
Freescale Semiconductor
Application Note

© Freescale Semiconductor, Inc., 2002, 2006. All rights reserved.

This application note describes how to take full advantage of
the MPC8xx caches and MMU features to maximize system
performance. It describes simple ways to measure system
performance.

1 Memory Management Units
The MPC8xx uses one common space to map the program
memory, data memory and peripherals. Therefore, it is
necessary to differentiate various address space areas (pages)
features. The main attributes to control are:

• Protection:

— Read/Write pages (data that can be modified),
read-only pages (program or constant data), No
Access pages (unmapped regions).

— Supervisor/User access pages. Some memory
regions must be accessed only in supervisor
mode.

— Guarded pages prevent speculative accesses to
devices that are not well behaved, such as
peripherals, FIFOs, and so on.

Contents

1 Memory Management Units .1
1.1 Basic MMU Features .2
1.2 Translation Disabled Versus Translation Enabled .6
1.3 Static Page Structure Versus Page on Demand7

2 Caches .10
2.1 Cache Basics .10
2.2 Cache Coherency .14
2.3 D-Cache Flush .15
2.4 Caching Permitted and Inhibited Regions 16
2.5 Data/Instruction Lock in Caches16
2.6 Coding Practices Affecting Performance17

3 Performance Estimation and Measurement 19
3.1 Benchmarks .20
3.2 Cache Hit/Miss Ratio .20
3.3 Instructions Per Clock .25

MPC8xx Performance-Driven
Optimization of Caches and MMU
Configuration

Document Number: AN3066
Rev. 1, 01/2006

MPC8xx Performance-Driven Optimization of Caches and MMU Configuration, Rev. 1

2 Freescale Semiconductor

Memory Management Units

• Caching:

— Caching permitted pages. Normal operation mode ensures the highest performance. Caching
inhibited pages are used mainly to enforce coherency.

— Data cache (D-Cache) write through/copy back pages.

• Write tracing. Sometimes it is necessary to trace whether the data in a memory region was modified
over a specified period of time–for example, when data stored on an external device (floppy disk,
PCMCIA card) is temporarily transferred to the main memory. When such data is discarded, it must
be copied back to the device only if it was modified.

Beside the assignment of memory attributes, the MPC8xx memory management units (MMUs) can be
used for the following tasks:

• Create different user/supervisor memory spaces.

• Create up to 16 virtual address spaces.

• Relocate memory pages.

Each member of the MPC8xx family of communication controllers has two separate MMUs, one for
instructions and another for data. Each MMU includes a translation lookaside buffer (TLB), which is a
cache for the most recently used pages. Table 1 lists the available sizes of MMU, which depend on the
number of TLB entries.

1.1 Basic MMU Features
The MMUs are optimized for embedded applications, and features relevant to such applications are
multiple page sizes, small translation tables, low power consumption, software tabletalk with hardware
assistance, and lockable TLB entries.

1.1.1 Multiple Page Sizes
The 8XX MMUs can handle pages sizes of 4 Kbytes, 16 Kbytes, 512 Kbytes, and 8 Mbytes. The 4 Kbyte
pages can be divided into four 1 Kbyte sub-pages. The PPM bit in register Mx_CTR selects one of the two
possible sub-page handling modes:

• 1 Kbyte protection. All four sub-pages are valid and each can have another protection mode.

• 4 Kbyte protection. All four sub-pages have the same protection mode, but each can be valid or not.
This mode can be used to emulate a 1 Kbyte page system by programming the translation table as
shown in Table 2. This table structure has one entry for each 1 Kbyte of address space (as opposed
to one entry for each 4 Kbytes of address space used for all other page sizes). The hardware
assistance for the TLB reload can be programmed to accommodate both 1 and 4 Kbyte tables
structures (using the MD_CTR[TWAM] bit).

Table 1. MPC8xx MMU Sizes

Controller Type Data MMU TLB Entries Instruction MMU TLB Entries

MPC860, MPC860SAR, MPC860T 32 32

MPC850, MPC850SAR, MPC801 8 8

MPC8xx Performance-Driven Optimization of Caches and MMU Configuration, Rev. 1

Freescale Semiconductor 3

Memory Management Units

1.1.2 Small Translation Tables
Assuming that the memory system is usually much smaller than the address space (4 Gbytes) and to
minimize the amount of external memory to host the translation tables, the MMU hardware assists the
reload of the TLB from two-level translation tables. Here, we assume a 4 Kbyte table structure
(Mx_CTR[TWAM] = 1). The translation tables structure uses one Level 1 table and one or more Level 2
tables. Each entry in the Level 1 table (L1T) describes a 4 Mbyte memory segment. The total address space
is 4 Gbytes, and there are 1024 4-byte entries in the L1T, so the dimension of L1T is 4 Kbytes. An entry of
the L1T contains the following fields:

• Valid bit. Must be set if there are valid pages in the respective segment. It is reset if no devices are
mapped.

• Level two table base address. If the Valid bit is set, this field points to the base address of the L2T
that describes the segment. If the segment is not valid, this field can point to any well-behaved
memory area.

• Segment attributes. These fields define attributes common to all pages in this segment.

An 8 Mbyte page fills two segments, and two identical L1T entries must be defined that point to the same
L2T. For each valid L1T entry, a Level 2 Table (L2T) must be defined to describe the pages in the
respective segment. The number of entries in the L2T depends upon the page size, as shown in Table 3.

Table 2. One Kbyte Page Structure Emulation

1 Kbyte Page
Number

Effective Page
Number

(Mx_RPN[24:27])
Sub-page validity

Real Page Number

1 EPN1 1000 RPN1

2 EPN1 0100 RPN2

3 EPN1 0010 RPN3

4 EPN1 0001 RPN4

5 EPN2 1000 RPN5

6 EPN2 0100 RPN6

7 EPN2 0010 RPN7

8 EPN2 0001 RPN8

.....

Table 3. Number of Entries in L2T

Page Size Pages per Segment Number of Entries in L2T L2T Size (Bytes)

8 Mbytes .5 1 4

512 Kbytes 8 8 32

16 Kbytes 256 1024* 4096

4 Kbytes 1024 1024 4096

MPC8xx Performance-Driven Optimization of Caches and MMU Configuration, Rev. 1

4 Freescale Semiconductor

Memory Management Units

For each 16 Kbyte page, four identical entries must be defined in the L2T. Each entry in the L2T describes
a page and contains a valid bit that must be set if the page is valid and that is reset if no devices are mapped,
a real page number, and page attributes. Large page sizes save execution time and memory space. For
example, a 32 Mbyte memory system can be mapped using 4 × 8 Mbyte pages or 8196 × 4 Kbyte pages:

• Execution time. For the first case, the four entries are loaded into the TLB during initialization or
the first time the core accesses them. No further page miss exceptions are generated. The overhead
in the second case can be estimated assuming, for example, that the core switches to a new 4 Kbyte
page each 500 instructions and the probability that the new page is not represented by a TLB entry
is 10 percent. For a 12 instruction TLB reload exception handler, the overhead is 0.24 percent.

