
Freescale Semiconductor
Application Note

Document Number: AN3520
Rev. 0, 09/2007

Contents

Introduction . 1
USB Host Overview. 2

2.1 Queue Head (QH) . 3
2.2 Queue Element Transfer Descriptor (qTD) 5
2.3 Periodic Schedule . 9
2.4 Asynchronous Schedule . 11
USB Host Example . 13

3.1 Control Queue Head . 13
3.2 Get Device Descriptor qTDs 15
3.3 Interrupt Queue Head . 20
3.4 Periodic Frame List Initialization 22
3.5 Interrupt qTD . 23
Additional Information . 24

Simplified EHCI Data Structures
for the High-End ColdFire Family
USB Modules
by: Melissa Hunter

Microcontroller Division
1 Introduction
Some of the high-end ColdFire products (such as, the
MCF532x, MCF5253, and MCF5445x devices) contain
an EHCI-compatible host or dual-role/OTG USB
controller. The dual-role module can be used as a USB
host, device, or an On-the-Go device. In host mode, both
USB modules are EHCI compliant. The EHCI
specification defines a register set and data structures
that control USB data movement.

The EHCI specification was designed for the PC world
and therefore allows for an extremely robust host
implementation supporting many different types of
devices on a single port. For an embedded system a
simpler implementation of USB might be desired. The
purpose of this application note is to discuss a simplified
version of the EHCI data structures, where a USB host
driver supporting a few USB devices is desired instead of
a full EHCI stack. It explains how the different data
structures are used together, and provides basic examples
of actual usage.

1
2

3

4

© Freescale Semiconductor, Inc., 2007. All rights reserved.

USB Host Overview
This document is intended as a guide for developing a simple driver for communicating with a single
device that could be one of a few types. For instance, if you want to have support for a mouse, then you
build a mouse driver that only works with a mouse. If a different USB device is plugged in an error is
returned. It is assumed that transfer sizes larger than 4 KB are not required. This application note assumes
the reader is familiar with the basics of USB operation.

The data structures as discussed in this document do not support all of the capability of USB or EHCI. To
simplify the EHCI data structures, isochronous transfers are not discussed. This document also assumes
that only one device is connected to a port at a time. Since split transactions are only used to communicate
with a full speed (FS) or low speed (LS) device that is connected through a USB 2.0 hub, they are not
covered. Not supporting isochronous and split transactions eliminates some of the EHCI data structures
entirely and many fields of the remaining data structures are not used.

NOTE
Portions of this document relating to the EHCI specification are Copyright
© Intel Corporation 1999-2001. The EHCI specification is provided “As Is”
with no warranties whatsoever, including any warranty of merchantability,
non-infringement, fitness for any particular purpose, or any warranty
otherwise arising out of any proposal, specification or sample. Intel
disclaims all liability, including liability for infringement of any proprietary
rights, relating to use of information in the EHCI specification. Intel may
make changes to the EHCI specifications at any time, without notice.

2 USB Host Overview
This section discusses the data structures that are used for an EHCI-compatible host. Several of the data
structure types in the EHCI specification are used exclusively for handling isochronous transfers.

Once the data structures for isochronous transfers are eliminated, there are only four EHCI data
structures—the periodic schedule, the asynchronous schedule, queue heads (QHs), and queue element
transfer descriptors (qTDs).

The host controller within the USB dual-role controller uses two different systems for scheduling USB
transfers:

• The periodic schedule manages interrupt and isochronous transfers
• The asynchronous schedule manages control and bulk transfers

Both the asynchronous and periodic schedules use QH and qTD data structures to configure the transfers.
Typically there is a QH defined for each endpoint the host accesses. The QH determines the USB address
and endpoint number for the transfer along with other information about the endpoint. The QH contains a
pointer to the current qTD, a qTD overlay area where the contents of the current qTD are stored, and a
pointer to the next qTD. The qTDs define the actual transfer (number of bytes, location to read/write data,
and status).
Simplified EHCI Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor2

USB Host Overview

2.1 Queue Head (QH)
The primary purpose of the QH is to define the characteristics of a particular endpoint that is being
addressed. This means that in most cases there is one QH for each device endpoint being addressed. QHs
must be 32-byte aligned.

Figure 1 shows a simplified QH structure where the fields relating to split transactions, isochronous
transfers, and large transfers (transfers that require more than one buffer pointer) are removed or set to
static values. This is a simplified form of the QH structure defined in the EHCI specification.

2.1.1 Queue Head Horizontal Link Pointer (Offset = 0x00)

The first longword of a QH contains a link pointer to the next data object to be processed after any required
processing in this queue has been completed, as well as the control bits defined below. This pointer may
reference a queue head or one of the isochronous transfer descriptors. In our case, it always is a pointer to
the next QH.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 offset

Queue Head Horizontal Link Pointer 0001 T 0x00

00000 Maximum Packet Length H 1 EPS EndPt 0 Device Address 0x041

1 Offsets 0x04–0x0B contain the static endpoint state.

0100_0000_0000_0000_0000_0000 µFrame S-mask 0x081

Current qTD Pointer2

2 Host controller read/write; all others read-only.

00000 0x0C

Next qTD Pointer2 000 T 0x10

qTD Overlay Area

0x14

0x18

0x1C

0x20

0x24

0x28

0x2C

Figure 1. Simplified Queue Head (QH) Layout

Table 2-1. Queue Head Horizontal Link Pointer

Field Description

31–5
QHLP

Queue head horizontal link pointer. This field contains the address of the next QH to be processed in the
horizontal list and corresponds to memory address signals [31:5], respectively.

4–1 Write as 0001.

