
GDFLIB User's Guide
ARM® Cortex® M4F

Document Number: CM4FGDFLIBUG
Rev. 3, 05/2020

GDFLIB User's Guide, Rev. 3, 05/2020

2 NXP Semiconductors

Contents

Section number Title Page

Chapter 1
Library

1.1 Introduction.. 5

1.2 Library integration into project (MCUXpresso IDE) ..8

1.3 Library integration into project (Kinetis Design Studio) .. 15

1.4 Library integration into project (Keil µVision) ... 21

1.5 Library integration into project (IAR Embedded Workbench) ... 29

Chapter 2
Algorithms in detail

2.1 GDFLIB_FilterExp...37

2.2 GDFLIB_FilterIIR1..41

2.3 GDFLIB_FilterIIR2..46

2.4 GDFLIB_FilterIIR3..53

2.5 GDFLIB_FilterIIR4..59

2.6 GDFLIB_FilterMA...66

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 3

GDFLIB User's Guide, Rev. 3, 05/2020

4 NXP Semiconductors

Chapter 1
Library

1.1 Introduction

1.1.1 Overview

This user's guide describes the General Digital Filters Library (GDFLIB) for the family
of ARM Cortex M4F core-based microcontrollers. This library contains optimized
functions.

1.1.2 Data types

GDFLIB supports several data types: (un)signed integer, fractional, and accumulator, and
floating point. The integer data types are useful for general-purpose computation; they
are familiar to the MPU and MCU programmers. The fractional data types enable
powerful numeric and digital-signal-processing algorithms to be implemented. The
accumulator data type is a combination of both; that means it has the integer and
fractional portions.The floating-point data types are capable of storing real numbers in
wide dynamic ranges. The type is represented by binary digits and an exponent. The
exponent allows scaling the numbers from extremely small to extremely big numbers.
Because the exponent takes part of the type, the overall resolution of the number is
reduced when compared to the fixed-point type of the same size.

The following list shows the integer types defined in the libraries:

• Unsigned 16-bit integer —<0 ; 65535> with the minimum resolution of 1
• Signed 16-bit integer —<-32768 ; 32767> with the minimum resolution of 1
• Unsigned 32-bit integer —<0 ; 4294967295> with the minimum resolution of 1
• Signed 32-bit integer —<-2147483648 ; 2147483647> with the minimum resolution

of 1

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 5

The following list shows the fractional types defined in the libraries:

• Fixed-point 16-bit fractional —<-1 ; 1 - 2-15> with the minimum resolution of 2-15

• Fixed-point 32-bit fractional —<-1 ; 1 - 2-31> with the minimum resolution of 2-31

The following list shows the accumulator types defined in the libraries:

• Fixed-point 16-bit accumulator —<-256.0 ; 256.0 - 2-7> with the minimum
resolution of 2-7

• Fixed-point 32-bit accumulator —<-65536.0 ; 65536.0 - 2-15> with the minimum
resolution of 2-15

The following list shows the floating-point types defined in the libraries:

• Floating point 32-bit single precision —<-3.40282 · 1038 ; 3.40282 · 1038> with the
minimum resolution of 2-23

1.1.3 API definition

GDFLIB uses the types mentioned in the previous section. To enable simple usage of the
algorithms, their names use set prefixes and postfixes to distinguish the functions'
versions. See the following example:

f32Result = MLIB_Mac_F32lss(f32Accum, f16Mult1, f16Mult2);

where the function is compiled from four parts:

• MLIB—this is the library prefix
• Mac—the function name—Multiply-Accumulate
• F32—the function output type
• lss—the types of the function inputs; if all the inputs have the same type as the

output, the inputs are not marked

The input and output types are described in the following table:

Table 1-1. Input/output types

Type Output Input

frac16_t F16 s

frac32_t F32 l

acc32_t A32 a

float_t FLT f

Introduction

GDFLIB User's Guide, Rev. 3, 05/2020

6 NXP Semiconductors

1.1.4 Supported compilers
GDFLIB for the ARM Cortex M4F core is written in . The library is built and tested
using the following compilers:

• Kinetis Design Studio
• MCUXpresso IDE
• IAR Embedded Workbench
• Keil µVision

For the MCUXpresso IDE, the library is delivered in the gdflib.a file.

For the Kinetis Design Studio, the library is delivered in the gdflib.a file.

For the IAR Embedded Workbench, the library is delivered in the gdflib.a file.

For the Keil µVision, the library is delivered in the gdflib.lib file.

The interfaces to the algorithms included in this library are combined into a single public
interface include file, gdflib.h. This is done to lower the number of files required to be
included in your application.

1.1.5 Library configuration

GDFLIB for the ARM Cortex M4F core is written in . Some functions from this library
are inline type, which are compiled together with project using this library. The
optimization level for inline function is usually defined by the specific compiler setting. It
can cause an issue especially when high optimization level is set. Therefore the
optimization level for all inline assembly written functions is defined by compiler
pragmas using macros. The configuration header file RTCESL_cfg.h is located in:
specific library folder\MLIB\Include. The optimization level can be changed by
modifying the macro value for specific compiler. In case of any change the library
functionality is not guaranteed.

1.1.6 Special issues
1. The equations describing the algorithms are symbolic. If there is positive 1, the

number is the closest number to 1 that the resolution of the used fractional type
allows. If there are maximum or minimum values mentioned, check the range
allowed by the type of the particular function version.

2. The library functions that round the result (the API contains Rnd) round to nearest
(half up).

Chapter 1 Library

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 7

1.2 Library integration into project (MCUXpresso IDE)

This section provides a step-by-step guide on how to quickly and easily include GDFLIB
into any MCUXpresso SDK example or demo application projects using MCUXpresso
IDE. This example uses the default installation path (C:\NXP\RTCESL
\CM4F_RTCESL_4.5_MCUX). If you have a different installation path, use that path
instead.

1.2.1 Library path variable

To make the library integration easier, create a variable that holds the information about
the library path.

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
Properties, or select Project > Properties from the menu. A project properties dialog
appears.

2. Expand the Resource node and click Linked Resources. See Figure 1-1.

Library integration into project (MCUXpresso IDE)

GDFLIB User's Guide, Rev. 3, 05/2020

8 NXP Semiconductors

Figure 1-1. Project properties
3. Click the New… button in the right-hand side.
4. In the dialog that appears (see Figure 1-2), type this variable name into the Name

box: RTCESL_LOC.
5. Select the library parent folder by clicking Folder…, or just type the following path

into the Location box: C:\NXP\RTCESL\CM4F_RTCESL_4.5_MCUX. Click OK.

Chapter 1 Library

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 9

Figure 1-2. New variable
6. Create such variable for the environment. Expand the C/C++ Build node and click

Environment.
7. Click the Add… button in the right-hand side.
8. In the dialog that appears (see Figure 1-3), type this variable name into the Name

box: RTCESL_LOC.
9. Type the library parent folder path into the Value box: C:\NXP\RTCESL

\CM4F_RTCESL_4.5_MCUX.
10. Tick the Add to all configurations box to use this variable in all configurations. See

Figure 1-3.
11. Click OK.
12. In the previous dialog, click OK.

Library integration into project (MCUXpresso IDE)

GDFLIB User's Guide, Rev. 3, 05/2020

10 NXP Semiconductors

Figure 1-3. Environment variable

1.2.2 Library folder addition

To use the library, add it into the Project tree dialog.

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
New > Folder, or select File > New > Folder from the menu. A dialog appears.

2. Click Advanced to show the advanced options.
3. To link the library source, select the Link to alternate location (Linked Folder)

option.
4. Click Variables..., select the RTCESL_LOC variable in the dialog, click OK, and/or

type the variable name into the box. See Figure 1-4.
5. Click Finish, and the library folder is linked in the project. See Figure 1-5.

Chapter 1 Library

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 11

Figure 1-4. Folder link

Figure 1-5. Projects libraries paths

1.2.3 Library path setup

GDFLIB requires MLIB to be included too. These steps show how to include all
dependent modules:

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
Properties, or select Project > Properties from the menu. The project properties
dialog appears.

2. Expand the C/C++ General node, and click Paths and Symbols.
3. In the right-hand dialog, select the Library Paths tab. See Figure 1-7.
4. Click the Add… button on the right, and a dialog appears.

Library integration into project (MCUXpresso IDE)

GDFLIB User's Guide, Rev. 3, 05/2020

12 NXP Semiconductors

5. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the
path in the box by adding the following (see Figure 1-6): ${RTCESL_LOC}\MLIB.

6. Click OK, and then click the Add… button.
7. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the

path in the box by adding the following: ${RTCESL_LOC}\GDFLIB.
8. Click OK, you will see the paths added into the list. See Figure 1-7.

Figure 1-6. Library path inclusion

Figure 1-7. Library paths
9. After adding the library paths, add the library files. Click the Libraries tab. See

Figure 1-9.
10. Click the Add… button on the right, and a dialog appears.
11. Type the following into the File text box (see Figure 1-8): :mlib.a
12. Click OK, and then click the Add… button.
13. Type the following into the File text box: :gdflib.a
14. Click OK, and you will see the libraries added in the list. See Figure 1-9.

Chapter 1 Library

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 13

Figure 1-8. Library file inclusion

Figure 1-9. Libraries
15. In the right-hand dialog, select the Includes tab, and click GNU C in the Languages

list. See Figure 1-11.
16. Click the Add… button on the right, and a dialog appears. See Figure 1-10.
17. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the

path in the box to be: ${RTCESL_LOC}\MLIB\Include
18. Click OK, and then click the Add… button.
19. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the

path in the box to be: ${RTCESL_LOC}\GDFLIB\Include
20. Click OK, and you will see the paths added in the list. See Figure 1-11. Click OK.

Figure 1-10. Library include path addition

Library integration into project (MCUXpresso IDE)

GDFLIB User's Guide, Rev. 3, 05/2020

14 NXP Semiconductors

Figure 1-11. Compiler setting

Type the #include syntax into the code where you want to call the library functions. In
the left-hand dialog, open the required .c file. After the file opens, include the following
lines into the #include section:

#include "mlib_FP.h"
#include "gdflib_FP.h"

When you click the Build icon (hammer), the project is compiled without errors.

1.3 Library integration into project (Kinetis Design Studio)

This section provides a step-by-step guide on how to quickly and easily include GDFLIB
into an empty project or any MCUXpresso SDK example or demo application projects
using Kinetis Design Studio. This example uses the default installation path (C:\NXP
\RTCESL\CM4F_RTCESL_4.5_KDS). If you have a different installation path, use that
path instead. If you want to use an existing MCUXpresso SDK project (for example the
hello_world project) see Library path variable. If not, continue with the next section.

Chapter 1 Library

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 15

1.3.1 Library path variable

To make the library integration easier, create a variable that will hold the information
about the library path.

1. Right-click the MyProject01 or MCUXpresso SDK project name node in the left-
hand part and click Properties, or select Project > Properties from the menu. A
project properties dialog appears.

2. Expand the Resource node and click Linked Resources. See Figure 1-12.

Figure 1-12. Project properties
3. Click the New… button in the right-hand side.
4. In the dialog that appears (see Figure 1-13), type this variable name into the Name

box: RTCESL_LOC.
5. Select the library parent folder by clicking Folder…, or just type the following path

into the Location box: C:\NXP\RTCESL\CM4F_RTCESL_4.5_KDS. Click OK.

Library integration into project (Kinetis Design Studio)

GDFLIB User's Guide, Rev. 3, 05/2020

16 NXP Semiconductors

Figure 1-13. New variable
6. Create such variable for the environment. Expand the C/C++ Build node and click

Environment.
7. Click the Add… button in the right-hand side.
8. In the dialog that appears (see Figure 1-14), type this variable name into the Name

box: RTCESL_LOC.
9. Type the library parent folder path into the Value box: C:\NXP\RTCESL

\CM4F_RTCESL_4.5_KDS.
10. Tick the Add to all configurations box to use this variable in all configurations. See

Figure 1-14.
11. Click OK.
12. In the previous dialog, click OK.

Figure 1-14. Environment variable

Chapter 1 Library

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 17

1.3.2 Library folder addition

To use the library, add it into the Project tree dialog.

1. Right-click the MyProject01 or MCUXpresso SDK project name node in the left-
hand part and click New > Folder, or select File > New > Folder from the menu. A
dialog appears.

