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1. Introduction 
This document describes how the A71CH Security IC can be used to establish a secure 
connection between an IoT device and Amazon Web Services (AWS) IoT cloud. The 
connection between the IoT device and AWS IoT cloud will be established with the 
MQTT protocol [MQTT], running across Transport Layer Security (TLS) protocol. 

To establish a Transport Layer Security (TLS) connection, the IoT device certificate has 
to be registered in AWS IoT. The AWS Just-in-time registration (JITR) mechanism allows 
the IoT device to automatically register its digital certificate, thus establishing a 
connection with AWS IoT. This document contains a brief introduction to TLS and key 
security concepts and then presents the workflow to prepare the JITR of an IoT device 
certificate in AWS IoT.  

2. A71CH overview 
The A71CH is a ready-to-use solution enabling ease-of-use security services for the IoT 
device makers. It is a tamper-resistant platform capable of securely storing and 
provisioning credentials, securely connecting IoT devices to cloud services and 
performing cryptographic node authentication. 

The A71CH solution provides an outstanding level of security measures protecting the IC 
against physical and logical attacks. It can be used with various host platforms and host 
operating systems to secure a broad range of applications. In addition, it is 
complemented by a comprehensive product support package, offering easy design-in 
with plug & play host application code, easy-to-use development kits, reference designs, 
documentation and IC samples for product evaluation. 

3. Public key infrastructure and ECC fundamentals 
Security is an essential requirement for any IoT design. Thus, security should not be 
considered as differentiator option but rather a standard feature for the IoT designers. IoT 
devices must follow a secure-by-design approach, ensuring secure storage of 
credentials, device authentication, secure code execution and safe connections to 
remote servers among others. In this security context, the A71CH security IC is designed 
specifically to offer protected access to credentials, secure connection to private or public 
clouds and cryptographic device proof-of-origin verification. 

Asymmetric cryptography, also known as public key cryptography, is any cryptographic 
algorithms based on a pair of keys: a public key and a private key. The private key must 
be kept secret, while the public key can be shared.  

RSA (Rivest, Shamir and Adleman) and Elliptic-Curve Cryptography (ECC) are two of the 
most widely used asymmetric cryptography algorithms. In the case of ECC cryptography, 
it is based on the algebraic structure of elliptic curves over finite fields. Therefore, each 
key pair (public and private key) is generated from a certain elliptical curve.  

The digital signature, digital certificates, Elliptic Curve Digital Signature Algorithm 
(ECDSA) and Elliptic Curve Diffie-Hellman (ECDH) key agreement algorithm are briefly 
explained in the next sections. 
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 Digital signature 
A digital signature is used to guarantee the authenticity, the integrity and non-repudiation 
of a message. A signing algorithm generates a signature given a message and a private 
key. A signature verifying algorithm accepts or rejects a message given the public key 
and the signature.   

Fig 1 illustrates an example of digital signature. In this case, the message is signed with 
the sender private key. The receiver will validate the signature using both the message 
and the sender public.  

 

 Digital signature diagram 

 Digital certificate, Certification Authority (CA) and Certificate Signing 
Request (CSR) 
Digital certificates are used to prove the authenticity of shared public keys. Digital 
certificates are electronic documents that include information about the sender public 
key, identity of its owner and the signature of a trusted entity that has verified the 
contents of the certificate, normally called Certificate Authority (CA).  

A Certificate Authority (CA) is an entity that issues digital certificates. The CA is trusted 
by both the certificate sender and the certificate receiver, and it is typically in charge of 
receiving a Certificate Signing Request (CSR) and generating a new certificate based 
upon information contained in the CSR and signed with the CA private key. 

Therefore, a CSR is a request that contains all the necessary information, e.g., sender 
public key and relevant information to generate a new digital certificate.  

Fig 2 shows digital certificates generation steps. First, the interested device (sender) 
creates a Certificate Signing Request. The CSR is then sent to the CA and a new digital 
certificate is created and signed with the CA private key. Also, the basic contents of this 
new digital certificate are illustrated in the figure. 
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 Digital certificate generation steps and contents 

 Elliptic Curve Digital Signature Algorithm (ECDSA) 
The Elliptic Curve Digital Signature Algorithm (ECDSA) algorithm uses ECC to provide a 
variant of the Digital Signature Algorithm (DSA). A pair of keys (public and private) are 
generated from an elliptic curve, and these can be used both for signing or verifying a 
message’s signature. Fig 3 illustrates an example of ECDSA application. In this example, 
the sender device generates a signature with its private key. The signed message is sent 
together with the sender digital certificate to the receiver. Finally, the receiver retrieves 
the sender public key from the digital certificate and uses it to validate the signature of 
the received message. 

 

 Elliptic Curve Digital Signature Algorithm (ECDSA) example 

 Elliptic Curve Diffie-Hellman (ECDH) 
Elliptic Curve Diffie-Hellman algorithm (ECDH) is a key-agreement protocol. The goal of 
ECDH is to reach a key agreement between two parties, each having an elliptic-curve 
key pair generated from the same domain parameters. When the agreement has been 
reached, a shared secret key, usually referred to as the ‘master key’, is derived to obtain 
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session keys. These session keys will be employed to establish a communication using 
symmetric-key encryption algorithms. 