• Memory space. In the first case, the translation tables take 4112 bytes (4096 for L1T and 4 × 4 for
L2T); in the second case, they take 36864 bytes (4096 for L1T and 8 × 4096 for L2T), which is
about nine times more.

1.1.3 Low Power Consumption
MMU power saving mode is based on the locality of the instruction in a program, that is, the high
probability that an instruction is followed by a significant number of other instructions fetched from the
same memory page. A logic block called fast TLB checks each core fetch request address against the
address of the previous fetch. If both are from the same page, the TLB is not accessed again because all
the information of the respective page was read from the TLB during the preceding fetch. This saves the
energy to access the TLB for most core fetch requests. Figure 1 shows a core fetch request.

Figure 1. Instruction MMU Functional Diagram

Data/Instruction Fetch

Same page
(Fast TLB Hit)

?

TLB
Hit
?

TLB reload (read page
description from external

 memory to TLB)

Use current page description

Yes

No

Yes

No

32-bit EA is generated

Compare Address
with TLB
Entries

Is page
valid

?

Yes

No
TLB error exception

Access permitted
by page protection

?

Yes

No

Use page description from TLB

(1 clock penalty)

(20–23 clock penalty
@ one wait-state
external memory)

MPC8xx Performance-Driven Optimization of Caches and MMU Configuration, Rev. 1

Freescale Semiconductor 5

Memory Management Units

Because data transfers have a lower locality than instruction fetches, the data MMU does not have a Fast
TLB. Therefore, the data TLB is accessed for each transfer simultaneously with the D-Cache tag read, so
there is no time penalty (see Figure 2).

1.1.4 Software Tabletalk with Hardware Assistance
To accelerate the TLB reload process, the MP8xx provides hardware assistance. The TLB miss exception
handlers that take advantage of this are nine instructions long (data TLB) and 12 instruction long
(instruction TLB). Furthermore, the TLB miss exception handlers do not include branch instructions, so
their execution time is constant.

Figure 2. Data MMU Functional Diagram

1.1.5 Lockable TLB Entries
To avoid TLB miss exceptions in time critical sections of code/data, the MMUs have a TLB entry lock
mechanism. Setting the bit Mx_CTR[RSV4I] advances the TLB reload counter (xTLB_IDX) in such a
way that the locked entries are not replaced. The number and indexes of TLBs that can be locked are listed
in Table 4.

Table 4. Lockable TLB Entries

Total TLB Entries Lockable TLB Entries Indexes of Lockable TLB Entries

32 4 28,29,30,31

8 2 6,7

Load-Store Request

TLB
Hit
?

TLB Reload (read page
description from external

 memory to TLB)

Yes

No

Compare Address
with TLB Entries

Is page
valid

?

Yes

No
TLB error exception

Access permitted
by page protection

?

Yes

No

Use page description from TLB

(0 Clock Penalty)

(20–23 clock penalty
@ one wait-state
external memory)

(From Core

MPC8xx Performance-Driven Optimization of Caches and MMU Configuration, Rev. 1

6 Freescale Semiconductor

Memory Management Units

The tlbia instruction does not invalidate the locked entries. Two methods are available to invalidate a
locked entry:

• Execute a tlbie instruction.

• Explicitly reset the valid field of the respective entry as shown in the following example:

 addi r31,R0,0x1f00 # assume the entry no. 31 must be invalidated
mtspr Mx_CTR,r31 # write the index to Mi_CTR or MD_CTR
xor r31,r31,r31 # make r31 = 0
mtspr Mx_RPN,r31 # write an invalid entry

If necessary, the Mx_CTR and r31 registers must be saved/restored.

1.2 Translation Disabled Versus Translation Enabled
The MPC8xx powers up in translation disabled mode. Even if MMU functionality is not required in an
application, enable them in order to boost performance. To use all its resources efficiently, the MPC8xx
starts attempting to process instructions even before the program reaches a point where the instructions are
part of the program flow. For example, if the instruction is from the address ADDR, the core may have
fetched instructions from addresses ADDR+4, ADDR+8, and so on to have them ready for execution. This
activity is speculative. If the instruction from the ADDR is a branch, the program flow changes and the
instructions from the following addresses are discarded. However, if ADDR is the last instruction in a
memory device and a peripheral or FIFO is mapped at ADDR + 4, the read cycle may have catastrophic
results. To prevent such situation, the memory pages where these kinds of devices reside must be guarded.

If the MMUs are enabled (translation enabled), each page of memory can be guarded or not. The following
rules apply for guarded pages:

• Speculative data load-stores stall until they are no longer speculative or are canceled by the core.

• All instruction fetches are prevented and generate an Instruction TLB Error exception.

If the MMUs are disabled (translation disabled), the whole memory is considered as guarded and the
speculative accessed are treated as follows:

• Speculative data load-stores stall until they are no longer speculative or are canceled by the core.

• All speculative instruction fetches outside the current real mode page are stalled till they are no
longer speculative or are canceled by the core. The real mode page length is given in Table 5.

The effect of the stalled accesses can be significant. If a code sequence contains only load-store
instructions that hit the cache, the number of instructions per clock is close to 1 in a non-guarded page and
close to 0.5 in a guarded page (or when the translation is disabled). Also, the sequencer stalls (when the
translation is disabled) for several clock cycles each time a real page boundary is crossed. Table 6
summarizes the effect of guarded storage.

Table 5. MPC8xx Real Mode Page Length

MI_CTR[PPM] Real Page Length (Kbytes)

0 4

1 1

MPC8xx Performance-Driven Optimization of Caches and MMU Configuration, Rev. 1

Freescale Semiconductor 7

Memory Management Units

1.3 Static Page Structure Versus Page on Demand
An application can load the MMUs in two ways:

• Page on demand. A page descriptor is loaded into a TLB entry for a translation of an address from
the respective page.

• Static page structure. All page descriptors in an application are loaded into the TLB during
initialization.

Static page structure is preferable because it saves the overhead of the TLB miss interrupts and the external
memory necessary to host the translation tables. Since the MPC8xx has large page sizes (up to 8 Mbytes),
this strategy can be implemented for a wide range of applications.

A TLB entry consists of a CAM entry and a RAM entry. To load a TLB entry, a mtspr Mx_RPN,reg must
be performed. The TLB entry to which the Mx_CTR[xTLB_INDX] points is updated using information
from the Mx_EPN, Mx_TWC, and Mx_RPN registers. Part of this information is stored in the CAM for
use by the TLB hit/miss logic, and the rest is stored in the RAM and for use by the translation logic. The
TLB includes multiple hit prevention. When a new entry is loaded, it is checked against previously loaded
entries. The existing page is invalidated if a potential multiple hit is detected because the new page
overlaps an existing page and is shared or not shared and has the same ASID:

• Effective Address (according to the page size)

• Sub-page index (if Mx_CTR[PPCS] = 0)

• MSR[[PR] (if Mx_CTR[PPCS] = 1)

• M_CASID[CASID] if the SH bit in the CAM entry is reset.

If no CAM entry hits, a TLB miss exception is generated. For a hit, the respective RAM entry is read and
the protection bits are checked. For a protection violation, a TLB error is generated; otherwise, the
translation is performed.

