GMCLIB User's Guide

ARM® Cortex® M4F

Document Number: CM4FGMCLIBUG
Rev. 3, 05/2020

h
V"

GMCLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors

Contents
Section number Title Page

Chapter 1

Library

L 51 13 (e Ta L Uo7 5 o | OO OO TP 5
1.2 Library integration into project (MCUXPIESSO IDE)cocoiiiiiiiiiiriiniiiieeiienecee ettt e 8
1.3 Library integration into project (Kinetis Design StUAIo)ceevueiiiiiiiiiiiiiiieieieeite ettt 16
1.4 Library integration into project (Keil LVISION)cccuirieriirieriiieite ettt ettt et et e et st e bt esee st estesbeenteneeens 22
1.5 Library integration into project (IAR Embedded Workbench)cccccoieiiniiiiiniiniiiiiniiicceicneccseeeseeeeeeee 29

Chapter 2

Algorithms in detail

2.1 GMCLIB_CIATK. ...ttt ettt etttk a et b et eb e bbbt sttt ae e nes 37
2.2 GMCLIB_CIATKINV....ouiiiiiiiiiiiieeee ettt st s ee 39
2.3 GMCLIB_PAIK ...ttt ettt sttt h ettt b et bbbt st h et b e a sttt b ettt b et b et be e b 41
24 GIMOCLIB _PaATKINV.. .ottt ettt ettt e eeeeeeeeeeeeesesesas s e aaasasasasaseeeeeeeaeaseseesesesessssesssnssssssassaens 43
2.5 GMCLIB_DeCOUPINZEPIMSM......ciiiiiiiiiiiiiiieiiteeit ettt sttt st ettt e b e et e bt e s ab e e bt esate e bt e eabeeabeesabesabeesabeenseens 45
2.6 GMCLIB_EIMDCBUSRIPFOCc.ooiiiiiiiiitiiiictnte ettt sttt ettt 51
2.7 GMCLIB_EHMDCBUSRIP. c..cutitiitiiteitctt ettt ettt ettt sb et bttt sbt et sbaenbesbnenbeeanenbeean 56
2.8 GMOCLIB_SVINSA. ..ottt sttt sttt et a et b et 61
2.9 GMCLIB_SVIMICL..c..cuttiiiiteiiiteiietet ettt ettt sttt ettt bbbt b et b et b bbbt bbb e st b et e bt ebe e ebe e ene 76
2,10 GMCLIB_SVINUODN. ...ttt ettt ettt ettt sttt ettt ettt b et b et b et bt be e b e bt sne e sne st ene 80
2,11 GMCLIB_SVIMUTN ..ttt sttt sttt st ne 84
2,12 GMCLIB_SVIMDPWITL ...ttt ettt sttt ettt b et b et b et b et s ettt b et b et b et b et e b et e b et ebena bt st bt stesene 88
2.13 GMCLIB_SVINEXDPWINL....c.citiiitiieiiieiiiciinietrie ettt ettt ettt ettt sttt b et st be e b e e nnene 91

GMCLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 3

GMCLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors

Chapter 1
Library

1.1 Introduction

1.1.1 Overview

This user's guide describes the General Motor Control Library (GMCLIB) for the family
of ARM Cortex M4F core-based microcontrollers. This library contains optimized
functions.

1.1.2 Data types

GMCLIB supports several data types: (un)signed integer, fractional, and accumulator,
and floating point. The integer data types are useful for general-purpose computation;
they are familiar to the MPU and MCU programmers. The fractional data types enable
powerful numeric and digital-signal-processing algorithms to be implemented. The
accumulator data type is a combination of both; that means it has the integer and
fractional portions.The floating-point data types are capable of storing real numbers in
wide dynamic ranges. The type is represented by binary digits and an exponent. The
exponent allows scaling the numbers from extremely small to extremely big numbers.
Because the exponent takes part of the type, the overall resolution of the number is
reduced when compared to the fixed-point type of the same size.