2. Click Advanced to show the advanced options.
3. To link the library source, select the option Link to alternate location (Linked

Folder).
4. Click Variables..., select the RTCESL_LOC variable in the dialog, click OK, and/or

type the variable name into the box. See Figure 1-15.
5. Click Finish, and you will see the library folder linked in the project. See Figure

1-16.

Figure 1-15. Folder link

Library integration into project (Kinetis Design Studio)

GDFLIB User's Guide, Rev. 3, 05/2020

18 NXP Semiconductors

Figure 1-16. Projects libraries paths

1.3.3 Library path setup

GDFLIB requires MLIB to be included too. These steps show how to include all
dependent modules:

1. Right-click the MyProject01 or MCUXpresso SDK project name node in the left-
hand part and click Properties, or select Project > Properties from the menu. A
project properties dialog appears.

2. Expand the C/C++ General node, and click Paths and Symbols.
3. In the right-hand dialog, select the Library Paths tab. See Figure 1-18.
4. Click the Add… button on the right, and a dialog appears.
5. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the

path in the box by adding the following (see Figure 1-17): ${RTCESL_LOC}\MLIB.
6. Click OK, and then click the Add… button.
7. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the

path in the box by adding the following: ${RTCESL_LOC}\GDFLIB.
8. Click OK, and the paths will be visible in the list. See Figure 1-18.

Figure 1-17. Library path inclusion

Chapter 1 Library

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 19

Figure 1-18. Library paths
9. After adding the library paths, add the library files. Click the Libraries tab. See

Figure 1-20.
10. Click the Add… button on the right, and a dialog appears.
11. Type the following into the File text box (see Figure 1-19): :mlib.a
12. Click OK, and then click the Add… button.
13. Type the following into the File text box: :gdflib.a
14. Click OK, and you will see the libraries added in the list. See Figure 1-20.

Figure 1-19. Library file inclusion

Figure 1-20. Libraries
15. In the right-hand dialog, select the Includes tab, and click GNU C in the Languages

list. See Figure 1-22.
16. Click the Add… button on the right, and a dialog appears. See Figure 1-21.

Library integration into project (Kinetis Design Studio)

GDFLIB User's Guide, Rev. 3, 05/2020

20 NXP Semiconductors

17. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the
path in the box to be: ${RTCESL_LOC}\MLIB\Include

18. Click OK, and then click the Add… button.
19. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the

path in the box to be: ${RTCESL_LOC}\GDFLIB\Include
20. Click OK, and you will see the paths added in the list. See Figure 1-22. Click OK.

Figure 1-21. Library include path addition

Figure 1-22. Compiler setting

Type the #include syntax into the code. Include the library into the main.c file. In the left-
hand dialog, open the Sources folder of the project, and double-click the main.c file.
After the main.c file opens up, include the following lines in the #include section:

#include "mlib_FP.h"
#include "gdflib_FP.h"

When you click the Build icon (hammer), the project will be compiled without errors.

1.4 Library integration into project (Keil µVision)

Chapter 1 Library

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 21

This section provides a step-by-step guide on how to quickly and easily include GDFLIB
into an empty project or any MCUXpresso SDK example or demo application projects
using Keil µVision. This example uses the default installation path (C:\NXP\RTCESL
\CM4F_RTCESL_4.5_KEIL). If you have a different installation path, use that path
instead. If any MCUXpresso SDK project is intended to use (for example hello_world
project) go to Linking the files into the project chapter otherwise read next chapter.

1.4.1 NXP pack installation for new project (without MCUXpresso
SDK)

This example uses the NXP part, and the default installation path (C:\NXP\RTCESL
\CM4F_RTCESL_4.5_KEIL) is supposed. If the compiler has never been used to create
any NXP MCU-based projects before, check whether the NXP MCU pack for the
particular device is installed. Follow these steps:

1. Launch Keil µVision.
2. In the main menu, go to Project > Manage > Pack Installer….
3. In the left-hand dialog (under the Devices tab), expand the All Devices > Freescale

(NXP) node.
4. Look for a line called "KVxx Series" and click it.
5. In the right-hand dialog (under the Packs tab), expand the Device Specific node.
6. Look for a node called "Keil::Kinetis_KVxx_DFP." If there are the Install or Update

options, click the button to install/update the package. See Figure 1-23.
7. When installed, the button has the "Up to date" title. Now close the Pack Installer.

Library integration into project (Keil µVision)

GDFLIB User's Guide, Rev. 3, 05/2020

22 NXP Semiconductors

Figure 1-23. Pack Installer

1.4.2 New project (without MCUXpresso SDK)
To start working on an application, create a new project. If the project already exists and
is opened, skip to the next section. Follow these steps to create a new project:

1. Launch Keil µVision.
2. In the main menu, select Project > New µVision Project…, and the Create New

Project dialog appears.
3. Navigate to the folder where you want to create the project, for example C:

\KeilProjects\MyProject01. Type the name of the project, for example MyProject01.
Click Save. See Figure 1-24.

Figure 1-24. Create New Project dialog
4. In the next dialog, select the Software Packs in the very first box.
5. Type '' into the Search box, so that the device list is reduced to the devices.
6. Expand the node.
7. Click the MKV46F256xxx15 node, and then click OK. See Figure 1-25.

Chapter 1 Library

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 23

Figure 1-25. Select Device dialog
8. In the next dialog, expand the Device node, and tick the box next to the Startup node.

See Figure 1-26.
9. Expand the CMSIS node, and tick the box next to the CORE node.

Figure 1-26. Manage Run-Time Environment dialog
10. Click OK, and a new project is created. The new project is now visible in the left-

hand part of Keil µVision. See Figure 1-27.

Library integration into project (Keil µVision)

GDFLIB User's Guide, Rev. 3, 05/2020

24 NXP Semiconductors

Figure 1-27. Project
11. In the main menu, go to Project > Options for Target 'Target1'…, and a dialog

appears.
12. Select the Target tab.
13. Select Use Single Precision in the Floating Point Hardware option. See Figure 1-27.

Figure 1-28. FPU

1.4.3 Linking the files into the project

GDFLIB requires MLIB to be included too. The following steps show how to include all
dependent modules.

To include the library files in the project, create groups and add them.

1. Right-click the Target 1 node in the left-hand part of the Project tree, and select Add
Group… from the menu. A new group with the name New Group is added.

2. Click the newly created group, and press F2 to rename it to RTCESL.
3. Right-click the RTCESL node, and select Add Existing Files to Group 'RTCESL'…

from the menu.
4. Navigate into the library installation folder C:\NXP\RTCESL

\CM4F_RTCESL_4.5_KEIL\MLIB\Include, and select the mlib_FP.h file. If the file
does not appear, set the Files of type filter to Text file. Click Add. See Figure 1-29.

Chapter 1 Library

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 25

Figure 1-29. Adding .h files dialog
5. Navigate to the parent folder C:\NXP\RTCESL\CM4F_RTCESL_4.5_KEIL\MLIB,

and select the mlib.lib file. If the file does not appear, set the Files of type filter to
Library file. Click Add. See Figure 1-30.

Figure 1-30. Adding .lib files dialog
6. Navigate into the library installation folder C:\NXP\RTCESL

\CM4F_RTCESL_4.5_KEIL\GDFLIB\Include, and select the gdflib_FP.h file. If the
file does not appear, set the Files of type filter to Text file. Click Add.

7. Navigate to the parent folder C:\NXP\RTCESL\CM4F_RTCESL_4.5_KEIL
\GDFLIB, and select the gdflib.lib file. If the file does not appear, set the Files of
type filter to Library file. Click Add.

8. Now, all necessary files are in the project tree; see Figure 1-31. Click Close.

Library integration into project (Keil µVision)

GDFLIB User's Guide, Rev. 3, 05/2020

26 NXP Semiconductors

Figure 1-31. Project workspace

1.4.4 Library path setup

The following steps show the inclusion of all dependent modules.

1. In the main menu, go to Project > Options for Target 'Target1'…, and a dialog
appears.

2. Select the C/C++ tab. See Figure 1-32.
3. In the Include Paths text box, type the following paths (if there are more paths, they

must be separated by ';') or add them by clicking the … button next to the text box:
• "C:\NXP\RTCESL\CM4F_RTCESL_4.5_KEIL\MLIB\Include"
• "C:\NXP\RTCESL\CM4F_RTCESL_4.5_KEIL\GDFLIB\Include"

4. Click OK.
5. Click OK in the main dialog.

Chapter 1 Library

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 27

Figure 1-32. Library path addition

Type the #include syntax into the code. Include the library into a source file. In the new
project, it is necessary to create a source file:

1. Right-click the Source Group 1 node, and Add New Item to Group 'Source Group
1'… from the menu.

2. Select the C File (.c) option, and type a name of the file into the Name box, for
example 'main.c'. See Figure 1-33.

Library integration into project (Keil µVision)

GDFLIB User's Guide, Rev. 3, 05/2020

28 NXP Semiconductors

Figure 1-33. Adding new source file dialog
3. Click Add, and a new source file is created and opened up.
4. In the opened source file, include the following lines into the #include section, and

create a main function:

#include "mlib_FP.h"
#include "gdflib_FP.h"

int main(void)
{
 while(1);
}

When you click the Build (F7) icon, the project will be compiled without errors.

1.5 Library integration into project (IAR Embedded
Workbench)

This section provides a step-by-step guide on how to quickly and easily include the
GDFLIB into an empty project or any MCUXpresso SDK example or demo application
projects using IAR Embedded Workbench. This example uses the default installation
path (C:\NXP\RTCESL\CM4F_RTCESL_4.5_IAR). If you have a different installation
path, use that path instead. If any MCUXpresso SDK project is intended to use (for
example hello_world project) go to Linking the files into the project chapter otherwise
read next chapter.

Chapter 1 Library

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 29

1.5.1 New project (without MCUXpresso SDK)
This example uses the NXP MKV46F256xxx15 part, and the default installation path (C:
\NXP\RTCESL\CM4F_RTCESL_4.5_IAR) is supposed. To start working on an
application, create a new project. If the project already exists and is opened, skip to the
next section. Perform these steps to create a new project:

1. Launch IAR Embedded Workbench.
2. In the main menu, select Project > Create New Project… so that the "Create New

Project" dialog appears. See Figure 1-34.

Figure 1-34. Create New Project dialog
3. Expand the C node in the tree, and select the "main" node. Click OK.
4. Navigate to the folder where you want to create the project, for example, C:

\IARProjects\MyProject01. Type the name of the project, for example, MyProject01.
Click Save, and a new project is created. The new project is now visible in the left-
hand part of IAR Embedded Workbench. See Figure 1-35.

Library integration into project (IAR Embedded Workbench)

GDFLIB User's Guide, Rev. 3, 05/2020

30 NXP Semiconductors

Figure 1-35. New project
5. In the main menu, go to Project > Options…, and a dialog appears.
6. In the Target tab, select the Device option, and click the button next to the dialog to

select the MCU. In this example, select NXP > KV4x > NXP MKV46F256xxx15.
Select VFPv4 single precision in the FPU option. Click OK. See Figure 1-36.

Figure 1-36. Options dialog

Chapter 1 Library

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 31

1.5.2 Library path variable

To make the library integration easier, create a variable that will hold the information
about the library path.

1. In the main menu, go to Tools > Configure Custom Argument Variables…, and a
dialog appears.

2. Click the New Group button, and another dialog appears. In this dialog, type the
name of the group PATH, and click OK. See Figure 1-37.

Figure 1-37. New Group
3. Click on the newly created group, and click the Add Variable button. A dialog

appears.
4. Type this name: RTCESL_LOC
5. To set up the value, look for the library by clicking the '…' button, or just type the

installation path into the box: C:\NXP\RTCESL\CM4F_RTCESL_4.5_IAR. Click
OK.

6. In the main dialog, click OK. See Figure 1-38.

Library integration into project (IAR Embedded Workbench)

GDFLIB User's Guide, Rev. 3, 05/2020

32 NXP Semiconductors

Figure 1-38. New variable

1.5.3 Linking the files into the project

GDFLIB requires MLIB to be included too. The following steps show the inclusion of all
dependent modules.

To include the library files into the project, create groups and add them.

