
Getting Started with MCUXpresso SDK for
MIMXRT1170-EVK

NXP Semiconductors Document identifier: MCUXSDKMIMXRT117XGSUG
User's Guide Rev. 0, February 8, 2021

Contents
Chapter 1 Overview... 4

Chapter 2 MCUXpresso SDK board support package folders...............................5
2.1 Example application structure... 5
2.2 Locating example application source files...6

Chapter 3 Run a demo using MCUXpresso IDE..7
3.1 Select the workspace location...7
3.2 Build an example application...7
3.3 Run an example application.. 10
3.4 Build a multicore example application... 14
3.5 Run a multicore example application...16

Chapter 4 Run a demo application using IAR..19
4.1 Build an example application...19
4.2 Run an example application.. 21
4.3 Build a multicore example application... 26
4.4 Run a multicore example application...27

Chapter 5 Run a demo using Keil® MDK/μVision.. 28
5.1 Install CMSIS device pack...28
5.2 Build an example application...28
5.3 Run an example application.. 28
5.4 Build a multicore example application... 31
5.5 Run a multicore example application...31

Chapter 6 Run a demo using Arm® GCC.. 33
6.1 Set up toolchain...33
6.2 Build an example application...36
6.3 Run an example application.. 37
6.4 Build a multicore example application... 40
6.5 Run a multicore example application...42

Chapter 7 MCUXpresso config tools..44

Appendix A How to determine COM port...45

Appendix B Default debug interfaces...48

NXP Semiconductors

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 2 / 54

Appendix C How to add or remove boot header for XIP targets..........................51

NXP Semiconductors
Contents

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 3 / 54

Chapter 1
Overview
The MCUXpresso Software Development Kit (SDK) provides comprehensive software support for Kinetis and LPC
Microcontrollers. The MCUXpresso SDK includes a flexible set of peripheral drivers designed to speed up and simplify
development of embedded applications. Along with the peripheral drivers, the MCUXpresso SDK provides an extensive and
rich set of example applications covering everything from basic peripheral use case examples to full demo applications. The
MCUXpresso SDK contains FreeRTOS and various other middleware to support rapid development.

For supported toolchain versions, see MCUXpresso SDK Release Notes for MIMXRT1170-EVK
(document MCUXSDKMIMXRT117XRN).

For more details about MCUXpresso SDK, see MCUXpresso Software Development Kit (SDK).

Application Code

Stacks and Middleware
(Connectivity, Security,
DMA, Filesystem, etc,)

Board Support

Peripheral DriversReal Time Kernel
(FreeRTOS)

CMSIS-CORE and CMSIS-DSP
(Device Header Files: Core Access Functions, Intrinsics, Peripheral & Interrupt Definitions, DSP Library)

Microcontroller Hardware

Figure 1. MCUXpresso SDK layers

NXP Semiconductors

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 4 / 54

http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK

Chapter 2
MCUXpresso SDK board support package folders
MCUXpresso SDK board support package provides example applications for NXP development and evaluation boards for Arm®

Cortex®-M cores including Freedom, Tower System, and LPCXpresso boards. Board support packages are found inside the top
level boards folder and each supported board has its own folder (an MCUXpresso SDK package can support multiple boards).
Within each <board_name> folder, there are various sub-folders to classify the type of examples it contain. These include (but are
not limited to):

• cmsis_driver_examples: Simple applications intended to show how to use CMSIS drivers.

• demo_apps: Full-featured applications that highlight key functionality and use cases of the target MCU. These applications
typically use multiple MCU peripherals and may leverage stacks and middleware.

• driver_examples: Simple applications that show how to use the MCUXpresso SDK’s peripheral drivers for a single use
case. These applications typically only use a single peripheral but there are cases where multiple peripherals are used (for
example, SPI conversion using DMA).

• rtos_examples: Basic FreeRTOSTM OS examples that show the use of various RTOS objects (semaphores, queues,
and so on) and interfaces with the MCUXpresso SDK’s RTOS drivers.

• usb_examples: Applications that use the USB host/device/OTG stack.

• multicore_examples: Applications for both cores showing the usage of multicore software components and the
interaction between cores.

• Other_examples: See detail in package boards/evkmimxrt1170.

2.1 Example application structure

This section describes how the various types of example applications interact with the other components in the MCUXpresso SDK.
To get a comprehensive understanding of all MCUXpresso SDK components and folder structure, see MCUXpresso SDK API
Reference Manual.

Each <board_name> folder in the boards directory contains a comprehensive set of examples that are relevant to that specific
piece of hardware. Although we use the hello_world example (part of the demo_apps folder), the same general rules apply to any
type of example in the <board_name> folder.

In the hello_world application folder you see the following contents:

NXP Semiconductors

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 5 / 54

Figure 2. Application folder structure

All files in the application folder are specific to that example, so it is easy to copy and paste an existing example to start developing
a custom application based on a project provided in the MCUXpresso SDK.

2.2 Locating example application source files

When opening an example application in any of the supported IDEs, a variety of source files are referenced. The MCUXpresso
SDK devices folder is the central component to all example applications. It means the examples reference the same source files
and, if one of these files is modified, it could potentially impact the behavior of other examples.

The main areas of the MCUXpresso SDK tree used in all example applications are:

• devices/<device_name>: The device’s CMSIS header file, MCUXpresso SDK feature file and a few other files

• devices/<device_name>/drivers: All of the peripheral drivers for your specific MCU

• devices/<device_name>/<tool_name>: Toolchain-specific startup code, including vector table definitions

• devices/<device_name>/utilities: Items such as the debug console that are used by many of the example
applications

• devices/<devices_name>/project_template Project template used in CMSIS PACK new project creation

For examples containing an RTOS, there are references to the appropriate source code. RTOSes are in the rtos folder. The core
files of each of these are shared, so modifying one could have potential impacts on other projects that depend on that file.

NXP Semiconductors
MCUXpresso SDK board support package folders

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 6 / 54

Chapter 3
Run a demo using MCUXpresso IDE

Ensure to include the MCUXpresso IDE toolchain when generating MCUXpresso SDK package. Most
MCUXpresso projects provide two targets (debug and release). For CM7 projects, they are actually flash target.
For CM4 projects, they are linked to RAM. To debug and run the CM7 examples, set SW1 to 0010 as internal flash
boot mode. Currently, MCUXpresso IDE does not support CM4 download/debug.