The following list shows the integer types defined in the libraries:

* Unsigned 16-bit integer —<0 ; 65535> with the minimum resolution of 1

 Signed 16-bit integer —<-32768 ; 32767> with the minimum resolution of 1

* Unsigned 32-bit integer —<O0 ; 4294967295> with the minimum resolution of 1

* Signed 32-bit integer —<-2147483648 ; 2147483647> with the minimum resolution
of 1

GMCLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 5

Introduction

The following list shows the fractional types defined in the libraries:

* Fixed-point 16-bit fractional —<-1; 1 - 2-155 with the minimum resolution of 213
« Fixed-point 32-bit fractional —<-1 ; 1 - 2-3!> with the minimum resolution of 2-3!

The following list shows the accumulator types defined in the libraries:

* Fixed-point 16-bit accumulator —<-256.0 ; 256.0 - 277> with the minimum
resolution of 27

* Fixed-point 32-bit accumulator —<-65536.0 ; 65536.0 - 2-155 with the minimum
resolution of 2°1°

The following list shows the floating-point types defined in the libraries:

* Floating point 32-bit single precision —<-3.40282 - 1038 ; 3.40282 - 108> with the
minimum resolution of 223

1.1.3 API definition

GMCLIB uses the types mentioned in the previous section. To enable simple usage of the
algorithms, their names use set prefixes and postfixes to distinguish the functions'
versions. See the following example:

f32Result = MLIB Mac F32lss(f32Accum, fl16Multl, £f16Mult2);

where the function is compiled from four parts:

* MLIB—this is the library prefix

* Mac—the function name—Multiply-Accumulate

» F32—the function output type

* Iss—the types of the function inputs; if all the inputs have the same type as the
output, the inputs are not marked

The input and output types are described in the following table:
Table 1-1. Input/output types

Type Output Input
frac16_t F16 S
frac32_t F32 |
acc32_t A32 a

float_t FLT f

GMCLIB User's Guide, Rev. 3, 05/2020

6 NXP Semiconductors

4
Chapter 1 Library

1.1.4 Supported compilers

GMCLIB for the ARM Cortex M4F core is written in . The library is built and tested
using the following compilers:

* Kinetis Design Studio

* MCUXpresso IDE

* TAR Embedded Workbench

» Keil uVision

For the MCUXpresso IDE, the library is delivered in the gmclib.a file.

For the Kinetis Design Studio, the library is delivered in the gmclib.a file.

For the IAR Embedded Workbench, the library is delivered in the gmclib.a file.
For the Keil puVision, the library is delivered in the gmclib.lib file.

The interfaces to the algorithms included in this library are combined into a single public
interface include file, gmclib.h. This is done to lower the number of files required to be
included in your application.

1.1.5 Library configuration

GMCLIB for the ARM Cortex M4F core is written in . Some functions from this library
are inline type, which are compiled together with project using this library. The
optimization level for inline function is usually defined by the specific compiler setting. It
can cause an issue especially when high optimization level is set. Therefore the
optimization level for all inline assembly written functions is defined by compiler
pragmas using macros. The configuration header file RTCESL_cfg.h is located in:

specific library folder\MLIB\Include. The optimization level can be changed by
modifying the macro value for specific compiler. In case of any change the library
functionality is not guaranteed.

1.1.6 Special issues

1. The equations describing the algorithms are symbolic. If there is positive 1, the
number is the closest number to 1 that the resolution of the used fractional type
allows. If there are maximum or minimum values mentioned, check the range
allowed by the type of the particular function version.

2. The library functions that round the result (the API contains Rnd) round to nearest
(half up).

GMCLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 7

Library integration into project (MCUXpresso IDE)

1.2 Library integration into project (MCUXpresso IDE)

This section provides a step-by-step guide on how to quickly and easily include GMCLIB
into any MCUXpresso SDK example or demo application projects using MCUXpresso
IDE. This example uses the default installation path (C:\NXP\RTCESL
\CM4F_RTCESL_4.5_MCUX). If you have a different installation path, use that path
instead.

1.2.1 Library path variable

To make the library integration easier, create a variable that holds the information about
the library path.

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
Properties, or select Project > Properties from the menu. A project properties dialog

appears.
2. Expand the Resource node and click Linked Resources. See Figure 1-1.