1. Go to the main menu Project > Add Group…
2. Type RTCESL, and click OK.
3. Click on the newly created node RTCESL, go to Project > Add Group…, and create

a MLIB subgroup.
4. Click on the newly created node MLIB, and go to the main menu Project > Add

Files… See Figure 1-40.
5. Navigate into the library installation folder C:\NXP\RTCESL

\CM4F_RTCESL_4.5_IAR\MLIB\Include, and select the mlib_FP.h file. (If the file
does not appear, set the file-type filter to Source Files.) Click Open. See Figure 1-39.

6. Navigate into the library installation folder C:\NXP\RTCESL
\CM4F_RTCESL_4.5_IAR\MLIB, and select the mlib.a file. If the file does not
appear, set the file-type filter to Library / Object files. Click Open.

Figure 1-39. Add Files dialog
7. Click on the RTCESL node, go to Project > Add Group…, and create a GDFLIB

subgroup.

Chapter 1 Library

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 33

8. Click on the newly created node GDFLIB, and go to the main menu Project > Add
Files….

9. Navigate into the library installation folder C:\NXP\RTCESL
\CM4F_RTCESL_4.5_IAR\GDFLIB\Include, and select the gdflib_FP.h file. (If the
file does not appear, set the file-type filter to Source Files.) Click Open.

10. Navigate into the library installation folder C:\NXP\RTCESL
\CM4F_RTCESL_4.5_IAR\GDFLIB, and select the gdflib.a file. If the file does not
appear, set the file-type filter to Library / Object files. Click Open.

11. Now you will see the files added in the workspace. See Figure 1-40.

Figure 1-40. Project workspace

1.5.4 Library path setup

The following steps show the inclusion of all dependent modules:

1. In the main menu, go to Project > Options…, and a dialog appears.
2. In the left-hand column, select C/C++ Compiler.
3. In the right-hand part of the dialog, click on the Preprocessor tab (it can be hidden in

the right; use the arrow icons for navigation).
4. In the text box (at the Additional include directories title), type the following folder

(using the created variable):
• $RTCESL_LOC$\MLIB\Include
• $RTCESL_LOC$\GDFLIB\Include

5. Click OK in the main dialog. See Figure 1-41.

Library integration into project (IAR Embedded Workbench)

GDFLIB User's Guide, Rev. 3, 05/2020

34 NXP Semiconductors

Figure 1-41. Library path adition

Type the #include syntax into the code. Include the library included into the main.c file.
In the workspace tree, double-click the main.c file. After the main.c file opens up, include
the following lines into the #include section:

#include "mlib_FP.h"
#include "gdflib_FP.h"

When you click the Make icon, the project will be compiled without errors.

Chapter 1 Library

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 35

Library integration into project (IAR Embedded Workbench)

GDFLIB User's Guide, Rev. 3, 05/2020

36 NXP Semiconductors

Chapter 2
Algorithms in detail

2.1 GDFLIB_FilterExp

The GDFLIB_FilterExp function calculates the exponential smoothing. The exponential
filter is the simplest filter with only one tuning parameter, requiring to store only one
variable - the filter output (it is used in the next step). For a proper use, it is recommended
that the algorithm is initialized by the GDFLIB_FilterExpInit function, before using the
GDFLIB_FilterExp function.

The filter calculation consists of the following equation:

Equation 1.

where:

• x(k) is the actual value of the input signal
• y(k) is the actual filter output
• A is the filter constant (0 ; 1) (it defines the smoothness of the exponential filter)

The exponential filter tuning is based on these rules: for a small value of the filter
constant there is a strong filtering effect (if A = 0 then the output equals the new input).
For a high value of the filtering constant, there is a weak filtering effect (if A = 1 then the
new input is ignored). The filter constant defines the ratio between the filter inputs and
the last step output, used for the next calculation.

2.1.1 Available versions

This function is available in the following versions:

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 37

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The parameter uses the fraction type.

• Floating-point output - the output is the floating-point result within the type's full
range. The parameter is of a floating-point range as well.

The available versions of the GDFLIB_FilterExpInit function are shown in the following
table:

Table 2-1. Init function versions

Function name Input
type

Parameters Result
type

Description

GDFLIB_FilterExpInit_F16 frac16_t GDFLIB_FILTER_EXP_T_F32 * void The input argument is a 16-bit
fractional value that represents the
initial value of the filter at the current
step. The input is within the range
<-1 ; 1). The parameters' structure is
pointed to by a pointer.

GDFLIB_FilterExpInit_FLT float_t GDFLIB_FILTER_EXP_T_FLT * void The input argument is a 32-bit single
precision floating-point value that
represents the initial value of the filter
at the current step. The input is within
the full range. The parameters'
structure is pointed to by a pointer.

The available versions of the GDFLIB_FilterExp function are shown in the following
table:

Table 2-2. Function versions

Function name Input
type

Parameters Result
type

Description

GDFLIB_FilterExp_F16 frac16_t GDFLIB_FILTER_EXP_T_F32 * frac16_t The input argument is a 16-bit fractional
value of the input signal to be filtered within
the range <-1 ; 1). The parameters'
structure is pointed to by a pointer. The
function returns a 16-bit fractional value
within the range <-1 ; 1).

GDFLIB_FilterExp_FLT float_t GDFLIB_FILTER_EXP_T_FLT * float_t The input argument is a 32-bit single
precision floating-point value of the input
signal to be filtered within the full range.
The parameters' structure is pointed to by a
pointer. The function returns a 32-bit single
precision floating-point value within the full
range.

GDFLIB_FilterExp

GDFLIB User's Guide, Rev. 3, 05/2020

38 NXP Semiconductors

2.1.2 GDFLIB_FILTER_EXP_T_F32

Variable
name

Input
type

Description

f32A frac32_t Filter constant value (filter parameter). It defines the smoothness of the exponential filter (high value
= small filtering effect, low value = strong filtering effect). It is usually defined as:

Where Ts is the sample time and τ is the filter time constant. The parameter is a 32-bit fractional
value within the range <-0 ; 1). Set by the user.

f32AccK_1 frac32_t Filter accumulator (last step output) value. The parameter is a 32-bit accumulator type within the
range <-1.0 ; 1.0). Controlled by the algorithm.

2.1.3 GDFLIB_FILTER_EXP_T_FLT

Variable
name

Input
type

Description

fltA float_t Filter constant value (filter parameter). It defines the smoothness of the exponential filter (high value
= small filtering effect, low value = strong filtering effect). It is ussually defined as:

Where Ts is the sample time and τ is the filter time constant. The parameter is a 32-bit single
precision floating-point type within the range (0 ; 1.0>. Set by the user.

fltAccK_1 float_t Filter accumulator (last step output) value. The parameter is a 32-bit accumulator type within the 32-
bit single precision floating-point range. Controlled by the algorithm.

2.1.4 Declaration

The available GDFLIB_FilterExpInit functions have the following declarations:

void GDFLIB_FilterExpInit_F16(frac16_t f16InitVal, GDFLIB_FILTER_EXP_T_F32 *psParam)

void GDFLIB_FilterExpInit_FLT(float_t fltInitVal, GDFLIB_FILTER_EXP_T_FLT *psParam)

The available GDFLIB_FilterExp functions have the following declarations:

frac16_t GDFLIB_FilterExp_F16(frac16_t f16InX, GDFLIB_FILTER_EXP_T_F32 *psParam)

float_t GDFLIB_FilterExp_FLT(float_t fltInX, GDFLIB_FILTER_EXP_T_FLT *psParam)

Chapter 2 Algorithms in detail

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 39

2.1.5 Function use

The use of the GDFLIB_FilterExpInit and GDFLIB_FilterExp functions is shown in the
following examples:

Fixed-point version:

#include "gdflib.h"

static frac16_t f16Result;
static frac16_t f16InitVal, f16InX;
static GDFLIB_FILTER_EXP_T_F32 sFilterParam;

void Isr(void);

void main(void)
{
 f16InitVal = FRAC16(0.0); /* f16InitVal = 0.0 */

 /* Filter constant = 0.05 */
 sFilterParam.f32A = FRAC32(0.05);

 GDFLIB_FilterExpInit_F16(f16InitVal, &sFilterParam);

 f16InX = FRAC16(0.5);
}

/* periodically called function */
void Isr(void)
{
 f16Result = GDFLIB_FilterExp_F16(f16InX, &sFilterParam);
}

Floating-point version:

#include "gdflib.h"

static float_t fltResult;
static float_t fltInitVal, fltInX;
static GDFLIB_FILTER_EXP_T_FLT sFilterParam;

void Isr(void);

void main(void)
{
 fltInitVal = 0.0F; /* fltInitVal = 0.0 */

 /* Filter constant = 0.05 */
 sFilterParam.fltA = 0.05F;

 GDFLIB_FilterExpInit_FLT(fltInitVal, &sFilterParam);

 fltInX = 0.5F;
}

/* periodically called function */
void Isr(void)
{
 fltResult = GDFLIB_FilterExp_FLT(fltInX, &sFilterParam);
}

GDFLIB_FilterExp

GDFLIB User's Guide, Rev. 3, 05/2020

40 NXP Semiconductors

2.2 GDFLIB_FilterIIR1

This function calculates the first-order direct form 1 IIR filter.

For a proper use, it is recommended that the algorithm is initialized by the
GDFLIB_FilterIIR1Init function, before using the GDFLIB_FilterIIR1 function. The
GDFLIB_FilterIIR1Init function initializes the buffer and coefficients of the first-order
IIR filter.

The GDFLIB_FilterIIR1 function calculates the first-order infinite impulse response
(IIR) filter. The IIR filters are also called recursive filters, because both the input and the
previously calculated output values are used for calculation. This form of feedback
enables the transfer of energy from the output to the input, which leads to an infinitely
long impulse response (IIR). A general form of the IIR filter, expressed as a transfer
function in the Z-domain, is described as follows:

Equation 2.

where N denotes the filter order. The first-order IIR filter in the Z-domain is expressed as
follows:

Equation 3.

which is transformed into a time-domain difference equation as follows:

Equation 4.

The filter difference equation is implemented in the digital signal controller directly, as
given in Equation 4 on page 41; this equation represents a direct-form 1 first-order IIR
filter, as shown in Figure 2-1.

Figure 2-1. Direct form 1 first-order IIR filter

Chapter 2 Algorithms in detail

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 41

The coefficients of the filter shown in Figure 2-1 can be designed to meet the
requirements for the first-order low-pass filter (LPF) or high-pass filter (HPF). The
coefficient quantization error is not important in the case of a first-order filter due to a
finite precision arithmetic. A higher-order LPF or HPF can be obtained by connecting a
number of first-order filters in series. The number of connections gives the order of the
resulting filter.

The filter coefficients must be defined before calling this function. As some coefficients
can be greater than 1 (and lesser than 2), the coefficients are scaled down (divided) by 2.0
for the fractional version of the algorithm. For faster calculation, the A coefficient is sign-
inverted. The function returns the filtered value of the input in the step k, and stores the
input and the output values in the step k into the filter buffer.

2.2.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1).

• Floating-point output - the output is a floating-point result within the type's full
range.

The available versions of the GDFLIB_FilterIIR1Init function are shown in the following
table:

Table 2-3. Init function versions

Function name Parameters Result
type

Description

GDFLIB_FilterIIR1Init_F16 GDFLIB_FILTER_IIR1_T_F32 * void Filter initialization (reset) function. The
parameters' structure is pointed to by a
pointer.

GDFLIB_FilterIIR1Init_FLT GDFLIB_FILTER_IIR1_T_FLT * void Filter initialization (reset) function. The
parameters' structure is pointed to by a
pointer.

GDFLIB_FilterIIR1

GDFLIB User's Guide, Rev. 3, 05/2020

42 NXP Semiconductors

The available versions of the GDFLIB_FilterIIR1 function are shown in the following
table:

Table 2-4. Function versions

Function name Input
type

Parameters Result
type

Description

GDFLIB_FilterIIR1_F16 frac16_t GDFLIB_FILTER_IIR1_T_F32 * frac16_t The input argument is a 16-bit
fractional value of the input signal to
be filtered within the range <-1 ; 1).
The parameters' structure is pointed
to by a pointer. The function returns
a 16-bit fractional value within the
range <-1 ; 1).

GDFLIB_FilterIIR1_FLT float_t GDFLIB_FILTER_IIR1_T_FLT * float_t The input argument is a 32-bit single
precision floating-point value of the
input signal within the full range. The
parameters' structure is pointed to
by a pointer. The function returns a
32-bit single precision floating-point
value within the full range.

