

 AN12131
A71CH for secure connection to AWS
Rev. 1.0 — 29 March 2018
464110

Application note
COMPANY PUBLIC

Document information
Info Content
Keywords Security IC, IoT, PSP, AWS, Secure authentication

Abstract This document describes how the A71CH security IC can be used to
establish a secure connection with an AWS

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 20184. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

2 of 38

Contact information
For more information, please visit: http://www.nxp.com

Revision history
Rev Date Description
1.0 20180329 First release

http://www.nxp.com/

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

3 of 38

1. Introduction
This document describes how the A71CH Security IC can be used to establish a secure
connection between an IoT device and Amazon Web Services (AWS) IoT cloud. The
connection between the IoT device and AWS IoT cloud will be established with the
MQTT protocol [MQTT], running across Transport Layer Security (TLS) protocol.

To establish a Transport Layer Security (TLS) connection, the IoT device certificate has
to be registered in AWS IoT. The AWS Just-in-time registration (JITR) mechanism allows
the IoT device to automatically register its digital certificate, thus establishing a
connection with AWS IoT. This document contains a brief introduction to TLS and key
security concepts and then presents the workflow to prepare the JITR of an IoT device
certificate in AWS IoT.

2. A71CH overview
The A71CH is a ready-to-use solution enabling ease-of-use security services for the IoT
device makers. It is a tamper-resistant platform capable of securely storing and
provisioning credentials, securely connecting IoT devices to cloud services and
performing cryptographic node authentication.

The A71CH solution provides an outstanding level of security measures protecting the IC
against physical and logical attacks. It can be used with various host platforms and host
operating systems to secure a broad range of applications. In addition, it is
complemented by a comprehensive product support package, offering easy design-in
with plug & play host application code, easy-to-use development kits, reference designs,
documentation and IC samples for product evaluation.

3. Public key infrastructure and ECC fundamentals
Security is an essential requirement for any IoT design. Thus, security should not be
considered as differentiator option but rather a standard feature for the IoT designers. IoT
devices must follow a secure-by-design approach, ensuring secure storage of
credentials, device authentication, secure code execution and safe connections to
remote servers among others. In this security context, the A71CH security IC is designed
specifically to offer protected access to credentials, secure connection to private or public
clouds and cryptographic device proof-of-origin verification.

Asymmetric cryptography, also known as public key cryptography, is any cryptographic
algorithms based on a pair of keys: a public key and a private key. The private key must
be kept secret, while the public key can be shared.

RSA (Rivest, Shamir and Adleman) and Elliptic-Curve Cryptography (ECC) are two of the
most widely used asymmetric cryptography algorithms. In the case of ECC cryptography,
it is based on the algebraic structure of elliptic curves over finite fields. Therefore, each
key pair (public and private key) is generated from a certain elliptical curve.

The digital signature, digital certificates, Elliptic Curve Digital Signature Algorithm
(ECDSA) and Elliptic Curve Diffie-Hellman (ECDH) key agreement algorithm are briefly
explained in the next sections.

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

4 of 38

 Digital signature
A digital signature is used to guarantee the authenticity, the integrity and non-repudiation
of a message. A signing algorithm generates a signature given a message and a private
key. A signature verifying algorithm accepts or rejects a message given the public key
and the signature.

Fig 1 illustrates an example of digital signature. In this case, the message is signed with
the sender private key. The receiver will validate the signature using both the message
and the sender public.

 Digital signature diagram

 Digital certificate, Certification Authority (CA) and Certificate Signing
Request (CSR)
Digital certificates are used to prove the authenticity of shared public keys. Digital
certificates are electronic documents that include information about the sender public
key, identity of its owner and the signature of a trusted entity that has verified the
contents of the certificate, normally called Certificate Authority (CA).

A Certificate Authority (CA) is an entity that issues digital certificates. The CA is trusted
by both the certificate sender and the certificate receiver, and it is typically in charge of
receiving a Certificate Signing Request (CSR) and generating a new certificate based
upon information contained in the CSR and signed with the CA private key.

Therefore, a CSR is a request that contains all the necessary information, e.g., sender
public key and relevant information to generate a new digital certificate.

Fig 2 shows digital certificates generation steps. First, the interested device (sender)
creates a Certificate Signing Request. The CSR is then sent to the CA and a new digital
certificate is created and signed with the CA private key. Also, the basic contents of this
new digital certificate are illustrated in the figure.

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

5 of 38

 Digital certificate generation steps and contents

 Elliptic Curve Digital Signature Algorithm (ECDSA)
The Elliptic Curve Digital Signature Algorithm (ECDSA) algorithm uses ECC to provide a
variant of the Digital Signature Algorithm (DSA). A pair of keys (public and private) are
generated from an elliptic curve, and these can be used both for signing or verifying a
message’s signature. Fig 3 illustrates an example of ECDSA application. In this example,
the sender device generates a signature with its private key. The signed message is sent
together with the sender digital certificate to the receiver. Finally, the receiver retrieves
the sender public key from the digital certificate and uses it to validate the signature of
the received message.

 Elliptic Curve Digital Signature Algorithm (ECDSA) example

 Elliptic Curve Diffie-Hellman (ECDH)
Elliptic Curve Diffie-Hellman algorithm (ECDH) is a key-agreement protocol. The goal of
ECDH is to reach a key agreement between two parties, each having an elliptic-curve
key pair generated from the same domain parameters. When the agreement has been
reached, a shared secret key, usually referred to as the ‘master key’, is derived to obtain

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

6 of 38

session keys. These session keys will be employed to establish a communication using
symmetric-key encryption algorithms.

The sender and the receiver have its own elliptical key pair. Both the sender and receiver
public keys are shared with each other. In this case, the exchange has been represented
with digital certificates. Each party can compute the secret key using their own private
key and the public key obtained from the received certificate. Due to the elliptical curve
properties and the fact that both key pairs have been generated from the same domain
parameters, the computed secret key is the same for both parties. This common secret
key will be further used for establishing a communication and encrypt messages based
on symmetrical cryptography. Fig 4 illustrates the usage of ECDH for a shared secret key
agreement.

 Elliptic Curve Diffie-Hellman Key Exchange (ECDH) example

In the Elliptic-curve Diffie-Hellman Ephemeral (ECDHE) algorithm case, a new elliptical
key pair is generated for each key agreement instead of sharing the already existing
public keys.