GMCLIB User's Guide, Rev. 3, 05/2020
8 NXP Semiconductors

4
Chapter 1 Library

Mo s e .
type filter text Linked Resources = A 4
4 Resource -
Linked Resources Path Variables | Linked Resources
Resource Filters Path variables specify locations in the file system, including other path variables with the syntax "S${VAR}".
Builders The locations of linked resources may be specified relative to these path variables,
[C/C++ Build Defined path variables for resource 'twrkv31f120m_demo_apps_hello_world':
[C.’C.++ General Narme Value Mew...
Project References .
Run/Debug Settings (= ECLIPSE_HOME CAMXPAMCUXpressolDE_10.0.0_344%ide\ Edit..
= PARENT_LOC Diternp3
= PROJECT_LOC Dvternp3titwri31f120m_demo_apps_hello_world Remove
(= WORKSPACE_LOC Ditermnp3

Figure 1-1. Project properties
3. Click the New... button in the right-hand side.
4. In the dialog that appears (see Figure 1-2), type this variable name into the Name
box: RTCESL_LOC.
5. Select the library parent folder by clicking Folder..., or just type the following path
into the Location box: C:\NXP\RTCESL\CM4F_RTCESL_4.5_MCUX. Click OK.

GMCLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 9

A ————
Library integration into project (MCUXpresso IDE)

r ™
; T T — (e[=0 g
. MNew Varable S —— |

Define a New Path Variable

Enter a new variable name and its associated location.

Name: RTCESL_LOC

Location: oA\ NXPARTCESLAC Fie.. || Folder. || Variable..
Resolved Location: C:\NXP\RTCESL\CMA4F_RTCESL X.X_MCUX

@ [ok [cance |

Figure 1-2. New variable

6. Create such variable for the environment. Expand the C/C++ Build node and click

Environment.

Click the Add... button in the right-hand side.

In the dialog that appears (see Figure 1-3), type this variable name into the Name

box: RTCESL_LOC.

9. Type the library parent folder path into the Value box: C:\NXP\RTCESL

\CM4F_RTCESL_4.5_MCUX.

10. Tick the Add to all configurations box to use this variable in all configurations. See
Figure 1-3.

11. Click OK.

12. In the previous dialog, click OK.

* N

GMCLIB User's Guide, Rev. 3, 05/2020
10 NXP Semiconductors

4
Chapter 1 Library

type filter text Environment " v
Resource
Builders

w CfC++ Build Configuration: |Debug [Active | ~ | | Manage Configurations...

Build Variables

Environment

Logging

MCU settings

Settings

Tool Chain Editor
v C/C++ General Name: | RTCESL_LOC Edit...

Code Analysis

Environment variables to set Add...

a Mew variable = Select...

Documentation Yalue: |c:\nxp\RTCESL\CMdF_RTCESL_X.X_MCUX | Variables Delete

File Types [+] Add to all configurations Undefine | |

Formatter

Language Mappings

Paths and Symbols
Preprocessor Include Pat
MCUXpresso Config Tools
Project Matures
Project References

Refactoring History
Run/Debug Settings (@) Append variables to native environment

Task Tags () Replace native environment with specified one
Validation

Restore Defaults Apply

@' Apply and Close Cancel

Figure 1-3. Environment variable

1.2.2 Library folder addition

To use the library, add it into the Project tree dialog.

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
New > Folder, or select File > New > Folder from the menu. A dialog appears.

2. Click Advanced to show the advanced options.

. To link the library source, select the Link to alternate location (Linked Folder)

option.

4. Click Variables..., select the RTCESL_LOC variable in the dialog, click OK, and/or
type the variable name into the box. See Figure 1-4.

5. Click Finish, and the library folder is linked in the project. See Figure 1-5.

(O8]

GMCLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 11

Library integration into project (MCUXpresso IDE)

o

Folder —

Create a new folder resource. Ii .n_“

Enter or select the parent folder

twrkv31f120m_demo_apps_hello_world
[y
| =3 twrkw31f120m_demo_apps_hello_world

Folder name: RTCESL_LOC

() [= Use default location
) [Folder is not located in the file system (Virtual Folder)
@ (% Link to alternate location (Linked Folder)

RTCESL_LOC | Browse.. || Variables.. | I

Figure 1-4. Folder link

a5 twrkv31f120m_demo_apps_hello_world
s g’;ﬁ Binariez
> [t Includes
- 2 CMSIS

- 2 board
- 2 drivers
- 2 source

» [startup
- A2 utilities

> [= Debug
» = doc
> |y RTCESL_LOC

Figure 1-5. Projects libraries paths

1.2.3 Library path setup

GMCLIB requires MLIB and GFLIB to be included too. These steps show how to
include all dependent modules:

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
Properties, or select Project > Properties from the menu. The project properties
dialog appears.