The sender and the receiver have its own elliptical key pair. Both the sender and receiver 
public keys are shared with each other. In this case, the exchange has been represented 
with digital certificates. Each party can compute the secret key using their own private 
key and the public key obtained from the received certificate. Due to the elliptical curve 
properties and the fact that both key pairs have been generated from the same domain 
parameters, the computed secret key is the same for both parties. This common secret 
key will be further used for establishing a communication and encrypt messages based 
on symmetrical cryptography. Fig 4 illustrates the usage of ECDH for a shared secret key 
agreement.  

 

 Elliptic Curve Diffie-Hellman Key Exchange (ECDH) example 

In the Elliptic-curve Diffie-Hellman Ephemeral (ECDHE) algorithm case, a new elliptical 
key pair is generated for each key agreement instead of sharing the already existing 
public keys.  

 A71CH ECC supported functionality 
The A71CH security IC supports the following ECC functionality:  
• Signature generation and verification (ECDSA). 
• Shared secret calculation using Key Agreement (ECDH or ECDH-E). 
• Secure storage, generation, insertion or deletion of key pairs (NIST-P256 elliptical 

curve). 
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4. A71CH for secure connection to AWS IoT cloud 
The scope of this document is to explain step by step how to connect an IoT device to an 
AWS IoT cloud by using the available AWS IoT services.  

The IoT device will feature an A71CH Security IC to securely store credentials. Fig 5 
illustrates the connection between several IoT devices with A71CH IC and the AWS IoT 
cloud.  

The credentials of each one of the involved elements are explained in this chapter. 
Additionally, basic concepts on SSL/TLS and security are presented to provide the 
reader the necessary background for a better understanding of the presented contents 
such as TLS handshake protocol, OpenSSL and the A71CH OpenSSL engine. 

 

 System overview. Connection between an IoT device(s) and AWS IoT cloud 

 OEM and AWS cloud credentials 
The IoT device original equipment manufacturer (OEM) shall have an intermediate CA 
certificate, as well as their corresponding keys. This intermediate CA certificate will be 
issued by a root CA. Regarding the root CA there are two possibilities. The OEM can 
have its own public key infrastructure (PKI); thus, it will have the root CA certificate and 
the root CA key pair. Alternatively, the OEM can trust in a third-party CA.  

Note that in Fig 6 only an intermediate CA and a root CA have been represented, though 
the OEM could have more than one intermediate CA issued by different root CAs. 

The OEM will have to register the intermediate CA certificate in AWS cloud. The 
intermediate CA will be used to validate all the IoT devices certificates willing to connect 
to the cloud. 
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 OEM and AWS cloud credentials 

 IoT device credentials 
Each IoT device will be provisioned with its corresponding key pair and its digital 
certificate issued by the intermediate CA. These credentials will be stored inside the 
A71CH and will be used to register the IoT device certificate and establish a secure 
connection with the AWS IoT cloud. 

The IoT device must also contain the intermediate CA certificate to connect to AWS. 
Optionally, it could be stored inside the A71CH GP Storage for functionality purposes. 
Fig 7 illustrates the credentials of an IoT device. 

 

 IoT device credentials 

Fig 8 shows the complete connection between IoT devices and AWS cloud. The 
credentials described in 4.1 and 4.2 have also been represented. 
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 Connection between IoT devices and AWS IoT cloud 

 Transport Layer Security protocol (TLS) 
IoT devices own several connectivity features that allow them to exchange data with the 
cloud. The network link between these IoT devices and the cloud or server should be 
secure. Transport Layer Security protocol (TLS), and its predecessor Secure Sockets 
Layer (SSL), are cryptographic protocols that provide communications security over 
unsecure networks. These protocols are created from the necessity of establishing a 
connection preserving confidentiality, integrity and authenticity. 

 

 TLS connection between two IoT devices and AWS IoT cloud 

Fig 10 illustrates the protocol stack of a TLS communication over a TCP/IP network. In 
the well-known ISO/OSI layer architecture, SSL/TLS would belong to the Presentation 
Layer in charge of encrypting and securing the entire communication. The transport and 
network protocol TCP/IP and the medium access control (MAC) would fall in layers from 
4 to 2, respectively. Finally, data would be physically transferred according to ethernet (or 
wireless ethernet) protocols. 
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 Communication stack. ISO/OSI Layers. 

4.3.1 Transport Layer Security Handshake protocol 
Before the IoT device and the server in the cloud begin exchanging data over TLS, the 
tunnel encryption must be negotiated. This negotiation is referred as TLS Handshake. 
The TLS Handshake Protocol is responsible for the authentication and key exchange 
necessary to establish or resume secure sessions. When establishing a secure session, 
the TLS Handshake Protocol manages the following: 
• Agree on the TLS protocol version to be used. 
• Select cipher suite. 
• Authenticate each other by exchanging and validating digital certificates. 
• Use asymmetric encryption techniques to generate a shared secret key, which 

avoids the key distribution problem. SSL or TLS then uses the shared key for the 
symmetric encryption of messages, which is faster than asymmetric encryption. 