The TLB entries are not invalidated at power-up reset, so a tlbia instruction must be executed before they
are loaded. Care must be taken not to set the Mx_CTR[RSV4I] bit before this instruction executes because
it prevents invalidation of the locked entries.

Beside loading the TLBs with page descriptors, other MMU mechanisms must be initialized:

• Default cache attributes. The Mx_CTR[CIDEF] bits inhibit caching and the MD_CTR[WTDEF]
forces write-through mode of the D-Cache while the translation is inhibited.

Table 6. Effect of Guarded Storage

Type of Speculative
Transfer

Translation Disabled (TD) Translation Enabled (TE)
Highest Expected

Performance Penalty
(TD/TE)

Load-store Stalled Stalled only if the current page
is guarded

.5

Fetch Stalled if from another

real page than the current one

Protection error .95

MPC8xx Performance-Driven Optimization of Caches and MMU Configuration, Rev. 1

8 Freescale Semiconductor

Memory Management Units

• Protection override. The Mx_AP registers override the page protection mechanism. This can be
useful when debugging a program that is required to access various pages even if the protection
mechanism does not allow it, without having to change the TLB content. When a translation is
performed the APG field of the RAM selects a GP field from the Mx_AP register. This field is
interpreted in Domain Manager Mode or Default Mode depending upon the status of the
Mx_CTR[GPM] bit. The PowerPC architecture requires the APG value to match the four
most-significant bits of the effective page number. The MMU protection override allows any APG
value, so the APG value must match only for applications that comply with the PowerPC
architecture protection mode.

• Address space identifier. If non-shared entries are loaded into the TLB, the M_CASID register
must be initialized.

Figure 3. Instruction MMU

PPM INDX

C
T

R

1 19 23

APG G VPS

T
W

C

R
P

N RPN PP SPVF LP SH CI V

23 26 27 28 29 31

E
P

N

EPN EV ASID

EPN PS ASID SH SPV

0 19 20 22 23 26 27 28 31

EPN PS ASID SH SPV

0 19 20 22 23 26 27 28 31

TLB(N)

C
A

M
D

C
A

M

R
A

M

RPN PS CI APG PROT EV G

D
R

A
M

0

RPN PS CI APG PROT

PROT EV G

0

0

0

19 20 22 23 24 27 28 35 36 37

D
R

A
M

1

19 20 22 23 24 27 28 31

25 26 29 30 31

0 19 22 28 31

00 19 20 22 24 27 28 29 30 31

mtspr RPN,reg

mtspr DBCAM,reg

Logic

MPC8xx Performance-Driven Optimization of Caches and MMU Configuration, Rev. 1

Freescale Semiconductor 9

Memory Management Units

Figure 4. Data MMU

After the TLBs entries are loaded with the page descriptors and the registers are initialized, the translation
can be enabled by setting the bits IR (for instruction translation) and DR (for data translation) in the MSR
register. The MSR register is saved to SRR1 register when an exception is taken and restored from SRR1
when an rfi instruction is executed. The content of the TLBs can be read for debugging purposes. To
retrieve the content of a TLB entry, perform the following steps:

1. Load the field Mx_CTR[xTLB_INDX] with the index of the TLB entry.

2. Perform a write cycle to the register Mx_DCAM (the data written is discarded). This copies the
TLB line to the debug registers

3. Retrieve the TLB entry content from the debug registers (Mx_DCAM, Mx_DRAM0,
Mx_DRAM1).

The ASID mechanism allows up to 16 translation tables, each associated with another process. to be
defined. To use this mechanism, the following setup must be in place:

• Several translation tables with some pages not shared must be defined in the external memory.
Each translation table must use a different ASID.

• When code associated with a certain process runs, the M_CASID register must be loaded with the
value used in the respective translation table ASID.

• The TLBs hit only in the pages associated with the current process.

• The TLB miss exception handler must load pages from the translation table currently in use. That
is, it must load the base pointer of the first level table (M_TWB) with the address where the
respective table is placed.

PPM INDX
C

T
R

1 19 23

APG G WT VPS

T
W

C

R
P

N RPN PP SPVF LP SH CI V

23 26 27 28 29 31

E
P

N

EPN EV ASID

EPN ASIDSH

0 19 20 23 26 27 28 31

EPN ASIDSHSPVF

0 19 20 23 26 27 28 31

TLB(N)

C
A

M
D

C
A

M

R
A

M

RPN PS APGI PROTEVG

D
R

A
M

0

RPN PS APGI G

PROTEV

0

0

0

19 20 22 23 26 27 29 30 31 41

D
R

A
M

1

19 20 22 23 26 27 28 29

16 17 18 19 31

0 19 22 28 31

00 19 20 22 24 27 28 29 30 31

mtspr RPN,reg

mtspr DBCAM,reg

Logic

30

C

23

SPVF PS

PS

24 C

WT CI

WT CI C

28 3224

MPC8xx Performance-Driven Optimization of Caches and MMU Configuration, Rev. 1

10 Freescale Semiconductor

Caches

2 Caches
The MPC8xx core can process close to one instruction per clock. This rate cannot be sustained because of
limited memory system bandwidth. To overcome this limitation, two caches (one for instructions and one
for data) provide the core a faster access to the most recently used instructions and data. As long as the
fetch and load/store requests find the respective instructions and data in the caches (cache hit) the core can
maintain the close to one instruction per clock rate. If the instruction or data are not in the caches (cache
miss), they must be transferred from the external memory system, with a delay of several clocks (cache
miss penalty) that slows down program execution.

In a system with an 80 percent cache hit ratio and a 5 clock cache miss penalty, the overall slow-down of
the system caused by the cache misses is 1.8 times ((20 × 5 + 80) / 100). An improvement of only 5 percent
in the hit ratio reduces this penalty to 1.6 times—a 12 percent performance improvement. In a system that
transfers significant amounts of data between the CPM and the memory system, the average cache miss
latency increases because the external bus is not always available for cache initiated transfers. Therefore,
the performance impact of the cache misses is even higher.

2.1 Cache Basics
The MPC8xxfamily of communication controllers are provided with two sizes of I-Cache (I-Cache) and
D-Cache, as shown in Table 7.

All these sizes of caches have four words per line, hence the amount of data transferred to/ from the
external memory is four words (one burst). The rest of the cache parameters are as listed in Table 8.

The logical model of an MPC8xx cache is presented in Figure 6. The figure shows a 4 Kbyte cache.

Table 7. MPC8xx Cache Sizes

Controller type I-Cache Size (Kbytes) D-Cache Size (Kbytes)

MPC860, MPC860SAR, MPC860T 4 4

MPC850, MPC850SAR, MPC801 2 1

Table 8. MPC8xx Cache Characteristics

Cache Size (Kbytes) Number of Ways Number of Sets Lines Per Set

1 2 32 2

2 2 64 2

4 2 128 2

Other Cache Configurations

8 2 256 2

16 4 256 4

MPC8xx Performance-Driven Optimization of Caches and MMU Configuration, Rev. 1

Freescale Semiconductor 11

Caches

A D-Cache access cycle begins with a request from the core load-store unit for a data transfer. An I-Cache
cycle begins with a request from the core sequencer for an instruction fetch. If the cache contains the
respective data/instruction (cache hit), it serves the request in one clock (zero wait state). For a cache miss,
the cache initiates a burst transfer from/to the external bus. The main cache performance features are as
follows:

• Critical word first external memory accesses. During a miss, the external memory transfer initiated
by the cache begins with the word required to complete the core request. The burst advances and
then brings the other three words (burst tail).

