
Freescale Semiconductor
Application Note

© Freescale Semiconductor, Inc., 2006. All rights reserved.

The advanced encryption standard-cipher message
authentication code (AES-CMAC) is a mode of AES
encryption used in IEEE® Std. 802.16e™ (WiMax) for
subscriber station authentication with base stations. CMAC
is a message authentication scheme built on two more basic
modes of AES:

• Electronic code book (ECB)

• Cipher block chaining (CBC)

AES-CMAC is relatively new, and most commercially
available encryption accelerators do not support it directly.
The CMAC specification published by NIST can be
accelerated with hardware that performs AES-ECB and
AES-CBC. However, some processing that would likely be
executed on a general-purpose CPU is required at each stage.

The SEC 2.x is a descriptor-based security engine integrated
into several Freescale PowerQUICC™ products. It can
accelerate AES-ECB and CBC, and, by extension,
AES-CMAC. This application notes describes the hardware
and software procedures for generating a CMAC using
examples based on the MPC8555E SEC 2.0 hardware and
device drivers. The techniques and code examples
generically apply to all PowerQUICC devices with an SEC
2.x security engine. This document supplements the SEC 2.0
Descriptor Programmer’s Guide (AN2755).

AN3085
Rev. 0, 06/2006

Contents
1 AES-CMAC Basics .2
2 CMAC Software .3

2.1 Configuring and Building the CMAC Module . . . 3
2.2 Example Run .4
2.3 Customizing the Software .5

3 Conclusions .5
4 References .5

SEC 2.x Descriptor Programmer’s Guide
Supplement
Implementing AES-CMAC Using the SEC 2.x

by Systems Engineering
Freescale Semiconductor, Inc.

Implementing AES-CMAC Using the SEC 2.x, Rev. 0

2 Freescale Semiconductor

AES-CMAC Basics

All application software provided with this application note applies to the Freescale Linux-based security
driver. The CPU executes the application software, prepares the crypto request data structure, and launches
the crypto operation through an ioctl call.

1 AES-CMAC Basics
AES-CMAC is a new mode of AES for message authentication only. The IEEE 802.16e standard uses this
AES mode to authenticate control messages. The PowerQUICC SEC 2.x hardware cannot perform full
AES-CMAC in a single descriptor as it can for many of the more established AES modes. However, with
some modification of the 802.16e management software, the SEC can complete a CMAC operation in a
single descriptor.

Figure 1. SEC-Accelerated CMAC

The procedure for an SEC-accelerated CMAC is as follows:

1. When a secure 802.16e connection is established, generate an AES symmetric key for use in
AES-CMAC message authentication.

2. With this key, encrypt 16 bytes of zeros, shown in Section A of Figure 1 as 16{0x00}, with the
SEC in AES-ECB mode.

3. The CPU software processes the output of this operation to generate two subkeys, K1 and K2.

4. Save K1 and K2 in memory.

Each time the connection performs a CMAC, these two subkeys are used. Subkey generation is
performed only one time.

AES Encryption

16{0x00}

K

L = ciph(K, 0128)

K1

2

2

K2

Descriptor 1
AES-ECB Encryption

Host Postprocessing:

– If MSB = 1, K1 = (L1<<1) ^ 0x87
Else K1 = L << 1

– K2 is similarly generated from
K1

Section A: Subkey Generation

AES Encryption

Section B: CMAC Generation

CMAC

Padded Pn
Pn

|Pn| == 128

K1 K2

Host Preprocessing
Determines
Final Block Into
Descriptor

Ci–1

K

Descriptor 2
AES-CBC
Encryption

Implementing AES-CMAC Using the SEC 2.x, Rev. 0

Freescale Semiconductor 3

CMAC Software

5. The CMAC authentication value is generated using AES-CBC encryption as shown in Section B
of Figure 1.

6. The message/PDU is preprocessed to generate Pn or Padded Pn, which is XORed with K1 or K2,
respectively.

If the last block of the message is 16 bytes long, Pn is generated, otherwise Padded Pn.