 A71CH ECC supported functionality
The A71CH security IC supports the following ECC functionality:
• Signature generation and verification (ECDSA).
• Shared secret calculation using Key Agreement (ECDH or ECDH-E).
• Secure storage, generation, insertion or deletion of key pairs (NIST-P256 elliptical

curve).

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

7 of 38

4. A71CH for secure connection to AWS IoT cloud
The scope of this document is to explain step by step how to connect an IoT device to an
AWS IoT cloud by using the available AWS IoT services.

The IoT device will feature an A71CH Security IC to securely store credentials. Fig 5
illustrates the connection between several IoT devices with A71CH IC and the AWS IoT
cloud.

The credentials of each one of the involved elements are explained in this chapter.
Additionally, basic concepts on SSL/TLS and security are presented to provide the
reader the necessary background for a better understanding of the presented contents
such as TLS handshake protocol, OpenSSL and the A71CH OpenSSL engine.

 System overview. Connection between an IoT device(s) and AWS IoT cloud

 OEM and AWS cloud credentials
The IoT device original equipment manufacturer (OEM) shall have an intermediate CA
certificate, as well as their corresponding keys. This intermediate CA certificate will be
issued by a root CA. Regarding the root CA there are two possibilities. The OEM can
have its own public key infrastructure (PKI); thus, it will have the root CA certificate and
the root CA key pair. Alternatively, the OEM can trust in a third-party CA.

Note that in Fig 6 only an intermediate CA and a root CA have been represented, though
the OEM could have more than one intermediate CA issued by different root CAs.

The OEM will have to register the intermediate CA certificate in AWS cloud. The
intermediate CA will be used to validate all the IoT devices certificates willing to connect
to the cloud.

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

8 of 38

 OEM and AWS cloud credentials

 IoT device credentials
Each IoT device will be provisioned with its corresponding key pair and its digital
certificate issued by the intermediate CA. These credentials will be stored inside the
A71CH and will be used to register the IoT device certificate and establish a secure
connection with the AWS IoT cloud.

The IoT device must also contain the intermediate CA certificate to connect to AWS.
Optionally, it could be stored inside the A71CH GP Storage for functionality purposes.
Fig 7 illustrates the credentials of an IoT device.

 IoT device credentials

Fig 8 shows the complete connection between IoT devices and AWS cloud. The
credentials described in 4.1 and 4.2 have also been represented.

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

9 of 38

 Connection between IoT devices and AWS IoT cloud

 Transport Layer Security protocol (TLS)
IoT devices own several connectivity features that allow them to exchange data with the
cloud. The network link between these IoT devices and the cloud or server should be
secure. Transport Layer Security protocol (TLS), and its predecessor Secure Sockets
Layer (SSL), are cryptographic protocols that provide communications security over
unsecure networks. These protocols are created from the necessity of establishing a
connection preserving confidentiality, integrity and authenticity.

 TLS connection between two IoT devices and AWS IoT cloud

Fig 10 illustrates the protocol stack of a TLS communication over a TCP/IP network. In
the well-known ISO/OSI layer architecture, SSL/TLS would belong to the Presentation
Layer in charge of encrypting and securing the entire communication. The transport and
network protocol TCP/IP and the medium access control (MAC) would fall in layers from
4 to 2, respectively. Finally, data would be physically transferred according to ethernet (or
wireless ethernet) protocols.

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

10 of 38

 Communication stack. ISO/OSI Layers.

4.3.1 Transport Layer Security Handshake protocol
Before the IoT device and the server in the cloud begin exchanging data over TLS, the
tunnel encryption must be negotiated. This negotiation is referred as TLS Handshake.
The TLS Handshake Protocol is responsible for the authentication and key exchange
necessary to establish or resume secure sessions. When establishing a secure session,
the TLS Handshake Protocol manages the following:
• Agree on the TLS protocol version to be used.
• Select cipher suite.
• Authenticate each other by exchanging and validating digital certificates.
• Use asymmetric encryption techniques to generate a shared secret key, which

avoids the key distribution problem. SSL or TLS then uses the shared key for the
symmetric encryption of messages, which is faster than asymmetric encryption.

The TLS Handshake Protocol involves the following steps:
• Exchange Hello messages to agree on algorithms, exchange random values, and

check for resumption.
• Exchange the necessary cryptographic parameters to allow the client and server to

agree on a pre-master secret.
• Exchange certifications and cryptographic information to allow the client and server

to authenticate themselves.
• Generate a master secret from the pre-master secret and exchanged random value.
• Provide security parameters to the record layer.
• Allow the client and server to verify that their peer has calculated the same security

parameters and that the handshake occurred without tampering by an attacker.

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

11 of 38

The A71CH security IC supports the TLS Handshake Protocol version 1.2 with the
following options:
• Pre-Shared Key Cipher suites for TLS as described in [RFC4279]: A set of cipher

suites for supporting TLS using pre-shared symmetric keys (TLS_PSK_WITH_xxx)
• ECDHE_PSK Cipher suites for TLS as described in [RFC5489]: A set of cipher suites

that use a pre-shared key to authenticate an Elliptic Curve Diffie-Hellman exchange
with Ephemeral keys (TLS_ECDHE_PSK_WITH_xxx).

The Fig 11 represents an overview of the TLS 1.2 handshake with ECDSA-ECDHE.
More information about the TLS 1.2 handshake protocol can be obtained from the
standard specifications document [RFC5246] or from [AN_A71CH_HOST_SW].

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

12 of 38

 TLS 1.2 Handshake diagram with ECC

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

13 of 38

4.3.2 Transport Layer Security software libraries
There are several full-featured TLS software libraries that can be used in both server
cloud and IoT devices such OpenSSL, mbedTLS, WolfTLS, etc.

OpenSSL [OPEN_SSL] is an open-source implementation of SSL/TLS protocol. It is
written in C language, although there are several wrappers to use this library in other
languages. It implements all the cryptography functions needed and it is widely used.
Starting with OpenSSL 0.9.6, an ‘Engine interface’ was added allowing support for
alternative cryptographic implementations. This Engine interface can be used to interface
with external crypto devices as e.g. HW accelerator cards or security ICs like the A71CH.