• Block operation. Cache operation is blocked for a miss until the critical word is delivered to the
core. The cache miss penalty equals the first burst beat latency plus one clock.

• Hit under miss. After the critical word is transferred, the cache can serve other core requests while
the burst tail is transferred.

• Stream hit. The cache can hit in the burst tail, even before the burst tail is actually written into the
array.

• Line lock implementation-specific command. The data inside the caches can be locked on a per line
granularity, thus creating a hit certainty for critical code/data.

• Flush by cache location. The D-Cache lines are flushed using their cache address (set/way
number).

The caches can be in one of the three states shown in Figure 5.

Figure 5. MPC8xx Caches States

Cache Disabled
Cache Enabled and
Caching Inhibited

Cache Enabled and
Caching Permitted

Cache Enabled
Command

Cache Disabled
Command

Translation Disabled: Mx_CTR[CIDEF]
Translation Enabled : TLB_ENTRY[CI]

Bus Transfers
Word/half word/byte as
requested by the core

Burst read

Word/half word/byte write

Burst read/write

(except for write through)

Data in Cache
Not saved Not saved. The instruction

cache saves the four words of
a burst in a special register.

Saved

MPC8xx Performance-Driven Optimization of Caches and MMU Configuration, Rev. 1

12 Freescale Semiconductor

Caches

Figure 6. Logical Model of MPC8xx Caches

way0
. .
. .

. .

. .

set0
set1

set127
set126

tag0 w0 w1 w2 w3

V
al

id
 b

it
Lo

ck
 b

it

tag1 w0 w1 w2 w3

tag127 w0 w1 w2 w3
tag126 w0 w1 w2 w3

. .
 .

. .
 .

. .
 .

. .
 .

L
R
U

A
r
r
a
y

. .

. .

. .

. .

w2 tag0 w0 w1 w2 w3

way1

tag1 w0 w1 w2 w3

tag127 w0 w1 w2 w3
tag126 w0 w1 w2 w3

. .
 .

. .
 .

. .
 .

. .
 .

V
al

id
 b

it
Lo

ck
 b

it

w2

D
irt

y
bi

t

D
irt

y
bi

t

Cache

LR
U

 B
it

20 21

SET (7 Bits)
WORD
(2 Bits)

BYTE
(2 Bits)TAG (21 Bits)

0 27 28 29 30 31

Real Address

Memory (Real Address)

First 2
Kbyte Block

00000000 0

1

Second 2
Kbyte Block

Last 2
Kbyte Block

00000010

000007F0

00000800

00000810

00000FF0

FFFFF800
FFFFF810

FFFFFFFF

127

0

1

127

0
1

127

Set number where this 4-word data
is to be loaded into the cache

Bits Field Name Description

0–20 TAG Number of 2 Kbyte blocks to which
the line belongs

21–27 SET Set number (address in the cache)

28–29 WORD Word number

30–31 BYTE Byte number

MPC8xx Performance-Driven Optimization of Caches and MMU Configuration, Rev. 1

Freescale Semiconductor 13

Caches

Instruction/data are written to the caches in the way that is free (not valid). If both ways are valid, the Last
Recently Used one is replaced. Figure 7 shows the operation of the I-Cache, which completes a hit by
delivering the instruction to the sequencer and updating the LRU bit. A miss initiates a burst transfer from
external memory, which fills the burst buffer. The burst buffer is copied to a cache line. The burst starts
with the word requested by the sequencer (critical word). The LRU and VALID status bits are updated.

Figure 7. MPC8xx I-Cache Operation

The D-Cache can function in copy back or write through mode. Figure 8 and Figure 9 present these two
modes of operation. Table 9 summarizes different D-Cache actions.

Table 9. D-Cache Behavior

Mode
Transfer

Type
Hit/Miss

Behavior

LRU
Update

Dirty
State

Update

Valid
State

Update

Source (read) or
destination (write)
of load-store data

Burst
Read

Burst
Write

Word/
Half/Byte

Write

Read Hit YES NO NO cache NO NO NO

Copy back Miss YES NO YES memory YES MAYBE* NO

Write Hit YES YES NO cache NO NO NO

Miss YES YES YES cache YES MAYBE* NO

Write through Read Hit YES NO NO cache NO NO NO

Miss YES NO YES memory YES NO NO

Write Hit YES NO NO cache + memory NO NO YES

Miss NO NO NO memory NO NO YES

Note: MAYBE* means that a burst write cycle is initiated if the data replaced in the cache is valid and dirty.

Core (Sequencer)

Cache Miss

Cache Hit

Memory

Instruction Cache

1 Word 4 Words

1 Word

MPC8xx Performance-Driven Optimization of Caches and MMU Configuration, Rev. 1

14 Freescale Semiconductor

Caches

Figure 8. MPC8xx D-Cache Operation in Copy Back Mode

Figure 9. MPC8xx D-Cache Operation in Write Through Mode

2.2 Cache Coherency
The data from the external memory and corresponding cache lines can become noncoherent during a
normal program run because of a cache content change.

Core (Load-Store)

Read Miss

Read Hit

Memory

Data Cache

Read
Cycle

Write
Cycle

Write Hit

Write Miss

Word, Half Word, Byte 4 Words

Key:

If both ways are valid, the LRU is replaced. If the replaced
way contains data that differs from the data in memory, it is
copied back to memory.

Core (Load-Store)

Read Miss

Read Hit

Memory

Data Cache

Read
Cycle

Write
Cycle

Write Hit

Write Miss

Word, Half Word, Byte 4 Words

MPC8xx Performance-Driven Optimization of Caches and MMU Configuration, Rev. 1

Freescale Semiconductor 15

Caches

2.2.1 Cache Content Change
If the D-Cache is used in copy back mode (which is the most efficient mode in most applications), the lines
with the state bit DIRTY set are different from the corresponding external memory locations. This must be
avoided for memory-mapped peripherals, including those mapped in the internal MPC8xx memory space.
A special case of cache coherency occurs when the MPC8xx core branches to an exception handler:

• When an exception is taken the core automatically switches to translation disabled mode. The
whole memory is either caching permitted or inhibited, depending on the status of the
Mx_CTR[CIDEF] bit.

• A hit in the D-Cache while caching is inhibited is a programming error, so data caching must be
permitted before any access that might generate a hit is allowed.

• Because of coherency problems, the memory-mapped registers/peripherals cannot be accessed
while caching is permitted.