2. Expand the C/C++ General node, and click Paths and Symbols.

In the right-hand dialog, select the Library Paths tab. See Figure 1-7.

4. Click the Add... button on the right, and a dialog appears.

(O8]

GMCLIB User's Guide, Rev. 3, 05/2020
12 NXP Semiconductors

N o

*®

10.

Chapter 1 Library

Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following (see Figure 1-6): ${RTCESL_LOC}\MLIB.
Click OK, and then click the Add... button.

Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following: ${RTCESL_LOC }\GFLIB.

Click OK, and then click the Add... button.

Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following: ${RTCESL_LOC}\GMCLIB.

Click OK, you will see the paths added into the list. See Figure 1-7.

- _
" Add.. 5
. e —
Directory:
S{RTCESL_LOCHAMLIE|
[7] Add te all configurations
[T Add to all languages
[= Is a workspace path
[oK] [Cancel]
i o

Figure 1-6. Library path inclusion

%) Properties for twrkv31f120m_demo_apps_hellowordd [¥ S . m l@@g

11.

12.
13.
14.

type filter text Paths and Symbols =l v
> Resource
Builders —
» CfC++ Build Configuration: ’D‘ebug [Active] V] lManage Configurations...l
a4 C/C++ General
| > Code Analysis
I Documentation | (=l Includesl # Symbols | =i Libraries| [Library Paths |[B Source Location | 5 References|
File Types A
: Formatter (B S{RTCESL_LOCAMLIE | Add. | |7
Indexer { B SIRTCESL LOCNGFLIB ,
Language Mappings ® ${RTCESL_LOCNGMCLIB
Paths and Symbols
Delete
Preprocessor Include Pz
Project References 4
i Run/Debug Settings
@ "Preprocessor Include Paths, Macros etc.” property page may define additicnal entries <
| —
4 I b 4| m I
® [oK] [Cancel] I

Figure 1-7. Library paths
After adding the library paths, add the library files. Click the Libraries tab. See
Figure 1-9.
Click the Add... button on the right, and a dialog appears.
Type the following into the File text box (see Figure 1-8): :mlib.a
Click OK, and then click the Add... button.

GMCLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 13

A ————
Library integration into project (MCUXpresso IDE)

15. Type the following into the File text box: :gflib.a

16. Click OK, and then click the Add... button.

17. Type the following into the File text box: :gmclib.a

18. Click OK, and you will see the libraries added in the list. See Figure 1-9.

B Add.. *®
File:
[MLIB

(] Add to all configuraticns
[] Add to all languages
] = s a workspace path

Variables...
Workspace...

File systern...

Figure 1-8. Library file inclusion

(= Includes # Symbols =k Libraries B Library Paths (2 Sour

5. MLIB
T GFLIB
5. GMCLIB

Figure 1-9. Libraries

19. In the right-hand dialog, select the Includes tab, and click GNU C in the Languages
list. See Figure 1-11.

20. Click the Add... button on the right, and a dialog appears. See Figure 1-10.

21. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\MLIB\Include

22. Click OK, and then click the Add... button.

23. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\GFLIB\Include

24. Click OK, and then click the Add... button.

25. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\GMCLIB\Include

26. Click OK, and you will see the paths added in the list. See Figure 1-11. Click OK.

GMCLIB User's Guide, Rev. 3, 05/2020
14 NXP Semiconductors

Chapter 1 Library

,

1

Directony:

S{RTCESL_LOC }\MUB\incIudEl

[T Add to all configurations
[T Add te all languages
[T = Is a workspace path

Variables...

Workspace...

File system...