The OpenSSL toolkit including an A71CH OpenSSL Engine is available as part of the
A71CH Host software package [A71CH_OPENSSL_ENGINE]. The A71CH OpenSSL
Engine gives access to several A71CH features via the A71CH Host Library not natively
supported by OpenSSL implementation. In other words, the Engine links the OpenSSL
libraries to the A71CH Host API and overwrites some of the native OpenSSL functions in
order to include the use of the A71CH crypto functionality such as sign, verify and key
exchange operations or random messages generation, that can be used for instance
during the TLS Handshake protocol.

The A7CH OpenSSL Engine is fully compatible with the i.MX6UltraLite embedded
platform. Nevertheless, support will be added in future revisions.

Fig 12 illustrates the IoT Host MCU software architecture. As it can be observed, the
software stack is formed by an application that calls OpenSSL functions. Some of these
functions will be overwritten by the A71CH OpenSSL Engine, thus the A71CH crypto
functionality will be used through the A71CH Host Library over I2C.

 Host SW stack including OpenSSL, A71CH OpenSSL engine and A71CH Host Library

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

14 of 38

5. Introduction to AWS IoT and JITR
AWS has built IoT specific services. These services help IoT system developer collect
and send IoT device data to the cloud, make it easy to load and analyze that information,
and provide the ability to manage connected IoT devices.

AWS IoT Core service is a managed cloud platform that lets connected devices easily
and securely interact with cloud applications and other devices. IoT Core can support
billions of devices and trillions of messages and can process and route those messages

Fig 13 illustrates the end-to-end flow to establish a secure connection between an IoT
devices with an A71CH to the AWS IoT services.

As a first step, the A71CH ICs provided by NXP need to be provisioned by a
Programming facility in charge of injecting die-individual credentials (presented in
Chapter 4). After that, the OEM manufacturer needs to register and activate his
intermediate CA in the AWS platform. Then, in order to communicate in the AWS IoT
network, each IoT device needs to be known via its device certificate. Thus, each IoT
device certificate needs to be registered into the AWS IoT platform.

 End-to-end connection establishment flow

In order to ease this registration process, AWS introduced the Just-In-Time-Registration
(JITR) mechanism. The AWS JITR is a mechanism to automatically register new device
certificates during the initial communication between the IoT device and the AWS IoT
cloud. Using AWS JITR mechanism, an IoT device can be connected to AWS IoT cloud if
the OEM follows these two steps:
• Set up the AWS IoT account by registering and activating the intermediate CA

certificate.
• Configure the AWS IoT account for the first-time device onboarding. Then, connect

the IoT device to AWS IoT cloud to register its digital certificate automatically.

These two steps are further elaborated in Chapter 6 and Chapter 7. In addition, more
information on AWS IoT services and the Just-In-Time registration mechanism can be
found in [AWS_IOT] [JITR].

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

15 of 38

6. AWS setup by OEM: Register intermediate CA certificates
The OEM manufacturer should start setting up the AWS account by registering the
intermediate CA digital certificate. This certificate must be uploaded to the AWS to
enable auto-registration of certificate via JITR. Every time a new IoT device is connected
to the AWS cloud, the chain of trust will be validated, i.e., the IoT device certificate
signature is validated by the intermediate CA certificate, and at the same time, the
intermediate CA certificate signature must have been validated by the root CA.

The workflow to register and activate a new intermediate CA certificate in AWS cloud is
the following:
• Obtain a registration code from AWS.
• Use the registration code to create a Verification CSR. The registration code will be

embedded in the ‘CN’ (Common Name) field of the Verification CSR.
• Use the CSR and the intermediate CA credentials to create a Verification Certificate.
• Upload both the Verification certificate and the intermediate CA certificate to AWS.
• Activate the registered intermediate CA certificate, after validation of the intermediate

signature.
• Enable auto-registration status of the registered intermediate CA certificate.

These required steps are described in this chapter. The entire workflow can be done
using either the AWS CLI (command line interface) or the register certificate section of
the AWS IoT website. In this document though, the AWS CLI has been used

 AWS Command Line Interface (AWS CLI)
The AWS Command Line Interface (CLI) is an open source tool built on top of the AWS
SDK for Python (Boto) that provides commands for interacting with AWS services and
direct access to AWS service’s public APIs. It requires minimal configuration and once
installed it can be used from a terminal application in Windows, Linux shells or even
through a remote terminal such as PuTTY or SSH on Amazon EC2 instances. More
information on AWS CLI can be found in [AWS_CLI].

The AWS CLI can be downloaded from [AWS_CLI] and installed on Windows, Mac and
Linux platforms. Fig 14 shows a capture of the execution of AWS CLI with Windows
PowerShell. The ‘help’ command has been executed to prompt all the AWS CLI
functionality on the terminal.

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

16 of 38

 AWS CLI on Windows PowerShell

 Obtain registration code from AWS
The process for validating ownership and registering an intermediate CA certificate in
AWS IoT services is done through a challenge and response flow.

To register an intermediate CA certificate with AWS IoT, OEM have to verify that you
have access to both the intermediate CA certificate and the intermediate CA private key.
For this, a Verification certificate has to be generated using a registration code provided
by AWS IoT and the CA private key.

The registration code can be obtained with the following AWS CLI command:
$ aws iot get-registration-code

The provided code is randomly generated and long-lived, i.e., it will not expire.

 Create Verification certificate and upload it to AWS
Then, a certificate signing request (CSR) has to be prepared to generate the Verification
certificate. This CSR will contain the registration code in its ‘CN’ field (highlighted in
green). The following OpenSSL commands can be executed:

openssl ecparam -genkey -name prime256v1 -out VerificationKeys.pem

openssl req -new -key VerificationKeys.pem -subj "/CN=registration code" -out
VerificationCSR.pem

openssl x509 -req -in VerificationCSR.pem -CA intCACertificate.pem -CAkey
intCAkey.pem -CAcreateserial -out Verificationcertificate.pem -days 365 -sha256

Firstly, a new ECC key pair is generated. This key pair will belong to the Verification
certificate. Then the CSR containing the registration code is created and the Verification
certificate is created based upon the information contained in the CSR and signed with
the intermediate CA private key. Finally, both the Verification certificate and the
intermediate CA certificate are uploaded to AWS IoT using the AWS CLI:
$aws iot register-ca-certificate -–ca-certificate file://intCAcertificate.pem -
–verification-certificate file://Verificationcertificate.pem

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

17 of 38

 Activate intermediate CA certificate and enable auto-registration
By default, the registered intermediate CA certificate is in ‘inactive’ state, which means
that it cannot be used for validating new IoT devices certificates. Hence, it is necessary
to activate it.