2.2.2 GDFLIB_FILTER_IIR1_T_F32

Variable name Input type Description

sFltCoeff GDFLIB_FILTER_IIR1_COEFF_T_F32 * Substructure containing filter coefficients.

f32FltBfrY[1] frac32_t Internal buffer of y-history. Controlled by the
algorithm.

f16FltBfrX[1] frac16_t Internal buffer of x-history. Controlled by the
algorithm.

2.2.3 GDFLIB_FILTER_IIR1_COEFF_T_F32

Variable name Type Description

f32B0 frac32_t B0 coefficient of the IIR1 filter. Set by the user, and must be divided by 2.

f32B1 frac32_t B1 coefficient of the IIR1 filter. Set by the user, and must be divided by 2.

f32A1 frac32_t A1 (sign-inverted) coefficient of the IIR1 filter. Set by the user, and must be divided by -2
(negative two).

Chapter 2 Algorithms in detail

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 43

2.2.4 GDFLIB_FILTER_IIR1_T_FLT

Variable name Input type Description

sFltCoeff GDFLIB_FILTER_IIR1_COEFF_T_FLT * Substructure containing filter coefficients.

fltFltBfrY[1] float_t Internal buffer of y-history. Controlled by the
algorithm.

fltFltBfrX[1] float_t Internal buffer of x-history. Controlled by the
algorithm.

2.2.5 GDFLIB_FILTER_IIR1_COEFF_T_FLT

Variable name Type Description

fltB0 float_t B0 coefficient of the IIR1 filter. Set by the user.

fltB1 float_t B1 coefficient of the IIR1 filter. Set by the user.

fltA1 float_t A1 (sign-inverted) coefficient of the IIR1 filter. Set by the user.

2.2.6 Declaration

The available GDFLIB_FilterIIR1Init functions have the following declarations:

void GDFLIB_FilterIIR1Init_F16(GDFLIB_FILTER_IIR1_T_F32 *psParam)
void GDFLIB_FilterIIR1Init_FLT(GDFLIB_FILTER_IIR1_T_FLT *psParam)

The available GDFLIB_FilterIIR1 functions have the following declarations:

frac16_t GDFLIB_FilterIIR1_F16(frac16_t f16InX, GDFLIB_FILTER_IIR1_T_F32 *psParam)
float_t GDFLIB_FilterIIR1_FLT(float_t fltInX, GDFLIB_FILTER_IIR1_T_FLT *psParam)

2.2.7 Calculation of filter coefficients

There are plenty of methods for calculating the coefficients. The following example
shows the use of Matlab to set up a low-pass filter with the 500 Hz sampling frequency,
and 240 Hz stopped frequency with a 20 dB attenutation. Maximum passband ripple is 3
dB at the cut-off frequency of 50 Hz.

% sampling frequency 500 Hz, low pass
Ts = 1 / 500

% cut-off frequency 50 Hz
Fc = 50

GDFLIB_FilterIIR1

GDFLIB User's Guide, Rev. 3, 05/2020

44 NXP Semiconductors

% max. passband ripple 3 dB
Rp = 3

% stopped frequency 240Hz
Fs = 240

% attenuation 20 dB
Rs = 20

% checking order of the filter
n = buttord(2 * Ts * Fc, 2 * Ts * Fs, Rp, Rs)
% n = 1, i.e. the filter is achievable with the 1st order

% getting the filter coefficients
[b, a] = butter(n, 2 * Ts * Fc, 'low');

% the coefs are:
% b0 = 0.245237275252786, b1 = 0.245237275252786
% a0 = 1.0000, a1 = -0.509525449494429

The filter response is shown in Figure 2-2.

Figure 2-2. Filter response

2.2.8 Function use

The use of the GDFLIB_FilterIIR1Init and GDFLIB_FilterIIR1 functions is shown in the
following examples. The filter uses the above-calculated coefficients:

Fixed-point version:

Chapter 2 Algorithms in detail

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 45

#include "gdflib.h"

static frac16_t f16Result;
static frac16_t f16InX;
static GDFLIB_FILTER_IIR1_T_F32 sFilterParam;

void Isr(void);

void main(void)
{
 sFilterParam.sFltCoeff.f32B0 = FRAC32(0.245237275252786 / 2.0);
 sFilterParam.sFltCoeff.f32B1 = FRAC32(0.245237275252786 / 2.0);
 sFilterParam.sFltCoeff.f32A1 = FRAC32(-0.509525449494429 / -2.0);

 GDFLIB_FilterIIR1Init_F16(&sFilterParam);

 f16InX = FRAC16(0.1);
}

/* periodically called function */
void Isr(void)
{
 f16Result = GDFLIB_FilterIIR1_F16(f16InX, &sFilterParam);
}

Floating-point version:

#include "gdflib.h"

static float_t fltResult;
static float_t fltInX;
static GDFLIB_FILTER_IIR1_T_FLT sFilterParam;

void Isr(void);

void main(void)
{
 sFilterParam.sFltCoeff.fltB0 = 0.245237275252786f;
 sFilterParam.sFltCoeff.fltB1 = 0.245237275252786f;
 sFilterParam.sFltCoeff.fltA1 = -0.509525449494429f;

 GDFLIB_FilterIIR1Init_FLT(&sFilterParam);

 fltInX = 0.1F;
}

/* periodically called function */
void Isr(void)
{
 fltResult = GDFLIB_FilterIIR1_FLT(fltInX, &sFilterParam);
}

2.3 GDFLIB_FilterIIR2

This function calculates the second-order direct-form 1 IIR filter.

GDFLIB_FilterIIR2

GDFLIB User's Guide, Rev. 3, 05/2020

46 NXP Semiconductors

For a proper use, it is recommended that the algorithm is initialized by the
GDFLIB_FilterIIR2Init function, before using the GDFLIB_FilterIIR2 function. The
GDFLIB_FilterIIR2Init function initializes the buffer and coefficients of the second-
order IIR filter.

The GDFLIB_FilterIIR2 function calculates the second-order infinite impulse response
(IIR) filter. The IIR filters are also called recursive filters, because both the input and the
previously calculated output values are used for calculation. This form of feedback
enables the transfer of energy from the output to the input, which leads to an infinitely
long impulse response (IIR). A general form of the IIR filter, expressed as a transfer
function in the Z-domain, is described as follows:

Equation 5.

where N denotes the filter order. The second-order IIR filter in the Z-domain is expressed
as follows:

Equation 6.

which is transformed into a time-domain difference equation as follows:

Equation 7.

The filter difference equation is implemented in the digital signal controller directly, as
given in Equation 7 on page 47; this equation represents a direct-form 1 second-order IIR
filter, as depicted in Figure 2-3.

Figure 2-3. Direct-form 1 second-order IIR filter

Chapter 2 Algorithms in detail

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 47

The coefficients of the filter depicted in Figure 2-3 can be designed to meet the
requirements for the second-order low-pass filter (LPF), high-pass filter (HPF), band-pass
filter (BPF) or band-stop filter (BSF). The coefficient quantization error can be neglected
in the case of a second-order filter due to a finite precision arithmetic. A higher-order
LPF or HPF can be obtained by connecting a number of second-order filters in series.
The number of connections gives the order of the resulting filter.

The filter coefficients must be defined before calling this function. As some coefficients
can be greater than 1 (and lesser than 2), the coefficients are scaled down (divided) by 2.0
for the fractional version of the algorithm. For faster calculation, the A coefficients are
sign-inverted. The function returns the filtered value of the input in the step k, and stores
the input and output values in the step k into the filter buffer.

2.3.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1).

• Floating-point output - the output is the floating-point result within the type's full
range.

The available versions of the GDFLIB_FilterIIR2Init function are shown in the following
table:

Table 2-5. Init function versions

Function name Parameters Result
type

Description

GDFLIB_FilterIIR2Init_F16 GDFLIB_FILTER_IIR2_T_F32 * void Filter initialization (reset) function. The
parameters' structure is pointed to by a
pointer.

GDFLIB_FilterIIR2Init_FLT GDFLIB_FILTER_IIR2_T_FLT * void Filter initialization (reset) function. The
parameters' structure is pointed to by a
pointer.

GDFLIB_FilterIIR2

GDFLIB User's Guide, Rev. 3, 05/2020

48 NXP Semiconductors

The available versions of the GDFLIB_FilterIIR2 function are shown in the following
table:

Table 2-6. Function versions

Function name Input
type

Parameters Result
type

Description

GDFLIB_FilterIIR2_F16 frac16_t GDFLIB_FILTER_IIR2_T_F32 * frac16_t Input argument is a 16-bit fractional
value of the input signal to be filtered
within the range <-1 ; 1). The
parameters' structure is pointed to
by a pointer. The function returns a
16-bit fractional value within the
range <-1 ; 1).

GDFLIB_FilterIIR2_FLT float_t GDFLIB_FILTER_IIR2_T_FLT * float_t Input argument is a 32-bit single
precision floating-point value of the
input signal within the full range. The
parameters' structure is pointed to
by a pointer. The function returns a
32-bit single precision floating-point
value within the full range.

2.3.2 GDFLIB_FILTER_IIR2_T_F32

Variable name Input type Description

sFltCoeff GDFLIB_FILTER_IIR2_COEFF_T_F32 * Substructure containing filter coefficients.

f32FltBfrY[2] frac32_t Internal buffer of y-history. Controlled by the
algorithm.

f16FltBfrX[2] frac16_t Internal buffer of x-history. Controlled by the
algorithm.

2.3.3 GDFLIB_FILTER_IIR2_COEFF_T_F32

Variable name Type Description

f32B0 frac32_t B0 coefficient of the IIR2 filter. Set by the user, and must be divided by 2.

f32B1 frac32_t B1 coefficient of the IIR2 filter. Set by the user, and must be divided by 2.

f32B2 frac32_t B2 coefficient of the IIR2 filter. Set by the user, and must be divided by 2.

f32A1 frac32_t A1 (sign-inverted) coefficient of the IIR2 filter. Set by the user, and must be divided by -2
(negative two).

f32A2 frac32_t A2 (sign-inverted) coefficient of the IIR2 filter. Set by the user, and must be divided by -2
(negative two).

Chapter 2 Algorithms in detail

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 49

2.3.4 GDFLIB_FILTER_IIR2_T_FLT

Variable name Input type Description

sFltCoeff GDFLIB_FILTER_IIR2_COEFF_T_FLT * Substructure containing filter coefficients.

fltFltBfrY[2] float_t Internal buffer of y-history. Controlled by the
algorithm.

fltFltBfrX[2] float_t Internal buffer of x-history. Controlled by the
algorithm.

2.3.5 GDFLIB_FILTER_IIR2_COEFF_T_FLT

Variable name Type Description

fltB0 float_t B0 coefficient of the IIR2 filter. Set by the user.

fltB1 float_t B1 coefficient of the IIR2 filter. Set by the user.

fltB2 float_t B2 coefficient of the IIR2 filter. Set by the user.

fltA1 float_t A1 (sign-inverted) coefficient of the IIR2 filter. Set by the user.

fltA2 float_t A2 (sign-inverted) coefficient of the IIR2 filter. Set by the user.

2.3.6 Declaration

The available GDFLIB_FilterIIR2Init functions have the following declarations:

void GDFLIB_FilterIIR2Init_F16(GDFLIB_FILTER_IIR2_T_F32 *psParam)
void GDFLIB_FilterIIR2Init_FLT(GDFLIB_FILTER_IIR2_T_FLT *psParam)

The available GDFLIB_FilterIIR2 functions have the following declarations:

frac16_t GDFLIB_FilterIIR2_F16(frac16_t f16InX, GDFLIB_FILTER_IIR2_T_F32 *psParam)
float_t GDFLIB_FilterIIR2_FLT(float_t fltInX, GDFLIB_FILTER_IIR2_T_FLT *psParam)

2.3.7 Calculation of filter coefficients

There are plenty of methods for calculating the coefficients. The following example
shows the use of Matlab to set up a stopband filter with the 1000 Hz sampling frequency,
100 Hz stop frequency with 10 dB attenuation, and 30 Hz bandwidth. Maximum
passband ripple is 3 dB.