7. The Pn block or the Padded Pn block is concatenated with the rest of the message Ci-1.

8. The AES-CBC descriptor is prepared and launched.

The preprocessing includes checking whether the input message size is an integer multiple of 16
bytes. If not, CPU software adds padding and then XORs the input message with either K1 or K2.

9. The result of this operation is fed into the AES-CBC encryption process and the descriptor is
prepared and launched.

The output context of this AES-CBC operation is CMAC.

For information on the security principles and the details of the CMAC algorithm, refer to Section 4,
“References.”

2 CMAC Software
The CMAC software discussed here is an add-on to the SEC2 kernel (Linux 2.6.11) downloadable module.
For details on this driver software, refer to the SEC 2.0 Reference Device Driver User’s Guide
(SEC2SWUG) and the corresponding driver software, both of which are available from the MPC8555E
page at the Freescale web site listed on the back cover of this document.

To run the software as discussed in this application note, t have a MPC8555/41 CDS platform and a
board-support package (BSP) for that target platform. Because it is so easily available, the Freescale
LTIB-based BSP is used for building the bootloader, kernel, and SEC2 driver and modules. It is beyond
the scope of this document to describe the BSP procedure for the MPC8555CDS platform. If you are
interested in a LTIB-based BSP for running the SEC2 driver and modules on the MPC8555CDS platform,
refer to the Freescale application note entitled MPC8555E Security Quick Start Guide (AN3075).

2.1 Configuring and Building the CMAC Module
The downloadable CMAC kernel has several tunable parameters that are explained in this section. The
following line prints a debug message, if it is defined:

//#define DEBUG_CMAC

A CMAC can be generated for AES ciphers with key lengths of either 128, 192, or 256 bits. Define one
of these macros before compiling and running the module on the target MPC8555CDS platform. There is
no guard against the user error of defining more than one of these macros.

//#define AES_128
//#define AES_192
#define AES_256

For each selection of cipher block (AES_128, AES_192, or AES_256) four tests (TEST1, TEST2, TEST3
and TEST4) can be run. Define one of the four TESTn macros. For each of these macros, a NIST published
known input message is taken. Then the SEC2 performs the cascaded AES crypto operations, generates

Implementing AES-CMAC Using the SEC 2.x, Rev. 0

4 Freescale Semiconductor

CMAC Software

the CMAC, and compares it with the NIST published values. Refer to the Updated_CMAC_Examples.pdf
document published by NIST. There is no guard against the user error of defining more than one of these
marcos.

//#define TEST1
//#define TEST2
//#define TEST3
#define TEST4

To compile the CMAC software successfully, have a working kernel source tree (preferably 2.6.11) and
the SEC2 driver code to place on the kernel tree. For an example, see the Freescale application note entitled
MPC8555E Security Quick Start Guide (AN3075), which describes the LTIB approach of building the
kernel and SEC2 drivers/modules.

Assuming that the SEC2 driver is up and running in a Linux environment, you must add the CMAC
features to the SEC2 module by adding the following files.

• testCmac.c : $KERNEL_SRC/drivers/sec2x-test/

• testAll.c : $KERNEL_SRC/drivers/sec2x-test/

• Makefile: $KERNEL_SRC/drivers/sec2x-test/

Next, compile the kernel and build the modules. In the sec2x-test directory, an sec2drvTest.ko module is
created. For simplicity, all other traditional SEC2 testing features are commented out in the testAll.c file
and only the CMAC test procedure is enabled. When the module runs, notice that the CMAC results are
displayed on the console. An example test result is shown in next section.

2.2 Example Run
LTIB, which is based on the Linux 2.6 kernel and rootfilesystem, is deployed to the MPC8555CDS target
platform as described in the MPC8555E Security Quick Start Guide (AN3075). From the Linux prompt,
install the module. Example 1 shows how the console display lists the key, message, subkeys cipher block
chosen, and the CMAC derived.

Example 1. Running the CMAC Module

/lib/modules/2.6.11/kernel/drivers/sec2x-test # insmod sec2drvTest.ko

*** Test CMAC subkey generation ***

===

Key:
d107d924 60 3d eb 10 15 ca 71 be 2b 73 ae f0 85 7d 77 81 `=....q.+s...}w.
d107d934 1f 35 2c 07 3b 61 08 d7 2d 98 10 a3 09 14 df f4 .5,.;a..-.......