The TLS Handshake Protocol involves the following steps: 
• Exchange Hello messages to agree on algorithms, exchange random values, and 

check for resumption. 
• Exchange the necessary cryptographic parameters to allow the client and server to 

agree on a pre-master secret. 
• Exchange certifications and cryptographic information to allow the client and server 

to authenticate themselves. 
• Generate a master secret from the pre-master secret and exchanged random value. 
• Provide security parameters to the record layer. 
• Allow the client and server to verify that their peer has calculated the same security 

parameters and that the handshake occurred without tampering by an attacker.  
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The A71CH security IC supports the TLS Handshake Protocol version 1.2 with the 
following options: 
• Pre-Shared Key Cipher suites for TLS as described in [RFC4279]: A set of cipher 

suites for supporting TLS using pre-shared symmetric keys (TLS_PSK_WITH_xxx) 
• ECDHE_PSK Cipher suites for TLS as described in [RFC5489]: A set of cipher suites 

that use a pre-shared key to authenticate an Elliptic Curve Diffie-Hellman exchange 
with Ephemeral keys (TLS_ECDHE_PSK_WITH_xxx). 

The Fig 11 represents an overview of the TLS 1.2 handshake with ECDSA-ECDHE. 
More information about the TLS 1.2 handshake protocol can be obtained from the 
standard specifications document [RFC5246] or from [AN_A71CH_HOST_SW]. 
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 TLS 1.2 Handshake diagram with ECC 
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4.3.2 Transport Layer Security software libraries 
There are several full-featured TLS software libraries that can be used in both server 
cloud and IoT devices such OpenSSL, mbedTLS, WolfTLS, etc.  

OpenSSL [OPEN_SSL] is an open-source implementation of SSL/TLS protocol. It is 
written in C language, although there are several wrappers to use this library in other 
languages. It implements all the cryptography functions needed and it is widely used.  
Starting with OpenSSL 0.9.6, an ‘Engine interface’ was added allowing support for 
alternative cryptographic implementations. This Engine interface can be used to interface 
with external crypto devices as e.g. HW accelerator cards or security ICs like the A71CH.  

The OpenSSL toolkit including an A71CH OpenSSL Engine is available as part of the 
A71CH Host software package [A71CH_OPENSSL_ENGINE]. The A71CH OpenSSL 
Engine gives access to several A71CH features via the A71CH Host Library not natively 
supported by OpenSSL implementation. In other words, the Engine links the OpenSSL 
libraries to the A71CH Host API and overwrites some of the native OpenSSL functions in 
order to include the use of the A71CH crypto functionality such as sign, verify and key 
exchange operations or random messages generation, that can be used for instance 
during the TLS Handshake protocol.  

The A7CH OpenSSL Engine is fully compatible with the i.MX6UltraLite embedded 
platform. Nevertheless, support will be added in future revisions. 

Fig 12 illustrates the IoT Host MCU software architecture. As it can be observed, the 
software stack is formed by an application that calls OpenSSL functions. Some of these 
functions will be overwritten by the A71CH OpenSSL Engine, thus the A71CH crypto 
functionality will be used through the A71CH Host Library over I2C. 

 

 Host SW stack including OpenSSL, A71CH OpenSSL engine and A71CH Host Library 
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5. Introduction to AWS IoT and JITR 
AWS has built IoT specific services. These services help IoT system developer collect 
and send IoT device data to the cloud, make it easy to load and analyze that information, 
and provide the ability to manage connected IoT devices. 

AWS IoT Core service is a managed cloud platform that lets connected devices easily 
and securely interact with cloud applications and other devices. IoT Core can support 
billions of devices and trillions of messages and can process and route those messages  

Fig 13 illustrates the end-to-end flow to establish a secure connection between an IoT 
devices with an A71CH to the AWS IoT services.  

As a first step, the A71CH ICs provided by NXP need to be provisioned by a 
Programming facility in charge of injecting die-individual credentials (presented in 
Chapter 4). After that, the OEM manufacturer needs to register and activate his 
intermediate CA in the AWS platform. Then, in order to communicate in the AWS IoT 
network, each IoT device needs to be known via its device certificate. Thus, each IoT 
device certificate needs to be registered into the AWS IoT platform. 

 

 End-to-end connection establishment flow 

In order to ease this registration process, AWS introduced the Just-In-Time-Registration 
(JITR) mechanism. The AWS JITR is a mechanism to automatically register new device 
certificates during the initial communication between the IoT device and the AWS IoT 
cloud. Using AWS JITR mechanism, an IoT device can be connected to AWS IoT cloud if 
the OEM follows these two steps: 
• Set up the AWS IoT account by registering and activating the intermediate CA 

certificate.  
• Configure the AWS IoT account for the first-time device onboarding. Then, connect 

the IoT device to AWS IoT cloud to register its digital certificate automatically. 

These two steps are further elaborated in Chapter 6 and Chapter 7. In addition, more 
information on AWS IoT services and the Just-In-Time registration mechanism can be 
found in [AWS_IOT] [JITR]. 
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6. AWS setup by OEM: Register intermediate CA certificates 
The OEM manufacturer should start setting up the AWS account by registering the 
intermediate CA digital certificate. This certificate must be uploaded to the AWS to 
enable auto-registration of certificate via JITR. Every time a new IoT device is connected 
to the AWS cloud, the chain of trust will be validated, i.e., the IoT device certificate 
signature is validated by the intermediate CA certificate, and at the same time, the 
intermediate CA certificate signature must have been validated by the root CA.  

