
Using S32K148 QuadSPI Module

by: NXP Semiconductors

1. Introduction

This application note describes the QuadSPI module on

the S32K148 devices. It provides a description of how

the module is implemented on these devices,

specifically focusing on setting up LUT sequences,

using commands to interface with an external memory

and using the AHB interface. More details about the

QuadSPI module can be found in the devices respective

reference manual.

The application note is supported by two software

examples, a bare metal example code and an SDK

example. The bare metal example can be found in the

attached zip file, while the SDK example is part of the

SDK release.

2. QuadSPI protocol

Quad Serial Peripheral Interface (QuadSPI) is a

communications protocol used for communications

between a microcontroller and external flash memory. It

is based on the popular Serial Peripheral Interface (SPI).

Whereas an SPI makes use of up to four connections –

Data In, Data Out, Clock, and Chip Select (used to

signify that a transmit or receive is active) – QuadSPI

uses Clock, up to six Chip Select channels, and up to

four bi-directional data channels. This extra

connectivity allows for data to be read from the flash in

a prompt manner, making QuadSPI an excellent choice

for using additional off-chip memory

NXP Semiconductors Document Number: AN12193

Application Notes Rev. 0 , 05/2018

Contents

1. Introduction .. 1

2. QuadSPI protocol ... 1

3. S32Kxxx QuadSPI implementation 2

3.1. Side A and Side B ... 2

4. Look-up Table (LUT) Functionality 3

5. Peripheral bus (Commands) interface 5

6. AHB Interface .. 8

7. Software Example .. 9

8. Reference ... 9

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/s32k-automotive-mcus/s32k1-microcontrollers-for-general-purpose:S32K1?utm_medium=AN-2021

S32K148 QuadSPI implementation

Using S32K148 QuadSPI Module, Rev. 0, 05/2018

2 NXP Semiconductors

Due to the smaller number of pins, requests for reads/writes/erases are carried out by sending commands

across the bus. For example, to read data from flash memory the “Read Data (0xEB)” command is sent,

followed by the 24-bit address to be read. The data is then sent to the microcontroller. The figure below

shows a typical read instruction using four data lines.

Figure 1. Read command (QuadSPI frame)

There are several suppliers of QuadSPI-compatible memory, such as Winbond, Spansion, Macronix, and

Numonyx. The examples provided in this application note will focus on the Macronix devices as the

external memory populated on the S32K148 EVB is a Macronix chip. Like SPI before it, QuadSPI does

not adhere to a set standard, but as a rule different manufacturers’ devices interface via a similar

command set.

3. S32K148 QuadSPI implementation

The following section will describe a couple of features of the QuadSPI module that only applies on the

S32K148 due to the way It was implemented on these

3.1. Side A and side B

The QuadSPI module is divided into two “sides.” A and B, mainly due to the limited amount of high

speed pads available in the device, each side has its advantages and disadvantages so it is up to the

application to select between them.

The main advantage of side A is speed, it supports up to 80 MHz. However, it does not support DDR,

neither Hyperbus functionality.

Look-up Table (LUT) functionality

Using S32K148 QuadSPI Module, Rev. 0, 05/2018

NXP Semiconductors 3

On the other hand, Side B operates slower, up to 20 MHz, but it does support DDR and Hyperbus

protocol for HyperRAM devices.

It is important to clarify that even though there are two “sides” of the QuadSPI module, It does not mean

that it can be implemented as if there were two separate instances of the QuadSPI module. One side can

only be used at the same time.

Figure 2. S32K148 Pinout: QuadSPI module side A and side B

4. Look-up Table (LUT) functionality

The Look-up table also known as LUT is the mechanism used by the QuadSPI module to communicate

with the external memory. It is used for either sending commands, reading, writing or waiting. This

device consists of a total of 64 LUT register, and these 64 registers are divided into groups of four

registers that make a valid sequence. Therefore, QSPI_LUT[0], QSPI_LUT[4], QSPI_LUT[8] till

QSPI_LUT[60] are the starting registers of a valid sequence.