The information of the registered certificate can be obtained with the following command:
$ aws iot describe-ca-certificate -–certificate-id <certificateId>

Where <certificateId> is the ID returned in the response of the previous AWS CLI
command (iot register-ca-certificate).

Then, the intermediate CA can be activated:
$ aws iot update-ca-certificate -–certificate-id <certificateId> --new-status
ACTIVE

Also, the auto-registration-status property of the registered intermediate CA certificate
has to be enabled. If auto-registration-status is enabled, AWS IoT services will
automatically register any IoT device certificate issued by that intermediate CA.

$ aws iot update-ca-certificate -–certificate-id <certificateId> --new-auto-
registration-status ENABLED

Fig 15 illustrates the explained CA certificate registration workflow.

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

18 of 38

 CA certificate registration workflow

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

19 of 38

 Register CA certificates with AWS IoT website interface
The intermediate CA registration process can also be carried out through the user
interface available in the AWS IoT website. Fig 16 shows a screen capture of the CA
certificate registry section. As can be observed, the same steps have to be followed, i.e.,
obtain a registration code, prepare the Verification CSR with the registration code in the
“Common Name” field, sign the Verification CSR with the intermediate CA and upload it
together with the intermediate CA.

 Register CA certificate AWS IoT website interface

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

20 of 38

7. First time device onboarding: IoT device certificate registration
The intermediate CA certificate is already registered, activated and its ‘auto-registration-
status’ has been enabled. Every time a new IoT device is connected to the AWS IoT
cloud, the service will detect an unidentified IoT device certificate issued by that
intermediate CA and will proceed to auto-register it. The first-time device onboarding
workflow can be divided into the following two steps:
• Combine the IoT device certificate with the intermediate CA certificate.
• Initiate a TLS communication with AWS IoT cloud using an MQTT client.

First of all, the IoT device will have to prepare a file composed of the IoT device
certificate and the intermediate CA certificate. Then, the IoT device will attempt to
establish a TLS connection with AWS IoT using an MQTT client. The AWS IoT service
supports the publish-subscribe MQTT.

During the TLS handshake, AWS IoT will detect that the IoT device has not been
registered before and therefore will proceed to register it on AWS IoT automatically.

The registered IoT device certificate will be ‘de-activated’ by default. To automatically
activate a new IoT device, an AWS Lambda function has to be previously created and
properly configured.

Finally, the IoT device will be able to establish a TLS connection with AWS IoT.

All these steps are explained in detail in this chapter, as well as the MQTT protocol and
the AWS Lambda functions

 Combine IoT device certificate with intermediate CA certificate
The IoT device certificate has to be combined with the issuer intermediate CA certificate.
In Linux based platforms, it can be done with ‘cat’ terminal command:
$ cat IoTdeviceCertificate.pem intCAcertificate.pem > CAandIoTcertificate.pem

While in Windows-based environments, it can be done by running the following
command on the shell:
type IoTdeviceCertificate.pem intCAcertificate.pem > CAandIoTcertificate.pem

An MQTT client running across TLS will be used to establish a TLS link between the IoT
device and AWS IoT. During the TLS handshake, the “CAandIoTcertificate” file will be
sent to AWS IoT.

 MQTT
Message Queue Telemetry Transport (MQTT) is an ISO standard (ISO/IEC PRF 20922)
Machine-to-Machine (M2M) publish-subscribe based communication protocol used in the
Internet of Things. The MQTT is a low-power and low-bandwidth protocol oriented to
embedded devices with small computational resources such as sensors. For this reason,
it is commonly employed in sensor networks, i.e., IoT devices networks.
MQTT takes layers 5-7 of the ISO/OSI layers model and relies on TCP/IP as transport
and network protocols. Additionally, it supports the use of SSL/TLS for encrypting and

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

21 of 38

securing the communication. Fig 17 illustrates the communication stack presented in 4.3,
including MQTT.

 Communication stack with MQTT and TLS. ISO/OSI Layers

Regarding the network architecture, MQTT protocol follows a star topology in which there
is a central node, also called broker, and a series of clients. The broker device is in
charge of managing the network message exchange, while the clients are periodically
transmitting messages and waiting for the broker response. Fig 18 illustrates an example
of an MQTT star architecture. In this case, an AWS IoT cloud acts as the broker device
and a series of IoT devices are the clients.

 Example of MQTT star architecture

Communication between client devices and the broker is based on ‘topics’. A topic is a
UTF-8 string which is used by the broker to filter messages for each connected client. A

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

22 of 38

topic can consist of one or more levels, each one separated by a forward slash. Clients
can publish messages in a given topic, or they can subscribe to a topic to receive
messages published by the rest of the client devices.

For instance, in the AWS IoT scenario, the following MQTT topic is used by the broker
(AWS IoT) for managing the registered IoT device certificates (clients):
$aws/events/certificates/registered/<caCertificateID>

Whenever an IoT device wants to establish a TLS connection with AWS IoT, the IoT
device certificate will be first checked. First, the signature of the IoT device certificate will
be validated with the public key contained in the registered intermediate CA certificate.

In case the IoT device certificate signature is validated, but the certificate is not
registered in AWS IoT (or it is in ‘PENDING_ACTIVATION’ state), the TLS handshake
will fail.

Then, the IoT device certificate will be auto-registered in the AWS IoT server and an
MQTT message will be automatically published by AWS IoT in that ‘registration’ topic.
Remember that, the ‘auto-registration’ property of the registered intermediate CA should
be enabled as it is explained in 6.4.

The published MQTT message has the following structure:

{
 "certificateId": "<certificateID>",
 "caCertificateId": "<caCertificateId>",
 "timestamp": "<timestamp>",
 "certificateStatus": "PENDING_ACTIVATION",
 "awsAccountId": "<awsAccountId>",
 "certificateRegistrationTimestamp":
"<certificateRegistrationTimestamp>"
}

 Example of MQTT certificate registration publication

where <caCertificateID> belongs to the identifier of the intermediate CA certificate.
Furthermore, as it can be observed, the certificateStatus field is in
‘PENDING_ACTIVATION’.