The workflow to register and activate a new intermediate CA certificate in AWS cloud is 
the following: 
• Obtain a registration code from AWS. 
• Use the registration code to create a Verification CSR. The registration code will be 

embedded in the ‘CN’ (Common Name) field of the Verification CSR. 
• Use the CSR and the intermediate CA credentials to create a Verification Certificate. 
• Upload both the Verification certificate and the intermediate CA certificate to AWS. 
• Activate the registered intermediate CA certificate, after validation of the intermediate 

signature. 
• Enable auto-registration status of the registered intermediate CA certificate. 

These required steps are described in this chapter. The entire workflow can be done 
using either the AWS CLI (command line interface) or the register certificate section of 
the AWS IoT website. In this document though, the AWS CLI has been used 

 AWS Command Line Interface (AWS CLI) 
The AWS Command Line Interface (CLI) is an open source tool built on top of the AWS 
SDK for Python (Boto) that provides commands for interacting with AWS services and 
direct access to AWS service’s public APIs. It requires minimal configuration and once 
installed it can be used from a terminal application in Windows, Linux shells or even 
through a remote terminal such as PuTTY or SSH on Amazon EC2 instances. More 
information on AWS CLI can be found in [AWS_CLI].  

The AWS CLI can be downloaded from [AWS_CLI] and installed on Windows, Mac and 
Linux platforms. Fig 14 shows a capture of the execution of AWS CLI with Windows 
PowerShell. The ‘help’ command has been executed to prompt all the AWS CLI 
functionality on the terminal. 



 

 

NXP Semiconductors AN12131 
 A71CH for secure connection to AWS 

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved. 

Application note                                                                        
COMPANY PUBLIC 

Rev. 1.0 — 29 March 2018                                                                                 
464110 

16 of 38 

 

 AWS CLI on Windows PowerShell 

 Obtain registration code from AWS 
The process for validating ownership and registering an intermediate CA certificate in 
AWS IoT services is done through a challenge and response flow.  

To register an intermediate CA certificate with AWS IoT, OEM have to verify that you 
have access to both the intermediate CA certificate and the intermediate CA private key. 
For this, a Verification certificate has to be generated using a registration code provided 
by AWS IoT and the CA private key. 

The registration code can be obtained with the following AWS CLI command: 
$ aws iot get-registration-code 

The provided code is randomly generated and long-lived, i.e., it will not expire. 

 Create Verification certificate and upload it to AWS 
Then, a certificate signing request (CSR) has to be prepared to generate the Verification 
certificate. This CSR will contain the registration code in its ‘CN’ field (highlighted in 
green). The following OpenSSL commands can be executed: 

openssl ecparam -genkey -name prime256v1 -out VerificationKeys.pem 

openssl req -new -key VerificationKeys.pem -subj "/CN=registration code" -out 
VerificationCSR.pem 

openssl x509 -req -in VerificationCSR.pem -CA intCACertificate.pem -CAkey 
intCAkey.pem -CAcreateserial -out Verificationcertificate.pem -days 365 -sha256 

Firstly, a new ECC key pair is generated. This key pair will belong to the Verification 
certificate. Then the CSR containing the registration code is created and the Verification 
certificate is created based upon the information contained in the CSR and signed with 
the intermediate CA private key. Finally, both the Verification certificate and the 
intermediate CA certificate are uploaded to AWS IoT using the AWS CLI: 
$aws iot register-ca-certificate -–ca-certificate file://intCAcertificate.pem -
–verification-certificate file://Verificationcertificate.pem 
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 Activate intermediate CA certificate and enable auto-registration 
By default, the registered intermediate CA certificate is in ‘inactive’ state, which means 
that it cannot be used for validating new IoT devices certificates. Hence, it is necessary 
to activate it. 

The information of the registered certificate can be obtained with the following command: 
$ aws iot describe-ca-certificate -–certificate-id <certificateId> 

Where <certificateId> is the ID returned in the response of the previous AWS CLI 
command (iot register-ca-certificate). 

Then, the intermediate CA can be activated: 
$ aws iot update-ca-certificate -–certificate-id <certificateId> --new-status 
ACTIVE  

Also, the auto-registration-status property of the registered intermediate CA certificate 
has to be enabled. If auto-registration-status is enabled, AWS IoT services will 
automatically register any IoT device certificate issued by that intermediate CA. 

$ aws iot update-ca-certificate -–certificate-id <certificateId> --new-auto-
registration-status ENABLED 

Fig 15 illustrates the explained CA certificate registration workflow. 
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 CA certificate registration workflow 
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 Register CA certificates with AWS IoT website interface 
The intermediate CA registration process can also be carried out through the user 
interface available in the AWS IoT website. Fig 16 shows a screen capture of the CA 
certificate registry section. As can be observed, the same steps have to be followed, i.e., 
obtain a registration code, prepare the Verification CSR with the registration code in the 
“Common Name” field, sign the Verification CSR with the intermediate CA and upload it 
together with the intermediate CA. 