 NOTE

This section describes the steps required to configure MCUXpresso IDE to build, run, and debug example applications. The
hello_world demo application targeted for the MIMXRT1170-EVK hardware platform is used as an example, though these steps
can be applied to any example application in the MCUXpresso SDK.

3.1 Select the workspace location
Every time MCUXpresso IDE launches, it prompts the user to select a workspace location. MCUXpresso IDE is built on top of
Eclipse which uses workspace to store information about its current configuration, and in some use cases, source files for the
projects are in the workspace. The location of the workspace can be anywhere, but it is recommended that the workspace be
located outside of the MCUXpresso SDK tree.

3.2 Build an example application

To build an example application, follow these steps.

1. Drag and drop the SDK zip file into the Installed SDKs view to install an SDK. In the window that appears, click OK and wait
until the import has finished.

Figure 3. Install an SDK

2. On the Quickstart Panel, click Import SDK example(s)….

NXP Semiconductors

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 7 / 54

Figure 4. Import an SDK example

3. In the window that appears, select MIMXRT1176xxxxx. Then, select evkmimxrt1170 and click Next.

Figure 5. Select MIMXRT1170-EVK board

4. Expand the demo_apps folder and select hello_world. Then, click Next.

NXP Semiconductors
Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 8 / 54

Figure 6. Select hello_world

5. Ensure Redlib: Use floating point version of printf is selected if the example prints floating point numbers on the terminal for
demo applications such as adc_basic, adc_burst, adc_dma, and adc_interrupt. Otherwise, it is not necessary to select
this option. Then, click Finish.

NXP Semiconductors
Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 9 / 54

Figure 7. Select Use floating point version of printf

3.3 Run an example application

To download and run the application, perform the following steps:

1. See Table 2 to determine the debug interface that comes loaded on your specific hardware platform.

• If using J-Link with either a standalone debug pod or OpenSDA, install the J-Link software (drivers and utilities)
from SEGGER.

• For boards with the OSJTAG interface, install the driver from KEIL.

2. Connect the development platform to your PC via a USB cable.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port number. To
determine the COM port number, see How to determine COM port. Configure the terminal with these settings:

a. 115200 or 9600 baud rate, depending on your board (reference BOARD_DEBUG_UART_BAUDRATE variable in the
board.h file)

b. No parity

c. 8 data bits

d. 1 stop bit

NXP Semiconductors
Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 10 / 54

https://www.segger.com/downloads/jlink/
https://www.keil.com/

Figure 8. Terminal (PuTTY) configurations

4. On the Quickstart Panel, click Debug 'evkmimxrt1170_demo_apps_hello_world’ [Debug].

NXP Semiconductors
Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 11 / 54

Figure 9. Debug hello_world case

5. The first time you debug a project, the Debug Emulator Selection dialog is displayed, showing all supported probes that are
attached to your computer. Select the probe through which you want to debug and click OK. (For any future debug sessions,
the stored probe selection is automatically used, unless the probe cannot be found.)

Figure 10. Attached Probes: debug emulator selection

6. The application is downloaded to the target and automatically runs to main().

NXP Semiconductors
Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 12 / 54

Figure 11. Stop at main() when running debugging

7. Start the application by clicking Resume.

Figure 12. Resume button

The hello_world application is now running and a banner is displayed on the terminal. If this is not the case, check your terminal
settings and connections.

Figure 13. Text display of the hello_world demo

NXP Semiconductors
Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 13 / 54

3.4 Build a multicore example application

This section describes the steps required to configure MCUXpresso IDE to build, run, and debug multicore example applications.
The following steps can be applied to any multicore example application in the MCUXpresso SDK. Here, the dual-core version of
hello_world example application targeted for the evkmimxrt1170 hardware platform is used as an example.

1. Multicore examples are imported into the workspace in a similar way as single core applications, explained in Build an
example application. When the SDK zip package for evkmimxrt1170 is installed and available in the Installed SDKs view,
click Import SDK example(s)… on the Quickstart Panel. In the window that appears, select MIMXRT1176xxxxx. Then,
select evkmimxrt1170 and click Next.

Figure 14. Select the evkmimxrt1170 board

2. Expand the multicore_examples folder and select hello_world_cm7. The hello_world_cm4 counterpart project is
automatically imported with the cm7 project, because the multicore examples are linked together and there is no need to
select it explicitly. Click Finish.

NXP Semiconductors
Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 14 / 54

Figure 15. Select the hello_world multicore example

3. Now, two projects should be imported into the workspace. To start building the multicore application, highlight the
hello_world_cm7 project (multicore master project) in the Project Explorer. Then choose the appropriate build target,
Debug or Release, by clicking the downward facing arrow next to the hammer icon, as shown in Figure 16. For this
example, select Debug.

Figure 16. Selection of the build target in MCUXpresso IDE

Press <code>Build</code> button to start the multi-core project build.. Because of the project reference settings in multicore
projects, triggering the build of the primary core application (cm7) also makes the referenced auxiliary core application (cm4)
to build.

NXP Semiconductors
Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 15 / 54

When the Release build is requested, it is necessary to change the build configuration of both the primary and
auxiliary core application projects first. To do this, select both projects in the Project Explorer view and then
right click which displays the context-sensitive menu. Select Build Configurations -> Set Active -> Release. This
alternate navigation using the menu item is Project -> Build Configuration -> Set Active -> Release. After switching
to the Release build configuration, the build of the multicore example can be started by triggering the primary core
application (cm7)build.

Figure 17. Switching multicore projects into the Release build configuration

 NOTE

3.5 Run a multicore example application
The primary core debugger handles flashing of both the primary and the auxiliary core applications into the SoC flash memory.
To download and run the multicore application, switch to the primary core application project and perform all steps as described
in Run an example application. These steps are common for both single-core applications and the primary side of dual-core
applications, ensuring both sides of the multicore application are properly loaded and started. However, there is one additional
dialogue that is specific to multicore examples which requires selecting the target core. See the following figures as reference.