Message for subkey generation:
d107d984 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

K1:
cec17c90 ca d1 ed 03 29 9e ed ac 2e 9a 99 80 86 21 50 2f )........!P/

K2:
cec17ca0 95 a3 da 06 53 3d db 58 5d 35 33 01 0c 42 a0 d9 S=.X]53..B..

*** Test CMAC generation ***

Implementing AES-CMAC Using the SEC 2.x, Rev. 0

Freescale Semiconductor 5

Conclusions

=====================================
Block Cipher chosen : AES 256
TEST4 : Message Length 512 bits (64 Bytes)

Message for CMAC generation:
d107d944 6b c1 be e2 2e 40 9f 96 e9 3d 7e 11 73 93 17 2a k....@...=~.s..*
d107d954 ae 2d 8a 57 1e 03 ac 9c 9e b7 6f ac 45 af 8e 51 .-.W......o.E..Q
d107d964 30 c8 1c 46 a3 5c e4 11 e5 fb c1 19 1a 0a 52 ef 0..F.\........R.
d107d974 f6 9f 24 45 df 4f 9b 17 ad 2b 41 7b e6 6c 37 10 ..$E.O...+A{.l7.

CMAC:
cec17cf0 e1 99 21 90 54 9f 6e d5 69 6a 2c 05 6c 31 54 10 ..!.T.n.ij,.l1T.
testAll(): All 2 Tests Passed
/lib/modules/2.6.11/kernel/drivers/sec2x-test #

2.3 Customizing the Software
The message for which the CMAC module must be generated is defined as a static array. Both the input
and output arrays are padded with 0s to ensure that their size is a multiple of 16 bytes. This padding is just
a place holder for actual padded data to be constructed by software, thus preventing the need for the SEC
scatter gather mechanism. A message of arbitrary length could be passed to the CMAC software instead
of a static array. If this message length is not a multiple of 16 bytes, the software must create the padding
bits in a memory region that is probably not contiguous to the message supplied to the CMAC module. In
this case, the SEC driver scatter gather capability can be used to fetch the non-contiguous padding.

Choosing static arrays simplifies data handling. The underlying cryptographic operation remains the same,
thus validating that the CMAC software implements the algorithm accurately, which is the sole objective
of this software. With minimal effort, you can add custom features to this CMAC software.

3 Conclusions
This document enables developers to accelerate CMAC generation using PowerQUICC devices with SEC
2.x functionality. Some customization may be needed to tailor the CMAC module to a specific
environment. These changes should be minimal if the Freescale Linux-based security driver is used. The
CMAC module is implemented using the SEC2 driver API.

4 References
The following reference documents for this application note are available either at the Freescale web site
listed on the back cover of this document or at the NIST web site:

• MPC8555E Security Quick Start Guide (AN3075)

• SEC 2.0 Reference Device Driver User’s Guide (SEC2SWUG)

• Updated CMAC examples:
http://csrc.nist.gov/publications/nistpubs/800-38B/Updated_CMAC_Examples.pdf

• Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

• SEC 2.0 Descriptor Programmer’s Guide (AN2755)

Implementing AES-CMAC Using the SEC 2.x, Rev. 0

6 Freescale Semiconductor

References

THIS PAGE INTENTIONALLY LEFT BLANK

Implementing AES-CMAC Using the SEC 2.x, Rev. 0

Freescale Semiconductor 7

References

THIS PAGE INTENTIONALLY LEFT BLANK

Document Number: AN3085
Rev. 0
06/2006

Freescale™ , the Freescale logo, and PowerQUICC are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the property of their
respective owners.

© Freescale Semiconductor, Inc., 2006.

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

email:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
1-800-521-6274
480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064, Japan
0120 191014
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447
303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale Semiconductor
Application Note

© Freescale Semiconductor, Inc., 2006. All rights reserved.

