH0 pre-trigger0 initialization */
 PDB_DRV_ConfigAdcPreTrigger(INST_PDB0, 0, &pdb0_AdcTrigInitConfig0);
 /* PDB1 CH0 pre-trigger0 initialization */
 PDB_DRV_ConfigAdcPreTrigger(INST_PDB1, 0, &pdb1_AdcTrigInitConfig0);
 /* PDB1 CH0 pre-trigger1 initialization */
 PDB_DRV_ConfigAdcPreTrigger(INST_PDB1, 0, &pdb1_AdcTrigInitConfig1);

 /* Set PDB0 modulus value */
 PDB_DRV_SetTimerModulusValue(INST_PDB0, 5000);
 /* Set PDB1 modulus value */
 PDB_DRV_SetTimerModulusValue(INST_PDB1, 5000);

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

24 NXP Semiconductors

 /* PDB0 CH0 pre-trigger0 delay set to sense PhaseA stator current in the middle of the PWM cycle */
 PDB_DRV_SetAdcPreTriggerDelayValue(INST_PDB0, 0, 0, 2000);
 /* PDB1 CH0 pre-trigger0 delay set to sense DC bus voltage at the beginning of the PWM cycle */
 PDB_DRV_SetAdcPreTriggerDelayValue(INST_PDB1, 0, 0, 0);
 /* PDB1 CH0 pre-trigger2 delay set to sense PhaseB stator current in the middle of the PWM cycle */
 PDB_DRV_SetAdcPreTriggerDelayValue(INST_PDB1, 0, 1, 2000);

 /* Set PDB1 interrupt delay value */
 PDB_DRV_SetValueForTimerInterrupt(INST_PDB1, 4999);

 // enable PDB before LDOK
 PDB_DRV_Enable(INST_PDB0);
 // enable PDB before LDOK
 PDB_DRV_Enable(INST_PDB1);

 /* Load PDB0 configuration */
 PDB_DRV_LoadValuesCmd(INST_PDB0);
 /* Load PDB1 configuration */
 PDB_DRV_LoadValuesCmd(INST_PDB1);
}

4.2.5. Analog-to-Digital Converter (ADC)

The S32K144 device has two 12-bit Analog-to-Digital Converters (ADCs). These are 32-channel

multiplexed input successive approximation ADCs with 16 result registers.

Both ADC instances are triggered independently by two PDBs. ADC channels are sampled in the order

defined by PDB pre-triggers. When the first pre-trigger is asserted, associated lock of the pre-trigger

becomes active waiting for the conversion complete flag COCO generated by the corresponding ADC

channel. This sequence is repeated for each PDB pre-trigger and ADC channel couple.

Clock source of the ADC module is derived from the system clock frequency, further divided by 2

resulting 40MHz supply frequency. To combine high conversion resolution and short conversion time,

12-bit resolution mode with sample time 12 clock cycles are set in the Converter Configuration tab in

the Processor Expert, Figure 21.

Figure 21. S32K144 ADC1 module and channels configuration in Processor Expert

ADC0 measures only the Phase A stator current through adc_ch0. Other analog values, namely DC bus

voltage, and Phase B stator current are measured by ADC1_CH0 and ADC1_CH1 respectively.

Conversion complete interrupt is activated for ADC1_CH1 to invoke interrupt as soon as last conversion

is completed. To measure Phase B stator current, ADC_INPUTCHAN_EXT15 is selected as an input

channel, Figure 21.

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 25

Example 7 shows ADC0 and ADC1 modules configuration. Processor Expert generates module

configuration structures adConvN_ConvConfigX as well as channel configuration structures

adConvN_ChnConfigX, which are present at the bottom of the example. These configuration structures

take effect calling SDK APIs in McuAdcConfig function, Example 7.

Example 7. S32K144 ADC instances and channels controlled by S32 SDK
 void McuAdcConfig(void)
 {
 /* ADC0 module initialization */
 ADC_DRV_ConfigConverter(INST_ADCONV0, &adConv0_ConvConfig0);
 /* ADC1 module initialization */
 ADC_DRV_ConfigConverter(INST_ADCONV1, &adConv1_ConvConfig0);

 /* AD4 input channel is used for PhaseA stator current sensing */
 ADC_DRV_ConfigChan(INST_ADCONV0, 0, &adConv0_ChnConfig0);
 /* AD7 input channel is used for DC bus voltage sensing */
 ADC_DRV_ConfigChan(INST_ADCONV1, 0, &adConv1_ChnConfig0);
 /* AD15 input channel is used for PhaseB stator current sensing */
 ADC_DRV_ConfigChan(INST_ADCONV1, 1, &adConv1_ChnConfig1);
 }

 …

 /*! adConv1 configuration structure */
 const adc_converter_config_t adConv1_ConvConfig0 = {
 .clockDivide = ADC_CLK_DIVIDE_1,
 .sampleTime = 12U,
 .resolution = ADC_RESOLUTION_12BIT,
 .inputClock = ADC_CLK_ALT_1,
 .trigger = ADC_TRIGGER_HARDWARE,
 .pretriggerSel = ADC_PRETRIGGER_SEL_PDB,
 .triggerSel = ADC_TRIGGER_SEL_PDB,
 .dmaEnable = false,
 .voltageRef = ADC_VOLTAGEREF_VREF,
 .continuousConvEnable = false,
 .supplyMonitoringEnable = false,
 };

 const adc_chan_config_t adConv1_ChnConfig0 = {
 .interruptEnable = false,
 .channel = ADC_INPUTCHAN_EXT7,
 };

 const adc_chan_config_t adConv1_ChnConfig1 = {
 .interruptEnable = true,
 .channel = ADC_INPUTCHAN_EXT15,
 };

4.2.6. Low Power Serial Peripheral Interface (LPSPI) and FETs pre-driver

(MC34GD3000)

LPSPI is used as communication interface between S32K144 processor and analog FET pre-driver

MC34GD3000. NXP’s Three-Phase Brushless Motor Pre-Driver Software Driver (TPP), based on the

S32 SDK is used to configure LPSPI of the S32K144 as well as MC34GD3000 properly. Included

embedded driver provides access to all features of MC34GD3000 FETs driver such as writing/reading

status registers, dead time insertion and fault protection.