The following table lists some of the most common commands for LUT operations. For the complete list

go to Table 34-14 Instruction set of reference manual:

Table 1. Common LUT commands

Command Coding (6 bits)

CMD 0x01

ADDR 0x02

DUMMY 0x03

MODE 0x04

Look-up Table (LUT) functionality

Using S32K148 QuadSPI Module, Rev. 0, 05/2018

4 NXP Semiconductors

Command Coding (6 bits)

READ 0x07

WRITE 0x08

STOP 0x00

As a safety mechanism, the LUT table is locked by default. Therefore, the first step to start using the

LUT is to unlock it. To unlock it, the key must be written into the LUTKEY register. The key value is

0x5AF05AF0, then a value of 0x02 must be written into the Lock configuration register. The LUT must

be unlocked at this point. The following code snip shows how this looks on the S32K148 device.

Figure 3. Unlock LUT code

Once the LUT has been unlocked the user can modify the LUT sequences having in consideration that

QSPI_LUT[0], QSPI_LUT[4], QSPI_LUT[8] till QSPI_LUT[60] are the starting registers of a valid

sequence. Some of the features of the look-up table are:

• Each instruction-operand unit is 16-bit wide. However, LUT registers are 32-bit wide, so two

instructions can be placed within each LUT register.

• Depending on the complexity of the QSPI transaction, a sequence may consist of a single

instruction-operand set or several of them.

Each LUT instruction-operand has the following structure:

Figure 4. LUT operand structure

Where the INSTR field represents the LUT commands presented previously in Table 1, the PADs field

represents the amount of data lines used by the command and the operand field varies depending on the

INSTR used, this can be found in Table 34-14 Instruction set of reference manual.

For example, having the value 0x1C08. If viewed as binary the value is 0b0001110000001000. If we

divide it into the different fields:

INSTR PADs OPERAND

0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0

INSTR = 0x07 (Read)

Table%201

Peripheral bus (commands) interface

Using S32K148 QuadSPI Module, Rev. 0, 05/2018

NXP Semiconductors 5

PADs = 0x00 (1 PAD)

OPERAND = 0x08 (8 bytes)

When this sequence is launch the module will read 8 bytes of data through 1 data line.

Once all the LUT sequences had been filled the LUT table must be locked again. The sequence to

locking down the LUT is very similar to unlocking it. The key must be written into the LUTKEY

register. The key value is 0x5AF05AF0, then a value of 0x01 must be written into the Lock

configuration register. The following code snip shows how this looks on the S32K148 device.

Figure 5. Lock LUT code

5. Peripheral bus (commands) interface

The QSPI module offer two different paths to communicate with an external memory Peripheral Bus

(left side of the figure below) or AHB bus (left side of the figure below). In this section the Pheripheral

Bus interface will be explained in more detail.

Figure 6. QSPI block diagram

Peripheral bus (commands) interface

Using S32K148 QuadSPI Module, Rev. 0, 05/2018

6 NXP Semiconductors

SEQ0

Read Memory Status

SEQ1

Erase Sector

SEQ2

Write Page

…

If they user wants to write, erase or change the configuration of the external memory the only option is

the Peripheral bus interface. It uses the LUT table sequences to communicate with the external memory.

Once the LUT table has been filled out with the required LUT sequences the user can simple launch the

desired sequence. For example, suppose that the LUT is filled out as the following figure:

Figure 7. Example LUT

Sequence 0 contains the necessary commands to read the status of the memory, sequence 1 the

necessary commands to erase a selected sector, and the sequence 2 the necessary commands to write the

whole page of the memory. If for example, the user would like to erase one sector of the memory, it

would be as simple of calling out the sequence 1 of the LUT as many times as the application needs. The

following code snip exemplifies how simple is to call out a sequence of the LUT table.

Figure 8. Launch LUT sequence code

Even tough launching a LUT sequence will execute the necessary commands to communicate with the

memory, some actions such as reading or writing require the use of other registers to correctly receive or

send the data. For example, when reading the MCU stores the data in an internal data buffer accessed

through the RBDR[0-31] registers, it also requires the user specify the address to be read in the SFAR

register and clearing up the CLR_RXF flag. The following code snip shows a function that is able to

read a configurable amount of bytes from an specified address.

Peripheral bus (commands) interface

Using S32K148 QuadSPI Module, Rev. 0, 05/2018

NXP Semiconductors 7

Figure 9. QuadSPI read code

Similar considerations apply for writing data. User must first full a buffer of data, which is then send to

the external memory depending on the amount of data specified in the command. The buffer is filled out

through the TBDR[0-31] registers. Just as the read sequence, user must specify the address to be written

to in the SFAR register. The following snip of code shows a write routine.