Figure 18. Debug hello_world_cm7 case

NXP Semiconductors
Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 16 / 54

Figure 19. Attached Probes: debug emulator selection

Figure 20. Stop the primary core application at main() when running debugging

NXP Semiconductors
Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 17 / 54

After clicking Resume All Debug sessions, the hello_world multicore application runs and a banner is displayed on the terminal.
If this is not the case, check your terminal settings and connections

Figure 21. Hello World from the primary core message

NXP Semiconductors
Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 18 / 54

Chapter 4
Run a demo application using IAR

Currently, IAR doesn't support flash erase.

 NOTE

When use IAR download/debug flexspi_nor related targets, please make sure the boot switch is put to internal
flash boot mode (0010)..

 NOTE

This section describes the steps required to build, run, and debug example applications provided in the MCUXpresso SDK. The
hello_world demo application targeted for the MIMXRT1170-EVK hardware platform is used as an example, although these
steps can be applied to any example application in the MCUXpresso SDK.

4.1 Build an example application
Do the following steps to build the hello_world demo application.

1. Open the desired demo application workspace. Most example application workspace files can be located using the
following path:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/<core_type>/iar

Using the MIMXRT1170-EVK hardware platform as an example, the hello_world workspace is located in:

<install_dir>/boards/evkmimxrt1170/demo_apps/hello_world/cm7/iar/hello_world_demo_cm7.eww

Other example applications may have additional folders in their path.

2. Select the desired build target from the drop-down menu.

There are twelve project configurations (build targets) supported for most MCUXpresso SDK projects:

• Debug– Compiler optimization is set to low, and debug information is generated for the executable. The linker file is
RAM linker, where text and data section is put in internal TCM.

• Release– Compiler optimization is set to high, and debug information is not generated. The linker file is RAM linker,
where text and data section is put in internal TCM.

• ram_0x1400_debug– Project configuration is same as the debug target. The linker file is RAM_0x1400 linker, where
text is put in ITCM with offset 0x1400 and data put in DTCM.

• ram_0x1400_release– Project configuration is same as the release target. The linker file is RAM_0x1400 linker,
where text is put in ITCM with offset 0x1400 and data put in DTCM.

• sdram_debug– Project configuration is same as the debug target. The linker file is SDRAM linker, where text is put in
internal TCM and data put in SDRAM.

• sdram_release– Project configuration is same as the release target. The linker file is SDRAM linker, where text is put
in internal TCM and data put in SDRAM.

• sdram_txt_debug– Project configuration is same as the debug target. The linker file is SDRAM_txt linker, where text
is put in SDRAM and data put in OCRAM.

• sdram_txt_release– Project configuration is same as the release target. The linker file is SDRAM_txt linker, where
text is put in SDRAM and data put in OCRAM.

• flexspi_nor_debug– Project configuration is same as the debug target. The linker file is flexspi_nor linker, where
text is put in flash and data put in TCM.

• flexspi_nor_release– Project configuration is same as the release target. The linker file is flexspi_nor linker,
where text is put in flash and data put in TCM.

NXP Semiconductors

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 19 / 54

• flexspi_nor_sdram_release- Project configuration is same as the release target. The linker file is
flexspi_nor_sdram linker, where text is put in flash and data put in SDRAM.

• flexspi_nor_sdram_debug– Project configuration is same as the debug target. The linker file is
flexspi_nor_sdram linker, where text is put in flash and data put in SDRAM.

For some examples need large data memory, only sdram_debug and sdram_release targets are supported. For this
example, select hello_world – debug.

Figure 22. Demo build target selection

3. To build the demo application, click Make, highlighted in red in Figure 23.

Figure 23. Build the demo application

4. The build completes without errors.

NXP Semiconductors
Run a demo application using IAR

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 20 / 54

4.2 Run an example application
To download and run the application, perform these steps:

1. This board supports the CMSIS-DAP/mbed/DAPLink debug probe by default. Visit MBED and follow the instructions to
install the Windows® operating system serial driver. If running on Linux OS, this step is not required.

2. Connect the development platform to your PC via USB cable. Connect the USB cable to J11 and make sure SW1[1:4] is
0010b.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug COM port (to determine
the COM port number, see). Configure the terminal with these settings:

a. 115200 or 9600 baud rate, depending on your board (reference BOARD_DEBUG_UART_BAUDRATE variable in the
board.h file)

b. No parity

c. 8 data bits

d. 1 stop bit

Figure 24. Terminal (PuTTY) configuration

4. In IAR, click the Download and Debug button to download the application to the target.

NXP Semiconductors
Run a demo application using IAR

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 21 / 54

https://os.mbed.com/handbook/Windows-serial-configuration

Figure 25. Download and Debug button

NXP Semiconductors
Run a demo application using IAR

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 22 / 54

• When using CMSIS-DAP to debug CM4 sdram related target (flexspi_nor_sdram, sdram_txt, etc) in

IAR, an extra option need to be specified in debugger settings. Check and fill in --macro_param enable_core=1
in Debugger -> Extra Options -> Command line options, as shown in Figure 26.

Figure 26. Selecting Command line options

• If debug with JLINK as probe, jlinkscript file is needed.

— When downloading the cm7 project, uncheck Use macro files, as shown in Figure 27, and check Use
command line options, as shown in Figure 28.

NXP Semiconductors
Run a demo application using IAR

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 23 / 54

Figure 27. Uncheck Use macro file(s)

NXP Semiconductors
Run a demo application using IAR

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 24 / 54

Figure 28. Check Use command line options

— When download the cm4 project, content of command line options should be changed as below:

◦ Target with SDRAM

jlink_script_file=$PROJ_DIR$/../
evkmimxrt1170_connect_cm4_cm4side_sdram.jlinkscript

◦ Other target

jlink_script_file=$PROJ_DIR$/../
evkmimxrt1170_connect_cm4_cm4side.jlinkscript

 NOTE

5. The application is then downloaded to the target and automatically runs to the main() function.

NXP Semiconductors
Run a demo application using IAR

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 25 / 54

Figure 29. Stop at main() when running debugging

6. Run the code by clicking the Go button to start the application.

Figure 30. Go button

7. The hello_world application is now running and a banner is displayed on the terminal. If this is not true, check your terminal
settings and connections.