The advanced encryption standard-cipher message
authentication code (AES-CMAC) is a mode of AES
encryption used in IEEE® Std. 802.16e™ (WiMax) for
subscriber station authentication with base stations. CMAC
is a message authentication scheme built on two more basic
modes of AES:

• Electronic code book (ECB)

• Cipher block chaining (CBC)

AES-CMAC is relatively new, and most commercially
available encryption accelerators do not support it directly.
The CMAC specification published by NIST can be
accelerated with hardware that performs AES-ECB and
AES-CBC. However, some processing that would likely be
executed on a general-purpose CPU is required at each stage.

The SEC 2.x is a descriptor-based security engine integrated
into several Freescale PowerQUICC™ products. It can
accelerate AES-ECB and CBC, and, by extension,
AES-CMAC. This application notes describes the hardware
and software procedures for generating a CMAC using
examples based on the MPC8555E SEC 2.0 hardware and
device drivers. The techniques and code examples
generically apply to all PowerQUICC devices with an SEC
2.x security engine. This document supplements the SEC 2.0
Descriptor Programmer’s Guide (AN2755).

AN3085
Rev. 0, 06/2006

Contents
1 AES-CMAC Basics .2
2 CMAC Software .3

2.1 Configuring and Building the CMAC Module . . . 3
2.2 Example Run .4
2.3 Customizing the Software .5

3 Conclusions .5
4 References .5

SEC 2.x Descriptor Programmer’s Guide
Supplement
Implementing AES-CMAC Using the SEC 2.x

by Systems Engineering
Freescale Semiconductor, Inc.

Implementing AES-CMAC Using the SEC 2.x, Rev. 0

2 Freescale Semiconductor

AES-CMAC Basics

All application software provided with this application note applies to the Freescale Linux-based security
driver. The CPU executes the application software, prepares the crypto request data structure, and launches
the crypto operation through an ioctl call.

1 AES-CMAC Basics
AES-CMAC is a new mode of AES for message authentication only. The IEEE 802.16e standard uses this
AES mode to authenticate control messages. The PowerQUICC SEC 2.x hardware cannot perform full
AES-CMAC in a single descriptor as it can for many of the more established AES modes. However, with
some modification of the 802.16e management software, the SEC can complete a CMAC operation in a
single descriptor.

Figure 1. SEC-Accelerated CMAC

The procedure for an SEC-accelerated CMAC is as follows:

1. When a secure 802.16e connection is established, generate an AES symmetric key for use in
AES-CMAC message authentication.

2. With this key, encrypt 16 bytes of zeros, shown in Section A of Figure 1 as 16{0x00}, with the
SEC in AES-ECB mode.

3. The CPU software processes the output of this operation to generate two subkeys, K1 and K2.

4. Save K1 and K2 in memory.

Each time the connection performs a CMAC, these two subkeys are used. Subkey generation is
performed only one time.

AES Encryption

16{0x00}

K

L = ciph(K, 0128)

K1

2

2

K2

Descriptor 1
AES-ECB Encryption

Host Postprocessing:

– If MSB = 1, K1 = (L1<<1) ^ 0x87
Else K1 = L << 1

– K2 is similarly generated from
K1

Section A: Subkey Generation

AES Encryption

Section B: CMAC Generation

CMAC

Padded Pn
Pn

|Pn| == 128

K1 K2

Host Preprocessing
Determines
Final Block Into
Descriptor

Ci–1

K

Descriptor 2
AES-CBC
Encryption

Implementing AES-CMAC Using the SEC 2.x, Rev. 0

Freescale Semiconductor 3

CMAC Software

5. The CMAC authentication value is generated using AES-CBC encryption as shown in Section B
of Figure 1.

6. The message/PDU is preprocessed to generate Pn or Padded Pn, which is XORed with K1 or K2,
respectively.

If the last block of the message is 16 bytes long, Pn is generated, otherwise Padded Pn.

7. The Pn block or the Padded Pn block is concatenated with the rest of the message Ci-1.

8. The AES-CBC descriptor is prepared and launched.

The preprocessing includes checking whether the input message size is an integer multiple of 16
bytes. If not, CPU software adds padding and then XORs the input message with either K1 or K2.