 

 Register CA certificate AWS IoT website interface 
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7. First time device onboarding: IoT device certificate registration 
The intermediate CA certificate is already registered, activated and its ‘auto-registration-
status’ has been enabled. Every time a new IoT device is connected to the AWS IoT 
cloud, the service will detect an unidentified IoT device certificate issued by that 
intermediate CA and will proceed to auto-register it. The first-time device onboarding 
workflow can be divided into the following two steps: 
• Combine the IoT device certificate with the intermediate CA certificate. 
• Initiate a TLS communication with AWS IoT cloud using an MQTT client. 

First of all, the IoT device will have to prepare a file composed of the IoT device 
certificate and the intermediate CA certificate. Then, the IoT device will attempt to 
establish a TLS connection with AWS IoT using an MQTT client. The AWS IoT service 
supports the publish-subscribe MQTT. 

During the TLS handshake, AWS IoT will detect that the IoT device has not been 
registered before and therefore will proceed to register it on AWS IoT automatically. 

The registered IoT device certificate will be ‘de-activated’ by default. To automatically 
activate a new IoT device, an AWS Lambda function has to be previously created and 
properly configured. 

Finally, the IoT device will be able to establish a TLS connection with AWS IoT. 

All these steps are explained in detail in this chapter, as well as the MQTT protocol and 
the AWS Lambda functions 

 Combine IoT device certificate with intermediate CA certificate 
The IoT device certificate has to be combined with the issuer intermediate CA certificate. 
In Linux based platforms, it can be done with ‘cat’ terminal command: 
$ cat IoTdeviceCertificate.pem intCAcertificate.pem > CAandIoTcertificate.pem 

While in Windows-based environments, it can be done by running the following 
command on the shell: 
type IoTdeviceCertificate.pem intCAcertificate.pem > CAandIoTcertificate.pem 

An MQTT client running across TLS will be used to establish a TLS link between the IoT 
device and AWS IoT. During the TLS handshake, the “CAandIoTcertificate” file will be 
sent to AWS IoT. 

 MQTT 
Message Queue Telemetry Transport (MQTT) is an ISO standard (ISO/IEC PRF 20922) 
Machine-to-Machine (M2M) publish-subscribe based communication protocol used in the 
Internet of Things. The MQTT is a low-power and low-bandwidth protocol oriented to 
embedded devices with small computational resources such as sensors. For this reason, 
it is commonly employed in sensor networks, i.e., IoT devices networks. 
MQTT takes layers 5-7 of the ISO/OSI layers model and relies on TCP/IP as transport 
and network protocols. Additionally, it supports the use of SSL/TLS for encrypting and 
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securing the communication. Fig 17 illustrates the communication stack presented in 4.3, 
including MQTT. 

 

 Communication stack with MQTT and TLS. ISO/OSI Layers 

Regarding the network architecture, MQTT protocol follows a star topology in which there 
is a central node, also called broker, and a series of clients. The broker device is in 
charge of managing the network message exchange, while the clients are periodically 
transmitting messages and waiting for the broker response. Fig 18 illustrates an example 
of an MQTT star architecture. In this case, an AWS IoT cloud acts as the broker device 
and a series of IoT devices are the clients.  

 

 Example of MQTT star architecture 

Communication between client devices and the broker is based on ‘topics’. A topic is a 
UTF-8 string which is used by the broker to filter messages for each connected client. A 
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topic can consist of one or more levels, each one separated by a forward slash. Clients 
can publish messages in a given topic, or they can subscribe to a topic to receive 
messages published by the rest of the client devices. 

For instance, in the AWS IoT scenario, the following MQTT topic is used by the broker 
(AWS IoT) for managing the registered IoT device certificates (clients): 
$aws/events/certificates/registered/<caCertificateID> 

Whenever an IoT device wants to establish a TLS connection with AWS IoT, the IoT 
device certificate will be first checked. First, the signature of the IoT device certificate will 
be validated with the public key contained in the registered intermediate CA certificate.  

In case the IoT device certificate signature is validated, but the certificate is not 
registered in AWS IoT (or it is in ‘PENDING_ACTIVATION’ state), the TLS handshake 
will fail. 

Then, the IoT device certificate will be auto-registered in the AWS IoT server and an 
MQTT message will be automatically published by AWS IoT in that ‘registration’ topic. 
Remember that, the ‘auto-registration’ property of the registered intermediate CA should 
be enabled as it is explained in 6.4.  

The published MQTT message has the following structure: 

{ 
  "certificateId": "<certificateID>", 
  "caCertificateId": "<caCertificateId>", 
  "timestamp": "<timestamp>", 
  "certificateStatus": "PENDING_ACTIVATION", 
  "awsAccountId": "<awsAccountId>", 
  "certificateRegistrationTimestamp": 
"<certificateRegistrationTimestamp>"  
} 

 Example of MQTT certificate registration publication 

where <caCertificateID> belongs to the identifier of the intermediate CA certificate. 
Furthermore, as it can be observed, the certificateStatus field is in 
‘PENDING_ACTIVATION’.  