Figure 10. QuadSPI page program code

AHB interface

Using S32K148 QuadSPI Module, Rev. 0, 05/2018

8 NXP Semiconductors

6. AHB interface

The AHB block diagram is shown in the right side of Figure 6. Differently from the Peripheral Bus

Access, the AHB interface only allows read operations. However, the main advantage of the AHB

access is that it allows to see the external memory as if it was mapped to an internal memory address of

the device, meaning that the user does not need to perform any LUT sequence launch. In the S32K148,

the QuadSPI AHB region is 128 MB long, it is mapped to starting address 0x68000000. For example, if

the user tries to access address 0x000000 of the memory using peripheral bus access, then a certain LUT

sequence would need to be launched and the user would need to read the Rx buffer of QuadSPI to get

the data. On the other hand, when using AHB the user could simply access memory address 0x68000000

(start address for QuadSPI) and get the data. The following figure shows the memory accessed through

the debugger after the QuadSPI was programmed with some data, as it can be noticed, the data is read as

internal memory.

Figure 11. QuadSPI memory region

AHB access uses LUT sequence 0 as its default read sequence. Therefore, user must make sure to

program sequence 0 with a valid read command before trying to use AHB access, by default sequence 0

is programmed with typical values for a simple (one data line) read.

Figure%206

Reference

Using S32K148 QuadSPI Module, Rev. 0, 05/2018

NXP Semiconductors 9

It is important to notice that data read from external memory would be accessed significantly slower

than from internal memory, due to the following factors:

• Data from external memory is retrieved at the QuadSPI clock frequency, while the internal data

is accessed at core frequency.

• Internal memory data is within cache range, QuadSPI region is not.

• QuadSPI AHB buffer can be configured up to 4 KB, accessing data outside those 4 KB will

require the QuadSPI to retrieve data from external memory, increasing the delay.

Another benefit of using AHB access is that it allows the execution of code from external memory,

considering that it would be significantly slower as stated above.

7. Software example

This application note is accompanied by software. The software project can be open in the S32DS and

runs over the S32K148 EVB using the MX25L6433F external memory available on the board. The

example uses routines for both types of accesses, AHB and peripheral bus, it programs the external

memory with a pre-compiled application and verifies that it was correctly written by reading it, both

actions using peripheral bus access. Once it was verified, the program executes the application using

AHB access. The application is a simple red LED toggling.

8. Reference

• AN5412, Quad Serial Peripheral Interface (QuadSPI) Module Updates

• AN4186, Using the QuadSPI Module on MPC56XXS

• AN5244, How to use QuadSPI on KL8x Series

https://www.nxp.com/docs/en/application-note/AN4512.pdf?fsrch=1&sr=1&pageNum=1
https://www.nxp.com/docs/en/application-note/AN4186.pdf?fsrch=1&sr=2&pageNum=1
https://www.nxp.com/docs/en/application-note/AN5244.pdf?fsrch=1&sr=1&pageNum=1

Document Number: AN12193
Rev. 0

05/2018

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright licenses

granted hereunder to design or fabricate any integrated circuits based on the

information in this document. NXP reserves the right to make changes without further

notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does NXP assume any liability arising out of the

application or use of any product or circuit, and specifically disclaims any and all

liability, including without limitation consequential or incidental damages. “Typical”

parameters that may be provided in NXP data sheets and/or specifications can and do

vary in different applications, and actual performance may vary over time. All operating

parameters, including “typicals,” must be validated for each customer application by

customer’s technical experts. NXP does not convey any license under its patent rights

nor the rights of others. NXP sells products pursuant to standard terms and conditions

of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of their

applications and products to reduce the effect of these vulnerabilities on customer's applications

and products, and NXP accepts no liability for any vulnerability that is discovered. Customers

should implement appropriate design and operating safeguards to minimize the risks associated

with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,

COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES,

MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,

MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK,

SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the

Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware,

the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,

PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the

SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack,

CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names

are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan,

Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered

trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7,

ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON,

POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its

subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are

registered trademarks of Oracle and/or its affiliates. The Power Architecture and

Power.org word marks and the Power and Power.org logos and related marks are

trademarks and service marks licensed by Power.org.

© 2018 NXP B.V.

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	1. Introduction
	2. QuadSPI protocol
	3. S32K148 QuadSPI implementation
	3.1. Side A and side B

	4. Look-up Table (LUT) functionality
	5. Peripheral bus (commands) interface
	6. AHB interface
	7. Software example
	8. Reference