0
T

Terminate.
0 Pointer is valid
1 Last QH (pointer is invalid)
Simplified EHCI Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor 3

USB Host Overview
2.1.2 Endpoint Characteristics (Offset = 0x04)

The second longword of a QH specifies static information about the endpoint. This information does not
change over the lifetime of the endpoint. These fields are written by the USB host software stack when the
QH is setup and are never modified by the host controller hardware.

2.1.3 Endpoint Capabilities (Offset = 0x08)

The third longword of a QH specifies a number of parameters that are associated with split transactions,
so most of this longword is always set to the same value.

Table 2-2. Endpoint Characteristics

Field Description

31–27 Write as 00000.

26–16
Maximum

Packet Length

Set to the maximum packet size of the associated endpoint. The descriptors for the device specify the
maximum packet length. The maximum value this field may contain is 0x400 (1024).

15
H

Head of reclamation list flag. This bit is set by system software to mark a queue head as the head of the
asynchronous schedule.

14 Write as 1.

13–12
EPS

Endpoint speed.
00 Full speed (12Mbs)
01 Low speed (1.5Mbs)
10 High speed (480 Mb/s)
11 Reserved

11–8
EndPt

Endpoint number. This 4-bit field selects the particular endpoint number on the device serving as the data
source or sink.

7 Write as 0.

6–0
Device

Address

This field selects the specific device serving as the data source or sink.

Table 2-3. Endpoint Capabilities

Field Description

31–8 Write as 0x400_0000.

7–0
µFrame
S-mask

Interrupt schedule mask. This field is only used for interrupt endpoints. For control and bulk endpoints this
field must be written as 0x00.

The mask corresponds to each microframe in a frame. If the current microframe number matches the
S-mask value, then the QH is processed for that microframe. Since the minimum poll rate for a FS interrupt
endpoint is 1 ms, this field should always be set to 1 for FS/LS interrupt endpoints.

For high speed (HS) endpoints the S-mask value can be used for interrupts that have a poll rate less than
1 ms. For example, a value of 0xFF means the interrupt is processed on every microframe (every 125 µs).
With a value of 0x11 the interrupt is processed every fourth microframe (every 500 µs).

Note: An S-mask value of 0x00 for an interrupt endpoint causes undefined operation.
Simplified EHCI Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor4

USB Host Overview
2.1.4 Current qTD Pointer (Offset = 0x0C)

This longword is the address of the qTD that is currently being processed. This field is written by the host
controller when it reads in the qTD. Software does not need to initialize this longword when creating a new
QH.

2.1.5 qTD Overlay Area (Offset = 0x10–0x2C)

The eight longwords in this area are a working copy of the qTD that is currently being processed or was
last processed. While a transfer is in progress, the controller writes incremental status information to the
qTD overlay area. When the transfer is complete, the results are written back to the original qTD location
(the address pointed to by the current qTD pointer).

These values are initialized by the host controller when it copies in the current qTD. Therefore, software
does not need to initialize these fields. The one exception is the next qTD pointer. This value should be
initialized by software when creating a new QH. The next qTD pointer should be set to the address of the
first qTD to be processed for the endpoint (with the T bit cleared to indicate a valid pointer). The controller
uses the next qTD pointer to access the beginning of the linked list of qTDs for the endpoint.

2.2 Queue Element Transfer Descriptor (qTD)
A qTD defines an actual data movement for control, bulk, or interrupt transfers. The qTDs are processed
as a singly-linked list. The next qTD pointer in the QH should be initialized to point to the first qTD in the
linked list. After the first qTD is processed, the controller uses the next qTD pointer in the first qTD to find
the second qTD. This process repeats until a qTD with an invalid next qTD pointer is reached. qTDs must
be aligned on 32-byte boundaries.

Figure 2 shows a simplified version of the qTD defined in the EHCI spec that can transfer up to 4 KB of
data.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 offset

Next qTD Pointer 0000 T 0x00

000_0000_0000_0000_0000_0000_0000_0000 1 0x04

dt1

1 Host controller read/write; all others read-only.

Total Bytes to Transfer ioc 0001 Cerr1
PID

Code
Status1 0x08

Buffer Pointer1 0x0C

0000_0000_0000_0000_0000_0000_0000_0000 0x10

0000_0000_0000_0000_0000_0000_0000_0000 0x14

0000_0000_0000_0000_0000_0000_0000_0000 0x18

0000_0000_0000_0000_0000_0000_0000_0000 0x1C

Figure 2. Simplified Queue Element Transfer Descriptor (qTD) Layout
Simplified EHCI Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor 5

USB Host Overview
2.2.1 Next qTD Pointer (Offset = 0x00)

The first longword of a qTD is a pointer to another qTD. This pointer is used to create a singly-linked list
of qTDs.

2.2.2 qTD Token (Offset = 0x08)

The third longword of a queue element transfer descriptor contains most of the information the host
controller requires to execute a USB transaction (the remaining endpoint and addressing information is
specified in the QH).

Table 2-4. qTD Next Element Transfer Pointer (longword 0)

Field Description

31–5
Next qTD
Pointer

This field contains the physical memory address of the next qTD to be processed. The field corresponds
to memory address signals[31:5], respectively.

4–1 Reserved. The value of these bits has no effect on operation.

0
T

Terminate. This bit indicates to the host controller that there are no more valid entries in the queue.
0 Pointer is valid (points to a valid qTD)
1 Pointer is invalid

Table 2-5. qTD Token (longword 2)

Field Description

31
dt

Data toggle. This bit controls the data toggle sequence. This bit should be set for IN and OUT transactions and
cleared for SETUP packets.

30–16
Total Bytes
to Transfer

This field specifies the total number of bytes to be moved with this transfer descriptor. This field is decremented
by the number of bytes actually moved during the transaction only on the successful completion of the
transaction.

If the value of this field is zero when the host controller fetches this transfer descriptor (and the active bit is
set), the host controller executes a zero-length transaction and retires the transfer descriptor.