More information on MQTT and MQTT with AWS can be found in [MQTT] [JITR].  

 IoT device certificate registration event with AWS Lambda function 
As has been mentioned in 7.2, when AWS IoT publishes an MQTT ‘certificate 
registration’ message, the registered IoT device certificate certificateStatus field is in 
‘PENDING_ACTIVATION’ state.  

Further TLS connection attempts will continue failing because only ‘ACTIVE’ certificates 
are authenticated with AWS IoT. Therefore, the certificateStatus field of the registered 
IoT device should be changed to ‘ACTIVE’ in order to be successfully authenticated 
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during the TLS handshake. It is possible to automatically move certificate status from 
‘PENDING_ACTIVATION’ to ‘ACTIVE’ by using AWS Lambda functions. 

AWS Lambda is a compute service that lets you run code without provisioning or 
managing servers. AWS Lambda executes your code only when needed and scales 
automatically, from a few requests per day to thousands per second. For instance, it is 
possible to attach a rule to an AWS IoT MQTT topic that can take some action based on 
the messages received.  

Therefore, regarding the IoT device certificates registration, it is possible to create a rule 
for the ‘registration’ topic that automatically activates the registered IoT device 
certificates. A step-by-step guide explaining how to create a new AWS Lambda function 
and attach a new rule to a MQTT topic is presented in detail in [JITR].  

Also, more information on AWS Lambda functionality can be found in [AWS_LAMBDA]. 

 Connection to AWS IoT with an MQTT client 
Finally, the IoT device will attempt to establish a TLS connection with AWS IoT. In this 
example, the MQTT Mosquitto client is used [MQTT_MOSQUITTO], and the following 
command is executed:  

$ mosquitto_pub --cafile root.cert --cert CAandIoTcertificate.pem --key 
IoTdeviceKey.pem -h <prefix>.iot.us-east-1.amazonaws.com -p 8883 -q 1 -t  
foo/bar -i  anyclientID --tls-version tlsv1.2 -m "Hello" -d 

where: 
• “root.cert” (--ca file) is the AWS IoT root certificate used by an IoT device to verify the 

identity of the AWS IoT servers during the TLS Handshake (4.3.1). This AWS root 
certificate can be downloaded from [AWS_ROOT]. 

• “CAandIoTcertificate.pem” (--cert) is the file containing the IoT device certificate and 
the intermediate CA certificate.  

• “IoTdeviceKey.pem” (--key) is the IoT device key pair. 
• “<prefix>. iot.us-east-1.amazonwas.com” (-h) is the AWS IoT service instance. 
• “8883” (-p) is the port number. 
• “1” (-q) specifies the quality of service to use for the message. 
• “foo/bar” (-t) specifies the topic on which to publish the message. 
• “anyclientID” (-i) specifies the id to use for this client. 
• “tlsv1.2” (--tls-version) specifies which TLS protocol version to use when 

communicating with AWS. 
• “Hello” (-m) is the message to be sent. 
• Finally (-d) enables debug messages. 

This command will lead to the auto-registration of the IoT device certificate during the 
TLS handshake: 
• The TLS Handshake protocol will start. 
• A registration message (Fig 19) will be published by AWS in the MQTT ‘registration’ 

topic in order to register the IoT device certificate. 
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• The TLS Handshake will fail since AWS IoT disconnects the connection after the 
registration of the IoT device certificate. 

• The attached AWS Lambda rule will be triggered and the ‘certificateStatus’ field of 
the publication will be automatically changed from ‘PENDING_ACTIVATION’ to 
‘ACTIVE’. 

• The IoT device could implement an automatic reconnect strategy to correctly 
establish a TLS connection with AWS IoT cloud. 

Fig 20 illustrates the explained IoT device certificate registration workflow. 

 

Note: This example is just a conceptual illustration on how the MQTT client works. In this 
example the A71CH is not involved in the TLS handshake protocol. The next chapter 
takes the reader step-by-step on how to achieve the same using an A71CH.

 

 

 

 

 

  



 

 

NXP Semiconductors AN12131 
 A71CH for secure connection to AWS 

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved. 

Application note                                                                        
COMPANY PUBLIC 

Rev. 1.0 — 29 March 2018                                                                                 
464110 

25 of 38 

 

 IoT device certificate registration workflow 
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8. Evaluating A71CH for secure connection to AWS IoT 
This section concerns how to establish a secure connection between an IoT device 
featuring the A71CH and AWS IoT cloud. In this example, the following elements are 
involved: 
• MCIMX6UL-EVK: i.MX6UltraLite MCU evaluation board with Internet connectivity via 

Ethernet. This board will act as the IoT device and will connect to the A71CH through 
OM3710/A71CHARD Arduino shield. 

• OM3710/A71CHARD: Arduino development kit containing a mini PCB board with the 
A71CH security IC and an Arduino shield compatible with the MCIMX6UL-EVK. 

• Development PC: a Windows platform will be used to configure and prepare the 
AWS IoT account and register a demo CA certificate. Additionally, the i.MX6UltraLite 
will be controlled from the development PC using Tera Term. 