More information on MQTT and MQTT with AWS can be found in [MQTT] [JITR].

 IoT device certificate registration event with AWS Lambda function
As has been mentioned in 7.2, when AWS IoT publishes an MQTT ‘certificate
registration’ message, the registered IoT device certificate certificateStatus field is in
‘PENDING_ACTIVATION’ state.

Further TLS connection attempts will continue failing because only ‘ACTIVE’ certificates
are authenticated with AWS IoT. Therefore, the certificateStatus field of the registered
IoT device should be changed to ‘ACTIVE’ in order to be successfully authenticated

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

23 of 38

during the TLS handshake. It is possible to automatically move certificate status from
‘PENDING_ACTIVATION’ to ‘ACTIVE’ by using AWS Lambda functions.

AWS Lambda is a compute service that lets you run code without provisioning or
managing servers. AWS Lambda executes your code only when needed and scales
automatically, from a few requests per day to thousands per second. For instance, it is
possible to attach a rule to an AWS IoT MQTT topic that can take some action based on
the messages received.

Therefore, regarding the IoT device certificates registration, it is possible to create a rule
for the ‘registration’ topic that automatically activates the registered IoT device
certificates. A step-by-step guide explaining how to create a new AWS Lambda function
and attach a new rule to a MQTT topic is presented in detail in [JITR].

Also, more information on AWS Lambda functionality can be found in [AWS_LAMBDA].

 Connection to AWS IoT with an MQTT client
Finally, the IoT device will attempt to establish a TLS connection with AWS IoT. In this
example, the MQTT Mosquitto client is used [MQTT_MOSQUITTO], and the following
command is executed:

$ mosquitto_pub --cafile root.cert --cert CAandIoTcertificate.pem --key
IoTdeviceKey.pem -h <prefix>.iot.us-east-1.amazonaws.com -p 8883 -q 1 -t
foo/bar -i anyclientID --tls-version tlsv1.2 -m "Hello" -d

where:
• “root.cert” (--ca file) is the AWS IoT root certificate used by an IoT device to verify the

identity of the AWS IoT servers during the TLS Handshake (4.3.1). This AWS root
certificate can be downloaded from [AWS_ROOT].

• “CAandIoTcertificate.pem” (--cert) is the file containing the IoT device certificate and
the intermediate CA certificate.

• “IoTdeviceKey.pem” (--key) is the IoT device key pair.
• “<prefix>. iot.us-east-1.amazonwas.com” (-h) is the AWS IoT service instance.
• “8883” (-p) is the port number.
• “1” (-q) specifies the quality of service to use for the message.
• “foo/bar” (-t) specifies the topic on which to publish the message.
• “anyclientID” (-i) specifies the id to use for this client.
• “tlsv1.2” (--tls-version) specifies which TLS protocol version to use when

communicating with AWS.
• “Hello” (-m) is the message to be sent.
• Finally (-d) enables debug messages.

This command will lead to the auto-registration of the IoT device certificate during the
TLS handshake:
• The TLS Handshake protocol will start.
• A registration message (Fig 19) will be published by AWS in the MQTT ‘registration’

topic in order to register the IoT device certificate.

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

24 of 38

• The TLS Handshake will fail since AWS IoT disconnects the connection after the
registration of the IoT device certificate.

• The attached AWS Lambda rule will be triggered and the ‘certificateStatus’ field of
the publication will be automatically changed from ‘PENDING_ACTIVATION’ to
‘ACTIVE’.

• The IoT device could implement an automatic reconnect strategy to correctly
establish a TLS connection with AWS IoT cloud.

Fig 20 illustrates the explained IoT device certificate registration workflow.

Note: This example is just a conceptual illustration on how the MQTT client works. In this
example the A71CH is not involved in the TLS handshake protocol. The next chapter
takes the reader step-by-step on how to achieve the same using an A71CH.

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

25 of 38

 IoT device certificate registration workflow

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

26 of 38

8. Evaluating A71CH for secure connection to AWS IoT
This section concerns how to establish a secure connection between an IoT device
featuring the A71CH and AWS IoT cloud. In this example, the following elements are
involved:
• MCIMX6UL-EVK: i.MX6UltraLite MCU evaluation board with Internet connectivity via

Ethernet. This board will act as the IoT device and will connect to the A71CH through
OM3710/A71CHARD Arduino shield.

• OM3710/A71CHARD: Arduino development kit containing a mini PCB board with the
A71CH security IC and an Arduino shield compatible with the MCIMX6UL-EVK.

• Development PC: a Windows platform will be used to configure and prepare the
AWS IoT account and register a demo CA certificate. Additionally, the i.MX6UltraLite
will be controlled from the development PC using Tera Term.

A quick-start guide on how to get started with the OM3710/A71CHARD development kit
and the MCIMX6UL-EVK i.MX6UltraLite evaluation board can be found in
[QUICK_START_IMX6]. Regarding the i.MX6UltraLite Internet connection, it might be
necessary to manually set the IP address of the DNS server.

Note: This section describes how to establish a secure connection with AWS using a
development PC and an i.MX6UltraLite with an A71CH security IC. The following
description will re-uses several of the commands already presented in this document and
it is provided only for demonstration. Therefore, the subsequent procedure must be
adapted and adjusted accordingly for commercial deployment.

 Demo system setup

Fig 21 depicts the setup that will be used for this demonstration. The connection with
AWS IoT cloud will be established from the i.MX6UltraLite MCU. The A71CH security IC
will be connected to the i.MX6UltraLite through the OM3710/A71CHARD Arduino shield.

First, the user acting as the OEM will use a development PC to register and activate an
intermediate CA certificate as it is explained in chapter 6. In this example, it is assumed
that there is no existing intermediate CA; thus, a self-signed demo CA certificate will be
created only for demo purposes.