To satisfy these contradictory requirements, reset the CIDEF bit (caching permitted while translation is
disabled) and re-enable the translation (set bits MSR[DR] and MSR[IR]) at the beginning of all exception
handlers that contain accesses to memory-mapped registers/peripherals:

• All hits in the D-Cache while caching is inhibited are avoided and the memory space where the
peripherals are mapped is accessed in caching inhibited mode.

• Performance is optimal because all memory regions that are caching permitted are cached.

2.2.2 Memory Content Change
The content of memory can be changed by an internal or external master other than the caches (core), such
as the following:

• Processors/devices which share the MPC8xx external bus.

• The MPC8xx DMA controller.

• Devices that update the registers/DPRAM mapped into the MPC8xx internal memory
space.

The MPC8xx caches do not have a snoop mechanism to enforce coherency, so coherency must be
maintained in software. The loss of coherency can occur for both the D-Cache (disregarding the mode -
copy back or write through) and the I-Cache (self modifying program). The simplest way to enforce
coherency is to inhibit caching in the respective memory regions.

2.3 D-Cache Flush
Sometimes it is necessary to flush the D-Cache. For example, while debugging a program, you may need
to flush the D-Cache to enforce coherency or switch from one task to another in some operating systems.
A D-Cache flush can be achieved in a software loop either using the PPC architecture instruction dcbst
(store without invalidate)/dcbf (store and invalidate) or by using the implementation-specific command
Flush D-Cache Line. PPC instructions flush lines indexed by the memory address they reflect;
implementation-specific commands use the physical location of the line within the D-Cache as their
address. In both cases, only the lines with both DIRTY and VALID attributes set are copied to memory.

MPC8xx Performance-Driven Optimization of Caches and MMU Configuration, Rev. 1

16 Freescale Semiconductor

Caches

To flush a line from the D-Cache using the implementation-specific command, the DC_ADR register must
be set (DC_ADR[way] = way number, DC_ADR[set] = set number of the line to be flushed). Then the
Flush D-Cache Line command must be issued by writing a value of 0xE into the DC_CTR[4:7] field.

2.4 Caching Permitted and Inhibited Regions
For best performance, minimize the use of caching inhibited mode in both time and space:

• Minimize time by enabling the caches as early as possible in the initialization code and than
avoiding disabling them.

• Minimize space by limiting the caching inhibited memory regions to those necessary for
maintaining coherency.

To enable the caches, the implementation-specific commands must be issued because the caches are not
initialized by reset:

• Unlock all

• Invalidate all

• D-Cache/I-Cache enable

2.5 Data/Instruction Lock in Caches
To guarantee cache hits for critical segments of a program, such as an interrupt handler that must be
completed as quickly as possible, lock data/instructions in the caches. Both the D-Cache and I-Cache
include mechanisms to lock their content on a line granularity using implementation-specific commands.
Locked lines operate as zero wait-state SRAM; they are not replaced during misses and are not affected
by invalidate commands. While a portion of the cache content is locked, the performance increase in the
execution of the locked instructions/data must be weighed against the performance loss in the rest of the
program. For example, for a 4Kbyte/2way cache certain compromises are necessary:

• If the amount of cache to be locked is smaller than one way, place the code/data in the same way.
Locking both ways of a set creates 16-byte caching inhibited areas, each consuming 2 Kbytes of
memory and therefore bottlenecks.

• When one way is (almost) completely locked, the rest of the code still uses the second way and the
cache becomes a 2 Kbyte/1 way cache that still provides fair performance.

• When almost all the cache is locked (both ways), the rest of the code runs as in caching inhibited
mode. The performance penalty is significant. An easier solution that has the same effect is to
program the critical code in the MMU as caching permitted and the rest as caching inhibited. This
method can also be used if the critical code is slightly larger than the cache to ensure it is not
replaced by the noncritical code.

The D-Cache and I-Cache are locked in different ways. For both caches, implementation-specific
commands are provided to unlock a certain line (addressed by its physical location within the cache) and
all the locked lines. To unlock a line, load its address in IC_ADR / DC_ADR (way number and set number)
and then issue an Unlock Line command using the IC_CST / DC_CST register.

MPC8xx Performance-Driven Optimization of Caches and MMU Configuration, Rev. 1

Freescale Semiconductor 17

Caches

2.5.1 D-Cache Line Lock
To lock a number of lines in the D-Cache, perform the following steps:

1. Read the DC_CST register to reset the sticky error bits.

2. Write the real address of the line to be locked to the DC_ADR register.

3. Sync.

4. Issue the Lock Line command to the DC_CST register (16 bytes are transferred from the memory
to the D-Cache and the LOCK and VALID status bits of the respective line are set).

5. Return to step 2 to lock more lines.

6. Sync.

7. Read the DC_CST register and check the bit CCER2. If this bit is reset, the operation completed
without error.

2.5.2 I-Cache Line Load and Lock
To lock a number of lines in the I-Cache, perform the following steps:

1. Read the IC_CST register to reset the sticky error bits.

2. Write the real address of the line to be locked to the IC_ADR register.

3. Issue the Load and Lock Line command to the IC_CST register (16 bytes are transferred from the
memory to the I-Cache and the LOCK and VALID status bits of the respective line are set).

4. Sync.

5. Return to step 2 to lock more lines.

6. Sync.

7. Read the IC_CST register and check the CCER1, CCER2, and CCER3 bits. If these bits are all
reset, the operation completed without error.

2.6 Coding Practices Affecting Performance
Some coding practices can significantly affect the performances of an application. This section discusses
practices relevant to the PowerPC architecture in general and the MPC8xx family in particular.

2.6.1 Optimize Memory Transfers
A memory transfer requires roughly the same amount of time for one byte, one half-word, or one word.
Therefore, use word transfers as much as possible.

2.6.2 Data Alignment
The MPC8xx performs only naturally aligned accesses, as shown in Table 10.

MPC8xx Performance-Driven Optimization of Caches and MMU Configuration, Rev. 1

18 Freescale Semiconductor

Caches

Unaligned transfer requests are split by the load-store unit into multiple aligned transactions with an
inherent time penalty. It is essential to avoid unaligned accesses by correctly configuring the compiler.

2.6.3 Floating-Point Instructions
The MPC8xx does not include a floating-point unit. Any attempt to run a floating-point instruction results
in an implementation-dependent software emulation. A handler of this exception (if present) emulates the
floating-point instruction in software, so there is a considerable time penalty. Therefore, avoiding floating-
point instructions is recommended.