9. The result of this operation is fed into the AES-CBC encryption process and the descriptor is
prepared and launched.

The output context of this AES-CBC operation is CMAC.

For information on the security principles and the details of the CMAC algorithm, refer to Section 4,
“References.”

2 CMAC Software
The CMAC software discussed here is an add-on to the SEC2 kernel (Linux 2.6.11) downloadable module.
For details on this driver software, refer to the SEC 2.0 Reference Device Driver User’s Guide
(SEC2SWUG) and the corresponding driver software, both of which are available from the MPC8555E
page at the Freescale web site listed on the back cover of this document.

To run the software as discussed in this application note, t have a MPC8555/41 CDS platform and a
board-support package (BSP) for that target platform. Because it is so easily available, the Freescale
LTIB-based BSP is used for building the bootloader, kernel, and SEC2 driver and modules. It is beyond
the scope of this document to describe the BSP procedure for the MPC8555CDS platform. If you are
interested in a LTIB-based BSP for running the SEC2 driver and modules on the MPC8555CDS platform,
refer to the Freescale application note entitled MPC8555E Security Quick Start Guide (AN3075).

2.1 Configuring and Building the CMAC Module
The downloadable CMAC kernel has several tunable parameters that are explained in this section. The
following line prints a debug message, if it is defined:

//#define DEBUG_CMAC

A CMAC can be generated for AES ciphers with key lengths of either 128, 192, or 256 bits. Define one
of these macros before compiling and running the module on the target MPC8555CDS platform. There is
no guard against the user error of defining more than one of these macros.

//#define AES_128
//#define AES_192
#define AES_256

For each selection of cipher block (AES_128, AES_192, or AES_256) four tests (TEST1, TEST2, TEST3
and TEST4) can be run. Define one of the four TESTn macros. For each of these macros, a NIST published
known input message is taken. Then the SEC2 performs the cascaded AES crypto operations, generates

Implementing AES-CMAC Using the SEC 2.x, Rev. 0

4 Freescale Semiconductor

CMAC Software

the CMAC, and compares it with the NIST published values. Refer to the Updated_CMAC_Examples.pdf
document published by NIST. There is no guard against the user error of defining more than one of these
marcos.

//#define TEST1
//#define TEST2
//#define TEST3
#define TEST4

To compile the CMAC software successfully, have a working kernel source tree (preferably 2.6.11) and
the SEC2 driver code to place on the kernel tree. For an example, see the Freescale application note entitled
MPC8555E Security Quick Start Guide (AN3075), which describes the LTIB approach of building the
kernel and SEC2 drivers/modules.

Assuming that the SEC2 driver is up and running in a Linux environment, you must add the CMAC
features to the SEC2 module by adding the following files.

• testCmac.c : $KERNEL_SRC/drivers/sec2x-test/

• testAll.c : $KERNEL_SRC/drivers/sec2x-test/

• Makefile: $KERNEL_SRC/drivers/sec2x-test/

Next, compile the kernel and build the modules. In the sec2x-test directory, an sec2drvTest.ko module is
created. For simplicity, all other traditional SEC2 testing features are commented out in the testAll.c file
and only the CMAC test procedure is enabled. When the module runs, notice that the CMAC results are
displayed on the console. An example test result is shown in next section.

2.2 Example Run
LTIB, which is based on the Linux 2.6 kernel and rootfilesystem, is deployed to the MPC8555CDS target
platform as described in the MPC8555E Security Quick Start Guide (AN3075). From the Linux prompt,
install the module. Example 1 shows how the console display lists the key, message, subkeys cipher block
chosen, and the CMAC derived.

Example 1. Running the CMAC Module

/lib/modules/2.6.11/kernel/drivers/sec2x-test # insmod sec2drvTest.ko

*** Test CMAC subkey generation ***

===

Key:
d107d924 60 3d eb 10 15 ca 71 be 2b 73 ae f0 85 7d 77 81 `=....q.+s...}w.
d107d934 1f 35 2c 07 3b 61 08 d7 2d 98 10 a3 09 14 df f4 .5,.;a..-.......