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

27 of 38

Windows OpenSSL libraries (included in the A71CH Host software package) will be used
to create the demo CA credentials, while AWS CLI will be used to configure OEM’s AWS
account and to register the demo CA certificate. Both OpenSSL and AWS CLI
commands will be called from a Windows command prompt ‘cmd’. Once the demo CA
certificate is registered and activated, the demo CA credentials will be transferred to the
i.MX6UltraLite.

In the i.MX6UltraLite, the demo CA certificate will be combined with the IoT device
certificate and the connection with AWS will be established as explained in chapter 7. For
this purpose, the IoT device credentials will be created in the i.MX6UltraLite using
OpenSSL libraries, and the IoT device key pair will be securely stored into the A71CH
using the Configure tool. Finally, the TLS connection with AWS IoT will be established
using an MQTT client compatible with the A71CH OpenSSL engine.

To summarize, the steps are the following:
1. Configure the AWS IoT account and obtain a registration code using AWS CLI.
2. Using OpenSSL, create demo CA credentials and the Verification certificate with the

registration code.
3. Upload both the Verification certificate and the demo CA certificate to AWS IoT using

the AWS CLI.
4. Activate the registered demo CA and enable ‘auto-registration’ status using AWS

CLI.
5. Transfer the demo CA credentials from the development PC to the i.MX6.
6. Using OpenSSL on the i.MX6UltraLite, prepare the IoT device credentials and

combine the IoT device certificate with the demo CA certificate.
7. Connect to AWS IoT using an MQTT client.

In this chapter, each one of the listed steps will be explained.

 Obtain registration code from AWS
The first step is to obtain a registration code from AWS IoT. For this, the AWS CLI will be
used as stated in section 6.2. The AWS CLI will be launched from a Windows command
line terminal, and the following command will be called to first configure the AWS IoT
account:

aws configure

AWS Access credentials (Access Key ID and Secret Access Key), region name and
output format will be asked. The AWS Access Key ID and Secret Access Key can be
obtained from the AWS IoT control panel console [AWS_CLI_ACCESS], while the region
name can be obtained from [AWS_CLI_REGIONS]. Finally, the default output format will
be set as ‘text’ (by default, it is configured as ‘json’).

Once the AWS CLI account has been configured, a registration code can be requested:

aws iot get-registration-code

Fig 22 shows the command line terminal and the output of both ‘configure’ and ‘iot get-
registration-code’ commands. The AWS Access Key ID, AWS Secret Access Key and
registration code have been blurred.

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

28 of 38

 AWS CLI configure command

 Create Verification certificate and upload it to AWS
The demo CA credentials and the Verification certificate will be created in the Windows
platform using OpenSSL commands (section 6.3) in a command line terminal. The
following steps have to be taken:
• First, a new pair of ECC keys CACertificate_ECC.key will be created for the demo

CA credentials.
• Then, a self-signed CACertificate_ECC.crt certificate will be created.
• The Verification ECC key pair VerificationKeys.key will be generated.
• The Verification public key and the registration code obtained in 0 will be included in

the VerificationCSR.pem.
• The Verification certificate Verificationcertificate.crt will be issued by the demo CA

certificate CACertificate_ECC.crt. It will contain the information retrieved from the
VerificationCSR.pem.

Each one of the listed steps corresponds to the following OpenSSL commands:
openssl ecparam -genkey -name prime256v1 -out CACertificate_ECC.key

openssl req -x509 -new -nodes -key CACertificate_ECC.key -sha256 -days 3650 -
out CACertificate_ECC.crt -subj "/CN="Demo CA NXP"

openssl ecparam -genkey -name prime256v1 -out VerificationKeys.key

openssl req -new -key VerificationKeys.key -subj "/CN=REGISTRATION CODE" -out
VerificationCSR.pem

openssl x509 -req -in VerificationCSR.pem -CA CACertificate_ECC.crt -CAkey
CACertificate_ECC.key -CAcreateserial -out Verificationcertificate.crt -days
3650 -sha256

Once the Verification certificate has been created, it will be registered to AWS IoT using
AWS CLI with the ‘iot register-ca-certificate’ command:

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

29 of 38

aws iot register-ca-certificate –ca-certificate file://CACertificate_ECC.crt -–
verification-certificate file://Verificationcertificate.crt

 OpenSSL commands executed in the development PC

Fig 23 shows the Windows terminal with the execution of the above-mentioned
commands. The registered demo CA certificate information can be prompted with the
following AWS command (section 6.4):
aws iot describe-ca-certificate -–certificate-id
8c2c1cde98712d88a7daed538bdffde3b4685f7534f695b7f260ae99cd08d57d

Where the certificate ID ‘8c2c1cde…’ is the string returned in the response of the ‘iot
register-ca-certificate’ command. As is highlighted in Fig 24, the registered CA certificate
is set as inactive, and its auto-registration property is disabled by default.

 Registered demo CA

It is also possible to observe the status of the registered CA certificate directly on the
AWS IoT website interface (Fig 25).

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

30 of 38

 AWS IoT website interface

 Activate demo CA certificate and enable auto-registration
The registered CA certificate can be activated, and its ‘auto-registration’ property can be
enabled with the following AWS CLI commands:

aws iot update-ca-certificate -–certificate-id
8c2c1cde98712d88a7daed538bdffde3b4685f7534f695b7f260ae99cd08d57d --new-status
ACTIVE

aws iot update-ca-certificate -–certificate-id
8c2c1cde98712d88a7daed538bdffde3b4685f7534f695b7f260ae99cd08d57d --new-auto-
registration-status ENABLE
aws iot describe-ca-certificate -–certificate-id
8c2c1cde98712d88a7daed538bdffde3b4685f7534f695b7f260ae99cd08d57d

Fig 26 shows the final state of the registered CA. The ‘auto-registration’ property has
been enabled, and the certificate has been activated.

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

31 of 38

 Registered demo CA

 Transfer demo CA credentials to the i.MX6 MCU
The demo CA credentials have to be transferred to the i.MX6UltraLite, for instance using
SCP (Secure Copy Protocol). Using SCP permits the OEM to distribute the CA
certificates remotely to all their IoT devices connected to the same network in a secure
way.

Fig 27 shows the ‘pscp -scp’ command executed from the Windows command prompt. It
shows the transfer of both demo CA credentials from the development PC to the
i.MX6UltraLite platform. This ‘pscp -scp’ command is provided by installing the PuTTY
client [PUTTY].