Figure 31. Text display of the hello_world demo

4.3 Build a multicore example application

This section describes the steps to build and run a dual-core application. The demo applications workspace files are located in
this folder:

<install_dir>/boards/<board_name>/multicore_examples/<application_name>/<core_type>/iar

Begin with a simple dual-core version of the Hello World application. The multicore Hello World IAR workspaces are located in
this folder:

<install_dir>/boards/evkmimxrt1170/multicore_examples/hello_world/cm4/iar/hello_world_cm4.eww

<install_dir>/boards//evkmimxrt1170/multicore_examples/hello_world/cm7/iar/hello_world_cm7.eww

NXP Semiconductors
Run a demo application using IAR

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 26 / 54

Build both applications separately by clicking the Make button. Build the application for the auxiliary core (cm4) first, because the
primary core application project (cm7) needs to know the auxiliary core application binary when running the linker. It is not possible
to finish the primary core linker when the auxiliary core application binary is not ready.

Because the auxiliary core runs always from RAM, debug and release RAM targets are present in the project only. When building
the primary core project, it is possible to select either debug/release RAM targets or flexspi_nor_debug/flexspi_nor_release
Flash targets. When choosing Flash targets (preferred) the auxiliary core binary is linked with the primary core image and stored
in the external SPI Flash memory. During the primary core execution the auxiliary core image is copied from flash into the CM4
RAM and executed.

4.4 Run a multicore example application

The primary core debugger handles flashing both primary and the auxiliary core applications into the SoC flash memory. To
download and run the multicore application, switch to the primary core application project and perform steps 1 – 4 as described
in Run an example application. These steps are common for both single core and dual-core applications in IAR.

After clicking the Download and Debug button, the auxiliary core project is opened in the separate EWARM instance. Both the
primary and auxiliary image are loaded into the device flash memory and the primary core application is executed. It stops at the
default C language entry point in the main() function.

Run both cores by clicking the Start all cores button to start the multicore application.

Figure 32. Start all cores button

During the primary core code execution, the auxiliary core is released from the reset. The hello_world multicore application is
now running and a banner is displayed on the terminal. If this does not appear, check the terminal settings and connections.

Figure 33. Hello World from primary core message

An LED controlled by the auxiliary core starts flashing, indicating that the auxiliary core has been released from the reset
and is running correctly. When both cores are running, use the Stop all cores and Start all cores buttons to stop or run both
cores simultaneously.

Figure 34. Stop all cores and Start all cores buttons

NXP Semiconductors
Run a demo application using IAR

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 27 / 54

Chapter 5
Run a demo using Keil® MDK/μVision
This section describes the steps required to build, run, and debug example applications provided in the MCUXpresso SDK.

5.1 Install CMSIS device pack
After the MDK tools are installed, Cortex® Microcontroller Software Interface Standard (CMSIS) device packs must be installed
to fully support the device from a debug perspective. These packs include things such as memory map information, register
definitions and flash programming algorithms. Follow these steps to install the MIMXRT117x CMSIS pack.

1. Download the MIMXRT1171, MIMXRT1172, MIMXRT1173, MIMXRT1175 and MIMXRT1176 packs.

2. After downloading the DFP, double click to install it.

5.2 Build an example application
1. Open the desired example application workspace in:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/mdk

The workspace file is named as <demo_name>.uvmpw. For this specific example, the actual path is:

<install_dir>/boards/evkmimxrt1170/demo_apps/hello_world/cm7/mdk/hello_world_demo_cm7.uvmpw

2. To build the demo project, select Rebuild, highlighted in red.

Figure 35. Build the demo

3. The build completes without errors.

5.3 Run an example application
To download and run the application, perform these steps:

1. This board supports the CMSIS-DAP/mbed/DAPLink debug probe by default. Visit MBED serial-configuration and follow
the instructions to install the Windows® operating system serial driver. If running on Linux OS, this step is not required.

2. Connect the development platform to your PC via USB cable.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port number. To
determine the COM port number, see How to determine COM port. Configure the terminal with these settings:

a. 115200 or 9600 baud rate, depending on your board (reference BOARD_DEBUG_UART_BAUDRATE variable in the
board.h file)

b. No parity

c. 8 data bits

d. 1 stop bit

NXP Semiconductors

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 28 / 54

https://os.mbed.com/handbook/Windows-serial-configuration

Figure 36. Terminal (PuTTY) configurations

4. To debug the application, click load (or press the F8 key). Then, click the Start/Stop Debug Session button, highlighted in
red in Figure 37. If using J-Link as the debugger, click Project option >Debug >Settings >Debug >Port, and select SW.

When using jlink in MDK, it expects one jlinkscript file named JLinkSettings.JLinkScript in the folder where the
uVision project files are located. Please refer to Segger Wiki for more information.

For the contents in this JlinkSettings.JLinkScript, please use
contents in evkmimxrt1170_connect_cm4_cm7side.jlinkscript for cm7
projects, evkmimxrt1170_connect_cm4_cm4side.jlinkscript (non-sdram targets),
evkmimxrt1170_connect_cm4_cm4side_sdram.jlinkscript (sdram targets) for cm4 projects.

 NOTE

NXP Semiconductors
Run a demo using Keil® MDK/μVision

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 29 / 54

https://wiki.segger.com/Keil_MDK-ARM

Figure 37. Stop at main() when run debugging

5. Run the code by clicking Run to start the application, as shown in Figure 38.

Figure 38. Run button

The hello_world application is now running and a banner is displayed on the terminal, as shown in Figure 39. If this is not
true, check your terminal settings and connections.

NXP Semiconductors
Run a demo using Keil® MDK/μVision

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 30 / 54

Figure 39. Text display of the hello_world demo

5.4 Build a multicore example application

This section describes the particular steps that need to be done in order to build and run a dual-core application. The demo
applications workspace files are located in this folder:

<install_dir>/boards/evkmimxrt1170/multicore_examples/<application_name>/<core_type>/mdk

Begin with a simple dual-core version of the Hello World application. The multicore Hello World IAR workspaces are located in
this folder:

<install_dir>/boards/evkmimxrt1170/multicore_examples/hello_world/cm4/mdk/hello_world_cm4.eww

<install_dir>/boards//evkmimxrt1170/multicore_examples/hello_world/cm7/mdk/hello_world_cm7.eww

Build both applications separately by clicking the Rebuild button. Build the application for the auxiliary core (cm4) first, because the
primary core application project (cm7) needs to know the auxiliary core application binary when running the linker. It is not possible
to finish the primary core linker when the auxiliary core application binary is not ready.