Table 10. Data Alignment

Transfer
Last Two
Address Bits

byte XX

half word X0

word 00

Table 11. Bus Cycles for Unaligned, Single Register Load/Store Instructions

Transfer
Request Size

Transfer Address
(Last Two Bits)

Number of Bus
Cycles Transfer Type

Address and Type of
Bus Cycles

0x00 1 Aligned 0x00 - byte

Byte 0x01 1 Aligned 0x01 - byte

0x02 1 Aligned 0x02 - byte

0x03 1 Aligned 0x03 - byte

0x00 1 Aligned 0x00 - half word

Half word 0x01 2 Unaligned 0x01 - byte

0x02 - byte

0x02 1 Aligned 0x02 - half word

0x03 2 Unaligned 0x03 - byte

0x04 - byte

0x00 1 Aligned 0x00 - word

0x01 3 Unaligned oxo1 - byte

0x02 - half word

0x05 - byte

Word 0x02 2 Unaligned 0x02 - half word

0x04 - half word

0x03 3 Unaligned oxo3 - byte

0x04 - half word

0x06 - byte

MPC8xx Performance-Driven Optimization of Caches and MMU Configuration, Rev. 1

Freescale Semiconductor 19

Performance Estimation and Measurement

2.6.4 Inlining
In the MPC8xx, the sequencer executes the branch instructions. It can issue one sequential instruction to
the execution units each clock, if all necessary resources are available, and process the branch instructions
in parallel as long as they do not come in pairs. Therefore, the execution time of an inlined subroutine may
not be considerably shorter than the execution time of the subroutine plus two branch instructions.
Furthermore, if inlining subroutines increases the length of a loop so that it no longer fits into the I-Cache,
the hit ratio decreases and also overall system performance. Use inlining with caution and when a profiling
tool indicates that it might improve performance.

2.6.5 Prediction
The sequencer fetches instructions in advance (speculatively). Conditional branches with the condition not
yet available are predicted according to the Y bit from the BO field of the opcode. The prefetch mechanism
continues on the predicted path until the condition is evaluated. If the wrong path is followed
(misprediction), the mispredicted instructions are discarded. This might empty the sequencer prefetch
queue and stall the instruction issue process till instructions on the correct path are fetched. To optimize
performance, the conditions of the conditional branches must be available as early as possible and the Y
bit must be set to point to the most probable path.

2.6.6 Development Support
The MPC8xx family includes extensive development support. To provide visibility of the program flow,
the following mechanisms slow down execution speed:

• Serialized mode

• Show cycles

When the development mechanisms are no longer necessary, disable them to get the highest possible
performance. To disable the serialized mode and the show cycles, write a value of 0x7 into the ISCT_SER
field of the ICTRL register.

3 Performance Estimation and Measurement
During the early stages of application development when a hardware platform must be selected, system
performance must be estimated to avoid a costly over-powered design or an under-powered one that does
not meet the requirements. During the software development cycle, system performance must be measured
and compared with the estimated value. Less than estimated performance might indicate deficiencies in
the way processor resources are used.

Performance of a processor can be estimated in an application starting from the core performance (for
example, MIPS) amended by the cache miss penalty. The cache miss penalty can be estimated as the
product of the cache miss ratio and the cache miss latency. The cache miss ratio depends upon the code
and the cache(s) sizes and organization. It can be estimated by simulating or running a similar application
or portion of an application on a development system. The cache miss latency depends upon the number
of wait states of the memory system and the internal latency. For example, consider a system with the
following properties:

MPC8xx Performance-Driven Optimization of Caches and MMU Configuration, Rev. 1

20 Freescale Semiconductor

Performance Estimation and Measurement

• IPC0 (number of instructions per cycle at a 100% cache hit ratio) = 0.9

• CMR (cache miss ratio) = 20%

• CL (average cache latency) = 5 clock cycles

The number of expected PC is IPC = IPC0/(1 + CMR × CL × IPC0) = 0.53 instructions/cycle. A more
elaborate model can be developed for the two types of cache misses (instruction and data) and the
probability of each.

3.1 Benchmarks
To estimate the performance of a system using a benchmark, the relation between the size of application/
benchmark and the size of the processor caches must be considered. For example, both the MPC801 (2
Kbyte I-Cache/1 Kbyte D-Cache) and the MPC860 (4 Kbyte I-Cache/4 Kbyte D-Cache) were
benchmarked at 52 MIPS at 40 MHz (using Dhrystone 2.1) because the Dhrystone benchmark fits entirely
in the caches of both processors.

A 3 Kbyte benchmark runs much faster on an MPC860 than on an MPC801 because the I-Cache hit ratio
is 100 percent in the first case and considerably less in the second case. An application larger than 4 Kbytes
still runs faster on the MPC860 but the performance ratio (MPC860/MPC801) is smaller than the 3 Kbyte
benchmark because now both processors have cache hit ratio of less than 100 percent. To compare two
processors with different cache sizes, use a benchmark considerably larger than the cache sizes. The next
section presents a method to determine the cache hit/miss ratio, which can be used to estimate the effect
of the limited cache size over a benchmark.

3.2 Cache Hit/Miss Ratio
The cache hit ratio of an application is useful to determine the impact of the finite cache size of a certain
processor over its performance. It can also be used in the optimization process to determine the expected
performance improvement of a faster memory system or to check the effect of various performance
improvement measures. Since the MPC8xx architecture does not include a mechanism to count the cache
hits and misses, the cache hit ratio can be determined using a simulator (for example, SIMPPC from
Software Development Systems Inc.) or a trace tool such as the one included in the mpc8bug debugger
(the csim - cache simulator command)1.

Table 12 lists the csim command options; you can retrieve this information using the ‘help csim’ command
under mpc8bug). The cache parameters (the number of ways, sets and the block size) are user-defined, so
it is possible to simulate the effect of various cache sizes. For example, the hit ratio of a 16 Kbyte I-Cache
/8 Kbyte D-Cache device can be determined and compared to that of the existing 4 Kbyte I-Cache/4 Kbyte
D-Cache controller.

1. The CSIM command was introduced experimentally and was not extensively tested.

Table 12. CSIM Command Options

Command Description

csim reset Initiate the simulator

MPC8xx Performance-Driven Optimization of Caches and MMU Configuration, Rev. 1

Freescale Semiconductor 21

Performance Estimation and Measurement

The following mpc8bug script is an example of csim usage. It sets both the I-Cache and D-Cache in
Caching Inhibited mode. The two shadowed instructions must be edited as described in Table 13 to set the
I-Cache in Caching Enabled mode and the D-Cache in Caching Enabled, Write through and Caching
Enabled, Copy Back modes.

The script loads minimal initialization code for the MMUs and caches and then loads a code example that
includes several loads and stores. After the initialization code runs, the csim is reset. In response, the
simulator reads the MMU configuration, so this must be done after the TLBs are loaded and breakpoints
are defined for the whole memory and data space. This is required for the csim operation; it slows down
the execution speed. Then the csim breakpoint is defined at the end of the code example. Finally, the code
example is run and the csim results are displayed.

csim on/off Activate/deactivate the simulator

csim prof Display the cache hit and miss ratios

csim break Display the simulator break address

csim break <addr> Set a simulator break on address

csim break on/off Activate/deactivate a simulator break

csim icache/dcache Display the Icache/Dcache parameters

csim icache/dcache
<way_num> <set_num>
<block_size>

Change the Icache/Dcache parameters (the default values describe
the MPC860 caches, i.e. way_num=2, set_num=128, block_size
=16)