Message for subkey generation:
d107d984 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

K1:
cec17c90 ca d1 ed 03 29 9e ed ac 2e 9a 99 80 86 21 50 2f )........!P/

K2:
cec17ca0 95 a3 da 06 53 3d db 58 5d 35 33 01 0c 42 a0 d9 S=.X]53..B..

*** Test CMAC generation ***

Implementing AES-CMAC Using the SEC 2.x, Rev. 0

Freescale Semiconductor 5

Conclusions

=====================================
Block Cipher chosen : AES 256
TEST4 : Message Length 512 bits (64 Bytes)

Message for CMAC generation:
d107d944 6b c1 be e2 2e 40 9f 96 e9 3d 7e 11 73 93 17 2a k....@...=~.s..*
d107d954 ae 2d 8a 57 1e 03 ac 9c 9e b7 6f ac 45 af 8e 51 .-.W......o.E..Q
d107d964 30 c8 1c 46 a3 5c e4 11 e5 fb c1 19 1a 0a 52 ef 0..F.\........R.
d107d974 f6 9f 24 45 df 4f 9b 17 ad 2b 41 7b e6 6c 37 10 ..$E.O...+A{.l7.

CMAC:
cec17cf0 e1 99 21 90 54 9f 6e d5 69 6a 2c 05 6c 31 54 10 ..!.T.n.ij,.l1T.
testAll(): All 2 Tests Passed
/lib/modules/2.6.11/kernel/drivers/sec2x-test #

2.3 Customizing the Software
The message for which the CMAC module must be generated is defined as a static array. Both the input
and output arrays are padded with 0s to ensure that their size is a multiple of 16 bytes. This padding is just
a place holder for actual padded data to be constructed by software, thus preventing the need for the SEC
scatter gather mechanism. A message of arbitrary length could be passed to the CMAC software instead
of a static array. If this message length is not a multiple of 16 bytes, the software must create the padding
bits in a memory region that is probably not contiguous to the message supplied to the CMAC module. In
this case, the SEC driver scatter gather capability can be used to fetch the non-contiguous padding.

Choosing static arrays simplifies data handling. The underlying cryptographic operation remains the same,
thus validating that the CMAC software implements the algorithm accurately, which is the sole objective
of this software. With minimal effort, you can add custom features to this CMAC software.

3 Conclusions
This document enables developers to accelerate CMAC generation using PowerQUICC devices with SEC
2.x functionality. Some customization may be needed to tailor the CMAC module to a specific
environment. These changes should be minimal if the Freescale Linux-based security driver is used. The
CMAC module is implemented using the SEC2 driver API.

4 References
The following reference documents for this application note are available either at the Freescale web site
listed on the back cover of this document or at the NIST web site:

• MPC8555E Security Quick Start Guide (AN3075)

• SEC 2.0 Reference Device Driver User’s Guide (SEC2SWUG)

• Updated CMAC examples:
http://csrc.nist.gov/publications/nistpubs/800-38B/Updated_CMAC_Examples.pdf

• Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

• SEC 2.0 Descriptor Programmer’s Guide (AN2755)

Implementing AES-CMAC Using the SEC 2.x, Rev. 0

6 Freescale Semiconductor

References

THIS PAGE INTENTIONALLY LEFT BLANK

Implementing AES-CMAC Using the SEC 2.x, Rev. 0

Freescale Semiconductor 7

References

THIS PAGE INTENTIONALLY LEFT BLANK

Document Number: AN3085
Rev. 0
06/2006

Freescale™ , the Freescale logo, and PowerQUICC are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the property of their
respective owners.

© Freescale Semiconductor, Inc., 2006.

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

email:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
1-800-521-6274
480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064, Japan
0120 191014
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447
303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

	1 AES-CMAC Basics
	2 CMAC Software
	2.1 Configuring and Building the CMAC Module
	2.2 Example Run
	2.3 Customizing the Software

	3 Conclusions
	4 References
	1 AES-CMAC Basics
	2 CMAC Software
	2.1 Configuring and Building the CMAC Module
	2.2 Example Run
	2.3 Customizing the Software

	3 Conclusions
	4 References