Because the auxiliary core runs always from RAM, debug and release RAM targets are present in the project only. When building
the primary core project, it is possible to select flexspi_nor_debug/flexspi_nor_release Flash targets. When choosing Flash
targets the auxiliary core binary is linked with the primary core image and stored in the external SPI Flash memory. During the
primary core execution the auxiliary core image is copied from flash into the CM4 RAM and executed.

5.5 Run a multicore example application

The primary core debugger flashes both the primary and the auxiliary core applications into the SoC flash memory. To download
and run the multicore application, switch to the primary core application project and perform steps 1 – 5 as described in Run an
example application. These steps are common for both single-core and dual-core applications in μVision.

Both the primary and the auxiliary image is loaded into the flash memory. After clicking Run, the primary core application is
executed. During the primary core code execution, the auxiliary core code is re-allocated from the SPI flash memory to the RAM,
and the auxiliary core is released from the reset. The hello_world multicore application is now running and a banner is displayed
on the terminal. If this is not true, check your terminal settings and connections.

NXP Semiconductors
Run a demo using Keil® MDK/μVision

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 31 / 54

Figure 40. Hello World from primary core message

An LED controlled by the auxiliary core starts flashing indicating that the auxiliary core has been released from the reset and is
running correctly.

Run the primary core project first to debug the auxiliary core, and primary and auxiliary core can be debugged at the same time
on two independent uvision windows.

Figure 41. Second debugging auxiliary core application

NXP Semiconductors
Run a demo using Keil® MDK/μVision

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 32 / 54

Chapter 6
Run a demo using Arm® GCC
This section describes the steps to configure the command line Arm® GCC tools to build, run, and debug demo applications and
necessary driver libraries provided in the MCUXpresso SDK. The hello_world demo application is targeted which is used as
an example.

6.1 Set up toolchain
This section contains the steps to install the necessary components required to build and run an MCUXpresso SDK demo
application with the Arm GCC toolchain, as supported by the MCUXpresso SDK. There are many ways to use Arm GCC tools,
but this example focuses on a Windows operating system environment.

6.1.1 Install GCC ARM Embedded tool chain
Download and run the installer from GNU Arm Embedded Toolchain. This is the actual toolset (in other words, compiler, linker,
etc.). The GCC toolchain should correspond to the latest supported version, as described in MCUXpresso SDK Release Notes
for MIMXRT1170-EVK (document MCUXSDKMIMXRT117X).

6.1.2 Install MinGW (only required on Windows OS)
The Minimalist GNU for Windows (MinGW) development tools provide a set of tools that are not dependent on third-party
C-Runtime DLLs (such as Cygwin). The build environment used by the MCUXpresso SDK does not use the MinGW build tools,
but does leverage the base install of both MinGW and MSYS. MSYS provides a basic shell with a Unix-like interface and tools.

1. Download the latest MinGW mingw-get-setup installer from SOURCEFORGE.

2. Run the installer. The recommended installation path is C:\MinGW. However, you may install to any location.

The installation path cannot contain any spaces.

 NOTE

3. Ensure that the mingw32-base and msys-base are selected under Basic Setup.

Figure 42. Set up MinGW and MSYS

4. In the Installation menu, click Apply Changes and follow the remaining instructions to complete the installation.

NXP Semiconductors

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 33 / 54

https://launchpad.net/gcc-arm-embedded
http://sourceforge.net/projects/mingw/files/Installer/

Figure 43. Complete MinGW and MSYS installation

5. Add the appropriate item to the Windows operating system path environment variable. It can be found under Control
Panel->System and Security->System->Advanced System Settings in the Environment Variables... section. The path is:

<mingw_install_dir>\bin

Assuming the default installation path is C:\MinGW, an example is as shown in Figure 44. If the path is not set correctly,
the toolchain will not work.

If you have C:\MinGW\msys\x.x\bin in your PATH variable (as required by Kinetis SDK 1.0.0), remove it to ensure
that the new GCC build system works correctly.

 NOTE

Figure 44. Add Path to systems environment

6.1.3 Add a new system environment variable for ARMGCC_DIR
Create a new system environment variable and name it as ARMGCC_DIR. The value of this variable should point to the Arm GCC
Embedded tool chain installation path. For this example, the path is:

C:\Program Files (x86)\GNU Tools ARM Embedded\8 2018-q4-major

See the installation folder of the GNU Arm GCC Embedded tools for the exact path name of your installation.

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 34 / 54

Short path should be used for path setting, you could convert the path to short path by running the for %I in (.) do echo %~sI
command in above path.

Figure 45. Convert path to short path

Figure 46. Add ARMGCC_DIR system variable

6.1.4 Install CMake
1. Download CMake 3.0.x from CMAKE.

2. Install CMake, ensuring that the option Add CMake to system PATH is selected when installing. The user chooses to select
whether it is installed into the PATH for all users or just the current user. In this example, it is installed for all users.

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 35 / 54

http://www.cmake.org/cmake/resources/software.html

Figure 47. Install CMake

3. Follow the remaining instructions of the installer.

4. You may need to reboot your system for the PATH changes to take effect.

5. Make sure sh.exe is not in the Environment Variable PATH. This is a limitation of mingw32-make.

6.2 Build an example application
To build an example application, follow these steps.

1. Open a GCC Arm Embedded tool chain command window. To launch the window, from the Windows operating system
Start menu, go to Programs >GNU Tools ARM Embedded <version> and select GCC Command Prompt.

Figure 48. Launch command prompt

2. Change the directory to the example application project directory which has a path similar to the following:

<install_dir>/boards/<board_name>/<example_type>/<core_type>/<application_name>/armgcc

For this example, the exact path is:

<install_dir>/examples/evkmimxrt1170/demo_apps/hello_world/cm7/armgcc

To change directories, use the cd command.