A quick-start guide on how to get started with the OM3710/A71CHARD development kit 
and the MCIMX6UL-EVK i.MX6UltraLite evaluation board can be found in 
[QUICK_START_IMX6]. Regarding the i.MX6UltraLite Internet connection, it might be 
necessary to manually set the IP address of the DNS server. 

 

Note: This section describes how to establish a secure connection with AWS using a 
development PC and an i.MX6UltraLite with an A71CH security IC. The following 
description will re-uses several of the commands already presented in this document and 
it is provided only for demonstration. Therefore, the subsequent procedure must be 
adapted and adjusted accordingly for commercial deployment. 

 

 

 Demo system setup 

Fig 21 depicts the setup that will be used for this demonstration. The connection with 
AWS IoT cloud will be established from the i.MX6UltraLite MCU. The A71CH security IC 
will be connected to the i.MX6UltraLite through the OM3710/A71CHARD Arduino shield. 

First, the user acting as the OEM will use a development PC to register and activate an 
intermediate CA certificate as it is explained in chapter 6. In this example, it is assumed 
that there is no existing intermediate CA; thus, a self-signed demo CA certificate will be 
created only for demo purposes. 
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Windows OpenSSL libraries (included in the A71CH Host software package) will be used 
to create the demo CA credentials, while AWS CLI will be used to configure OEM’s AWS 
account and to register the demo CA certificate. Both OpenSSL and AWS CLI 
commands will be called from a Windows command prompt ‘cmd’. Once the demo CA 
certificate is registered and activated, the demo CA credentials will be transferred to the 
i.MX6UltraLite.  

In the i.MX6UltraLite, the demo CA certificate will be combined with the IoT device 
certificate and the connection with AWS will be established as explained in chapter 7. For 
this purpose, the IoT device credentials will be created in the i.MX6UltraLite using 
OpenSSL libraries, and the IoT device key pair will be securely stored into the A71CH 
using the Configure tool. Finally, the TLS connection with AWS IoT will be established 
using an MQTT client compatible with the A71CH OpenSSL engine.  

To summarize, the steps are the following: 
1. Configure the AWS IoT account and obtain a registration code using AWS CLI. 
2. Using OpenSSL, create demo CA credentials and the Verification certificate with the 

registration code. 
3. Upload both the Verification certificate and the demo CA certificate to AWS IoT using 

the AWS CLI. 
4. Activate the registered demo CA and enable ‘auto-registration’ status using AWS 

CLI. 
5. Transfer the demo CA credentials from the development PC to the i.MX6. 
6. Using OpenSSL on the i.MX6UltraLite, prepare the IoT device credentials and 

combine the IoT device certificate with the demo CA certificate. 
7. Connect to AWS IoT using an MQTT client. 

In this chapter, each one of the listed steps will be explained. 

 Obtain registration code from AWS 
The first step is to obtain a registration code from AWS IoT. For this, the AWS CLI will be 
used as stated in section 6.2. The AWS CLI will be launched from a Windows command 
line terminal, and the following command will be called to first configure the AWS IoT 
account: 

aws configure 

AWS Access credentials (Access Key ID and Secret Access Key), region name and 
output format will be asked. The AWS Access Key ID and Secret Access Key can be 
obtained from the AWS IoT control panel console [AWS_CLI_ACCESS], while the region 
name can be obtained from [AWS_CLI_REGIONS]. Finally, the default output format will 
be set as ‘text’ (by default, it is configured as ‘json’). 

Once the AWS CLI account has been configured, a registration code can be requested: 

aws iot get-registration-code 

Fig 22 shows the command line terminal and the output of both ‘configure’ and ‘iot get-
registration-code’ commands. The AWS Access Key ID, AWS Secret Access Key and 
registration code have been blurred.  
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 AWS CLI configure command 

 Create Verification certificate and upload it to AWS 
The demo CA credentials and the Verification certificate will be created in the Windows 
platform using OpenSSL commands (section 6.3) in a command line terminal. The 
following steps have to be taken: 
• First, a new pair of ECC keys CACertificate_ECC.key will be created for the demo 

CA credentials. 
• Then, a self-signed CACertificate_ECC.crt certificate will be created. 
• The Verification ECC key pair VerificationKeys.key will be generated. 
• The Verification public key and the registration code obtained in 0 will be included in 

the VerificationCSR.pem. 
• The Verification certificate Verificationcertificate.crt will be issued by the demo CA 

certificate CACertificate_ECC.crt. It will contain the information retrieved from the 
VerificationCSR.pem. 