Example 8 represents initialization of the S32K144 LPSPI0, MC34GD3000 and some important

S32K144 GPIOs. TPP configures and later controls GPIO pins to enable/disable or reset MC34GD3000

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

26 NXP Semiconductors

in the application. Operation mode, deadtime and interrupt mask of the MC34GD3000 are specified at

next paragraphs. Parameters, such as LPSPI instance, chip select pin are defined at bottom of the

Example 8.

LPSPI0 communication frequency 2MHz is derived from the LPSPI0 input frequency 8MHz sourced

from the system oscillator clock (SOSC_CLK).

GPIOs, LPSPI0 and MC34GD3000 are configured and enabled by TPP_ConfigureGpio and

TPP_ConfigureSpi, TPP_Init functions, respectively.

Detailed description of the MC34GD3000 and its software driver (TPP) can be found at www.nxp.com.

Example 8. S32K144 LPSPI0 and MC34GD3000 controlled by TPP (S32 SDK)
void GD3000_Init(void)
{
 /* GD3000 pin configuration - EN1:PTA2 EN2:PTA2 & RST:PTA3 */
 tppDrvConfig.en1PinIndex = 2U;
 tppDrvConfig.en1PinInstance = instanceA;
 tppDrvConfig.en2PinIndex = 2U;
 tppDrvConfig.en2PinInstance = instanceA;
 tppDrvConfig.rstPinIndex = 3U;
 tppDrvConfig.rstPinInstance = instanceA;

 /* GD3000 device configuration */
 tppDrvConfig.deviceConfig.deadtime = INIT_DEADTIME;
 tppDrvConfig.deviceConfig.intMask0 = INIT_INTERRUPTS0;
 tppDrvConfig.deviceConfig.intMask1 = INIT_INTERRUPTS1;
 tppDrvConfig.deviceConfig.modeMask = INIT_MODE;

 tppDrvConfig.deviceConfig.statusRegister[0U] = 0U;
 tppDrvConfig.deviceConfig.statusRegister[1U] = 0U;
 tppDrvConfig.deviceConfig.statusRegister[2U] = 0U;
 tppDrvConfig.deviceConfig.statusRegister[3U] = 0U;

 tppDrvConfig.csPinIndex = 5U;
 tppDrvConfig.csPinInstance = instanceB;
 tppDrvConfig.spiInstance = 0;
 tppDrvConfig.spiTppConfig.baudRateHz = 2000000U;
 tppDrvConfig.spiTppConfig.sourceClockHz = 8000000U;

 TPP_ConfigureGpio(&tppDrvConfig);
 TPP_ConfigureSpi(&tppDrvConfig, NULL);
 TPP_Init(&tppDrvConfig, tppModeEnable);
}

4.2.7. Low Power Universal Asynchronous Receiver/Transmitter (LPUART)

LPUART1 is used as a communication interface between S32K144 processor and FreeMASTER run-

time debugging and visualization tool. Function McuLpuartConfig initializes LPUART1 module with

baud rate 115200, 1 stop bit and 8 bits per channel. This configuration is carried out by SDK’s LPUART

driver, Example 9.

Example 9. S32K144 LPUART1 controlled by S32 SDK
void McuLpuartConfig(void)
{
 /* LPUART module initialization */
 LPUART_DRV_Init(INST_LPUART1, &lpuart1_State, &lpuart1_InitConfig0);
}

/*! lpuart1 configuration structure */
const lpuart_user_config_t lpuart1_InitConfig0 = {

http://www.nxp.com/

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 27

 .transferType = LPUART_USING_INTERRUPTS,
 .baudRate = 115200U,
 .parityMode = LPUART_PARITY_DISABLED,
 .stopBitCount = LPUART_ONE_STOP_BIT,
 .bitCountPerChar = LPUART_8_BITS_PER_CHAR,
 .rxDMAChannel = 0U,
 .txDMAChannel = 0U,
};

Configuration structure lpuart1_InitConfig0 can be modified manually or configured by means of

Processor Expert as shown in Figure 22.

Figure 22. S32K144 LPUART1 module configuration in Processor Expert

4.2.8. Port control and pin multiplexing

PMSM FOC Sensorless motor control application requires following on chip pins assignment, Table 3.

Table 3. Pins assignment for S32K144 PMSM Sensorless FOC control

Module Signal name Pin name / Functionality Description

FTM3

PWMA_HS_B PTB8 / FTM3_CH0 PWM signal for phase A high-side driver

(inverted)

PWMA_LS PTB9 / FTM3_CH1

PWM signal for phase A low-side driver

PWMB_HS_B PTB10 / FTM3_CH2

PWM signal for phase B high-side driver

(inverted)

PWMB_LS PTB11 / FTM3_CH3

PWM signal for phase B low-side driver

PWMC_HS_B PTC10 / FTM3_CH4 PWM signal for phase C high-side driver

(inverted)

PWMC_LS PTC11 / FTM3_CH5 PWM signal for phase C low-side driver

FTM2
ENC_A PTD11 / FTM2_QD_PHA Phase A signal of the Encoder sensor

ENC_B PTD10 / FTM2_QD_PHB Phase B signal of the Encoder sensor

ADC0

PHA_I PTB0 / ADC0_SE4 Phase A stator current measurement

PHC_I PTA6 / ADC0_SE2 Phase C stator current measurement.

Available on pin, but not used in this app.

For more details see chapter 3.3

ADC1

DCBI PTD4 / ADC1_SE6 DC bus current measurement

Available on pin, but not used in this app.