GDFLIB_FilterIIR2

GDFLIB User's Guide, Rev. 3, 05/2020

50 NXP Semiconductors

% sampling frequency 1000 Hz, stop band
Ts = 1 / 1000

% center stop frequency 100 Hz
Fc = 50

% attenuation 10 dB
Rs = 10

% bandwidth 30 Hz
Fbw = 30

% max. passband ripple 3 dB
Rp = 3

% checking order of the filter
n = buttord(2 * Ts * [Fc - Fbw /2 Fc + Fbw / 2], 2 * Ts * [Fc - Fbw Fc + Fbw], Rp, Rs)
% n = 2, i.e. the filter is achievable with the 2nd order

% getting the filter coefficients
[b, a] = butter(n / 2, 2 * Ts * [Fc - Fbw /2 Fc + Fbw / 2], 'stop')

% the coefs are:
% b0 = 0.913635972986238, b1 = -1.745585863109291, b2 = 0.913635972986238
% a0 = 1.0000, a1 = -1.745585863109291, a2 = 0.827271945972476

The filter response is shown in Figure 2-4.

Figure 2-4. Filter response

2.3.8 Function use

The use of the GDFLIB_FilterIIR2Init and GDFLIB_FilterIIR2 functions is shown in the
following examples. The filter uses the above-calculated coefficients:

Chapter 2 Algorithms in detail

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 51

Fixed-point version:

#include "gdflib.h"

static frac16_t f16Result;
static frac16_t f16InX;
static GDFLIB_FILTER_IIR2_T_F32 sFilterParam;

void Isr(void);

void main(void)
{
 sFilterParam.sFltCoeff.f32B0 = FRAC32(0.913635972986238 / 2.0);
 sFilterParam.sFltCoeff.f32B1 = FRAC32(-1.745585863109291 / 2.0);
 sFilterParam.sFltCoeff.f32B2 = FRAC32(0.913635972986238 / 2.0);
 sFilterParam.sFltCoeff.f32A1 = FRAC32(-1.745585863109291 / -2.0);
 sFilterParam.sFltCoeff.f32A2 = FRAC32(0.827271945972476 / -2.0);

 GDFLIB_FilterIIR2Init_F16(&sFilterParam);

 f16InX = FRAC16(0.1);
}

/* periodically called function */
void Isr(void)
{
 f16Result = GDFLIB_FilterIIR2_F16(f16InX, &sFilterParam);
}

Floating-point version:

#include "gdflib.h"

static float_t fltResult;
static float_t fltInX;
static GDFLIB_FILTER_IIR2_T_FLT sFilterParam;

void Isr(void);

void main(void)
{
 sFilterParam.sFltCoeff.fltB0 = 0.913635972986238f;
 sFilterParam.sFltCoeff.fltB1 = -1.745585863109291f;
 sFilterParam.sFltCoeff.fltB2 = 0.913635972986238f;
 sFilterParam.sFltCoeff.fltA1 = -1.745585863109291f;
 sFilterParam.sFltCoeff.fltA2 = 0.827271945972476f;

 GDFLIB_FilterIIR2Init_FLT(&sFilterParam);

 fltInX = 0.1F;
}

/* periodically called function */
void Isr(void)
{
 fltResult = GDFLIB_FilterIIR2_FLT(fltInX, &sFilterParam);
}

GDFLIB_FilterIIR2

GDFLIB User's Guide, Rev. 3, 05/2020

52 NXP Semiconductors

2.4 GDFLIB_FilterIIR3

This function calculates the third-order direct-form 1 IIR filter.

For a proper use, it is recommended to initialize the algorithm by the
GDFLIB_FilterIIR3Init function before using the GDFLIB_FilterIIR3 function. The
GDFLIB_FilterIIR3Init function initializes the buffer and coefficients of the third-order
IIR filter.

The GDFLIB_FilterIIR3 function calculates the third-order infinite impulse response
(IIR) filter. The IIR filters are also called recursive filters because both the input and the
previously calculated output values are used for calculation. This form of feedback
enables the transfer of energy from the output to the input, which leads to an infinitely
long impulse response (IIR). A general form of the IIR filter (expressed as a transfer
function in the Z-domain) is described as follows:

Equation 8.

where N denotes the filter order. The third-order IIR filter in the Z-domain is expressed
as follows:

Equation 9.

which is transformed into a time-domain difference equation as follows:

Equation 10.

The filter difference equation is implemented in the digital signal controller directly, as
given in Equation 10 on page 53. This equation represents a direct-form 1 third-order IIR
filter, as depicted in Figure 2-5.

Chapter 2 Algorithms in detail

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 53

Figure 2-5. Direct-form 1 third-order IIR filter

The coefficients of the filter depicted in Figure 2-5 can be designed to meet the
requirements for the third-order low-pass filter (LPF) or high-pass filter (HPF). The
coefficient quantization error can be neglected in the case of a third-order filter due to a
finite precision arithmetic. A higher-order LPF or HPF can be obtained by connecting a
number of third-order filters in series. The number of connections gives the order of the
resulting filter.

Define the filter coefficients before calling this function. As some coefficients can be
greater than 1 (and lesser than 4), the coefficients are scaled down (divided) by 4.0 for the
fractional version of the algorithm. For a faster calculation, the A coefficients are sign-
inverted. The function returns the filtered value of the input in the step k, and stores the
input and output values in the step k into the filter buffer.

2.4.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1).

• Floating-point output - the output is the floating-point result within the type's full
range.

GDFLIB_FilterIIR3

GDFLIB User's Guide, Rev. 3, 05/2020

54 NXP Semiconductors

The available versions of the GDFLIB_FilterIIR3Init function are shown in the following
table:

Table 2-7. Init function versions

Function name Parameters Result
type

Description

GDFLIB_FilterIIR3Init_F16 GDFLIB_FILTER_IIR3_T_F32 * void Filter initialization (reset) function. The
parameters' structure is pointed to by a
pointer.

GDFLIB_FilterIIR3Init_FLT GDFLIB_FILTER_IIR3_T_FLT * void Filter initialization (reset) function. The
parameters' structure is pointed to by a
pointer.

The available versions of the GDFLIB_FilterIIR3 function are shown in the following
table:

Table 2-8. Function versions

Function name Input
type

Parameters Result
type

Description

GDFLIB_FilterIIR3_F16 frac16_t GDFLIB_FILTER_IIR3_T_F32 * frac16_t Input argument is a 16-bit fractional
value of the input signal to be filtered
within the range <-1 ; 1). The
parameters' structure is pointed to
by a pointer. The function returns a
16-bit fractional value within the
range <-1 ; 1).

GDFLIB_FilterIIR3_FLT float_t GDFLIB_FILTER_IIR3_T_FLT * float_t Input argument is a 32-bit single
precision floating-point value of the
input signal within the full range. The
parameters' structure is pointed to
by a pointer. The function returns a
32-bit single precision floating-point
value within the full range.

2.4.2 GDFLIB_FILTER_IIR3_T_F32

Variable name Input type Description

sFltCoeff GDFLIB_FILTER_IIR3_COEFF_T_F32 * Substructure containing filter coefficients.

f32FltBfrY[3] frac32_t Internal buffer of y-history. Controlled by the
algorithm.

f16FltBfrX[3] frac16_t Internal buffer of x-history. Controlled by the
algorithm.

Chapter 2 Algorithms in detail

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 55

2.4.3 GDFLIB_FILTER_IIR3_COEFF_T_F32

Variable name Type Description

f32B0 frac32_t B0 coefficient of the IIR3 filter. Set by the user, and must be divided by 4.

f32B1 frac32_t B1 coefficient of the IIR3 filter. Set by the user, and must be divided by 4.

f32B2 frac32_t B2 coefficient of the IIR3 filter. Set by the user, and must be divided by 4.

f32B3 frac32_t B3 coefficient of the IIR3 filter. Set by the user, and must be divided by 4 (negative four).

f32A1 frac32_t A1 (sign-inverted) coefficient of the IIR3 filter. Set by the user. Must be divided by -4
(negative four).

f32A2 frac32_t A2 (sign-inverted) coefficient of the IIR3 filter. Set by the user. Must be divided by -4
(negative four).

f32A3 frac32_t A3 (sign-inverted) coefficient of the IIR3 filter. Set by the user. Must be divided by -4
(negative four).

2.4.4 GDFLIB_FILTER_IIR3_T_FLT

Variable name Input type Description

sFltCoeff GDFLIB_FILTER_IIR3_COEFF_T_FLT * Substructure containing filter coefficients.

fltFltBfrY[3] float_t Internal buffer of y-history. Controlled by the
algorithm.

fltFltBfrX[3] float_t Internal buffer of x-history. Controlled by the
algorithm.

2.4.5 GDFLIB_FILTER_IIR3_COEFF_T_FLT

Variable name Type Description

fltB0 float_t B0 coefficient of the IIR3 filter. Set by the user.

fltB1 float_t B1 coefficient of the IIR3 filter. Set by the user.

fltB2 float_t B2 coefficient of the IIR3 filter. Set by the user.

fltB3 float_t B3 coefficient of the IIR3 filter. Set by the user.

fltA1 float_t A1 (sign-inverted) coefficient of the IIR3 filter. Set by the user.

fltA2 float_t A2 (sign-inverted) coefficient of the IIR3 filter. Set by the user.

fltA3 float_t A3 (sign-inverted) coefficient of the IIR3 filter. Set by the user.

GDFLIB_FilterIIR3

GDFLIB User's Guide, Rev. 3, 05/2020

56 NXP Semiconductors

2.4.6 Declaration

The available GDFLIB_FilterIIR3Init functions have the following declarations:

void GDFLIB_FilterIIR3Init_F16(GDFLIB_FILTER_IIR3_T_F32 *psParam)
void GDFLIB_FilterIIR3Init_FLT(GDFLIB_FILTER_IIR3_T_FLT *psParam)

The available GDFLIB_FilterIIR3 functions have the following declarations:

frac16_t GDFLIB_FilterIIR3_F16(frac16_t f16InX, GDFLIB_FILTER_IIR3_T_F32 *psParam)
float_t GDFLIB_FilterIIR3_FLT(float_t fltInX, GDFLIB_FILTER_IIR3_T_FLT *psParam)

2.4.7 Calculation of filter coefficients

There are plenty of methods for calculating the coefficients. The following example
shows the use of Matlab to set up a high-pass filter with the 10000 Hz sampling
frequency and 200 Hz stop frequency with 60 dB attenuation. The ripple is 3 dB at the
cut-off frequency of 2000 Hz.

% sampling frequency 10000 Hz, high pass
Ts = 1 / 10000

% cut-off frequency 2 KHz
Fc = 2000

% attenuation 60 dB
Rs = 60

% stop frequency 200 Hz
Fs = 200

% max. passband ripple 3 dB
Rp = 3

% checking order of the filter
n = buttord(2 * Ts * Fc, 2 * Ts * Fs, Rp, Rs)
% n = 3, i.e. the filter is achievable with the 3rd order

% getting the filter coefficients
[b, a] = butter(n, 2* Ts * Fc, 'high')

% the coefs are:
% b0 = 0.256915601248463, b1 = -0.770746803745390, b2 = 0.770746803745390,
% b3 = -0.256915601248463
% a0 = 1.0000, a1 = -0.577240524806303, a2 = 0.421787048689562, a3 = -0.056297236491843

The filter response is shown in Figure 2-6.