Each one of the listed steps corresponds to the following OpenSSL commands: 
openssl ecparam -genkey -name prime256v1 -out CACertificate_ECC.key 

openssl req -x509 -new -nodes -key CACertificate_ECC.key -sha256 -days 3650 -
out CACertificate_ECC.crt -subj "/CN="Demo CA NXP" 

openssl ecparam -genkey -name prime256v1 -out VerificationKeys.key 

openssl req -new -key VerificationKeys.key -subj "/CN=REGISTRATION CODE" -out 
VerificationCSR.pem 

openssl x509 -req -in VerificationCSR.pem -CA CACertificate_ECC.crt -CAkey 
CACertificate_ECC.key -CAcreateserial -out Verificationcertificate.crt -days 
3650 -sha256 

Once the Verification certificate has been created, it will be registered to AWS IoT using 
AWS CLI with the ‘iot register-ca-certificate’ command:  
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aws iot register-ca-certificate –ca-certificate file://CACertificate_ECC.crt -–
verification-certificate file://Verificationcertificate.crt 

 

 OpenSSL commands executed in the development PC 

Fig 23 shows the Windows terminal with the execution of the above-mentioned 
commands. The registered demo CA certificate information can be prompted with the 
following AWS command (section 6.4): 
aws iot describe-ca-certificate -–certificate-id 
8c2c1cde98712d88a7daed538bdffde3b4685f7534f695b7f260ae99cd08d57d 

Where the certificate ID ‘8c2c1cde…’ is the string returned in the response of the ‘iot 
register-ca-certificate’ command. As is highlighted in Fig 24, the registered CA certificate 
is set as inactive, and its auto-registration property is disabled by default. 

 

 Registered demo CA 

It is also possible to observe the status of the registered CA certificate directly on the 
AWS IoT website interface (Fig 25). 
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 AWS IoT website interface 

 Activate demo CA certificate and enable auto-registration 
The registered CA certificate can be activated, and its ‘auto-registration’ property can be 
enabled with the following AWS CLI commands: 

aws iot update-ca-certificate -–certificate-id 
8c2c1cde98712d88a7daed538bdffde3b4685f7534f695b7f260ae99cd08d57d --new-status 
ACTIVE 

aws iot update-ca-certificate -–certificate-id 
8c2c1cde98712d88a7daed538bdffde3b4685f7534f695b7f260ae99cd08d57d --new-auto-
registration-status ENABLE 
aws iot describe-ca-certificate -–certificate-id 
8c2c1cde98712d88a7daed538bdffde3b4685f7534f695b7f260ae99cd08d57d 

Fig 26 shows the final state of the registered CA. The ‘auto-registration’ property has 
been enabled, and the certificate has been activated. 
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 Registered demo CA 

 Transfer demo CA credentials to the i.MX6 MCU 
The demo CA credentials have to be transferred to the i.MX6UltraLite, for instance using 
SCP (Secure Copy Protocol). Using SCP permits the OEM to distribute the CA 
certificates remotely to all their IoT devices connected to the same network in a secure 
way.  

Fig 27 shows the ‘pscp -scp’ command executed from the Windows command prompt. It 
shows the transfer of both demo CA credentials from the development PC to the 
i.MX6UltraLite platform. This ‘pscp -scp’ command is provided by installing the PuTTY 
client [PUTTY]. 

SCP and OpenSSL tools can also be easily obtained by installing Cygwin on a Windows 
PC [CYGWIN]. 

 

 Transfer the demo CA credentials using SCP 

 Create IoT device credentials and combine IoT device certificate with 
the demo CA certificate 
The i.MX6UltraLite will be controlled from the development PC using the Tera Term 
terminal as is explained in [QUICK_START_IMX6]. For the sake of simplicity, the IoT 
device credentials will be created in the same folder where the A71CH Configure tool 
executable and the demo CA credentials are located. The following OpenSSL commands 
can be used: 

openssl ecparam -genkey -name prime256v1 -out deviceKey.key 
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openssl req -new -key deviceKey.key -out deviceCsr.csr -subj "/CN=IoT device" 

openssl x509 -req -days 3650 -in deviceCsr.csr -CAcreateserial -CA 
CACertificate_ECC.crt -CAkey CACertificate_ECC.key -out deviceCert.crt 

Fig 28 shows the Tera Term window with the OpenSSL commands executed from the 
i.MX6UltraLite. 

 

 OpenSSL commands executed in the i.MX6 MCU 

Finally, the IoT device certificate deviceCert.crt is combined with the demo CA 
credentials using the ‘cat’ command as explained in 7.1: 

cat deviceCert.crt CACertificate_ECC.crt > CAandIoTcert.pem 

Fig 29 shows the created IoT device credentials and the file composed of the IoT device 
certificate and the demo CA certificate in the i.MX6UltraLite file system. 

 

 Created IoT device credentials 

The IoT device keys can be stored in the A71CH using the A71CH Configure tool and the 
following commands: 

./a71chConfig_i2c_imx debug reset 

./a71chConfig_i2c_imx set pair -x 0 -k deviceKey.key 

./a71chConfig_i2c_imx info pair 

./a71chConfig_i2c_imx refpem -c 10 -x 0 -r deviceRefKey.ref_key 

Where deviceRefKey.ref_key is the reference to the stored key. This reference file will be 
further employed by the i.MX6 to use the IoT device key stored inside the A71CH IC.  
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 Injection of credentials with A71CH Configure tool 

Fig 30 shows the Tera Term screen with the execution of the A71CH Configure tool 
commands. Each one of the commands has been highlighted. Also, the stored key and 
the created reference file deviceRefKey.ref_key have been highlighted. 

 Connection to AWS IoT with an MQTT client 
The last step consists of establishing a TLS connection with AWS IoT. 

This can be done by using the available AWS IoT SDK [AWS_IOT_SDK]. 
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