For more details see chapter 3.3

DCBV PTB12 / ADC1_SE7 DC bus voltage measurement

PHB_I PTB1 / ADC1_SE15 Phase B stator current measurement

LPSPI0

SPI_SCLK PTB2 / LPSPI0_SCK SPI clock (2MHz)

SPI_MISO PTB3 / LPSPI0_SIN SPI input data from GD3000

SPI_MOSI PTB4 / LPSPI0_SOUT SPI output data for GD3000

LPUART1
SDA_SPI0_SOUT PTC6 / LPUART1_RX UART transmit data (FreeMASTER)

SDA_SPI0_SIN PTC7 / LPUART1_TX UART receive data (FreeMASTER)

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

28 NXP Semiconductors

Module Signal name Pin name / Functionality Description

TRGMUX

PTD1 PTD1 / TRGMUX_OUT2 FTM3 initialization trigger

PTA0 PTA0 / TRGMUX_OUT3 PBD1 channel 0 trigger output

PTE15 PTE15 / TRGMUX_OUT6 ADC1 conversion complete flag

GPIO

GD_EN PTA2 / PTA2 Enable signal for GD3000

GD_RST_B PTA3 / PTA3 Reset signal for GD3000

SPI_CS_B PTB5 / PTB5 Chip select signal for GD3000

BTN0 PTC12 / PTC12 Application control via board button

BTN1 PTC13 / PTC13 Application control via board button

RGB_BLUE PTD0 / PTD0 RGB_BLUE indicating run state

PTD2 PTD2 / PTD2 GPIO toggling to measure execution time

BRAKE_PWM PTD14 / PTD14 Connecting / disconnecting braking resistor

RGB_RED PTD15 / PTD15 RGB_RED indicating fault state

RGB_GREEN PTD16 / PTD16 RGB_GREEN indicating ready/calib state

GD_INT PTE10 / PTE10 Interrupt signal indicating GD3000 fault

This pins assignment can be carried out by means of Processor Expert opening pin_mux:PinSetting

component. Pin assignment of the FTM3 module is shown in Figure 23 as an example.

Figure 23. S32K144 Pins assignment for FTM3 in Processor Expert

Once the pins are properly assigned meaning functionality for each pin is selected, Processor Expert

generates array of the configuration structures g_pin_mux_InitConfigArr that individually accesses Pin

Control Register PCR and GPIO registers.

One of the configuration structure is shown at bottom of Example 10. It defines that PTE10 pin works as

GPIO with input direction. In addition, interrupt on rising edge is enabled to be able to detect and

monitor fault conditions of the MC34GD3000 FET pre-driver, see chapter 4.1.2.

Pins of the S32K144 are configured calling PINS_DRV_Init function at the top of the Example 10.

Example 10. S32K144 pins configuration controlled by S32 SDK
void McuPinsConfig(void)
{
 /* MCU Pins configuration */
 PINS_DRV_Init(NUM_OF_CONFIGURED_PINS, g_pin_mux_InitConfigArr);

}

pin_settings_config_t g_pin_mux_InitConfigArr[NUM_OF_CONFIGURED_PINS] =
{

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 29

...

 {
 .base = PORTE,
 .pinPortIdx = 10u,
 .pullConfig = PORT_INTERNAL_PULL_NOT_ENABLED,
 .passiveFilter = false,
 .driveSelect = PORT_LOW_DRIVE_STRENGTH,
 .mux = PORT_MUX_AS_GPIO,
 .pinLock = false,
 .intConfig = PORT_INT_RISING_EDGE,
 .clearIntFlag = false,
 .gpioBase = PTE,
 .direction = GPIO_INPUT_DIRECTION,
 .digitalFilter = false,
 },
...

}

4.3. Software architecture

4.3.1. Introduction

This section describes the software design of the Sensorless PMSM Field Oriented Control framework

application. The application overview and description of software implementation are provided. The aim

of this chapter is to help in understanding of the designed software.

4.3.2. Application data flow overview

The application software is interrupt driven running in real time. There is one periodic interrupt service

routine associated with the ADC conversion complete interrupt, executing all motor control tasks. This

includes both fast current and slow speed loop control. All tasks are performed in an order described by

the application state machine shown in Figure 26, and application flowcharts shown in Figure 24 and

Figure 25.

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

30 NXP Semiconductors

Figure 24. Flow chart diagram of main function with background loop.

To achieve precise and deterministic sampling of analog quantities and to execute all necessary motor

control calculations, the state machine functions are called within a periodic interrupt service routine.

Hence, in order to actually call state machine functions, the peripheral causing this periodic interrupt

must be properly configured and the interrupt enabled. As described in section S32K144 Device

initialization, all peripherals are initially configured and all interrupts are enabled after a RESET of the

device. As soon as interrupts are enabled and all S32K144 peripherals are correctly configured, the state

machine functions are called from the ADC end of sequence interrupt service routine. The background

loop handles non-critical timing tasks, such as the FreeMASTER communication polling.

while(1)

Application peripherals
reset & configuration

MAIN

FMSTR_Poll ();

END

true

false

FreeMASTER polling function

Enable external interrupts

All peripherals required by the

application are reset and configured

Initial state machine settings

Enable Interrupts;

event = e_init;
state = init;

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 31

Figure 25. Flow chart diagram of periodic interrupt service routine.

4.3.3. State machine

The application state machine is implemented using a two-dimensional array of pointers to the functions

using variable called StateTable[][](). The first parameter describes the current application event, and

the second parameter describes the actual application state. These two parameters select a particular

pointer to state machine function, which causes a function call whenever StateTable[][]() is called.

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

32 NXP Semiconductors

Figure 26. Application state machine

The application state machine consists of following six states, which are selected using variable state

defined as:

AppStates:

• INIT - state = 0

• FAULT - state = 1

• READY - state = 2

• CALIB - state = 3

• ALIGN - state = 4

• RUN - state = 5

INIT

READY

CALIB

FAULT

ALIGN

Power on / hw. reset

Application peripherals
reset & configuration

e_init

RUN

e_init_done e_app_off

e_app_on

e_app_off e_app_off

e_calib_done

e_align_done

e_aligne_calib

e_ready e_run

e_fault

e_fault

e_fault_clear

e_fault e_fault

e_fault e_fault

/* Enable external interrupts

/* Disable all external interrupts

executed in ISR

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 33

To signalize/initiate a change of state, eleven events are defined, and are selected using variable event

defined as:

AppEvents:

• e_fault - event = 0

• e_fault_clear - event = 1

• e_init - event = 2

• e_init_done - event = 3

• e_ready - event = 4

• e_app_on - event = 5

• e_app_off - event = 11

• e_calib - event = 6

• e_calib_done - event = 7

• e_align - event = 8

• e_align_done - event = 9

• e_run - event = 10

 State – FAULT

Figure 27. FAULT state with transitions

The application goes immediately to this state when a fault is detected. The system allows all states to

pass into the FAULT state by setting cntrState.event = e_fault. State FAULT is a state that transitions

back to itself if the fault is still present in the system and the user does not request clearing of fault flags.