SCP and OpenSSL tools can also be easily obtained by installing Cygwin on a Windows
PC [CYGWIN].

 Transfer the demo CA credentials using SCP

 Create IoT device credentials and combine IoT device certificate with
the demo CA certificate
The i.MX6UltraLite will be controlled from the development PC using the Tera Term
terminal as is explained in [QUICK_START_IMX6]. For the sake of simplicity, the IoT
device credentials will be created in the same folder where the A71CH Configure tool
executable and the demo CA credentials are located. The following OpenSSL commands
can be used:

openssl ecparam -genkey -name prime256v1 -out deviceKey.key

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

32 of 38

openssl req -new -key deviceKey.key -out deviceCsr.csr -subj "/CN=IoT device"

openssl x509 -req -days 3650 -in deviceCsr.csr -CAcreateserial -CA
CACertificate_ECC.crt -CAkey CACertificate_ECC.key -out deviceCert.crt

Fig 28 shows the Tera Term window with the OpenSSL commands executed from the
i.MX6UltraLite.

 OpenSSL commands executed in the i.MX6 MCU

Finally, the IoT device certificate deviceCert.crt is combined with the demo CA
credentials using the ‘cat’ command as explained in 7.1:

cat deviceCert.crt CACertificate_ECC.crt > CAandIoTcert.pem

Fig 29 shows the created IoT device credentials and the file composed of the IoT device
certificate and the demo CA certificate in the i.MX6UltraLite file system.

 Created IoT device credentials

The IoT device keys can be stored in the A71CH using the A71CH Configure tool and the
following commands:

./a71chConfig_i2c_imx debug reset

./a71chConfig_i2c_imx set pair -x 0 -k deviceKey.key

./a71chConfig_i2c_imx info pair

./a71chConfig_i2c_imx refpem -c 10 -x 0 -r deviceRefKey.ref_key

Where deviceRefKey.ref_key is the reference to the stored key. This reference file will be
further employed by the i.MX6 to use the IoT device key stored inside the A71CH IC.

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

33 of 38

 Injection of credentials with A71CH Configure tool

Fig 30 shows the Tera Term screen with the execution of the A71CH Configure tool
commands. Each one of the commands has been highlighted. Also, the stored key and
the created reference file deviceRefKey.ref_key have been highlighted.

 Connection to AWS IoT with an MQTT client
The last step consists of establishing a TLS connection with AWS IoT.

This can be done by using the available AWS IoT SDK [AWS_IOT_SDK].

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

34 of 38

9. References

Table 1. Referenced Documents

[AWS_IOT] AWS IoT - https://aws.amazon.com/iot/

[AWS_CLI] AWS Command Line Interface - https://aws.amazon.com/cli/

[A71CH_ANTICOUNTERFEIT] AN12120 A71CH for electronic anti-counterfeit –
Application note, document number 4583**1

[OPEN_SSL] OpenSSL Cryptography and SSL/TLS Toolkit information -
www.openssl.org

[RFC4279] Pre-Shared Key Ciphersuites for Transport Layer Security
(TLS) - December 2005

[RFC5489] ECDHE_PKE Cipher Suites for Transport Layer Security
(TLS) - March 2009

[RFC5246] The Transport Layer Security (TLS) Protocol - Version 1.2,
August 2008

[AWS_LAMBDA] AWS Lambda Documentation -
https://aws.amazon.com/documentation/lambda/

[AWS_ROOT] AWS root certificate -
https://www.symantec.com/content/en/us/enterprise/verisign/ro
ots/VeriSign-Class%203-Public-Primary-Certification-
Authority-G5.pem

[MQTT] MQTT - http://mqtt.org/

[JITR] Just-in-Time Registration of Device Certificates on AWS
IoT - https://aws.amazon.com/blogs/iot/just-in-time-
registration-of-device-certificates-on-aws-iot/

[MQTT_MOSQUITTO] Eclipe Mosquitto - https://mosquitto.org/

[A71CH_OPENSSL_ENGINE] A71CH OpenSSL Engine – DocStore, um4334**1

[AN_A71CH_HOST_SW] AN12133 A71CH Host software package documentation –
Application note, document number 4643**1

[QUICK_START_IMX6] AN12119 Quick start guide for OM3710A71CHARD i.MX6 –
Application note, document number 4582**1

[PUTTY] PuTTY client - https://www.putty.org/
[CYGWIN] Cygwin - https://www.cygwin.com/
[AWS_IOT_SDK] AWS IoT SDK - https://github.com/aws/aws-iot-device-sdk-

cpp

1 **… document version number

https://aws.amazon.com/iot/
https://aws.amazon.com/cli/
https://aws.amazon.com/documentation/lambda/
https://www.symantec.com/content/en/us/enterprise/verisign/roots/VeriSign-Class%203-Public-Primary-Certification-Authority-G5.pem
https://www.symantec.com/content/en/us/enterprise/verisign/roots/VeriSign-Class%203-Public-Primary-Certification-Authority-G5.pem
https://www.symantec.com/content/en/us/enterprise/verisign/roots/VeriSign-Class%203-Public-Primary-Certification-Authority-G5.pem
http://mqtt.org/
https://aws.amazon.com/blogs/iot/just-in-time-registration-of-device-certificates-on-aws-iot/
https://aws.amazon.com/blogs/iot/just-in-time-registration-of-device-certificates-on-aws-iot/
https://mosquitto.org/
https://www.putty.org/
https://www.cygwin.com/
https://github.com/aws/aws-iot-device-sdk-cpp
https://github.com/aws/aws-iot-device-sdk-cpp

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 20184. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

35 of 38

10. Legal information

 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s
own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the

customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

 Licenses
ICs with DPA Countermeasures functionality

NXP ICs containing functionality
implementing countermeasures to
Differential Power Analysis and Simple
Power Analysis are produced and sold
under applicable license from
Cryptography Research, Inc.

 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

FabKey — is a trademark of NXP B.V.

I²C-bus — logo is a trademark of NXP B.V.