Note: The maximum value software may store in this field is 4 K (0x1000). This is the maximum number of
bytes a single page pointer can access. The host controller can accommodate larger transfers using
multiple page pointers. But, for the purposes of this application note the transfer size is limited to 4 KB
to simplify the data structures.

15
ioc

Interrupt on complete. If this bit is set, when this qTD is completed, the host controller should issue an interrupt
at the next interrupt threshold.

14–10 Write as 000.

11–10
Cerr

Error counter. This field is a 2-bit down counter that tracks the number of consecutive errors detected while
executing this qTD. The host controller decrements the count for each consecutive error and writes it back to
the qTD if the transaction fails. Write this field as 0x3, to allow up to three retries for the transfer.

If the counter counts from one to zero, the host controller marks the qTD inactive, sets the halted bit and error
status bit for the error that caused Cerr to decrement to zero. An interrupt is generated if the USB error interrupt
enable bit in the USBINTR register is set. Write-backs of intermediate execution state are to the QH’s overlay
area, not the qTD.
Simplified EHCI Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor6

USB Host Overview
9–8
PID Code

This field is an encoding of the token used for transactions associated with this transfer descriptor.
00 OUT token (generates token 0xE1)
01 IN token (generates token 0x69)
10 SETUP token (generates token 0x2D) (undefined if endpoint is an interrupt transfer type, for example.

µFrame S-mask field in the queue head is non-zero.)
11 Reserved

7–0
Status

This field is used by the host controller to communicate individual command execution states back to the host
controller driver (HCD) software. This field contains the status of the last transaction performed on this qTD.

Bit Status Field Description

7 Active. Set by software to indicate that the qTD has been initialized and is ready to use. Enables the
execution of transactions by the host controller.

6 Halted. Set by the host controller during status updates to indicate that a serious error has occurred
at the device/endpoint addressed by this qTD. This can be caused by one of the following:
 • Babble
 • The error counter reaching zero
 • Reception of the STALL handshake from the device during a transaction
Any time a transaction results in setting the halted bit, the active bit is also cleared.

5 Data buffer error. Set by the host controller during status update to indicate that the host controller
is either:
 • Unable to keep up with the reception of incoming data (overrun)
 • Unable to supply data fast enough during transmission (underrun)
If an overrun condition occurs, the host controller forces a time-out condition on the USB,
invalidating the transaction at the source.

4 Babble detected. Set by the host controller during status update when babble is detected during the
transaction. In addition to setting this bit, the host controller also sets the halted bit. Since babble is
considered a fatal error for the transfer, setting the halted bit ensures that no more transactions
occur because of this descriptor.

3 Transaction error. Set by the host controller during status update when the host did not receive a
valid response from the device (time-out, CRC, or bad PID).

2 Missed microframe. This bit is ignored unless QH[EPS] indicates a full- or low-speed endpoint and
the queue head is in the periodic list. This bit is set when the host controller detected a host-induced
hold-off caused the host controller to miss a required complete-split transaction.

1 Split transaction state. Write as 0.

0 Ping state (P)/ERR. If the QH[EPS] field indicates a high-speed device and the PID code indicates
an OUT endpoint, then this is the state bit for the ping protocol.
0 Do OUT. This value directs the host controller to issue an OUT PID to the endpoint.
1 Do Ping. This value directs the host controller to issue a PING PID to the endpoint.

Table 2-5. qTD Token (longword 2) (continued)

Field Description
Simplified EHCI Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor 7

USB Host Overview
2.2.3 qTD Buffer Page Pointer (Offset = 0x0C)

The qTD buffer page pointer is used to specify the memory address of the data buffer for the transfer.
Table 2-6. qTD Buffer Pointer

Field Description

31–0
Buffer
Pointer

Buffer pointer. Indicates the memory address for the data buffer used by the qTD. The host controller uses the
first part of the address (bits 31–12) as a pointer to a 4-KB page and the lower part of the address (bits 11–0) as
an index into the page. The host controller increments the index internally, but does not increment the page
address. This is what determines the 4-KB transfer size limitation used for this application note.

This means that the data buffer cannot span the 4KB page boundary. For applications where most of the transfers
are small, the run-time buffer alignment can be avoided entirely by careful placement of the heap. If the heap
space used to allocate memory for QHs, qTDs, and data buffers starts at the beginning of a 4-KB page and the
application does not require more than 4 KB of data structures and buffers at a time, then the data buffer
alignment is not a concern.

If more than 4-KB is needed for data structures and data buffers, then there are a couple of ways to avoid a data
buffer crossing a 4-KB page boundary:
 • Force the data buffers to a 4-KB alignment. However, this does not make very efficient use of memory unless

most transfers are close to 4 KB.
 • Align each data buffer to its own size. For example, a 16-byte transfer is aligned to a 16-byte line address. This

is a much more efficient use of memory for most applications. However, this adds a small amount of code
overhead to handle the alignment.
Simplified EHCI Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor8

USB Host Overview
2.3 Periodic Schedule
Figure 3 shows the organization of the periodic schedule. This schedule is used for all interrupt transfers.

Figure 3. Periodic Schedule Organization

The USB module’s PERIODICLISTBASE register and FRINDEX (bits 13–3) are combined to create a
pointer into an array of pointers called the periodic frame list. The pointer into the periodic frame list is
incremented every frame (1 ms).

The periodic frame list is a 4-KB page-aligned array of frame list link pointers. The length of the frame
list is programmable using the USBCMD[FS] field. The EHCI specification supports a periodic frame list
of 1024, 512, or 256 elements. The USB module also supports periodic frame list sizes of 128, 64, 32, 16,
and 8 elements. In an embedded application where memory is limited, the smaller, non-EHCI compliant
frame list sizes help to reduce the memory footprint needed for USB software.