There are two different variables to signal fault occurrence in the application. The warning register

tempFaults represents the current state of the fault pin/variable to warn the user that the system is getting

close to its critical operation. And the fault register permFaults represents a fault flag, which is set and

put the application immediately to fault state. Even if fault source disappears, the fault remains set until

manually cleared by the user. Such mechanisms allow for stopping the application and analyzing the

cause of failure, even if the fault was caused by a short glitch on monitored pins/variables. State FAULT

can only be left when application variable switchFaultClear is manually set to true (using

FreeMASTER) or by simultaneously pressing the user buttons (BTN0 and BTN1) on the S32K144EVB

evaluation board. That is, the user has acknowledged that the fault source has been removed and the

application can be restarted. When the user sets switchFaultClear = true; the following sequence is

automatically executed, Example 11.

FAULT

e_fault

e_fault_clear

e_fault

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

34 NXP Semiconductors

Example 11. Fault clearing sequence
if (cntrState.usrControl.switchFaultClear)
{
 // Clear permanent and temporary SW faults
 permFaults.mcu.R = 0; // Clear mcu faults
 permFaults.motor.R = 0; // Clear motor faults
 permFaults.stateMachine.R = 0; // Clear state machine faults
 gd3000Status.B.gd3000ClearErr = true; // Clear GD3000 faults
 pdbStatus.PDB0_SeqErrFlags = 0; // Clear PDB0 sequence error flags
 pdbStatus.PDB1_SeqErrFlags = 0; // Clear PDB1 sequence error flags

 // When all Faults cleared prepare for transition to next state.
 cntrState.usrControl.readFault = true;
 cntrState.usrControl.switchFaultClear = false;
 cntrState.event = e_fault_clear;

 // Read ADCs Results registers to unlock PDB pre-triggers lock states
 ADC_DRV_GetChanResult(INST_ADCONV0, 0, &adc_r);
 ADC_DRV_GetChanResult(INST_ADCONV1, 0, &adc_r);

ADC_DRV_GetChanResult(INST_ADCONV1, 1, &adc_r);

 // Enable FTM init trigger for PDBs after cleared PDBs sequence errors
 // and unlocked PDBs pre-triggers
 FTM_RMW_EXTTRIG_REG(FTM3, 0x00, 0x40);
}

Setting event to cntrState.event = e_fault_clear while in FAULT state represents a new request to

proceed to INIT state. This request is purely user action and does not depend on actual fault status. In

other words, it is up to the user to decide when to set switchFaultClear true. However, according to the

interrupt data flow diagram shown in Figure 25, function faultDetection() is called before state machine

function state_table[event][state](). Therefore, all faults will be checked again and if there is any fault

condition remaining in the system, the respective bits in permFaults and tempFaults variables will be

set. As a consequence of permFaults not equal to zero, function faultDetection() will modify the

application event from e_fault_clear back to e_fault, which means jump to fall state when state machine

function state_table[event][state]() is called. Hence, INIT state will not be entered even though the user

tried to clear the fault flags using switchFaultClear. When the next state (INIT) is entered, all fault bits

are cleared, which means no fault is detected (permFaults = 0x0) and application variable

switchFaultClear is manually set to true.

The application is scanning for following system warnings and errors:

• DC bus over voltage

• DC bus under voltage

• DC bus over current

• Phase A and phase B over current

The thresholds for fault detection can be modified in INIT state. Please see MCAT Settings and Tuning

for further information on how to set these thresholds using the MCAT. In addition, fault state is entered

if following errors are detected:

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 35

• PDB Errors (PDB Sequence error)

• GD3000 pre-driver errors (overtemperature, desaturation fault, low supply voltage, DC bus

overcurrent, phase error, framing error, write error after block, existing reset). See section

References.

• FOC Error (irrelevant event call in state machine or Back-EMF failure)

 State – INIT

Figure 28. INIT state with transitions

State INIT is "one pass" state/function, and can be entered from all states except for READY state,

provided there are no faults detected. All application state variables are initialized in state INIT.

Figure 29. Flow chart of state INIT

After the execution of INIT state, the application event is automatically set to

cntrState.event=e_init_done, and state READY is selected as the next state to enter.

 State – READY

Figure 30. READY state with transitions

INIT

e_init

e_init_done e_app_off

Initialization of application variables

e_init

e_init_done

READY

e_init_done

e_app_one_ready

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

36 NXP Semiconductors

In READY state, application is waiting for user command to start the motor. The application is released

from waiting mode by pressing the on board button BTN0 or BTN1 or by FreeMASTER interface

setting the variable switchAppOnOff = true (see flow chart in Figure 31).

Figure 31. Flow chart of state READY

 State – CALIB

Figure 32. CALIB state with transitions

In this state, ADC DC offset calibration is performed. Once the state machine enters CALIB state, all

PWM output are enabled. Calibration of the DC offset is achieved by generating 50% duty-cycle on the

PWM outputs, and taking several measurements of the ADC0 and ADC1 channels connected to the

current sensors. These measurements are then averaged, and the average value for the channel is stored.

This value will be subtracted from the measured value when in normal operation. This way the half

range DC offset, caused by voltage shift of 2.5V in conditional circuitry (see Figure 5), is removed in

the measured phase. State CALIB is a state that allows transition back to itself, provided no faults are

present, the user does not request stop of the application (by switchAppOnOff=true), and the calibration

process has not finished. The number of samples for averaging is set by default to 2^10=1024, and can

be modified in the state INIT. After all 1024 samples have been taken and the averaged values

successfully saved, the application event is automatically set to cntrState.event=e_calib_done and state

machine can proceed to state ALIGN (see flow chart in Figure 33).