 NOTE

3. Type build_debug.bat on the command line or double click on build_debug.bat file in Windows Explorer to build it. The
output is as shown in Figure 49.

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 36 / 54

Figure 49. hello_world demo build successful

6.3 Run an example application
This section describes steps to run a demo application using J-Link GDB Server application. To perform this exercise, make sure
that either:

• The OpenSDA interface on your board is programmed with the J-Link OpenSDA firmware. If your board does not support
OpenSDA, then a standalone J-Link pod is required.

• You have a standalone J-Link pod that is connected to the debug interface of your board.

Some hardware platforms require hardware modification in order to function correctly with an external
debug interface.

 NOTE

After the J-Link interface is configured and connected, follow these steps to download and run the demo applications:

1. This board supports the J-Link debug probe. Before using it, install SEGGER software, which can be downloaded from
SEGGER.

2. Connect the development platform to your PC via USB cable between the OpenSDA USB connector and the PC USB
connector. If using a standalone J-Link debug pod, also connect it to the SWD/JTAG connector of the board.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port number (to
determine the COM port number, see How to determine COM port). Configure the terminal with these settings:

a. 115200 or 9600 baud rate, depending on your board (reference BOARD_DEBUG_UART_BAUDRATE variable in the
board.h file)

b. No parity

c. 8 data bits

d. 1 stop bit

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 37 / 54

http://www.segger.com/

Figure 50. Terminal (PuTTY) configurations

4. Open the J-Link GDB Server application. Go to the SEGGER install folder. For example, C:\Program
Files(x86)\SEGGER\JLink_Vxxx. Open the command windows. For Debug and Release targets, use
the JLinkGDBServer.exe command. For the sdram_debug, sdram_release, flexspi_nor_sdram_debug, and
flexspi_nor_sdram_release targets, use the JLinkGDBServer.exe-jlinkscriptfile <install_dir>/ boards/
evkmimxrt1170/demo_apps/hello_world/cm7/evkmimxrt1170_connect_cm4_cm7side.jlinkscript command.

5. The target device selection chosen for this example is MIMXRT1176DVMAA_cm7.

6. After it is connected, the screen should resemble Figure 51.

When download the cm4 project, use MIMXRT1176VDMAA_cm4 as the target device.
Use the evkmimxrt1170_connect_cm4_cm4side.jlinkscript file for non-sdram targets and
evkmimxrt1170_connect_cm4_cm4side_sdram.jlinkscript for sdram targets. Make sure that the board boot mode
is serial download mode.

 NOTE

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 38 / 54

Figure 51. SEGGER J-Link GDB Server screen after successful connection

7. If not already running, open a GCC ARM Embedded tool chain command window. To launch the window, from the Windows
operating system Start menu, go to Programs > GNU Tools ARM Embedded <version> and select GCC Command Prompt.

Figure 52. Launch command prompt

8. Change to the directory that contains the example application output. The output can be found in using one of these paths,
depending on the build target selected:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/cm7/armgcc/debug

<install_dir>/boards/<board_name>/<example_type>/<application_name>/cm7/armgcc/release

For this example, the path is:

<install_dir>/boards/evkmimxrt1170/demo_apps/hello_world/cm7/armgcc/debug

9. Run the arm-none-eabi-gdb.exe <application_name>.elf. For this example, it is arm-none-eabi-
gdb.exe hello_world.elf.

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 39 / 54

Figure 53. Run arm-none-eabi-gdb

10. Run these commands:

a. target remote localhost:2331

b. monitor reset

c. monitor halt

d. load

11. The application is now downloaded and halted at the reset vector. Execute the monitor go command to start the
demo application.

The hello_world application is now running and a banner is displayed on the terminal. If this is not true, check your
terminal settings and connections.

Figure 54. Text display of the hello_world demo

6.4 Build a multicore example application
This section describes the steps to build and run a dual-core application. The demo application build scripts are located in
this folder:

<install_dir>/boards/evkmimxrt1170/multicore_examples/<application_name>/<core_type>/armgcc

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 40 / 54

Begin with a simple dual-core version of the Hello World application. The multicore Hello World GCC build scripts are located in
this folder:

<install_dir>/boards/evkmimxrt1170/multicore_examples/hello_world/cm4/armgcc/build_debug.bat

<install_dir>/boards/evkmimxrt1170/multicore_examples/hello_world/cm7/armgcc/ build_flexspi_nor_debug.bat

Build both applications separately following steps for single core examples as described in Build an example application.

Figure 55. hello_world_cm4 example build successful

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 41 / 54

Figure 56. hello_world_cm7 example build successful

6.5 Run a multicore example application
When running a multicore application, the same prerequisites for J-Link/J-Link OpenSDA firmware, and the serial console as for
the single-core application, applies, as described in Run an example application.

The primary core debugger handles flashing of both the primary and the auxiliary core applications into the SoC flash memory. To
download and run the multicore application, switch to the primary core application project and perform steps 1 to 10, as described
in Run an example application. These steps are common for both single-core and dual-core applications in Arm GCC.

Both the primary and the auxiliary image is loaded into the SPI flash memory. After execution of the monitor go command, the
primary core application is executed. During the primary core code execution, the auxiliary core code is re-allocated from the SPI
flash memory to the RAM, and the auxiliary core is released from the reset. The hello_world multicore application is now running
and a banner is displayed on the terminal. If this is not true, check your terminal settings and connections.

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 42 / 54

Figure 57. Loading and running the multicore example

Figure 58. Hello World from primary core message

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 43 / 54

Chapter 7
MCUXpresso config tools
MCUXpresso Config Tools can help configure the processor and generate initialization code for the on chip peripherals. The tools
are able to modify any existing example project, or create a new configuration for the selected board or processor. The generated
code is designed to be used with MCUXpresso SDK version 2.x.

Table 1 describes the tools included in the MCUXpresso config tools.

Table 1. MCUXpresso config tools

Config tool Description Image

Pins tool For configuration of pin routing and pin electrical properties.

Clock tool For system clock configuration

Peripherals tools For configuration of other peripherals

TEE tool Configures access policies for memory area and peripherals helping to
protect and isolate sensitive parts of the application.