2.3.1 Frame List Link Pointers

Frame list link pointers direct the host controller to the first work item in the periodic schedule for the
current frame. The link pointers are aligned on longword boundaries within the periodic frame list.
Figure 4 shows the format for the frame list link pointer.

31 5 4 3 2 1 0

Frame List Link Pointer 00 Typ T

Figure 4. Frame List Link Pointer Format

FRINDEX

PERIODICLISTBASE

USB Registers

Periodic Frame
List Element

Address

•
•
•

1024, 512, or 256
Elements

Periodic Frame List

•
•
•

Interrupt
Queue
Heads qTDs
Simplified EHCI Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor 9

USB Host Overview
Frame list link pointers always reference memory objects that are 32-byte aligned. The least significant
bits in a frame list pointer key the host controller as to the type of object the pointer is referencing. For
interrupt transfers the frame list link pointer always points to a QH (TYP = 0b01).

The least significant bit is the terminate bit, which is used to let the controller know when the contents of
the pointer are valid. When set, the host controller ignores the entry in the frame list. When cleared, the
frame list link pointer is used to access the referenced object, in this case a QH.

2.3.2 Periodic Schedule Traversal

The periodic schedule is enabled or disabled by the periodic schedule enable bit (USBCMD[PSE]).
Modifications to the PSE bit are not necessarily immediate. The USBSTS[PS] bit reflects the current status
of the periodic schedule. If PS is cleared, then the host controller does not attempt to traverse the periodic
schedule. Likewise, if PS is set, at the start of each microframe (every 125 µs) the USB controller begins
scheduling USB traffic by looking at the periodic schedule. The periodic traffic is guaranteed bus
bandwidth, so the periodic schedule has priority over the asynchronous schedule. The controller uses the
pointer into the periodic frame list to access the current frame list link pointer. If the T bit is cleared
(indicating a valid pointer) the controller accesses the QH pointed to by the frame list link pointer.

The host controller schedules periodic traffic at the beginning of each microframe, but the pointer into the
periodic frame list only increments for a full frame. Each item in the periodic frame list is accessed eight
times per frame. The QH[uFrame S-mask] field value determines if traffic is scheduled for a given QH for
each microframe.

If a QH is found that is valid for the current microframe, the host controller processes any qTDs in the list
for the QH. When the qTDs for the first QH are complete, the controller checks to see if the first QH points
to another QH. If so, it moves onto the second QH and process its qTDs. This continues until the last QH
(a QH that doesn’t point to another QH) is reached. At this point the controller switches to the
asynchronous schedule. Any time remaining in the microframe is used to process asynchronous schedule
transfers.

If the periodic schedule is disabled or the current frame list link pointer has the T bit set, the entire frame
can be used for asynchronous schedule traffic.

2.3.3 Adding Interrupt Queue Heads to the Periodic Schedule

When an interrupt device endpoint is being activated, the host software should create a QH for that
endpoint and then link it to the periodic schedule. QHs are linked into the periodic schedule so they are
polled at the appropriate rate. Each periodic frame list entry is used for 1 ms. So, for each periodic frame
list entry that doesn’t point to a given QH there is 1 ms of delay.

For example, to get an 8ms poll rate for a FS/LS interrupt, every eighth entry in the periodic frame list is
pointed to the QH (QH[uFrame S-mask] should be set).

Figure 5 shows an example of how the periodic frame list would be setup for a single interrupt that is
polled every 4 ms. Every fourth entry in the periodic frame list is pointed to the same QH to create the
desired poll rate.
Simplified EHCI Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor10

USB Host Overview
Figure 5. Periodic Frame List Example for an Interrupt Polled Every 4ms

If a HS interrupt with a poll rate that is less than 1 ms is needed, the QH[uFrame S-mask] value can create
the desired poll rate. The QH is linked to every entry in the periodic frame list and then the spacing between
the set bits in the QH[uFrame S-mask] field determine how frequently the interrupt occurs.

For example, a QH[uFrame S-mask] set to 0b01010101 results in an interrupt on every other microframe
(every 250us). A value of 0b00010001 gives you an interrupt on every fourth microframe (every 500us).

2.4 Asynchronous Schedule
Figure 6 shows the organization for the asynchronous schedule. This schedule is used for all control and
bulk transfers. Because control and bulk transfers do not get guaranteed USB bus bandwidth, the controller
only uses this list when either:

• It reaches the end of the periodic list
• The periodic list is disabled
• The periodic list is empty

FRINDEX

PERIODICLISTBASE

USB Registers

Periodic Frame
List Element

Address

•
•
•

1024, 512, or 256
Elements

Periodic Frame List

•
•
•

Interrupt
Queue
Heads qTDs
Simplified EHCI Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor 11

USB Host Overview
Figure 6. Asynchronous Schedule Organization

The asynchronous list is a simple circular list of queue heads, pointed to by the ASYNCLISTADDR
register. Software should initialize the ASYNCLISTADDR to point to the first QH. The controller sets the
ASYNCLISTADDR to point to the next QH as it processes the list. This way the controller returns to
processing the asynchronous list (after periodic list processing) at the point it left off instead of returning
to the beginning of the list each time. This implements a pure round-robin service for all QHs linked into
the asynchronous list.

2.4.1 Asynchronous Schedule Traversal

The asynchronous schedule traversal is enabled or disabled by the asynchronous schedule enable bit
(USBCMD[ASE]). Modifications to the ASE bit are not necessarily immediate. The USBSTS[AS] bit
reflects the current status of the asynchronous schedule. If the AS bit is cleared, then the host controller
simply does not try to access the asynchronous schedule. If the AS bit is set, the host controller uses the
ASYNCLISTADDR register to traverse the asynchronous schedule.