CALIB

e_app_on

e_app_off

e_calib_done
e_calib

state = ready;
event = e_ready ;

e_init_done

e_app_on

/* Fault detection routine

/* State variable acquisition

MEAS_GetUdcVoltage();
MEAS_GetIdcCurrent();
MEAS_Get3phCurrent();

faultDetection();

switchAppOnOff

e_app_on e_app_off

/* User accessible switch
for stopping application

ISR /* ADC end of sequence interrupt service routine

Read HW user controls;

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 37

Figure 33. Flow chart of state CALIB

A transition to FAULT state is performed automatically when a fault occurs. A transition to INIT state is

performed by setting the event to cntrState.event=e_app_off, which is done automatically on falling

edge of switchAppOnOff=false using FreeMASTER.

 State – ALIGN

Figure 34. ALIGN state with transitions

This state shows alignment of the rotor and stator flux vectors to mark zero position. When using a

model based approach for position estimation, the zero position is not known. The zero position is

obtained at ALIGN state, where a DC voltage is applied to d-axis voltage for a certain period. This will

cause the rotor to rotate to "align" position, where stator and rotor fluxes are aligned. The rotor position

in which the rotor stabilizes after applying this DC voltage is set as zero position. In order to wait for

rotor to stabilize in an aligned position, a certain time period is selected during which the DC voltage is

constantly applied. The period of time and the amplitude of DC voltage can be modified in INIT state.

Timing is implemented using a software counter that counts from a pre-defined value down to zero.

During this time, the event remains set to cntrState.event=e_align. When the counter reaches zero, the

ALIGN

e_app_off

e_align_done

e_calib_done

e_align

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

38 NXP Semiconductors

counter is reset back to the pre-defined value, and event is automatically set to

cntrState.event=e_align_done. This enables a transition to RUN state see flow chart in Figure 35.

Figure 35. Flow chart of state ALIGN

A transition to FAULT state is performed automatically when a fault occurs. Transition to INIT state is

performed by setting the event to cntrState.event=e_app_off, which is done automatically on falling

edge of switchAppOnOff=false using FreeMASTER or using the switch.

 State – RUN

Figure 36. RUN state with transitions

In this state, the FOC algorithm is calculated, as described in section PMSM field oriented control.

RUN

e_app_off

e_align_done

e_run

state = align;
event = e_align ;

e_calib_done

EnableOutput ();

uDQReq.fltArg1 = alignVoltage;
uDQReq.fltArg2 = 0;

thTransform.fltArg1 = GFLIB_Sin (0);
thTransform.fltArg2 = GFLIB_Cos (0);

alignCntr<=0

true

false

GMCLIB_ParkInv (& uAlBeReq ,& thTransform ,& uDQReq);

SetDutycycle();

ClearVariablesAfterAlign ();
Set50%Duty();

e_align_done

svmSector = GMCLIB_SvmStd(&(pwmflt),&uAlBeReqDCB);

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 39

The control is designed such that the drive might be operated in four modes depending on the source of

the position information:

1. Force mode: The FOC control is based on the generated position (so called open loop position),

also this position is supplied to eBEMF observer in order to initialize its state.

2. Tracking mode: The FOC control is still using the open loop position, however, the eBEMF

observer is left on its own, meaning that the observer is using its own estimated position and speed

one calculation step delayed.

3. Sensorless mode: Both FOC control and eBEMF observer using estimated position.

4. Encoder mode: FOC control uses position and speed obtained from Encoder sensor. This mode

is available only if ENCODER macro is set to true.

Position mode can be controlled by pos_mode variable in FreeMASTER interface. It might be modified

manually or automatically depending on the state of the variable cntrState.usrControl.controlMode. If

cntrState.usrControl.controlMode = automatic and switchSensor = Sensorless, application automatically

transits from Force mode (open loop mode) to Sensorless mode (closed loop mode) through Tracking

mode based on the actual rotor speed and speed limits defined for each position mode (see section 3.4).

Variable switchSensor defines whether position/speed feedback comes from back-EMF Observer or

Encoder sensor. It is automatically set to Sensorless, if Encoder sensor is not present

(ENCODER=false).

Figure 37. Flow chart of state RUN

state = run;
event = e_run ;

e_align_done

CalcOpenLoop ();
CalcSensorless ();

ControlModeSelector ();

speedLoopCntr >=
SPEED_LOOP_C

NTR

true

false

SetDutycycle();

FocSlowLoop ()

FocFastLoop ()

e_app_off

AutomaticMode ();

controlMode
manual

automatic

pos_mode

case force:

case sensorless :

case tracking:

Control.thRotEl = OpenLoop.thRotEl ;
Control.wRotEl = 0;

Force eBEMF with open loop speed
Force eBEMF with open loop position

Control.thRotEl = OpenLoop.thRotEl ;
Control.wRotEl = 0;

Control.thRotEl = pospeSensorless.thRotEl;
Control.wRotEl = pospeSensorless.wRotEl;

case encoder :
Control.thRotEl = pospeEncoder.thRotEl;
Control.wRotEl = pospeEncoder.wRotEl;

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

40 NXP Semiconductors

Calculation of fast current loop is executed every ADC end of sequence interrupt, while calculation of

slow speed loop is executed every Nth ADC end of sequence interrupt. Arbitration is done using a

counter that counts from value N down to zero. When zero is reached, the counter is reset back to N and

slow speed loop calculation is performed. This way, only one interrupt is needed for both loops and

timing of both loops is synchronized. Slow loop calculations are finished before entering fast loop

calculations (see flow chart in Figure 37).

Figure 38 shows implementation of FOC algorithm and used functions and variables. As can be seen

from the diagram, rotor position and speed are estimated by eBEMF observer. This is a default rotor

position and speed feedback for FOC. To test Encoder based FOC, ENCODER macro must be set to

true and PM motor provided with this motor control kit replaced by PM motor of the comparable power

and equipped with Encoder sensor. As mentioned previously, Encoder based FOC can be

activated/deactivated by setting switchSensor variable to encoder/sensorless.