Chapter 2 Algorithms in detail

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 57

Figure 2-6. Filter response

2.4.8 Function use

The use of the GDFLIB_FilterIIR3Init and GDFLIB_FilterIIR3 functions is shown in the
following examples. The filter uses the above-calculated coefficients:

Fixed-point version:

#include "gdflib.h"

static frac16_t f16Result;
static frac16_t f16InX;
static GDFLIB_FILTER_IIR3_T_F32 sFilterParam;

void Isr(void);

void main(void)
{
 sFilterParam.sFltCoeff.f32B0 = FRAC32(0.256915601248463 / 4.0);
 sFilterParam.sFltCoeff.f32B1 = FRAC32(-0.770746803745390 / 4.0);
 sFilterParam.sFltCoeff.f32B2 = FRAC32(0.770746803745390 / 4.0);
 sFilterParam.sFltCoeff.f32B3 = FRAC32(-0.256915601248463 / 4.0);
 sFilterParam.sFltCoeff.f32A1 = FRAC32(-0.577240524806303 / -4.0);
 sFilterParam.sFltCoeff.f32A2 = FRAC32(0.421787048689562 / -4.0);
 sFilterParam.sFltCoeff.f32A3 = FRAC32(-0.056297236491843 / -4.0);

 GDFLIB_FilterIIR3Init_F16(&sFilterParam);

 f16InX = FRAC16(0.1);
}

/* periodically called function */

GDFLIB_FilterIIR3

GDFLIB User's Guide, Rev. 3, 05/2020

58 NXP Semiconductors

void Isr(void)
{
 f16Result = GDFLIB_FilterIIR3_F16(f16InX, &sFilterParam);
}

Floating-point version:

#include "gdflib.h"

static float_t fltResult;
static float_t fltInX;
static GDFLIB_FILTER_IIR3_T_FLT sFilterParam;

void Isr(void);

void main(void)
{
 sFilterParam.sFltCoeff.fltB0 = 0.256915601248463F;
 sFilterParam.sFltCoeff.fltB1 = -0.770746803745390F;
 sFilterParam.sFltCoeff.fltB2 = 0.770746803745390F;
 sFilterParam.sFltCoeff.fltB3 = -0.256915601248463F;
 sFilterParam.sFltCoeff.fltA1 = -0.577240524806303F;
 sFilterParam.sFltCoeff.fltA2 = 0.421787048689562F;
 sFilterParam.sFltCoeff.fltA3 = -0.056297236491843F;

 GDFLIB_FilterIIR3Init_FLT(&sFilterParam);

 fltInX = 0.1F;
}

/* periodically called function */
void Isr(void)
{
 fltResult = GDFLIB_FilterIIR3_FLT(fltInX, &sFilterParam);
}

2.5 GDFLIB_FilterIIR4

This function calculates the fourth-order direct-form 1 IIR filter.

For a proper use, it is recommended to initialize the algorithm by the
GDFLIB_FilterIIR4Init function, before using the GDFLIB_FilterIIR4 function. The
GDFLIB_FilterIIR4Init function initializes the buffer and coefficients of the fourth-order
IIR filter.

The GDFLIB_FilterIIR4 function calculates the fourth-order infinite impulse response
(IIR) filter. The IIR filters are also called recursive filters, because both the input and the
previously calculated output values are used for calculation. This form of feedback
enables the transfer of energy from the output to the input, which leads to an infinitely
long impulse response (IIR). A general form of the IIR filter (expressed as a transfer
function in the Z-domain) is described as follows:

Chapter 2 Algorithms in detail

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 59

Equation 11.

where N denotes the filter order. The fourth-order IIR filter in the Z-domain is expressed
as follows:

Equation 12.

which is transformed into a time-domain difference equation as follows:

Equation 13.

The filter difference equation is implemented directly in the digital signal controller, as
given in Equation 13 on page 60; this equation represents a direct-form 1 fourth-order IIR
filter, as shown in Figure 2-7.

Figure 2-7. Direct-form 1 fourth-order IIR filter

The coefficients of the filter shown in Figure 2-7 can be designed to meet the
requirements for the fourth-order low-pass filter (LPF), high-pass filter (HPF), band-pass
filter (BPF), or band-stop filter (BSF). The coefficient quantization error can be ignored
in the case of a fourth-order filter due to a finite precision arithmetic. A higher-order LPF
or HPF can be obtained by connecting a number of fourth-order filters in series. The
number of connections gives the order of the resulting filter.

GDFLIB_FilterIIR4

GDFLIB User's Guide, Rev. 3, 05/2020

60 NXP Semiconductors

Define the filter coefficients before calling this function. As some coefficients can be
greater than 1 (and lesser than 8), the coefficients are scaled down (divided) by 8.0 for the
fractional version of the algorithm. For a faster calculation, the A coefficients are sign-
inverted. The function returns the filtered value of the input in step k, and stores the input
and output values in the step k into the filter buffer.

2.5.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1).

• Floating-point output - the output is the floating-point result within the type's full
range.

The available versions of the GDFLIB_FilterIIR4Init function are shown in the following
table:

Table 2-9. Init function versions

Function name Parameters Result
type

Description

GDFLIB_FilterIIR4Init_F16 GDFLIB_FILTER_IIR4_T_F32 * void Filter initialization (reset) function. The
parameters' structure is pointed to by a
pointer.

GDFLIB_FilterIIR4Init_FLT GDFLIB_FILTER_IIR4_T_FLT * void Filter initialization (reset) function. The
parameters' structure is pointed to by a
pointer.

The available versions of the GDFLIB_FilterIIR4 function are shown in the following
table:

Table 2-10. Function versions

Function name Input
type

Parameters Result
type

Description

GDFLIB_FilterIIR4_F16 frac16_t GDFLIB_FILTER_IIR4_T_F32 * frac16_t Input argument is a 16-bit fractional
value of the input signal to be filtered
within the range <-1 ; 1). The
parameters' structure is pointed to
by a pointer. The function returns a
16-bit fractional value within the
range <-1 ; 1).

GDFLIB_FilterIIR4_FLT float_t GDFLIB_FILTER_IIR4_T_FLT * float_t Input argument is a 32-bit single
precision floating-point value of the
input signal within the full range. The
parameters' structure is pointed to

Chapter 2 Algorithms in detail

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 61

Table 2-10. Function versions

Function name Input
type

Parameters Result
type

Description

by a pointer. The function returns a
32-bit single precision floating-point
value within the full range.

2.5.2 GDFLIB_FILTER_IIR4_T_F32

Variable name Input type Description

sFltCoeff GDFLIB_FILTER_IIR4_COEFF_T_F32 * Substructure containing filter coefficients.

f32FltBfrY[4] frac32_t Internal buffer of y-history. Controlled by the
algorithm.

f16FltBfrX[4] frac16_t Internal buffer of x-history. Controlled by the
algorithm.

2.5.3 GDFLIB_FILTER_IIR4_COEFF_T_F32

Variable name Type Description

f32B0 frac32_t B0 coefficient of the IIR4 filter. Set by the user, and must be divided by 8.

f32B1 frac32_t B1 coefficient of the IIR4 filter. Set by the user, and must be divided by 8.

f32B2 frac32_t B2 coefficient of the IIR4 filter. Set by the user, and must be divided by 8.

f32B3 frac32_t B3 coefficient of the IIR4 filter. Set by the user, and must be divided by 8.

f32B4 frac32_t B4 coefficient of the IIR4 filter. Set by the user, and must be divided by 8.

f32A1 frac32_t A1 (sign-inverted) coefficient of the IIR4 filter. Set by the user, and must be divided by -8
(negative eight).

f32A2 frac32_t A2 (sign-inverted) coefficient of the IIR4 filter. Set by the user, and must be divided by -8
(negative eight).

f32A3 frac32_t A3 (sign-inverted) coefficient of the IIR4 filter. Set by the user, and must be divided by -8
(negative eight).

f32A4 frac32_t A4 (sign-inverted) coefficient of the IIR4 filter. Set by the user, and must be divided by -8
(negative eight).

GDFLIB_FilterIIR4

GDFLIB User's Guide, Rev. 3, 05/2020

62 NXP Semiconductors

2.5.4 GDFLIB_FILTER_IIR4_T_FLT

Variable name Input type Description

sFltCoeff GDFLIB_FILTER_IIR4_COEFF_T_FLT * Substructure containing filter coefficients.

fltFltBfrY[4] float_t Internal buffer of y-history. Controlled by the
algorithm.

fltFltBfrX[4] float_t Internal buffer of x-history. Controlled by the
algorithm.

2.5.5 GDFLIB_FILTER_IIR4_COEFF_T_FLT

Variable name Type Description

fltB0 float_t B0 coefficient of the IIR4 filter. Set by the user.

fltB1 float_t B1 coefficient of the IIR4 filter. Set by the user.

fltB2 float_t B2 coefficient of the IIR4 filter. Set by the user.

fltB3 float_t B3 coefficient of the IIR4 filter. Set by the user.

fltB4 float_t B4 coefficient of the IIR4 filter. Set by the user.

fltA1 float_t A1 (sign-inverted) coefficient of the IIR4 filter. Set by the user.

fltA2 float_t A2 (sign-inverted) coefficient of the IIR4 filter. Set by the user.

fltA3 float_t A3 (sign-inverted) coefficient of the IIR4 filter. Set by the user.

fltA4 float_t A4 (sign-inverted) coefficient of the IIR4 filter. Set by the user.

2.5.6 Declaration

The available GDFLIB_FilterIIR4Init functions have the following declarations:

void GDFLIB_FilterIIR4Init_F16(GDFLIB_FILTER_IIR4_T_F32 *psParam)
void GDFLIB_FilterIIR4Init_FLT(GDFLIB_FILTER_IIR4_T_FLT *psParam)

The available GDFLIB_FilterIIR4 functions have the following declarations:

frac16_t GDFLIB_FilterIIR4_F16(frac16_t f16InX, GDFLIB_FILTER_IIR4_T_F32 *psParam)
float_t GDFLIB_FilterIIR4_FLT(float_t fltInX, GDFLIB_FILTER_IIR4_T_FLT *psParam)

2.5.7 Calculation of filter coefficients

There are plenty of methods for the coefficients calculation. The following example
shows the use of Matlab to set up a band-pass filter with the 10000 Hz sampling
frequency, 1000 Hz pass frequency, and 250 Hz bandwidth. The maximum passband
ripple is 3 dB, and the attenuation is 20 dB.

Chapter 2 Algorithms in detail

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 63

% sampling frequency 10000 Hz, band pass
Ts = 1 / 10000

% center pass frequency 2000 Hz
Fc = 2000

% attenuation 20 dB
Rs = 20

% bandwidth 250 Hz
Fbw = 250

% max. passband ripple 3 dB
Rp = 3

% checking order of the filter
n = buttord(2 * Ts * [Fc - Fbw /2 Fc + Fbw / 2], 2 * Ts * [Fc - Fbw Fc + Fbw], Rp, Rs)
% n = 4, i.e. the filter is achievable with the 4th order

% getting the filter coefficients
[b, a] = butter(n / 2, 2 * Ts * [Fc - Fbw /2 Fc + Fbw / 2])

% the coefs are:
% b0 = 0.005542717210281, b1 = 0, b2 = -0.011085434420561, b3 = 0, b4 = 0.005542717210281
% a0 = 1.0000, a1 = -1.171272075750262, a2 = 2.122554479822350, a3 = -1.047780658093187,
% a4 = 0.800802646665706

The filter response is shown in Figure 2-8.

Figure 2-8. Filter response

GDFLIB_FilterIIR4

GDFLIB User's Guide, Rev. 3, 05/2020

64 NXP Semiconductors

2.5.8 Function use

The use of the GDFLIB_FilterIIR4Init and GDFLIB_FilterIIR4 functions is shown in the
following examples. The filter uses the above-calculated coefficients:

Fixed-point version:

#include "gdflib.h"

static frac16_t f16Result;
static frac16_t f16InX;
static GDFLIB_FILTER_IIR4_T_F32 sFilterParam;

void Isr(void);

void main(void)
{
 sFilterParam.sFltCoeff.f32B0 = FRAC32(0.005542717210281 / 8.0);
 sFilterParam.sFltCoeff.f32B1 = FRAC32(0.0 / 8.0);
 sFilterParam.sFltCoeff.f32B2 = FRAC32(-0.011085434420561 / 8.0);
 sFilterParam.sFltCoeff.f32B3 = FRAC32(0.0 / 8.0);
 sFilterParam.sFltCoeff.f32B4 = FRAC32(0.005542717210281 / 8.0);
 sFilterParam.sFltCoeff.f32A1 = FRAC32(-1.171272075750262 / -8.0);
 sFilterParam.sFltCoeff.f32A2 = FRAC32(2.122554479822350 / -8.0);
 sFilterParam.sFltCoeff.f32A3 = FRAC32(-1.047780658093187 / -8.0);
 sFilterParam.sFltCoeff.f32A4 = FRAC32(0.800802646665706 / -8.0);

 GDFLIB_FilterIIR4Init_F16(&sFilterParam);

 f16InX = FRAC16(0.1);
}

/* periodically called function */
void Isr(void)
{
 f16Result = GDFLIB_FilterIIR4_F16(f16InX, &sFilterParam);
}

Floating-point version:

#include "gdflib.h"

static float_t fltResult;
static float_t fltInX;
static GDFLIB_FILTER_IIR4_T_FLT sFilterParam;

void Isr(void);

void main(void)
{
 sFilterParam.sFltCoeff.fltB0 = 0.005542717210281F;
 sFilterParam.sFltCoeff.fltB1 = 0.0F;
 sFilterParam.sFltCoeff.fltB2 = -0.011085434420561F;
 sFilterParam.sFltCoeff.fltB3 = 0.0F;
 sFilterParam.sFltCoeff.fltB4 = 0.005542717210281F;
 sFilterParam.sFltCoeff.fltA1 = -1.171272075750262F;
 sFilterParam.sFltCoeff.fltA2 = 2.122554479822350F;
 sFilterParam.sFltCoeff.fltA3 = -1.047780658093187F;
 sFilterParam.sFltCoeff.fltA4 = 0.800802646665706F;

 GDFLIB_FilterIIR4Init_FLT(&sFilterParam);

Chapter 2 Algorithms in detail

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 65

 fltInX = 0.1F;
}

/* periodically called function */
void Isr(void)
{
 fltResult = GDFLIB_FilterIIR4_FLT(fltInX, &sFilterParam);
}

2.6 GDFLIB_FilterMA

The GDFLIB_FilterMA function calculates a recursive form of a moving average filter.
For a proper use, it is recommended that the algorithm is initialized by the
GDFLIB_FilterMAInit function, before using the GDFLIB_FilterMA function.