When the host controller begins traversing the asynchronous schedule, it starts by using the value of the
ASYNCLISTADDR register. It reads the first referenced QH and begins executing transactions and
traversing the linked list as appropriate. When the host controller completes processing the asynchronous
schedule, it retains the value of the last accessed QH’s horizontal pointer in the ASYNCLISTADDR
register. The next time the asynchronous schedule is accessed this is the first QH that is serviced. This
provides round-robin fairness for processing the asynchronous schedule.

A host controller completes processing the asynchronous schedule when one of the following events
occur:

• The end of a microframe is reached
• The host controller detects an empty list condition
• The asynchronous schedule is disabled (USBCMD[ASE] is cleared)

ASYNCLISTADDR

USB Registers Bulk/Control Queue Heads

H

qTDs
Simplified EHCI Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor12

USB Host Example
2.4.2 Adding Control or Bulk Queue Heads to the Asynchronous
Schedule

One QH is added to the list every time a new device endpoint becomes active. Any traffic for that endpoint
is then setup in a qTD and is linked to the appropriate QH. The host controller cycles through the QHs in
a loop checking for active qTDs.

Because the asynchronous schedule processes QHs in a loop, the loop should not be broken while the
schedule is active. This means that care should be taken when adding or removing a QH to or from the
asynchronous schedule.

3 USB Host Example
Now let’s look at working USB host software to get some real world examples of how the data structures
are used. This section discusses the “m5329evb_usb_host_mouse_test” demo code in the
MCF532XSC.zip file available on the Freescale’s ColdFire website (http://www.freescale.com/coldfire).
This example code:

1. Configures the USB module for host mode
2. Enumerates a USB mouse
3. Reads offset and button click information from the mouse

This application note uses the MCF532XSC.zip file as a specific example, but the example code can easily
be ported to any other ColdFire device that includes an EHCI-compatible host or dual-role USB controller.

3.1 Control Queue Head
Once the host controller detects a new device attached to the USB, one of the first things to do is to setup
a QH to handle the control traffic to enumerate the device. Figure 7 shows the simplified QH layout and
the actual values used in the example software to initialize a QH for endpoint 0 immediately below each
line. The qTD overlay area is removed for all of the examples, since they do not need to be initialized by
software when creating the QH. The example software always clears the overlay area to make reading QH
values easier. After the QH is initialized, it is the first and only QH in the asynchronous list, so the
ASYNCLISTADDR register is written with the address of the QH.
Simplified EHCI Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor 13

http://www.freescale.com/coldfire

USB Host Example
3.1.1 Example Queue Head Horizontal Link Pointer (Offset = 0x00)

3.1.2 Endpoint Characteristics (Offset = 0x04)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 offset

Queue Head Horizontal Link Pointer 0001 T 0x00

0x4010_52E2

00000 Maximum Packet Length H 1 EPS EndPt 0 Device Address 0x04

0x0040_D000

0100_0000_0000_0000_0000_0000 µFrame S-mask 0x08

0x4000_0000

Current qTD Pointer 00000 0x0C

0x0000_0000

Next qTD Pointer 000 T 0x10

0x0000_0001

Figure 7. Endpoint 0 Control Queue Head Example

Table 3-7. Queue Head Horizontal Link Pointer

Field Description

31–5
QHLP

This value corresponds to the address of the QH. The QH itself resides at address 0x4010_52E0. So at this
point there is a single QH that points back to itself.

4–1 0b0001

0
T

This bit is cleared indicating that the horizontal link pointer value is valid.

Table 3-8. Endpoint Characteristics

Field Description

31–27 0b00000

26–16
Maximum

Packet Length

The max packet length is set with an initial value of 0x40. This value should be modified to reflect the
actual max packet length of the device once the device descriptor is read.

15
H

This bit is set to mark the QH as the head of the asynchronous schedule.

14 0b1

13–12
EPS

0b01 indicates a low-speed endpoint, since the mouse is a low-speed device.

11–8
EndPt

The endpoint number is 0, since this is the default control endpoint for enumeration.
Simplified EHCI Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor14

USB Host Example
3.1.3 Endpoint Capabilities (Offset = 0x8)

3.1.4 Current qTD Pointer (Offset = 0xC)

The current qTD pointer does not need to be initialized by software, but in this case the current qTD pointer
has been written to 0. For debugging purposes this can make it a bit easier to read the QH in memory.

3.1.5 Next qTD Pointer (Offset = 0x10)

The next qTD pointer is written as 0x0000_0001, which indicates that the QH does not currently point to
a valid qTD. Once qTDs for this endpoint are initialized this value should be updated to point to the first
qTD in the linked list.

3.2 Get Device Descriptor qTDs
At this point the asynchronous list is setup and enabled, but the host controller does not request any bus
cycles yet. To request USB traffic we need to create some qTDs. The first step of the USB enumeration
process is to read in the device descriptor from the attached device, so we use this as an example for
initializing qTDs. The device descriptor provides some basic information about the attached device
including the maximum packet size the device supports for endpoint zero. After the max packet size is read
in, the QH[Maximum Packet Length] field should be written to match the device’s capability.

To read in the device descriptor, three different transfers are required:
1. A setup packet is sent with the get device descriptor command.
2. The host sends an IN packet to allow the device to send the descriptor.
3. The host issues a zero-length OUT packet to acknowledge reception of the descriptor.

7 Write as 0.

6–0
Device

Address

The device address is set to 0 initially. This is the default address used by a device before it has been
assigned an address by the host. Once the set address command is sent to the device, this field should
be updated to match the device’s new address.

Table 3-9. Endpoint Capabilities

Bit Description

31–8 Write as 0x400_0000.

7–0
µFrame S-mask

Since this is a control endpoint the S-mask is cleared.