Cancel

Figure 1-10. Library include path addition

-_— —_
e e =

type filter text

[» Resource
Builders
[» C/C++ Build
a C/C++ General
[Code Analysis
Documentation

File Types

Formatter

Indexer

Language Mappings

Paths and Symbols

Preprocessor Include P:
Project References
Run/Debug Settings

Paths and Symbols

FPrm v

Configuration: ’ Debug [Active]

v] ’ Manage Cunﬁguratiuns...]

(= Includes | # Symbols | = Li.brariﬁl ™ Library Paths | 2 Source Lucatiunl 2 Re‘ferenc5|

Languages Include directories
Additional Assem || {2 /${ProjName}/startup
Assembly 1= /${ProjName}/utilities
GNU C = /$(ProjName}/board

(=l ${RTCESL_LOCAMLIB\Include

- Add...

Edit...

Delete

Show built-in values

(= ${RTCESL_LOCNGFLIB\Include
(= ${RTCESL_LOCNGMCLIB\Include

£ (% ¢ fnxp,/mcuxpressoide_10.0.0 344/ide/tools/redlib/include

i3 c/nxp/mcuxpressoide_10.0.0_344/ide/tools/features/include

m

-

l E.Ej Irnport Sett'mgs__.l ’ ?& Export Settings...

@ "Preprocessor Include Paths, Macros etc.” property page may define additional entries

Mowve Up

Maove Down

[Restare Defaul.tsl ’

Apply

)

[ok

|

Cancel

Figure 1-11. Compiler setting

Type the #include syntax into the code where you want to call the library functions. In
the left-hand dialog, open the required .c file. After the file opens, include the following
lines into the #include section:

#include "mlib FP.h"
#include "gflib_ FP.h"
#include "gmclib FP.h"

When you click the Build icon (hammer), the project is compiled without errors.

GMCLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors

15

Library integration into project (Kinetis Design Studio)

1.3 Library integration into project (Kinetis Design Studio)

This section provides a step-by-step guide on how to quickly and easily include GMCLIB
into an empty project or any MCUXpresso SDK example or demo application projects
using Kinetis Design Studio. This example uses the default installation path (C:\NXP
\RTCESL\CM4F_RTCESL_4.5_KDS). If you have a different installation path, use that
path instead. If you want to use an existing MCUXpresso SDK project (for example the
hello_world project) see Library path variable. If not, continue with the next section.

1.3.1 Library path variable

To make the library integration easier, create a variable that will hold the information
about the library path.

1. Right-click the MyProjectO1 or MCUXpresso SDK project name node in the left-
hand part and click Properties, or select Project > Properties from the menu. A
project properties dialog appears.

2. Expand the Resource node and click Linked Resources. See Figure 1-12.

GMCLIB User's Guide, Rev. 3, 05/2020
16 NXP Semiconductors

Chapter 1 Library

=== ——]

| type filter text

Linked Resources T

a Resource
Linked Resources
Rescurce Filters
Builders
> C/C++ Build
» CfC++ General
Linux Tools Path
Project References
Run/Debug Settings
I» Task Repository
WikiText

Path Varnables | |inked Resources

Path variables specify locations in the file systern, including other path variables with the syntax "S{VAR}".
The lecations of linked resources may be specified relative to these path variables.

Defined path variables for resource 'MyProject(l":

Mame Value Mew...

(= ECLIPSE_HOME CANXMEDS_3.0.00eclipsel, |T|
[PARENT_LOC CAKDSProjects\workspace.kds R
= PROJECT_LOC CAKDSProjects\MyProject0l | Rermove |
(= WORKSPACE_LOC C:\KDSProjects\workspace.kds -

Figure 1-12. Project properties

3. Click the New... button in the right-hand side.

4. In the dialog that appears (see Figure 1-13), type this variable name into the Name
box: RTCESL_LOC.

5. Select the library parent folder by clicking Folder..., or just type the following path
into the Location box: C:\NXP\RTCESL\CM4F RTCESL 4.5 KDS. Click OK.

Define a New Path Variable

Enter a new variable name and its associated location.