Example of CSIM simulation

load <program name> Load the program

brd Breakpoint on all the address space of data

br >0 Breakpoint on all the address space of instructions

csim reset Initialize the simulator

go <addr> Run the program

csim prof Display results

reset :h

Load initialization code and test program

mm 5000:i
tlbia #invalidate TLBs

addi r31,r0,0x0200 1 # EPN=0, V=1

mtspr MD_EPN,r31
mtspr MI_EPN,r31

addi r31,r0,0x000d # PS=11, WT=0, V=1 NOTE 1

mtspr MD_TWC,r31

mtspr MI_TWC,r31
addi r31,r0,0x09ff # RPN = 0, LPS=1, SH=1, CI=1, V=1 NOTE 2

Table 12. CSIM Command Options (continued)

MPC8xx Performance-Driven Optimization of Caches and MMU Configuration, Rev. 1

22 Freescale Semiconductor

Performance Estimation and Measurement

mtspr MD_RPN,r31 # load data TLB entry
mtspr MI_RPN,r31 # load instruction TLB entry

mfmsr r31 # enable translation

ori r31,r31,0x0030 # set the IR and DR bits

mtmsr r31

addis r31,r0,0x0a00 # unlock all in both caches

mtspr DC_CST,r31

mtspr IC_CST,r31

addis r31,r0,0x0c00 # invalidate all in both caches
mtspr DC_CST,r31

mtspr IC_CST,r31

addis r31,r0,0x0200 # enable caches

mtspr DC_CST,r31

mtspr IC_CST,r31

addi r31,r0,0x0 #test program

lwz r0, 0x0000(r31)

lwz r1, 0x0800(r31)

stw r2, 0x0008(r31)

stw r3, 0x0808(r31)

lwz r0, 0x1004(r31)

lwz r1, 0x1804(r31)

stw r2, 0x100c(r31)

stw r3, 0x180c(r31)

stw r2, 0x2000(r31)

stw r3, 0x2800(r31)

lwz r0, 0x100c(r31)

lwz r1, 0x180c(r31)

xor 0,0,0

.

run the initialization code

br 5058

go 5000

nobr 1

run csim on the test program

rm r1 20000

brd

br >0

csim reset

csim break 508c

go 5058

csim prof

MPC8xx Performance-Driven Optimization of Caches and MMU Configuration, Rev. 1

Freescale Semiconductor 23

Performance Estimation and Measurement

Table 14 presents the results or the simulation. Csim provides the total number of hit and miss transactions
in the D-Cache and I-Cache and the miss decomposition, which includes the following:

• Copy back: number of write miss transactions while the D-Cache is in copy back mode.

• Write through: number of write miss transactions while the D-Cache is in write
through mode.

• Cache inhibit: number of transactions while the I-Cache or D-Cache is in caching inhibited mode.

• Read: number of read miss transactions.

• Page fault: number of transactions, which cannot be translated because of page faults.

Table 13. Cache Mode Programming in the CSIN Example

Instruction to Change Caching Inhibited
Caching Permitted

Write Through Copy Back

NOTE 1 addi r31,r0,0x000d addi r31,r0,0x000f addi r31,r0,0x000d

NOTE 2 addi r31,r0,0x09ff addi r31,r0,0x09fd addi r31,r0,0x09fd

Table 14. CSIM Demo Results

Cache Mode

Hit / Miss Miss decomposition

Hit Miss
Copy
Back

Write
Through

Cache
Inhibit Read

Page
Fault

Inhibited 0 12 0 0 12 0 0

Data Write through 6 6 0 2 0 4 0

Copy back 4 8 2 0 0 6 0

Instruction Inhibited 0 14 — — 14 0 0

Permitted 10 4 — — 0 4 0

Table 15. Demo Code, Cache Process Mode of Each Instruction

Instruction

I-Cache D-Cache

Caching
Inhibited

Caching
Permitted

Caching
Inhibited

Write Through
Mode

Copy Back
Mode

addi r31,r0,0x0 miss - c.i. miss - read — — —

lwz r0, 0x0000(r31) miss - c.i. hit miss - c.i. miss - read miss - read

lwz r1, 0x0800(r31) miss - c.i. hit miss - c.i. miss - read miss - read

stw r2, 0x0008(r31) miss - c.i. hit miss - c.i. hit hit

stw r3, 0x0808(r31) miss - c.i. miss - read miss - c.i. hit hit

lwz r0, 0x1004(r31) miss - c.i. hit miss - c.i. miss - read miss - read

MPC8xx Performance-Driven Optimization of Caches and MMU Configuration, Rev. 1

24 Freescale Semiconductor

Performance Estimation and Measurement

Table 15 details the data from Table 14 and describes the way the csim classifies each instruction and
load-store. To simulate a 16 Kbyte I-Cache/8 Kbyte D-Cache configuration, the last part of the script must
be changed as follows:

run csim on the test program
rm r1 20000
brd
br >0
csim icache 4 256 16
csim dcache 2 256 16
csim reset
csim break 508c
go 5058
csim prof

Table 16 presents the csim results for this cache configuration and Table 17 explains them. In both tables
the numbers that are changed compared to the 4 Kbyte I-Cache /4 Kbyte D-Cache configuration are
emphasized by shaded table cells. Of course, this minuscule code in no way represents the performance
improvement ratio expected in a typical application.

lwz r1, 0x1804(r31) miss - c.i. hit miss - c.i. miss - read miss - read

stw r2, 0x100c(r31) miss - c.i. hit miss - c.i. hit hit

stw r3, 0x180c(r31) miss - c.i. miss - read miss - c.i. hit hit

stw r2, 0x2000(r31) miss - c.i. hit miss - c.i. miss - w.t. miss - c.b.

stw r3, 0x2800(r31) miss - c.i. hit miss - c.i. miss - w.t. miss - c.b.

lwz r0, 0x100c(r31) miss - c.i. hit miss - c.i. hit miss - read

lwz r1, 0x180c(r31) miss - c.i. miss - read miss - c.i. hit miss - read

xor 0,0,0 miss - c.i. hit — — —

Table 16. CSIM Demonstration Results for 16 Kbyte I-Cache and 8 Kbyte D-Cache

Cache Mode

Hit / Miss Miss decomposition

Hit Miss
Copy
back

Write
through

Cache
inhibit

Read
Page
fault

Inhibited 0 12 0 0 12 0 0

Data Write through 6 6 0 2 0 4 0

Copy back 6 6 2 0 0 4 0

Instruction Inhibited 0 14 — — 14 0 0

Permitted 10 4 — — 0 4 0

Table 15. Demo Code, Cache Process Mode of Each Instruction (continued)

MPC8xx Performance-Driven Optimization of Caches and MMU Configuration, Rev. 1

Freescale Semiconductor 25

Performance Estimation and Measurement

3.3 Instructions Per Clock
The number of instructions executed per clock cycle (IPC) is an important indication of system
performance. The IPC can be used as follows:

• To determine whether a system is correctly initialized and takes full advantage of the caches and
MMUs. The MPC8xx includes a single-issue core, so the maximum theoretic IPC is 1. In a real
application, the IPC is less than one because of the blockage, latency and synchronization
requirements of the internal instruction execution. The IPC is also significantly affected by
development support overhead and application-dependent factors such as memory access latency
(cache hit ratio, cache mode - write through or copy back, guarded storage, number of wait states
in the external memory accesses). An IPC of 0.7 or more indicates that the processor resources are
efficiently used while an IPC less of 0.4 suggests significant deficiencies.