Device Configuration
tool

Configures Device Configuration Data (DCD) contained in the program
image that the Boot ROM code interprets to setup various on-chip
peripherals prior the program launch.

MCUXpresso Config Tools can be accessed in the following products:

• Integrated in the MCUXpresso IDE. Config tools are integrated with both compiler and debugger which makes it the
easiest way to begin the development.

• Standalone version available for download from MCUXPRESSO. Recommended for customers using IAR Embedded
Workbench, Keil MDK µVision, or Arm GCC.

• Online version available on MCUXPRESSO. Recommended to do a quick evaluation of the processor or use the tool
without installation.

Each version of the product contains a specific Quick Start Guide document MCUXpresso IDE Config Tools installation folder that
can help start your work.

NXP Semiconductors

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 44 / 54

http://www.nxp.com/mcuxpresso
http://mcuxpresso.nxp.com

Appendix A
How to determine COM port
This section describes the steps necessary to determine the debug COM port number of your NXP hardware
development platform.

1. To determine the COM port, open the Windows operating system Device Manager. This can be achieved by going to the
Windows operating system Start menu and typing Device Manager in the search bar, as shown in .

NXP Semiconductors

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 45 / 54

Figure 59. Device Manager

2. In the Device Manager, expand the Ports (COM & LPT) section to view the available ports. Depending on the NXP board
you’re using, the COM port can be named differently.

a. OpenSDA – CMSIS-DAP/mbed/DAPLink interface:

NXP Semiconductors
How to determine COM port

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 46 / 54

Figure 60. OpenSDA – CMSIS-DAP/mbed/DAPLink interface

b. OpenSDA – P&E Micro:

Figure 61. OpenSDA – P&E Micro

c. OpenSDA – J-Link:

Figure 62. OpenSDA – J-Link

d. P&E Micro OSJTAG:

Figure 63. P&E Micro OSJTAG

e. LPC-Link2:

Figure 64. LPC-Link2

f. FTDI UART:

Figure 65. FTDI UART

NXP Semiconductors
How to determine COM port

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 47 / 54

Appendix B
Default debug interfaces
The MCUXpresso SDK supports various hardware platforms that come loaded with a variety of factory programmed debug
interface configurations. Table 2 lists the hardware platforms supported by the MCUXpresso SDK, their default debug interface,
and any version information that helps differentiate a specific interface configuration.

Table 2. Hardware platforms supported by SDK

Hardware platform Default interface OpenSDA details1

EVK-MC56F83000 P&E Micro OSJTAG N/A

EVK-MIMXRT595 CMSIS-DAP N/A

EVK-MIMXRT685 CMSIS-DAP N/A

FRDM-K22F CMSIS-DAP/mbed/DAPLink OpenSDA v2.1

FRDM-K28F DAPLink OpenSDA v2.1

FRDM-K32L2A4S CMSIS-DAP OpenSDA v2.1

FRDM-K32L2B CMSIS-DAP OpenSDA v2.1

FRDM-K32W042 CMSIS-DAP N/A

FRDM-K64F CMSIS-DAP/mbed/DAPLink OpenSDA v2.0

FRDM-K66F J-Link OpenSDA OpenSDA v2.1

FRDM-K82F CMSIS-DAP OpenSDA v2.1

FRDM-KE15Z DAPLink OpenSDA v2.1

FRDM-KE16Z CMSIS-DAP/mbed/DAPLink OpenSDA v2.2

FRDM-KL02Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL03Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL25Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL26Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL27Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL28Z P&E Micro OpenSDA OpenSDA v2.1

FRDM-KL43Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL46Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL81Z CMSIS-DAP OpenSDA v2.0

FRDM-KL82Z CMSIS-DAP OpenSDA v2.0

FRDM-KV10Z CMSIS-DAP OpenSDA v2.1

FRDM-KV11Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KV31F P&E Micro OpenSDA OpenSDA v1.0

FRDM-KW24 CMSIS-DAP/mbed/DAPLink OpenSDA v2.1

Table continues on the next page...

NXP Semiconductors

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 48 / 54

Table 2. Hardware platforms supported by SDK (continued)

Hardware platform Default interface OpenSDA details1

FRDM-KW36 DAPLink OpenSDA v2.2

FRDM-KW41Z CMSIS-DAP/DAPLink OpenSDA v2.1 or greater

Hexiwear CMSIS-DAP/mbed/DAPLink OpenSDA v2.0

HVP-KE18F DAPLink OpenSDA v2.2

HVP-KV46F150M P&E Micro OpenSDA OpenSDA v1

HVP-KV11Z75M CMSIS-DAP OpenSDA v2.1

HVP-KV58F CMSIS-DAP OpenSDA v2.1

HVP-KV31F120M P&E Micro OpenSDA OpenSDA v1

JN5189DK6 CMSIS-DAP N/A

LPC54018 IoT Module N/A N/A

LPCXpresso54018 CMSIS-DAP N/A

LPCXpresso54102 CMSIS-DAP N/A

LPCXpresso54114 CMSIS-DAP N/A

LPCXpresso51U68 CMSIS-DAP N/A

LPCXpresso54608 CMSIS-DAP N/A

LPCXpresso54618 CMSIS-DAP N/A

LPCXpresso54628 CMSIS-DAP N/A

LPCXpresso54S018M CMSIS-DAP N/A

LPCXpresso55s16 CMSIS-DAP N/A

LPCXpresso55s28 CMSIS-DAP N/A

LPCXpresso55s69 CMSIS-DAP N/A

MAPS-KS22 J-Link OpenSDA OpenSDA v2.0

MIMXRT1170-EVK CMSIS-DAP N/A

TWR-K21D50M P&E Micro OSJTAG N/AOpenSDA v2.0

TWR-K21F120M P&E Micro OSJTAG N/A

TWR-K22F120M P&E Micro OpenSDA OpenSDA v1.0

TWR-K24F120M CMSIS-DAP/mbed OpenSDA v2.1

TWR-K60D100M P&E Micro OSJTAG N/A

TWR-K64D120M P&E Micro OpenSDA OpenSDA v1.0

TWR-K64F120M P&E Micro OpenSDA OpenSDA v1.0

TWR-K65D180M P&E Micro OpenSDA OpenSDA v1.0

TWR-K65D180M P&E Micro OpenSDA OpenSDA v1.0

Table continues on the next page...