Table 3-8. Endpoint Characteristics (continued)

Field Description
Simplified EHCI Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor 15

USB Host Example
3.2.1 Get Descriptor Setup Packet

Figure 8 shows the simplified qTD layout, along with the actual values used to send the get descriptor
command in the software example. Since they are not used, the last four longwords of the qTD are
removed for all of the examples. The example software always clears the last four longwords of a qTD to
make reading qTD values easier.

3.2.1.1 Next qTD Pointer (Offset = 0x00)

3.2.1.2 qTD Token (Offset = 0x08)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 offset

Next qTD Pointer 0000 T 0x00

0x4010_5220

000_0000_0000_0000_0000_0000_0000_0000 1 0x04

0x0000_0001

dt Total Bytes to Transfer ioc 000 Cerr
PID

Code
Status 0x08

0x0008_0E80

Buffer Pointer 0x0C

0x4010_5C5C

Figure 8. Get Descriptor SETUP Packet qTD Example

Table 3-10. qTD Next Element Transfer Pointer (longword 0)

Field Description

31–5
Next qTD
Pointer

This points to the IN packet qTD. In this case it is located at address 0x4010_5220. See Section 3.2.2,
“IN Packet” for more details on the IN packet.

4–1 0b0000

0
T

This bit is cleared indicating that the next qTD pointer value is valid.

Table 3-11. qTD Token (longword 2)

Field Description

31
dt

This bit is cleared since we are sending a SETUP packet.

30–16
Total Bytes
to Transfer

Set to 0x8 since setup packets are always 8 bytes.

15
ioc

This bit is cleared. At the end of the OUT packet, we will request an interrupt to indicate the completion
of the full get descriptor transaction.

14–10 0b000
Simplified EHCI Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor16

USB Host Example
3.2.1.3 qTD Buffer Page Pointer (Offset = 0x0C)

3.2.2 IN Packet

Figure 9 shows the simplified qTD layout along with the actual values used in the software example to
send the IN command to read the device descriptor.

11–10
Cerr

Set to 0b11 to allow for up to three consecutive retries.

9–8
PID Code

0b10 indicates a SETUP PID.

7–0
Status

0x80 marks the qTD as active and ready for the host controller hardware to process.

Table 3-12. qTD Buffer Pointer

Field Description

31–0
Buffer Pointer

0x4010_5E2C is the location of the buffer that contains the data to transmit. 0x8006_0001 and
0x0000_4000. This translates to a GET_DESCRIPTOR command, where the type of descriptor is
DEVICE and the length is 64 bytes.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 offset

Next qTD Pointer 0000 T 0x00

0x4010_51C0

000_0000_0000_0000_0000_0000_0000_0000 1 0x04

0x0000_0001

dt Total Bytes to Transfer ioc 000 Cerr
PID

Code
Status 0x08

0x8040_0D80

Buffer Pointer 0x0C

0x4010_60F8

Figure 9. Get Descriptor IN Packet qTD Example

Table 3-11. qTD Token (longword 2) (continued)

Field Description
Simplified EHCI Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor 17

USB Host Example
3.2.2.1 Next qTD Pointer (Offset = 0x00)

3.2.2.2 qTD Token (Offset = 0x08)

Table 3-13. qTD Next Element Transfer Pointer (longword 0)

Field Description

31–5
Next qTD
Pointer

This points to the OUT packet qTD. In this case it is located at address 0x4010_51C0. See
Section 3.2.3, “OUT Packet” for more details on the OUT packet.

4–1 0b0000

0
T

This bit is cleared indicating that the next qTD pointer value is valid.

Table 3-14. qTD Token (longword 2)

Field Description

31
dt

This bit is set since we are requesting an IN packet.

30–16
Total Bytes
to Transfer

Set to 0x40. The mouse has a maximum packet length of eight. So, it sends the first eight bytes of the
device descriptor. Since this is shorter than the requested length, the host controller interprets this as the
end of the packet and does not request more data.

The device descriptor is actually 18 bytes long, so the eight bytes we have read so far are not the full
descriptor. However, this is enough of the descriptor to determine the maximum packet length the device
can support on endpoint zero (the eighth byte of the device descriptor is the max packet length). After this
value has been programmed into the QH[Maximum Packet Length] field the host controller recognizes
eight bytes as a full packet from the device and responds accordingly.

For example, the device descriptor is read a second time in the enumeration process. This time the host
requests three different IN packets. The first two are the full 8 bytes. Then on the final IN the device just
sends two bytes of data. Since this is less than the max packet length, the host recognizes this as the end
of the packet.

15
ioc

This bit is cleared. At the end of the OUT packet, we will request an interrupt to indicate the completion
of the full get descriptor transaction.

14–10 0b000

11–10
Cerr

Set to 0b11 to allow for up to three consecutive retries.

9–8
PID Code

0b01 indicates an IN PID.

7–0
Status

0x80 marks the qTD as active and ready for the host controller hardware to process.
Simplified EHCI Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor18

USB Host Example
3.2.2.3 qTD Buffer Page Pointer (Offset = 0x0C)

3.2.3 OUT Packet

Figure 10 shows the simplified qTD layout along with the actual values used in the software example to
send the OUT to acknowledge reception of the device descriptor.

3.2.3.1 Next qTD Pointer (Offset = 0x00)

Table 3-15. qTD Buffer Pointer

Field Description

31–0
Buffer Pointer

0x4010_60F8 is the location of the buffer that the host controller writes the data to as it receives
it from the device.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 offset

Next qTD Pointer 0000 T 0x00

0xDEAD_0001

000_0000_0000_0000_0000_0000_0000_0000 1 0x04

0x0000_0001

dt Total Bytes to Transfer ioc 000 Cerr
PID

Code
Status 0x08

0x8000_8C80

Buffer Pointer 0x0C

0x0000_0000

Figure 10. Get Descriptor OUT Packet qTD Example

Table 3-16. qTD Next Element Transfer Pointer (longword 0)

Field Description

31–5
Next qTD
Pointer

The OUT packet is the last qTD needed to complete the get descriptor transaction. There is no other traffic
to request at this time. So, the next qTD pointer is an invalid value. The example code uses a value of
0xDEAD_0001, so that it is easy to recognize the end of a qTD chain.