• To measure the effect of different optimization measures.

• To benchmark.

A simple performance meter to measure the IPC can be built using the MPC8xx internal resources. The
performance meter performs the following tasks:

• Counts the instructions executed in a certain program segment.

• Counts the clock cycles to execute the same program segment.

Table 17. Processing Mode of Each instruction in 16 Kbyte I-Cache and 8 Kbyte D-Cache

Instruction

I-Cache D-Cache

Caching
Inhibited

Caching
Permitted

Caching
Inhibited

Write Through
Mode

Copy Back
Mode

addi r31,r0,0x0 miss - c.i. miss - read — -

lwz r0, 0x0000(r31) miss - c.i. hit miss - c.i. miss - read miss - read

lwz r1, 0x0800(r31) miss - c.i. hit miss - c.i. miss - read miss - read

stw r2, 0x0008(r31) miss - c.i. hit miss - c.i. hit hit

stw r3, 0x0808(r31) miss - c.i. miss - read miss - c.i. hit hit

lwz r0, 0x1004(r31) miss - c.i. hit miss - c.i. miss - read miss - read

lwz r1, 0x1804(r31) miss - c.i. hit miss - c.i. miss - read miss - read

stw r2, 0x100c(r31) miss - c.i. hit miss - c.i. hit hit

stw r3, 0x180c(r31) miss - c.i. miss - read miss - c.i. hit hit

stw r2, 0x2000(r31) miss - c.i. hit miss - c.i. miss - w.t. miss - c.b.

stw r3, 0x2800(r31) miss - c.i. hit miss - c.i. miss - w.t. miss - c.b.

lwz r0, 0x100c(r31) miss - c.i. hit miss - c.i. hit hit

lwz r1, 0x180c(r31) miss - c.i. miss - read miss - c.i. hit hit

xor 0,0,0 miss - c.i. hit — -

MPC8xx Performance-Driven Optimization of Caches and MMU Configuration, Rev. 1

26 Freescale Semiconductor

Performance Estimation and Measurement

The IPC can than be determined by dividing these two results. To count the instructions executed, the
hardware watchpoint/breakpoint generation is used in the following procedure:

1. Program comparator A (CMPA) to generate a watchpoint for each instruction (with the address
larger than 0).

2. Program counter A (COUNTA) to decrement at each watchpoint.

3. Reset the COUNTA at the beginning of the code segment where the IPC must be measured.

4. Read the COUNTA after the code segment executes.

COUNTA has 16 bits, so up to 65536 instruction can be counted without software assistance. To count the
clock cycles, the decrementor (DEC) can be used (it decrements each 16 clock cycles).

A performance meter example that can run on an MPC8xx FADS card under the mpc8bug debugger is
shown here (the relevant sections are shadowed). Two of the registers (ICTRL and CMPA) have debug
privilege access, so these registers can be accessed only through the debug port (using rms/rds commands)
if the debug mode is enabled (as on the FADS cards) and using mtspr/mfspr instructions if debug mode is
disabled, as is typical in an application or when a resident monitor is used to debug a system.

###################################

initialize the performance meter

###################################
mm 2000 :i

mfspr r31,IMMR # get the internal space base address

andis. r31,r31,0xffff

addis r30,r0,0x55cc # generate the key

ori r30,r30,0xaa33

stw r30,0x300(r31) # unlock TBSCR

lhz r29,0x200(r31) # read TBSCR

ori r29,r29,0x0003 # enable decrementor, stop it while freeze

sth r29,0x200(r31) # write TBSCR

stw r30,0x380(r31) # unlock SCCR

lwz r29,0x280(r31) # read SCCR

oris r29,r29,0x0200 # dec. source is sysclk/16

stw r29,0x280(r31) # write SCCR

tw 0xf,0,0 # return

.

go 2000

rms ictrl 0xc0080007

rms cmpa 0

###################################

load the application

###################################
mm 5000 :i

addi r18,r0,0x0100 # CTR = 256

mtspr CTR,r18

addi r19,r19,0x1 # do something in the loop

addi r20,r20,0x2

addi r21,r21,0x3

MPC8xx Performance-Driven Optimization of Caches and MMU Configuration, Rev. 1

Freescale Semiconductor 27

Performance Estimation and Measurement

Table 18 summarizes results provided by the performance simulator run on an MPC8xx FADS.

addi r22,r22,0x4

addi r23,r23,0x5

addi r24,r24,0x6

addi r25,r25,0x7

addi r26,r26,0x8

addi r27,r27,0x9

bc 16,0,$-36 # CTR--, branch is CTR !=0

tw 0xf,0,0 # trap (return to mpc8bug)

.

###################################

initialize the application

###################################
rms msr ir 0; rms msr dr 0 # disable translation

rms ic_cst cmd 5 # unlock, invalidate, enable icache

rms ic_cst cmd 6

rms ic_cst cmd 1

###################################

reset the performance meter

###################################
rms counta 0xffff0001

rms dec 0xffffffff

###################################

run the application

###################################
go 5000

###################################

read the performance meter

###################################
rds dec; rds counta

Table 18. Results of Performance Monitor Example

Measurement Conditions Results

I-Cache
Serialized

Mode
Show
Cycles

Decrement
or Final
Value

Counter A
Final Value

Number of
Cycles

Number of
Instructions

IPC

enabled disabled disabled ffff_ff4d 2848 0.91

enabled enabled disabled ffff_fd9d f5fd_0001 9760 2592 0.27

disabled disabled disabled ffff_fafa 20560 0.13

disabled enabled enabled ffff_f9da 25168 0.10

Document Number: AN3066
Rev. 1
01/2006

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2002, 2006.

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

email:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
1-800-521-6274
480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064, Japan
0120 191014
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447
303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

	1 Memory Management Units
	1.1 Basic MMU Features
	1.1.1 Multiple Page Sizes
	1.1.2 Small Translation Tables
	1.1.3 Low Power Consumption
	1.1.4 Software Tabletalk with Hardware Assistance
	1.1.5 Lockable TLB Entries

	1.2 Translation Disabled Versus Translation Enabled
	1.3 Static Page Structure Versus Page on Demand

	2 Caches
	2.1 Cache Basics
	2.2 Cache Coherency
	2.2.1 Cache Content Change
	2.2.2 Memory Content Change

	2.3 D-Cache Flush
	2.4 Caching Permitted and Inhibited Regions
	2.5 Data/Instruction Lock in Caches
	2.5.1 D-Cache Line Lock
	2.5.2 I-Cache Line Load and Lock

	2.6 Coding Practices Affecting Performance
	2.6.1 Optimize Memory Transfers
	2.6.2 Data Alignment
	2.6.3 Floating-Point Instructions
	2.6.4 Inlining
	2.6.5 Prediction
	2.6.6 Development Support

	3 Performance Estimation and Measurement
	3.1 Benchmarks
	3.2 Cache Hit/Miss Ratio
	3.3 Instructions Per Clock

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