A transition from RUN state to FAULT state is performed automatically when a fault occurs. A

transition to INIT state is performed by setting the event to cntrState.event=e_app_off, which is done

automatically on falling edge of switchAppOnOff=false using FreeMASTER or keeping user buttons

BTN0 and BTN1 pressed.

Figure 38. Sensorless and Sensorbased FOC with FW implementation on S32K144

4.3.4. AMMCLIB Integration

Application software of the FOC Sensorless control with field weakening is built using NXP’s

Automotive Math and Motor Control Library set (AMMCLIB), a precompiled, highly speed-optimized

off-the-shelf software library designed for motor control applications. The most essential blocks of the

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 41

FOC structure are presented in Figure 38. AMMCLIB supports all available data type implementations:

32-bit fixed-point, 16-bit fixed-point and single precision floating-point. In order to achieve high

performance of the S32K144 core, floating point arithmetic is used as a reference for this motor control

application.

Current Loop function AMCLIB_CurrentLoop unites and optimizes most inner loop of the FOC cascade

structure Figure 38. It consists of two PI controllers and basic mathematical operations which calculate

errors between required and feedback currents and limits for PI controllers based on the actual value of

the DC bus voltage. All functions and data structures are presented in Figure 39.

Figure 39. Functions and data structures in AMCLIB_CurrentLoop

Required d- and q-axis stator currents can be either manually modified or generated by outer loop of the

cascade structure consisting of: Speed Loop and Field Weakening (FW) as shown in Figure 38. To

achieve highly optimized level, AMCLIB_FWSpeedLoop merges two functions of the AMMCLIB,

namely speed control loop AMCLIB_SpeedLoop and field weakening control AMCLIB_FW, Figure

40. AMCLIB_SpeedLoop consists of speed PI controller GFLIB_ControllerPIpAW, speed ramp

GFLIB_Ramp placed in feedforward path and exponential moving average filter GFLIB_FilterMA

placed in the speed feedback. AMCLIB_FW function is NXP’s patented algorithm (US Patent No. US

2011/0050152 A1) that extends the speed range of PMSM beyond the base speed by reducing the stator

magnetic flux linkage as discussed in section 3.5. All functions and data structures used in

AMCLIB_FW function are shown in Figure 40.

AMCLIB_CurrentLoop

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

42 NXP Semiconductors

Figure 40. Functions and data structures in AMCLIB_FWSpeedLoop

AMCLIB_FW key advantages:

• Fully utilize the drive capabilities (speed range, load torque)

• Reduces stator linkage flux only when necessary

• Supports four quadrant operations

• The algorithm is very robust - as a result, the PMSM behaves as a separately excited wound field

synchronous motor drive

• Allows maximum torque optimal control

Back-EMF observer AMCLIB_BemfObsrv and Angle tracking observer AMCLIB_TrackObsrv

constitute important blocks in this application, Figure 38. They estimate rotor position and speed based

on the inputs, namely stator voltages uαβ and currents iαβ, Figure 41. AMCLIB_BemfObsrv transforms

inputs quantities from stationary reference frame α/β to quasi-synchronous reference frame γ/δ that

follows the real synchronous rotor flux frame d/q with an error θerr. AMCLIB_BemfObsrv algorithm is

based on the mathematical model of the PMSM motor with excluded back-EMF terms eγδ. Back-EMF

terms are estimated as disturbances in this model, generated by PI controllers. The estimated BEMF

values are used for calculating the phase error θerr, which is provided as an output of the BEMF

observer.

To align both frames and provide accurate estimates, this phase error θerr must be driven to zero. This is

a main role of the Angle tracking observer AMCLIB_TrackObsrv which is attached to function of the

back-EMF observer AMCLIB_BemfObsrv, Figure 41. AMCLIB_TrackObsrv is an adopted phase-

locked-loop algorithm that estimates rotor speed and position keeping θerr = 0. This is ensured by a loop

compensator that is PI controller. While PI controller generates estimated rotor speed, integrator used in

this phase-locked-loop algorithm serves estimated rotor position.

AMCLIB_FW

AMCLIB_SpeedLoop

AMCLIB_FWSpeedLoop

Software implementation on the S32K144

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 43

Figure 41. Structure of the AMCLIB_BemfObsrv and AMCLIB_TrackObsrv

More details related to AMMCLIB FOC functions can be found in S32K14x AMMCLIB User’s manual

(see section References). Parameters of the PI controllers placed in the speed control loop, current

control loop, back-EMF and Angle tracking observer can be tuned by using NXP’s Motor Control

Application Tuning tool (MCAT). Detailed instructions on how to tune parameters of the FOC structure

by MCAT are presented in AN4912, AN4642 (see section References).

4.3.5. MCAT Integration

MCAT (Motor Control Application Tuning) is a graphical tool dedicated to motor control developers

and the operators of modern electrical drives. The main feature of proposed approach is automatic

calculation and real-time tuning of selected control structure parameters. Connecting and tuning new

electric drive setup becomes easier because the MCAT tool offers a possibility to split the control

structure and consequently to control the motor at various levels of cascade control structure.

The MCAT tool runs under FreeMASTER online monitor, which allows the real-time tuning of the

motor control application. Respecting the parameters of the controlled drive, the correct values of

control structure parameters are calculated, which can be directly updated to the application or stored in

an application static configuration file. The electrical subsystems are modeled using physical laws and

parameters of the PI controllers are determined using Pole-placement method. FreeMASTER MCAT

control and tuning is described in FreeMASTER and MCAT user interface.

The MCAT tool generates a set of constants to the dedicated header file (for example “{Project

Location}\Sources\Config\PMSM_appconfig.h”). The names of the constants can be redefined within

the MCAT configuration file “Header_file_constant_list.xml” (“{Project

Location}\FreeMASTER_control\ MCAT\src\xml_files\”). The PMSM_appconfig.h contains

application scales, fault triggers, control loops parameters, speed sensor and/or observer settings and

FreeMASTER scales. The PMSM_appconfig.h should be linked to the project and the constants should

be used for the variables initialization.

The FreeMASTER enables an online tuning of the control variables using MCAT control and tuning

view. However, the FreeMASTER must be aware of the used control-loop variables. A set of the names

is stored in “FM_params_list.xml” (“{Project Location}\FreeMASTER_control\MCAT\src\xml_files\”).