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

36 of 38

11. List of figures

Fig 1. Digital signature diagram 4
Fig 2. Digital certificate generation steps and contents

 .. 5
Fig 3. Elliptic Curve Digital Signature Algorithm

(ECDSA) example ... 5
Fig 4. Elliptic Curve Diffie-Hellman Key Exchange

(ECDH) example ... 6
Fig 5. System overview. Connection between an IoT

device(s) and AWS IoT cloud 7
Fig 6. OEM and AWS cloud credentials 8
Fig 7. IoT device credentials 8
Fig 8. Connection between IoT devices and AWS IoT

cloud ... 9
Fig 9. TLS connection between two IoT devices and

AWS IoT cloud .. 9
Fig 10. Communication stack. ISO/OSI Layers. 10
Fig 11. TLS 1.2 Handshake diagram with ECC 12
Fig 12. Host SW stack including OpenSSL, A71CH

OpenSSL engine and A71CH Host Library 13
Fig 13. End-to-end connection establishment flow...... 14
Fig 14. AWS CLI on Windows PowerShell 16
Fig 15. CA certificate registration workflow 18
Fig 16. Register CA certificate AWS IoT website

interface .. 19
Fig 17. Communication stack with MQTT and TLS.

ISO/OSI Layers ... 21
Fig 18. Example of MQTT star architecture 21
Fig 19. Example of MQTT certificate registration

publication ... 22
Fig 20. IoT device certificate registration workflow...... 25
Fig 21. Demo system setup .. 26
Fig 22. AWS CLI configure command 28
Fig 23. OpenSSL commands executed in the

development PC ... 29
Fig 24. Registered demo CA 29
Fig 25. AWS IoT website interface 30
Fig 26. Registered demo CA 31
Fig 27. Transfer the demo CA credentials using SCP. 31
Fig 28. OpenSSL commands executed in the i.MX6

MCU .. 32
Fig 29. Created IoT device credentials 32
Fig 30. Injection of credentials with A71CH Configure

tool .. 33

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

464110 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note
COMPANY PUBLIC

Rev. 1.0 — 29 March 2018
464110

37 of 38

12. List of tables

Table 1. Referenced Documents 34

NXP Semiconductors AN12131
 A71CH for secure connection to AWS

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP Semiconductors N.V. 2018. All rights reserved.

For more information, visit: http://www.nxp.com

Date of release: 29 March 2018
464110

Document identifier: 464110

13. Contents

1. Introduction ... 3
2. A71CH overview .. 3
3. Public key infrastructure and ECC

fundamentals ... 3
 Digital signature ... 4
 Digital certificate, Certification Authority (CA) and

Certificate Signing Request (CSR) 4
 Elliptic Curve Digital Signature Algorithm

(ECDSA) .. 5
 Elliptic Curve Diffie-Hellman (ECDH) 5
 A71CH ECC supported functionality 6

4. A71CH for secure connection to AWS IoT cloud
 .. 7

 OEM and AWS cloud credentials 7
 IoT device credentials .. 8
 Transport Layer Security protocol (TLS) 9

4.3.1 Transport Layer Security Handshake protocol . 10
4.3.2 Transport Layer Security software libraries 13
5. Introduction to AWS IoT and JITR 14
6. AWS setup by OEM: Register intermediate CA

certificates ... 15
 AWS Command Line Interface (AWS CLI) 15
 Obtain registration code from AWS 16
 Create Verification certificate and upload it to

AWS ... 16
 Activate intermediate CA certificate and enable

auto-registration ... 17
 Register CA certificates with AWS IoT website

interface ... 19
7. First time device onboarding: IoT device

certificate registration 20
 Combine IoT device certificate with intermediate

CA certificate .. 20
 MQTT ... 20

 IoT device certificate registration event with AWS
Lambda function ... 22

 Connection to AWS IoT with an MQTT client ... 23
8. Evaluating A71CH for secure connection to

AWS IoT .. 26
 Obtain registration code from AWS 27
 Create Verification certificate and upload it to

AWS ... 28
 Activate demo CA certificate and enable auto-

registration .. 30
 Transfer demo CA credentials to the i.MX6 MCU

 ... 31
 Create IoT device credentials and combine IoT

device certificate with the demo CA certificate . 31
 Connection to AWS IoT with an MQTT client ... 33

9. References ... 34
10. Legal information .. 35

 Definitions ... 35
 Disclaimers ... 35
 Licenses ... 35
 Trademarks .. 35

11. List of figures ... 36
12. List of tables .. 37
13. Contents ... 38

	1. Introduction
	2. A71CH overview
	3. Public key infrastructure and ECC fundamentals
	3.1 Digital signature
	3.2 Digital certificate, Certification Authority (CA) and Certificate Signing Request (CSR)
	3.3 Elliptic Curve Digital Signature Algorithm (ECDSA)
	3.4 Elliptic Curve Diffie-Hellman (ECDH)
	3.5 A71CH ECC supported functionality

	4. A71CH for secure connection to AWS IoT cloud
	4.1 OEM and AWS cloud credentials
	4.2 IoT device credentials
	4.3 Transport Layer Security protocol (TLS)
	4.3.1 Transport Layer Security Handshake protocol
	4.3.2 Transport Layer Security software libraries

	5. Introduction to AWS IoT and JITR
	6. AWS setup by OEM: Register intermediate CA certificates
	6.1 AWS Command Line Interface (AWS CLI)
	6.2 Obtain registration code from AWS
	6.3 Create Verification certificate and upload it to AWS
	6.4 Activate intermediate CA certificate and enable auto-registration
	6.5 Register CA certificates with AWS IoT website interface

	7. First time device onboarding: IoT device certificate registration
	7.1 Combine IoT device certificate with intermediate CA certificate
	7.2 MQTT
	7.3 IoT device certificate registration event with AWS Lambda function
	7.4 Connection to AWS IoT with an MQTT client

	8. Evaluating A71CH for secure connection to AWS IoT
	8.1 Obtain registration code from AWS
	8.2 Create Verification certificate and upload it to AWS
	8.3 Activate demo CA certificate and enable auto-registration
	8.4 Transfer demo CA credentials to the i.MX6 MCU
	8.5 Create IoT device credentials and combine IoT device certificate with the demo CA certificate
	8.6 Connection to AWS IoT with an MQTT client

	9. References
	10. Legal information
	10.1 Definitions
	10.2 Disclaimers
	10.1 Licenses
	10.2 Trademarks

	11. List of figures
	12. List of tables
	13. Contents