4–1 0b0000

0
T

This bit is set indicating that the next qTD pointer value is invalid.
Simplified EHCI Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor 19

USB Host Example
3.2.3.2 qTD Token (Offset = 0x08)

3.2.3.3 qTD Buffer Page Pointer (Offset = 0x0C)

3.3 Interrupt Queue Head
After the descriptors have been read from the mouse, the example software configures a QH to
communicate with an interrupt endpoint. The mouse uses the interrupt endpoint to return x- and y- offset
information along with button click data and scroll wheel information (the format of the data returned can
vary from mouse to mouse).

Figure 11 shows the simplified QH layout, along with the values used in the example software to initialize
an interrupt QH for endpoint one.

Table 3-17. qTD Token (longword 2)

Field Description

31
dt

This bit is set since we are sending an OUT packet.

30–16
Total Bytes
to Transfer

Set to 0x0. The OUT is a zero length transaction that is only used as an acknowledge. So, no
actual data is sent from the host.

15
ioc

This bit is set to request an interrupt when the full get descriptor transaction is complete.

14–10 0b000

11–10
Cerr

Set to 0b11 to allow for up to three consecutive retries.

9–8
PID Code

0b00 indicates an OUT PID.

7–0
Status

0x80 marks the qTD as active and ready for the host controller hardware to process.

Table 3-18. qTD Buffer Pointer

Field Description

31–0
Buffer Pointer

The buffer pointer is cleared. Since no data is being sent a data buffer is not needed.
Simplified EHCI Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor20

USB Host Example
3.3.1 Example Queue Head Horizontal Link Pointer (Offset = 0x00)

3.3.2 Endpoint Characteristics (Offset = 0x04)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 offset

Queue Head Horizontal Link Pointer 0001 T 0x00

0x4010_4243

00000 Maximum Packet Length H 1 EPS EndPt 0 Device Address 0x04

0x0008_5102

0100_0000_0000_0000_0000_0000 µFrame S-mask 0x08

0x4000_0001

Current qTD Pointer 00000 0x0C

0x0000_0000

Next qTD Pointer 000 T 0x10

0x0000_0001

Figure 11. Interrupt Queue Head Example

Table 3-19. Queue Head Horizontal Link Pointer

Field Description

31–5
QHLP

This value corresponds to the address of the QH. The QH itself resides at address 0x4010_4240.

4–1 0b0001

0
T

This bit is set indicating that the horizontal link pointer value is invalid. Since this QH goes into the periodic
schedule, it is not used in a circular linked list like QHs for the asynchronous schedule.

Table 3-20. Endpoint Characteristics

Field Description

31–27 0b00000

26–16
Maximum

Packet Length

The max packet length is set to 0x08. This corresponds to the maximum packet size in the device’s
endpoint descriptor. A USB mouse always has a maximum packet size of 0x8.

15
H

This bit is cleared since this bit is not used for the periodic schedule.

14 0b1

13–12
EPS

0b01 indicates a low-speed endpoint, since the mouse is a low-speed device.

11–8
EndPt

The endpoint number is 1, since this is the endpoint used by the mouse for interrupt traffic.
Simplified EHCI Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor 21

USB Host Example
3.3.3 Endpoint Capabilities (Offset = 0x8)

3.3.4 Current qTD Pointer (Offset = 0xC)

The current qTD pointer does not need to be initialized by software, but in this case the current qTD pointer
is written to 0. For debugging purposes this can make it a bit easier to read the QH in memory.

3.3.5 Next qTD Pointer (Offset = 0x10)

The next qTD pointer is written as 0x0000_0001. This indicates that the QH does not point to a valid qTD.
After a qTD for this endpoint is created, this field should be written to point to the first qTD.

3.4 Periodic Frame List Initialization
At this point the example software configures the periodic frame list. The periodic_schedule_init function
performs the following:

• Initializes the USBCMD[FS] field, which defines the size of the periodic frame list
• Allocates memory for the periodic frame list
• Fills the frame list with longwords of 0x0000_0001, indicating that the frame list pointers are

currently invalid
• The PERIODICLISTBASE register is set to point to the frame list
• The periodic schedule is enabled

Now, the interrupt QH needs to be linked to the periodic frame list to create the desired polling rate. By
default the example software sets the periodic frame list size to 32. The first entry in the frame list is set
to 0x4010_4242 to point it to the interrupt QH.

This means that the device is polled every 32 ms (1 ms per frame list pointer × 32 frame list pointers). The
poll rate could be increased by pointing more of the frame list pointers to the interrupt QH. The frame list
size could be decreased to increase the poll rate as well.

7 Write as 0.

6–0
Device Address

The device address is set to 2. This is the address that the example software assigns to the device
during the enumeration process.

Table 3-21. Endpoint Capabilities

Field Description

31–8 Write as 0x400_0000.

7–0
µFrame S-mask

Since this QH is being used for a LS interrupt endpoint, the S-mask value is set to one.

Table 3-20. Endpoint Characteristics (continued)

Field Description
Simplified EHCI Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor22

USB Host Example
3.5 Interrupt qTD
The periodic schedule is running at this point, but a qTD is needed to move data. The example code uses
a single qTD for interrupt traffic. The qTD is setup to accommodate 20 packets from the USB mouse. Once
the 20 packets have been received, the total bytes to transfer field and the buffer pointer are re-initialized
to their original values, so that the qTD can be used again in a continuous loop.