AMCLIB_TrackObsrvAMCLIB_BemfObsrv

GFLIB_IntegratorTR

GFLIB_ControllerPIrAW

FreeMASTER and MCAT user interface

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

44 NXP Semiconductors

5. FreeMASTER and MCAT user interface

The FreeMASTER debugging tool is used to control the application and monitor variables during run

time. Communication with the host PC passes via USB. However, because FreeMASTER supports

RS232 communication, there must be a driver for the physical USB interface, OpenSDA, installed on

the host PC that creates a virtual COM port from the USB. The driver shall be installed automatically

plugging S32K144EVB to USB port. Alternatively, it can be downloaded from

www.pemicro.com/opensda/. The application configures the LPUART module of the S32K144 for a

communication speed of 115200bps. Therefore, the FreeMASTER user interface also needs to be

configured respectively.

Figure 42. FreeMASTER and Motor Control Application Tunning Tool

MCAT Control Page with
panels, and settings
(hidden mouse-over

button)

Project panel with sub-
blocks, oscilloscopes and

recorders

Variable Watch
panel

http://www.pemicro.com/opensda/

FreeMASTER and MCAT user interface

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 45

5.1. MCAT Settings and Tuning

5.1.1. Application configuration and tuning

FreeMASTER and MCAT interface (Figure 42) enables online application tuning and control. The

MCAT tuning shall be used before the very first run of the drive to generate the configuration header file

(PMSM_appconfig.h). Most of the variables are accessible via MCAT online tuning (thus can be

updated anytime), but some of them (especially the fault limit thresholds) must be set using the

configuration header file generation, which can be done on the “Output File” panel by clicking the

“Generate Configuration File” (see Figure 43).

Figure 43. Output File panel and “Generate Configuration File” button

Parameters runtime update is done using the “Update Target” button (see Figure 44). Changes can be

also saved using “Store Data” button, or reloaded to previously saved configuration using “Reload Data”

button.

Any change of parameters highlights the cells that have not been saved using “Store data”. Changes can

be reverted using “Reload Data” to previously saved configuration. This button is disabled if no change

has been made.

NOTE

MCAT tool can be configured using hidden mouse-over “Settings” button

(see Figure 42), where a set of advanced settings, for example PI

controller types, speed sensors and other blocks of the control structure

can be changed. However, it is not recommended to change these settings

since it will force the MCAT to look for a different variables names and to

Generate
Configuration File

button

FreeMASTER and MCAT user interface

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Rev. 1, 06/2020

46 NXP Semiconductors

generate different set of constants than the application is designed for. See

MCAT tool documentation available at nxp.com.

The application tuning is provided by a set of MCAT pages dedicated to every part of the control

structure. An example of the Application Parameters Tuning page is in Figure 44. Following list of

settings pages is based on the PMSM sensorless application.

• Parameters

o Motor Parameters

o Hardware Scales

o SW Fault Triggers

o Application Scales

o Alignment

• Current Loop

o Loop Parameters

o D axis PI Controller

o Q axis PI Controller

o Current PI Controller Limits

o DC-bus voltage IIR filter settings

• Speed Loop

o Loop Parameters

o Speed PI Controller Constants

o Speed Ramp

o Speed Ramp Constants

o Actual Speed Filter

o Speed PI Controller Limits

• Sensorless

o BEMF Observer Parameters

o BEMF DQ Observer Coefficients

o Tracking Observer PI Constants

o Tracking Observer Integrator

o Open Loop Start-up Parameters

o BEMF DQ Observer PI Controller

Constants

Changes can be tested using MCAT “Control Struc” page (Figure 45), where the following control

structures can be enabled:

• Scalar Control

• Voltage FOC (Position & Speed Feedback is enabled automatically)

• Current FOC (Position & Speed Feedback is enabled automatically)

• Speed FOC (Position & Speed Feedback is enabled automatically)

http://www.nxp.com/

FreeMASTER and MCAT user interface

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Application Notes, Rev. 1, 06/2020

NXP Semiconductors 47

Figure 44. MCAT input application parameters page

Figure 45. MCAT application control structure page

FreeMASTER and MCAT user interface

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Application Notes, Rev. 1, 06/2020

48 NXP Semiconductors

5.2. MCAT application Control

All application state machine variables can be seen on the FreeMASTER MCAT App control page as

shown in Figure 46. Warnings and faults are signaled by a highlighted red color bar with name of the

fault source. The warnings are signaled by a round LED-like indicator, which is placed next to the bar

with the name of the fault source. The status of any fault is signaled by highlighting respective

indicators. In Figure 46, for example, there is pending fault flag and one warning indicated ("Udcb LO"

- DC bus voltage is close to its under voltage conditions). That means that the measured voltage on the

DC bus exceeds the limit set in the MCAT_Init function. The warning indicator is still on if the voltage

is higher than the warning limit set in INIT state. In this case, the application state FAULT is selected,

which is shown by a frame indicator hovering above FAULT state. After all actual fault sources have

been removed, no warning indicators are highlighted, but the fault indicators will remain highlighted.

The pending faults can now be cleared by pressing the "FAULT" button. This will clear all pending

faults and will enable transition of the state machine into INIT and then READY state. After the

application faults have been cleared and the application is in READY state, all variables should be set to

their default values. The application can be started by selecting APP_ON on application On/Off switch.

Successful selection is indicated by highlighting the On/Off button in green.

Figure 46. FreeMASTER MCAT Control Page for controlling the application

Warnings
status

Faults status

State info and
Clear faults button

Application ON/OFF
switch

DC Bus Voltage
measurement

Mechanical speed
indicator

Revision history

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Application Notes, Rev. 1, 06/2020

NXP Semiconductors 49

6. Conclusion

Design, described in this application note shows the simplicity and efficiency in using the S32K144

microcontroller for Sensorless PMSM motor control and introduces it as an appropriate candidate for

various low-cost applications in the automotive area. MCAT tool provides interactive online tool which

makes the PMSM drive application tuning friendly and intuitive.