The filter calculation consists of the following equations:

Equation 14.

Equation 15.

Equation 16.

where:

• x(k) is the actual value of the input signal
• acc(k) is the internal filter accumulator
• y(k) is the actual filter output
• np is the number of points in the filter window

The size of the filter window (number of filtered points) must be defined before calling
this function, and must be equal to or greater than 1.

The function returns the filtered value of the input at step k, and stores the difference
between the filter accumulator and the output at step k into the filter accumulator.

2.6.1 Available versions

This function is available in the following versions:

GDFLIB_FilterMA

GDFLIB User's Guide, Rev. 3, 05/2020

66 NXP Semiconductors

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The parameters use the accumulator types.

• Floating-point output - the output is the floating-point result within the type's full
range.

The available versions of the GDFLIB_FilterMAInit function are shown in the following
table:

Table 2-11. Function versions

Function name Input
type

Parameters Result
type

Description

GDFLIB_FilterMAInit_F16 frac16_t GDFLIB_FILTER_MA_T_A32 * void Input argument is a 16-bit fractional
value that represents the initial value
of the filter at the current step. The
input is within the range <-1 ; 1). The
parameters' structure is pointed to
by a pointer.

GDFLIB_FilterMAInit_FLT float_t GDFLIB_FILTER_MA_T_FLT * void Input argument is a 32-bit single
precision floating-point value that
represents the initial value of the
filter at the current step. The input is
within the full range. The
parameters' structure is pointed to
by a pointer.

The available versions of the GDFLIB_FilterMA function are shown in the following
table:

Table 2-12. Function versions

Function name Input type Result type Description

Value Parameter

GDFLIB_FilterMA_F16 frac16_t GDFLIB_FILTER_MA_T_A32 * frac16_t Input argument is a 16-bit fractional value
of the input signal to be filtered within the
range <-1 ; 1). The parameters' structure
is pointed to by a pointer. The function
returns a 16-bit fractional value within the
range <-1 ; 1).

GDFLIB_FilterMA_FLT float_t GDFLIB_FILTER_MA_T_FLT * float_t Input argument is a 32-bit single
precision floating-point value of the input
signal to be filtered within the full range.
The parameters' structure is pointed to by
a pointer. The function returns a 32-bit
single precision floating-point value within
the full range.

Chapter 2 Algorithms in detail

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 67

2.6.2 GDFLIB_FILTER_MA_T_A32

Variable name Input
type

Description

a32Acc acc32_t Filter accumulator. The parameter is a 32-bit accumulator type within the range <-65536.0 ;
65536.0). Controlled by the algorithm.

u16Sh uint16_t Number of samples for averaging filtered points (size of the window) defined as a number
of shifts:

The parameter is a 16-bit unsigned integer type within the range <0 ; 15>. Set by the user.

2.6.3 GDFLIB_FILTER_MA_T_FLT

Variable name Input
type

Description

fltAcc float_t Filter accumulator. Controlled by the algorithm.

fltLambda float_t Number of samples for averaging filtered points (size of the window) defined as an inverted
value:

The parameter is a 32-bit single precision floating-point type within the range (0 ; 1.0>. Set
by the user.

2.6.4 Declaration

The available GDFLIB_FilterMAInit functions have the following declarations:

void GDFLIB_FilterMAInit_F16(frac16_t f16InitVal, GDFLIB_FILTER_MA_T_A32 *psParam)
void GDFLIB_FilterMAInit_FLT(float_t fltInitVal, GDFLIB_FILTER_MA_T_FLT *psParam)

The available GDFLIB_FilterMA functions have the following declarations:

frac16_t GDFLIB_FilterMA_F16(frac16_t f16InX, GDFLIB_FILTER_MA_T_A32 *psParam)
float_t GDFLIB_FilterMA_FLT(float_t fltInX, GDFLIB_FILTER_MA_T_FLT *psParam)

2.6.5 Function use

The use of GDFLIB_FilterMAInit and GDFLIB_FilterMA functions is shown in the
following examples:

GDFLIB_FilterMA

GDFLIB User's Guide, Rev. 3, 05/2020

68 NXP Semiconductors

Fixed-point version:

#include "gdflib.h"

static frac16_t f16Result;
static frac16_t f16InitVal, f16InX;
static GDFLIB_FILTER_MA_T_A32 sFilterParam;

void Isr(void);

void main(void)
{
 f16InitVal = FRAC16(0.0); /* f16InitVal = 0.0 */

 /* Filter window = 2 ^ 2 = 4 points */
 sFilterParam.u16Sh = 2;

 GDFLIB_FilterMAInit_F16(f16InitVal, &sFilterParam);

 f16InX = FRAC16(0.8);
}

/* periodically called function */
void Isr(void)
{
 f16Result = GDFLIB_FilterMA_F16(f16InX, &sFilterParam);
}

Floating-point version:

#include "gdflib.h"

static float_t fltResult;
static float_t fltInitVal, fltInX;
static GDFLIB_FILTER_MA_T_FLT sFilterParam;

void Isr(void);

void main(void)
{
 fltInitVal = 0.0F; /* f16InitVal = 0.0 */

 /* Filter window = 4 points-> fltLambda = 1/4 */
 sFilterParam.fltLambda = 0.25F;

 GDFLIB_FilterMAInit_FLT(fltInitVal, &sFilterParam);

 fltInX = 0.8F;
}

/* periodically called function */
void Isr(void)
{
 fltResult = GDFLIB_FilterMA_FLT(fltInX, &sFilterParam);
}

Chapter 2 Algorithms in detail

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 69

GDFLIB_FilterMA

GDFLIB User's Guide, Rev. 3, 05/2020

70 NXP Semiconductors

Appendix A

A.1 bool_t

The bool_t type is a logical 16-bit type. It is able to store the boolean variables with two
states: TRUE (1) or FALSE (0). Its definition is as follows:

typedef unsigned short bool_t;

The following figure shows the way in which the data is stored by this type:

Table A-1. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Unused
Logi
cal

TRUE
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 1

FALSE
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

To store a logical value as bool_t, use the FALSE or TRUE macros.

A.2 uint8_t

The uint8_t type is an unsigned 8-bit integer type. It is able to store the variables within
the range <0 ; 255>. Its definition is as follows:

typedef unsigned char uint8_t;

The following figure shows the way in which the data is stored by this type:

Table A-2. Data storage

Table continues on the next page...

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 71

Table A-2. Data storage (continued)

7 6 5 4 3 2 1 0

Value Integer

255
1 1 1 1 1 1 1 1

F F

11
0 0 0 0 1 0 1 1

0 B

124
0 1 1 1 1 1 0 0

7 C

159
1 0 0 1 1 1 1 1

9 F

A.3 uint16_t

The uint16_t type is an unsigned 16-bit integer type. It is able to store the variables
within the range <0 ; 65535>. Its definition is as follows:

typedef unsigned short uint16_t;

The following figure shows the way in which the data is stored by this type:

Table A-3. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Integer

65535
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

F F F F

5
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 5

15518
0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0

3 C 9 E

40768
1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0

9 F 4 0

A.4 uint32_t

uint16_t

GDFLIB User's Guide, Rev. 3, 05/2020

72 NXP Semiconductors

The uint32_t type is an unsigned 32-bit integer type. It is able to store the variables
within the range <0 ; 4294967295>. Its definition is as follows:

typedef unsigned long uint32_t;

The following figure shows the way in which the data is stored by this type:

Table A-4. Data storage

31 24 23 16 15 8 7 0

Value Integer

4294967295 F F F F F F F F

2147483648 8 0 0 0 0 0 0 0

55977296 0 3 5 6 2 5 5 0

3451051828 C D B 2 D F 3 4

A.5 int8_t

The int8_t type is a signed 8-bit integer type. It is able to store the variables within the
range <-128 ; 127>. Its definition is as follows:

typedef char int8_t;

The following figure shows the way in which the data is stored by this type:

Table A-5. Data storage

7 6 5 4 3 2 1 0

Value Sign Integer

127
0 1 1 1 1 1 1 1

7 F

-128
1 0 0 0 0 0 0 0

8 0

60
0 0 1 1 1 1 0 0

3 C

-97
1 0 0 1 1 1 1 1

9 F

Appendix A

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 73

A.6 int16_t

The int16_t type is a signed 16-bit integer type. It is able to store the variables within the
range <-32768 ; 32767>. Its definition is as follows:

typedef short int16_t;

The following figure shows the way in which the data is stored by this type:

Table A-6. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer

32767
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 F F F

-32768
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0

15518
0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0

3 C 9 E

-24768
1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0

9 F 4 0

A.7 int32_t

The int32_t type is a signed 32-bit integer type. It is able to store the variables within the
range <-2147483648 ; 2147483647>. Its definition is as follows:

typedef long int32_t;

The following figure shows the way in which the data is stored by this type:

Table A-7. Data storage

31 24 23 16 15 8 7 0

Value S Integer

2147483647 7 F F F F F F F

-2147483648 8 0 0 0 0 0 0 0

55977296 0 3 5 6 2 5 5 0

-843915468 C D B 2 D F 3 4

int16_t

GDFLIB User's Guide, Rev. 3, 05/2020

74 NXP Semiconductors

A.8 frac8_t

The frac8_t type is a signed 8-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef char frac8_t;

The following figure shows the way in which the data is stored by this type:

Table A-8. Data storage

7 6 5 4 3 2 1 0

Value Sign Fractional

0.99219
0 1 1 1 1 1 1 1

7 F

-1.0
1 0 0 0 0 0 0 0

8 0

0.46875
0 0 1 1 1 1 0 0

3 C

-0.75781
1 0 0 1 1 1 1 1

9 F

To store a real number as frac8_t, use the FRAC8 macro.

A.9 frac16_t

The frac16_t type is a signed 16-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef short frac16_t;

The following figure shows the way in which the data is stored by this type:

Table A-9. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Fractional

0.99997
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 F F F

-1.0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table continues on the next page...

Appendix A

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 75

Table A-9. Data storage (continued)

8 0 0 0

0.47357
0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0

3 C 9 E

-0.75586
1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0

9 F 4 0

To store a real number as frac16_t, use the FRAC16 macro.

A.10 frac32_t

The frac32_t type is a signed 32-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef long frac32_t;

The following figure shows the way in which the data is stored by this type:

Table A-10. Data storage

31 24 23 16 15 8 7 0

Value S Fractional

0.9999999995 7 F F F F F F F

-1.0 8 0 0 0 0 0 0 0

0.02606645970 0 3 5 6 2 5 5 0

-0.3929787632 C D B 2 D F 3 4

To store a real number as frac32_t, use the FRAC32 macro.

A.11 acc16_t

The acc16_t type is a signed 16-bit fractional type. It is able to store the variables within
the range <-256 ; 256). Its definition is as follows:

typedef short acc16_t;

The following figure shows the way in which the data is stored by this type:

frac32_t

GDFLIB User's Guide, Rev. 3, 05/2020

76 NXP Semiconductors

Table A-11. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer Fractional

255.9921875
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 F F F

-256.0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0

1.0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 8 0

-1.0
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

F F 8 0

13.7890625
0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 1

0 6 E 5

-89.71875
1 1 0 1 0 0 1 1 0 0 1 0 0 1 0 0

D 3 2 4

To store a real number as acc16_t, use the ACC16 macro.