MName: RTCESL_LOC

Location: ICA\NXPARTCESLAC File.. || Folder.
Resolved Location: C:\NXP\RTCESL\CMAF_RTCESL _X.X_KDS

®@

Figure 1-13. New variable

GMCLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors

17

A
Library integration into project (Kinetis Design Studio)
6. Create such variable for the environment. Expand the C/C++ Build node and click
Environment.
7. Click the Add... button in the right-hand side.
8. In the dialog that appears (see Figure 1-14), type this variable name into the Name
box: RTCESL_LOC.
9. Type the library parent folder path into the Value box: C:\NXP\RTCESL
\CM4F_RTCESL_4.5_KDS.
10. Tick the Add to all configurations box to use this variable in all configurations. See

Figure 1-14.
11. Click OK.
12. In the previous dialog, click OK.
/# Properties for MyProject01 & . - p—— |, C 2
type filter text Environment (=g v
» Resource
Builders
4 C/C++ Build Configuration: |debug [Active | 'l ’Manage Configurations...]
Build Variables
Envirenment
Logging Environment variables to set
Settings
Tool Chain Editor Variable Value Origin
Select...

Topls_P_at,h: 1 LD Loy DSDrniertct KSR Rl ELITL [S STER 1

Linux

Praje Mame: RTCESL_LOC

?””:E Value: C\MXP\RTCESL\CMAF_RTCESL XX _KDS [Variables | | Undefine |

» Tasl
wikiT{)| [ZJAdd to all configurations
[oK] [Cancel]
I_

Figure 1-14. Environment variable

1.3.2 Library folder addition

To use the library, add it into the Project tree dialog.

1. Right-click the MyProject01 or MCUXpresso SDK project name node in the left-
hand part and click New > Folder, or select File > New > Folder from the menu. A
dialog appears.

2. Click Advanced to show the advanced options.

3. To link the library source, select the option Link to alternate location (Linked
Folder).

4. Click Variables..., select the RTCESL_LOC variable in the dialog, click OK, and/or
type the variable name into the box. See Figure 1-15.

GMCLIB User's Guide, Rev. 3, 05/2020
18 NXP Semiconductors

Chapter 1 Library

5. Click Finish, and you will see the library folder linked in the project. See Figure
1-16.

F ™
% New Folder — E‘@g

Folder

.
Create a new folder resource. i .-_’

Enter or select the parent folder
MyProjectll
o

s[5 MyProject01
[=* RernoteSystemsTempFiles

Folder name: RTCESL_LOC

() [= Use default location
) [Folder is not located in the file system (Virtual Folder)
@ (-7 Link to alternate location (Linked Folder)

RTCESL_LOC | Browse.. | [Variables.. |
Choose file system:
Figure 1-15. Folder link

a 25 MyProject01
> [t Includes
> = Includes
» [= Project_Settings
» gy RTCESL_LOC
4 = Sources
> [main.c

Figure 1-16. Projects libraries paths

1.3.3 Library path setup

GMCLIB requires MLIB and GFLIB to be included too. These steps show how to
include all dependent modules:

1. Right-click the MyProject01 or MCUXpresso SDK project name node in the left-
hand part and click Properties, or select Project > Properties from the menu. A
project properties dialog appears.

2. Expand the C/C++ General node, and click Paths and Symbols.

. In the right-hand dialog, select the Library Paths tab. See Figure 1-18.

(O8]

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 19

Library integration into project (Kinetis Design Studio)

4,
5

.

*®

10.

1.

12.
13.
14.
15.
16.
17.

Click the Add... button on the right, and a dialog appears.
Look for the RTCESL_LOC variable by clicking Variables..., and then finish the

path in the box by adding the following (see Figure 1-17): ${RTCESL_LOC }\MLIB.

Click OK, and then click the Add... button.

Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following: ${RTCESL_LOC }\GFLIB.

Click OK, and then click the Add... button.

Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following: ${RTCESL_LOC }\GMCLIB.

Click OK, and the paths will be visible in the list. See Figure 1-18.