7. References

• MCSPTE1AK144: S32K144 Development Kit for BLDC and PMSM motor control

• S32 Design Studio IDE for ARM® based MCUs

• FreeMASTER Run-Time Debugging Tool

• S32K14XMCLUG , Automotive Math and Motor Control Library Set for S32K14x User Manual

• S32K1XXRM, S32K1xx Series Reference Manual

• S32K144EVB: S32K144 Evaluation Board

• DEVKIT-MOTORGD: Low-Cost Motor Control Solution for DEVKIT Platform

• GD3000: 3-Phase Brushless Motor Pre-Driver

• Rashid, M. H. Power Electronics Handbook, 2nd Edition. Academic Press

• Motor Control Application Tuning (MCAT) Tool

8. Revision history

Revision

Number

Date Substantive changes

0 08/2018 Initial release

1 05/2020 • Updated Figure 12, Figure 13, Figure 15, Figure 17, Figure 20,

Figure 21 and Figure 22.

• Updated Example 3, Example 4, Example 6, Example 7 and Example

11.

• In Module involvement in digital PMSM Sensorless control loop

updated the text “DC bus voltage measurement….. queue in

memory”.

• In Center-aligned PWM mode updated the text

“FTM_DRV_MaskOutputChannels function disables PWM output

masking all FTM channels”.

• In Quadrature decoder mode updated the text “While more general

structure flexTimer_qd2_InitConfig takes effect calling

http://nxp.com/pages/mcspte1ak144-s32k144-development-kit-for-bldc-and-pmsm-motor-control:MCSPTE1AK144
http://www.nxp.com/S32DS-ARM
http://www.nxp.com/FREEMASTER
https://www.nxp.com/support/developer-resources/run-time-software/automotive-software-and-tools/automotive-math-and-motor-control-library-set:AUTOMATH_MCL?tab=Documentation_Tab
https://www.nxp.com/products/power-management/lighting-driver-and-controller-ics/automotive-lighting-led-driver-ics/s32k144-evaluation-board:S32K144EVB?tab=Documentation_Tab
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/s32-automotive-platform/s32k144-evaluation-board:S32K144EVB
https://www.nxp.com/support/developer-resources/hardware-development-tools/ultra-reliable-mcus-development-platform/low-cost-motor-control-solution-for-devkit-platform:DEVKIT-MOTORGD
https://www.nxp.com/products/power-management/motor-drivers/h-bridges/3-phase-brushless-motor-pre-driver:GD3000
http://www.nxp.com/mcat

Revision history

3-Phase Sensorless PMSM Motor Control Kit with S32K144, Application Notes, Rev. 1, 06/2020

50 NXP Semiconductors

McuFtmConfig() function at very beginning in the initialization

phase”.

• Updated Table2 and Table3.

• Updated the first bullet in References.

• Updated Figure38.

Document Number:AN12235
Rev. 1

06/2020

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright licenses

granted hereunder to design or fabricate any integrated circuits based on the

information in this document. NXP reserves the right to make changes without further

notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does NXP assume any liability arising out of the

application or use of any product or circuit, and specifically disclaims any and all

liability, including without limitation consequential or incidental damages. “Typical”

parameters that may be provided in NXP data sheets and/or specifications can and do

vary in different applications, and actual performance may vary over time. All operating

parameters, including “typicals,” must be validated for each customer application by

customer’s technical experts. NXP does not convey any license under its patent rights

nor the rights of others. NXP sells products pursuant to standard terms and conditions

of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of

their applications and products to reduce the effect of these vulnerabilities on

customer’s applications and products, and NXP accepts no liability for any vulnerability

that is discovered. Customers should implement appropriate design and operating

safeguards to minimize the risks associated with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,

COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES,

MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,

MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK,

SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the

Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware,

the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,

PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the

SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack,

CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names

are the property of their respective owners. Arm, AMBA, Arm Powered, Artisan, Cortex,

Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered trademarks of

Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Arm7, Arm9, Arm11,

big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, Mbed, NEON, POP, Sensinode,

Socrates, ULINK and Versatile are trademarks of Arm Limited (or its subsidiaries) in the

EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of

Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the

Power and Power.org logos and related marks are trademarks and service marks

licensed by Power.org.

© 2020 NXP B.V.

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	1. Introduction
	2. System concept
	3. PMSM field oriented control
	3.1. Fundamental principle of PMSM FOC
	3.2. PMSM model in quadrature phase synchronous reference frame
	3.3. Output voltage actuation and phase current measurement
	3.4. Rotor position/speed estimation
	3.5. Field weakening

	4. Software implementation on the S32K144
	4.1. S32K144 – Key modules for PMSM FOC control
	4.1.1. Module interconnection
	4.1.2. S32K144 and FETs pre-driver interconnection
	4.1.3. Module involvement in digital PMSM Sensorless control loop

	4.2. S32K144 Device initialization
	4.2.1. Clock configuration and power management
	4.2.2. FlexTimer Module (FTM)
	4.2.2.1. Center-aligned PWM mode
	4.2.2.2. Quadrature decoder mode

	4.2.3. Trigger MUX Control (TRGMUX)
	4.2.4. Programmable delay block (PDB)
	4.2.5. Analog-to-Digital Converter (ADC)
	4.2.6. Low Power Serial Peripheral Interface (LPSPI) and FETs pre-driver (MC34GD3000)
	4.2.7. Low Power Universal Asynchronous Receiver/Transmitter (LPUART)
	4.2.8. Port control and pin multiplexing

	4.3. Software architecture
	4.3.1. Introduction
	4.3.2. Application data flow overview
	4.3.3. State machine
	4.3.3.1. State – FAULT
	4.3.3.2. State – INIT
	4.3.3.3. State – READY
	4.3.3.4. State – CALIB
	4.3.3.5. State – ALIGN
	4.3.3.6. State – RUN

	4.3.4. AMMCLIB Integration
	4.3.5. MCAT Integration

	5. FreeMASTER and MCAT user interface
	5.1. MCAT Settings and Tuning
	5.1.1. Application configuration and tuning

	5.2. MCAT application Control

	6. Conclusion
	7. References
	8. Revision history