A.12 acc32_t

The acc32_t type is a signed 32-bit accumulator type. It is able to store the variables
within the range <-65536 ; 65536). Its definition is as follows:

typedef long acc32_t;

The following figure shows the way in which the data is stored by this type:

Table A-12. Data storage

31 24 23 16 15 8 7 0

Value S Integer Fractional

65535.999969 7 F F F F F F F

-65536.0 8 0 0 0 0 0 0 0

1.0 0 0 0 0 8 0 0 0

-1.0 F F F F 8 0 0 0

23.789734 0 0 0 B E 5 1 6

-1171.306793 F D B 6 5 8 B C

To store a real number as acc32_t, use the ACC32 macro.

Appendix A

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 77

A.13 float_t

The float_t type is a signed 32-bit single precision floating-point type, defined by IEEE
754. It is able to store the full precision (normalized) finite variables within the range
<-3.40282 · 1038 ; 3.40282 · 1038) with the minimum resolution of 2-23. The smallest
normalized number is ±1.17549 · 10-38. Nevertheless, the denormalized numbers (with
reduced precision) reach yet lower values, from ±1.40130 · 10-45 to ±1.17549 · 10-38. The
standard also defines the additional values:

• Negative zero
• Infinity
• Negative infinity
• Not a number

The 32-bit type is composed of:

• Sign (bit 31)
• Exponent (bits 23 to 30)
• Mantissa (bits 0 to 22)

The conversion of the number is straighforward. The sign of the number is stored in bit
31. The binary exponent is decoded as an integer from bits 23 to 30 by subtracting 127.
The mantissa (fraction) is stored in bits 0 to 22. An invisible leading bit (it is not actually
stored) with value 1.0 is placed in front; therefore, bit 23 has a value of 0.5, bit 22 has a
value 0.25, and so on. As a result, the mantissa has a value between 1.0 and 2. If the
exponent reaches -127 (binary 00000000), the leading 1.0 is no longer used to enable the
gradual underflow.

The float_t type definition is as follows:

typedef float float_t;

The following figure shows the way in which the data is stored by this type:

Table A-13. Data storage - normalized values

31 24 23 16 15 8 7 0

Value S Exponent Mantissa

(2.0 - 2-23) · 2127 0 1 1 1 1 1 1 1 0 1

≈ 3.40282 · 1038 7 F 7 F F F F F

-(2.0 - 2-23) · 2127 1 1 1 1 1 1 1 1 0 1

≈ -3.40282 · 1038 F F 7 F F F F F

Table continues on the next page...

float_t

GDFLIB User's Guide, Rev. 3, 05/2020

78 NXP Semiconductors

Table A-13. Data storage - normalized values (continued)

2-126 0 0 0 0 0 0 0 0 1 0

≈ 1.17549 · 10-38 0 0 8 0 0 0 0 0

-2-126 1 0 0 0 0 0 0 0 1 0

≈ -1.17549 · 10-38 8 0 8 0 0 0 0 0

1.0 0 0 1 1 1 1 1 1 1 0

3 F 8 0 0 0 0 0

-1.0 1 0 1 1 1 1 1 1 1 0

B F 8 0 0 0 0 0

π 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 1 0 1 1

≈ 3.1415927 4 0 4 9 0 F D B

-20810.086 1 1 0 0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 1 1 0 0

C 6 A 2 9 4 2 C

Table A-14. Data storage - denormalized values

31 24 23 16 15 8 7 0

Value S Exponent Mantissa

0.0 0

0 0 0 0 0 0 0 0

-0.0 1 0

8 0 0 0 0 0 0 0

(1.0 - 2-23) · 2-126 0 0 0 0 0 0 0 0 0 1

≈ 1.17549 · 10-38 0 0 7 F F F F F

-(1.0 - 2-23) · 2-126 1 0 0 0 0 0 0 0 0 1

≈ -1.17549 · 10-38 8 0 7 F F F F F

2-1 · 2-126 0 0 0 0 0 0 0 0 0 1 0

≈ 5.87747 · 10-39 0 0 4 0 0 0 0 0

-2-1 · 2-126 1 0 0 0 0 0 0 0 0 1 0

≈ -5.87747 · 10-39 8 0 4 0 0 0 0 0

2-23 · 2-126 0 1

≈ 1.40130 · 10-45 0 0 0 0 0 0 0 1

-2-23 · 2-126 1 0 1

≈ -1.40130 · 10-45 8 0 0 0 0 0 0 1

Appendix A

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 79

Table A-15. Data storage - special values

31 24 23 16 15 8 7 0

Value S Exponent Mantissa

∞ 0 1 1 1 1 1 1 1 1 0

7 F 8 0 0 0 0 0

-∞ 1 1 1 1 1 1 1 1 1 0

F F 8 0 0 0 0 0

Not a number * 1 1 1 1 1 1 1 1 non zero

7/F F 800001 to FFFFFF

A.14 FALSE

The FALSE macro serves to write a correct value standing for the logical FALSE value
of the bool_t type. Its definition is as follows:

#define FALSE ((bool_t)0)

#include "mlib.h"

static bool_t bVal;

void main(void)
{
 bVal = FALSE; /* bVal = FALSE */
}

A.15 TRUE

The TRUE macro serves to write a correct value standing for the logical TRUE value of
the bool_t type. Its definition is as follows:

#define TRUE ((bool_t)1)

#include "mlib.h"

static bool_t bVal;

void main(void)
{
 bVal = TRUE; /* bVal = TRUE */
}

FALSE

GDFLIB User's Guide, Rev. 3, 05/2020

80 NXP Semiconductors

A.16 FRAC8

The FRAC8 macro serves to convert a real number to the frac8_t type. Its definition is as
follows:

#define FRAC8(x) ((frac8_t)((x) < 0.9921875 ? ((x) >= -1 ? (x)*0x80 : 0x80) : 0x7F))

The input is multiplied by 128 (=27). The output is limited to the range <0x80 ; 0x7F>,
which corresponds to <-1.0 ; 1.0-2-7>.

#include "mlib.h"

static frac8_t f8Val;

void main(void)
{
 f8Val = FRAC8(0.187); /* f8Val = 0.187 */
}

A.17 FRAC16

The FRAC16 macro serves to convert a real number to the frac16_t type. Its definition is
as follows:

#define FRAC16(x) ((frac16_t)((x) < 0.999969482421875 ? ((x) >= -1 ? (x)*0x8000 : 0x8000) :
0x7FFF))

The input is multiplied by 32768 (=215). The output is limited to the range <0x8000 ;
0x7FFF>, which corresponds to <-1.0 ; 1.0-2-15>.

#include "mlib.h"

static frac16_t f16Val;

void main(void)
{
 f16Val = FRAC16(0.736); /* f16Val = 0.736 */
}

A.18 FRAC32

The FRAC32 macro serves to convert a real number to the frac32_t type. Its definition is
as follows:

Appendix A

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 81

#define FRAC32(x) ((frac32_t)((x) < 1 ? ((x) >= -1 ? (x)*0x80000000 : 0x80000000) :
0x7FFFFFFF))

The input is multiplied by 2147483648 (=231). The output is limited to the range
<0x80000000 ; 0x7FFFFFFF>, which corresponds to <-1.0 ; 1.0-2-31>.

#include "mlib.h"

static frac32_t f32Val;

void main(void)
{
 f32Val = FRAC32(-0.1735667); /* f32Val = -0.1735667 */
}

A.19 ACC16

The ACC16 macro serves to convert a real number to the acc16_t type. Its definition is as
follows:

#define ACC16(x) ((acc16_t)((x) < 255.9921875 ? ((x) >= -256 ? (x)*0x80 : 0x8000) : 0x7FFF))

The input is multiplied by 128 (=27). The output is limited to the range <0x8000 ;
0x7FFF> that corresponds to <-256.0 ; 255.9921875>.

#include "mlib.h"

static acc16_t a16Val;

void main(void)
{
 a16Val = ACC16(19.45627); /* a16Val = 19.45627 */
}

A.20 ACC32

The ACC32 macro serves to convert a real number to the acc32_t type. Its definition is as
follows:

#define ACC32(x) ((acc32_t)((x) < 65535.999969482421875 ? ((x) >= -65536 ? (x)*0x8000 :
0x80000000) : 0x7FFFFFFF))

The input is multiplied by 32768 (=215). The output is limited to the range
<0x80000000 ; 0x7FFFFFFF>, which corresponds to <-65536.0 ; 65536.0-2-15>.

ACC16

GDFLIB User's Guide, Rev. 3, 05/2020

82 NXP Semiconductors

#include "mlib.h"

static acc32_t a32Val;

void main(void)
{
 a32Val = ACC32(-13.654437); /* a32Val = -13.654437 */
}

GDFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 83

GDFLIB User's Guide, Rev. 3, 05/2020

84 NXP Semiconductors

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software implementers to use
Freescale products. There are no express or implied copyright licenses granted hereunder to design
or fabricate any integrated circuits based on the information in this document. Freescale reserves the
right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in Freescale data
sheets and/or specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for each customer
application by customer's technical experts. Freescale does not convey any license under its patent
rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of
sale, which can be found at the following address: www.freescale.com/salestermsandconditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc. ARM and Cortex
are the registered trademarks of ARM Limited, in EU and/or elsewhere. ARM logo is the trademark of
ARM Limited. All rights reserved. All other product or service names are the property of their
respective owners.

© 2020 NXP B.V.

Document Number CM4FGDFLIBUG
Revision 3, 05/2020

http://www.nxp.com
http://www.nxp.com/support
http://www.freescale.com/salestermsandconditions

	Chapter 1​: Library
	Introduction
	Overview
	Data types
	API definition
	Supported compilers
	Library configuration
	Special issues

	Library integration into project (MCUXpresso IDE)
	Library path variable
	Library folder addition
	Library path setup

	Library integration into project (Kinetis Design Studio)
	Library path variable
	Library folder addition
	Library path setup

	Library integration into project (Keil µVision)
	NXP pack installation for new project (without MCUXpresso SDK)
	New project (without MCUXpresso SDK)
	Linking the files into the project
	Library path setup

	Library integration into project (IAR Embedded Workbench)
	New project (without MCUXpresso SDK)
	Library path variable
	Linking the files into the project
	Library path setup

	Chapter 2​: Algorithms in detail
	GDFLIB_FilterExp
	Available versions
	GDFLIB_FILTER_EXP_T_F32
	GDFLIB_FILTER_EXP_T_FLT
	Declaration
	Function use

	GDFLIB_FilterIIR1
	Available versions
	GDFLIB_FILTER_IIR1_T_F32
	GDFLIB_FILTER_IIR1_COEFF_T_F32
	GDFLIB_FILTER_IIR1_T_FLT
	GDFLIB_FILTER_IIR1_COEFF_T_FLT
	Declaration
	Calculation of filter coefficients
	Function use

	GDFLIB_FilterIIR2
	Available versions
	GDFLIB_FILTER_IIR2_T_F32
	GDFLIB_FILTER_IIR2_COEFF_T_F32
	GDFLIB_FILTER_IIR2_T_FLT
	GDFLIB_FILTER_IIR2_COEFF_T_FLT
	Declaration
	Calculation of filter coefficients
	Function use

	GDFLIB_FilterIIR3
	Available versions
	GDFLIB_FILTER_IIR3_T_F32
	GDFLIB_FILTER_IIR3_COEFF_T_F32
	GDFLIB_FILTER_IIR3_T_FLT
	GDFLIB_FILTER_IIR3_COEFF_T_FLT
	Declaration
	Calculation of filter coefficients
	Function use

	GDFLIB_FilterIIR4
	Available versions
	GDFLIB_FILTER_IIR4_T_F32
	GDFLIB_FILTER_IIR4_COEFF_T_F32
	GDFLIB_FILTER_IIR4_T_FLT
	GDFLIB_FILTER_IIR4_COEFF_T_FLT
	Declaration
	Calculation of filter coefficients
	Function use

	GDFLIB_FilterMA
	Available versions
	GDFLIB_FILTER_MA_T_A32
	GDFLIB_FILTER_MA_T_FLT
	Declaration
	Function use

	Appendix A:
	bool_t
	uint8_t
	uint16_t
	uint32_t
	int8_t
	int16_t
	int32_t
	frac8_t
	frac16_t
	frac32_t
	acc16_t
	acc32_t
	float_t
	FALSE
	TRUE
	FRAC8
	FRAC16
	FRAC32
	ACC16
	ACC32

	
	