Figure 12 shows the actual interrupt qTD values used by the example code.

3.5.1 Next qTD Pointer (Offset = 0x00)

3.5.2 qTD Token (Offset = 0x08)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 offset

Next qTD Pointer 0000 T 0x00

0xDEAD_0001

000_0000_0000_0000_0000_0000_0000_0000 1 0x04

0x0000_0001

dt Total Bytes to Transfer ioc 000 Cerr
PID

Code
Status 0x08

0x8064_8D80

Buffer Pointer 0x0C

0x4010_6268

Figure 12. Interrupt qTD Example

Table 3-22. qTD Next Element Transfer Pointer (longword 0)

Field Description =

31–5
Next qTD
Pointer

This qTD is the only one used for this QH. Since a linked list of qTDs is not needed, the next qTD pointer
value is invalid.

4–1 0b0000

0
T

This bit is set indicating that the next qTD pointer value is invalid.

Table 3-23. qTD Token (longword 2)

Field Description

31
dt

This bit is set since we are sending an IN packet.

30–16
Total Bytes
to Transfer

The total bytes to transfer is equal to the size of 20 of packets from the mouse. The packet size is
defined by byte 4 of the device’s endpoint descriptor. Since the packet size can vary depending on
the mouse, the total bytes to transfer can vary as well. In this case, the mouse connected to the
M5329EVB returns five bytes of data for each IN packet. So, the total bytes to transfer is 100 (0x64).
Simplified EHCI Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor 23

Additional Information
3.5.3 qTD Buffer Page Pointer (Offset = 0x0C)

4 Additional Information
Table 25 lists some additional resources that can be used to find more information on the USB and EHCI.

15
ioc

This bit is set to request an interrupt when the transaction is complete.

14–10 0b000

11–10
Cerr

Set to 0b11 to allow up to three consecutive retries.

9–8
PID Code

0b01 indicates an IN PID.

7–0
Status

0x80 marks the qTD as active and ready for the host controller hardware to process.

Table 3-24. qTD Buffer Pointer

Field Description

31–0
Buffer Pointer

0x4010_6268 is the location of the buffer where the data is written as it is read from the device.

Table 25. Additional Resources

Document Website Description

Universal Serial Bus Specification http://www.usb.org/developers/docs Official USB specification

Enhanced Host Controller Interface
Specification

http://www.intel.com/technology/usb/spec.htm Official EHCI specification.

Table 3-23. qTD Token (longword 2) (continued)

Field Description
Simplified EHCI Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor24

http://www.usb.org/developers/docs
http://www.intel.com/technology/usb/spec.htm

THIS PAGE IS INTENTIONALLY BLANK
Simplified EHCI Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor 25

Document Number: AN3520
Rev. 0
09/2007

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2007. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 USB Host Overview
	2.1 Queue Head (QH)
	2.1.1 Queue Head Horizontal Link Pointer (Offset = 0x00)
	2.1.2 Endpoint Characteristics (Offset = 0x04)
	2.1.3 Endpoint Capabilities (Offset = 0x08)
	2.1.4 Current qTD Pointer (Offset = 0x0C)
	2.1.5 qTD Overlay Area (Offset = 0x10-0x2C)

	2.2 Queue Element Transfer Descriptor (qTD)
	2.2.1 Next qTD Pointer (Offset = 0x00)
	2.2.2 qTD Token (Offset = 0x08)
	2.2.3 qTD Buffer Page Pointer (Offset = 0x0C)

	2.3 Periodic Schedule
	2.3.1 Frame List Link Pointers
	2.3.2 Periodic Schedule Traversal
	2.3.3 Adding Interrupt Queue Heads to the Periodic Schedule

	2.4 Asynchronous Schedule
	2.4.1 Asynchronous Schedule Traversal
	2.4.2 Adding Control or Bulk Queue Heads to the Asynchronous Schedule

	3 USB Host Example
	3.1 Control Queue Head
	3.1.1 Example Queue Head Horizontal Link Pointer (Offset = 0x00)
	3.1.2 Endpoint Characteristics (Offset = 0x04)
	3.1.3 Endpoint Capabilities (Offset = 0x8)
	3.1.4 Current qTD Pointer (Offset = 0xC)
	3.1.5 Next qTD Pointer (Offset = 0x10)

	3.2 Get Device Descriptor qTDs
	3.2.1 Get Descriptor Setup Packet
	3.2.1.1 Next qTD Pointer (Offset = 0x00)
	3.2.1.2 qTD Token (Offset = 0x08)
	3.2.1.3 qTD Buffer Page Pointer (Offset = 0x0C)

	3.2.2 IN Packet
	3.2.2.1 Next qTD Pointer (Offset = 0x00)
	3.2.2.2 qTD Token (Offset = 0x08)
	3.2.2.3 qTD Buffer Page Pointer (Offset = 0x0C)

	3.2.3 OUT Packet
	3.2.3.1 Next qTD Pointer (Offset = 0x00)
	3.2.3.2 qTD Token (Offset = 0x08)
	3.2.3.3 qTD Buffer Page Pointer (Offset = 0x0C)

	3.3 Interrupt Queue Head
	3.3.1 Example Queue Head Horizontal Link Pointer (Offset = 0x00)
	3.3.2 Endpoint Characteristics (Offset = 0x04)
	3.3.3 Endpoint Capabilities (Offset = 0x8)
	3.3.4 Current qTD Pointer (Offset = 0xC)
	3.3.5 Next qTD Pointer (Offset = 0x10)

	3.4 Periodic Frame List Initialization
	3.5 Interrupt qTD
	3.5.1 Next qTD Pointer (Offset = 0x00)
	3.5.2 qTD Token (Offset = 0x08)
	3.5.3 qTD Buffer Page Pointer (Offset = 0x0C)

	4 Additional Information