NXP Semiconductors
Default debug interfaces

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 49 / 54

Table 2. Hardware platforms supported by SDK (continued)

Hardware platform Default interface OpenSDA details1

TWR-KV10Z32 P&E Micro OpenSDA OpenSDA v1.0

TWR-K80F150M CMSIS-DAP OpenSDA v2.1

TWR-K81F150M CMSIS-DAP OpenSDA v2.1

TWR-KE18F DAPLink OpenSDA v2.1

TWR-KL28Z72M P&E Micro OpenSDA OpenSDA v2.1

TWR-KL43Z48M P&E Micro OpenSDA OpenSDA v1.0

TWR-KL81Z72M CMSIS-DAP OpenSDA v2.0

TWR-KL82Z72M CMSIS-DAP OpenSDA v2.0

TWR-KM34Z75M P&E Micro OpenSDA OpenSDA v1.0

TWR-KM35Z75M DAPLink OpenSDA v2.2

TWR-KV10Z32 P&E Micro OpenSDA OpenSDA v1.0

TWR-KV11Z75M P&E Micro OpenSDA OpenSDA v1.0

TWR-KV31F120M P&E Micro OpenSDA OpenSDA v1.0

TWR-KV46F150M P&E Micro OpenSDA OpenSDA v1.0

TWR-KV58F220M CMSIS-DAP OpenSDA v2.1

TWR-KW24D512 P&E Micro OpenSDA OpenSDA v1.0

USB-KW24D512 N/A External probe N/A

USB-KW41Z CMSIS-DAP\DAPLink OpenSDA v2.1 or greater

1. The OpenSDA details is not applicable to LPC.

NXP Semiconductors
Default debug interfaces

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 50 / 54

Appendix C
How to add or remove boot header for XIP targets
The MCUXpresso SDK for i.MX RT1170 provides flexspi_nor_debug and flexspi_nor_release targets for each example
and/or demo which supports XIP (eXecute-In-Place). These two targets add XIP_BOOT_HEADER to the image by default. Because
of this, ROM can boot and run this image directly on external flash.

Macros for the boot leader:

• The following three macros are added in flexspi_nor targets to support XIP, as described in Table 3.

Table 3. Macros added in flexspi_nor

XIP_EXTERNAL_FLASH
1: Exclude the code which changes the clock of FLEXSPI.

0: Make no changes.

XIP_BOOT_HEADER_ENABLE
1: Add FLEXSPI configuration block, image vector table, boot data, and
device configuration data (optional) to the image by default.

0: Add nothing to the image by default.

XIP_BOOT_HEADER_DCD_ENABLE
1: Add device configuration data to the image.

0: Do NOT add device configuration data to the image.

• Table 4 shows the different effect on the built image with a different combination of these macros.

Table 4. Effects on built image with different macros

XIP_BOOT_HEADER_DCD_
ENABLE=1

XIP_BOOT_HEADER_DCD_
ENABLE=0

XIP_EXTERNAL_FLASH=1

XIP_BOOT_HEADER_ENAB
LE=1

— Can be programmed to
qspiflash by IDE and
can run after POR reset
if qspiflash is the boot
source.

— SDRAM will be
initialized.

— Can be programmed to
qspiflash by IDE, and
can run after POR reset
if qspiflash is the boot
source.

— SDRAM will NOT be
initialized.

XIP_BOOT_HEADER_ENAB
LE=0

— CANNOT run after
POR reset if it is
programmed by IDE,
even if qspiflash is the
boot source.

—

XIP_EXTERNAL_FLASH=0

— This image CANNOT
complete XIP because
when this macro is set
to 1, it excludes the
code, which changes
the clock for FLEXSPI.

Where to change the macros for each toolchain in MCUXpresso SDK?

Take hello_world as an example:

• IAR

NXP Semiconductors

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 51 / 54

Figure 66. Options node IAR

• MDK

Figure 67. Options for target

Figure 68. Change configuration Misc controls

NXP Semiconductors
How to add or remove boot header for XIP targets

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 52 / 54

• ARMGCC

Change the configuration in CMakeLists.txt.

Figure 69. Change configuration CMakeLists.txt

• MCUX

Figure 70. Properties for evkmimxrt1170

NXP Semiconductors
How to add or remove boot header for XIP targets

Getting Started with MCUXpresso SDK for MIMXRT1170-EVK, Rev. 0, February 8, 2021
User's Guide 53 / 54

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There
are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor
does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided
in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical
experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to
standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce
the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other
open and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no
liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules, regulations, and standards of the intended
application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all
legal, regulatory, and security related requirements concerning its products, regardless of any information or support that
may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com)
that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP,
HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,
MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG,
TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy
Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ
Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are
trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,
ULINK-ME, ULINK-PLUS, ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: February 8, 2021
Document identifier: MCUXSDKMIMXRT117XGSUG

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Overview
	2 MCUXpresso SDK board support package folders
	2.1 Example application structure
	2.2 Locating example application source files

	3 Run a demo using MCUXpresso IDE
	3.1 Select the workspace location
	3.2 Build an example application
	3.3 Run an example application
	3.4 Build a multicore example application
	3.5 Run a multicore example application

	4 Run a demo application using IAR
	4.1 Build an example application
	4.2 Run an example application
	4.3 Build a multicore example application
	4.4 Run a multicore example application

	5 Run a demo using Keil® MDK/μVision
	5.1 Install CMSIS device pack
	5.2 Build an example application
	5.3 Run an example application
	5.4 Build a multicore example application
	5.5 Run a multicore example application

	6 Run a demo using Arm® GCC
	6.1 Set up toolchain
	6.1.1 Install GCC ARM Embedded tool chain
	6.1.2 Install MinGW (only required on Windows OS)
	6.1.3 Add a new system environment variable for ARMGCC_DIR
	6.1.4 Install CMake

	6.2 Build an example application
	6.3 Run an example application
	6.4 Build a multicore example application
	6.5 Run a multicore example application

	7 MCUXpresso config tools
	A How to determine COM port
	B Default debug interfaces
	C How to add or remove boot header for XIP targets