' ™
" Add.. 5
P ——
Directory:
S{RTCESL_LOCHMLIE|
[7] Add te all configurations
[T Add to all languages
[= Is a workspace path
[oK] [Cancel]

Figure 1-17. Library path inclusion

| Properties for MyProje

type filter text Paths and Symbols L=l v
» Resource
Builders
. C/C++ Build Configuration: [DEbUg [Active] 'l lManage Configurations...]
4 C/C++ General
» Code Analysis
Documentation | @ Includesl # Symbols | =i Libraries| (B Library Paths |@ Source Location I @ Re‘Ferences|
File Types
Formatter [${ProjDirPath}/Project_Settings/Linker_Files Add...
Indexer B ${RTCESL_LOC/\MLIB
Languege Meppi
anguage Mappings B ${RTCESL_LOCNGFLIB
Paths and Symbols | = ${RTCESL_LOCNGMCLIB Delete
Preprocessor Include Pz
Profiling Categories
Linux Tools Path I

Figure 1-18. Library paths
After adding the library paths, add the library files. Click the Libraries tab. See
Figure 1-20.
Click the Add... button on the right, and a dialog appears.
Type the following into the File text box (see Figure 1-19): :mlib.a
Click OK, and then click the Add... button.
Type the following into the File text box: :gflib.a
Click OK, and then click the Add... button.
Type the following into the File text box: :gmclib.a

GMCLIB User's Guide, Rev. 3, 05/2020

20

NXP Semiconductors

18.

19.

20.
21.

22.
23.

24.
25.

26.

Chapter 1 Library
Click OK, and you will see the libraries added in the list. See Figure 1-20.

i Add.. % |
File:
mlib.a
[T Add to all configurations
[T Add te all languages
[T = Is a workspace path
[0K] [Cancel]

Figure 1-19. Library file inclusion

| (el Includesl # S}rmbols| =h Libraries |[E,- Library Pathsl =]

T mlib.a
= :gflib.a
T :gmclib.a

Figure 1-20. Libraries
In the right-hand dialog, select the Includes tab, and click GNU C in the Languages
list. See Figure 1-22.
Click the Add... button on the right, and a dialog appears. See Figure 1-21.
Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\MLIB\Include
Click OK, and then click the Add... button.
Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\GFLIB\Include
Click OK, and then click the Add... button.
Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\GMCLIB\Include
Click OK, and you will see the paths added in the list. See Figure 1-22. Click OK.

GMCLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 21

Library integration into project (Keil pVision)

-

' Add directory path

Directony:
S{RTCESL_LOCAMLIBinclude

[T Add to all configurations
[T Add te all languages
[T = Is a workspace path

Variables...

Workspace...

g

File system...

Cancel

ok |

Figure 1-21. Library include path addition

|+ Properties for MyProje

type filter text Paths and Symbols L=l v
» Resource
Builders

» CfC++ Build Configuration: [Debug [Active] '] ’Manage Configurations...]

a4 C/C++ General
» Code Analysis

Documentation (1= Includes | # Symbaols | =i, Libraries | [P Library Paths | 2 Source Location | 5 References|
File Types
Fermatter Languages Include directories Add...
Indexer sl
) Assembly = Sources .
Language Mappings GNU C /% Includes
E"’ths and SYTbT'Sd N GNU C++ (1= ${RTCESL_LOCHMLIB\include
e (= ${RTCESL_LOCI\GFLIB\include
. 9 -2 [[ETSIRTCEST LOCHGMCLIB inciude Q)
Linux Tools Path I

Figure 1-22. Compiler setting

Type the #include syntax into the code. Include the library into the main.c file. In the left-
hand dialog, open the Sources folder of the project, and double-click the main.c file.
After the main.c file opens up, include the following lines in the #include section:
#include "mlib_ FP.h"

#include "gflib FP.h"
#include "gmclib FP.h"

When you click the Build icon (hammer), the project will be compiled without errors.

1.4 Library integration into project (Keil pVision)

This section provides a step-by-step guide on how to quickly and easily include GMCLIB
into an empty project or any MCUXpresso SDK example or demo application projects
using Keil pVision. This example uses the default installation path (C:\NXP\RTCESL
\CM4F_RTCESL_4.5_KEIL). If you have a different installation path, use that path
instead. If any MCUXpresso SDK project is intended to use (for example hello_world
project) go to Linking the files into the project chapter otherwise read next chapter.

GMCLIB User's Guide, Rev. 3, 05/2020
22 NXP Semiconductors

Chapter 1 Library

1.4.1 NXP pack installation for new project (without MCUXpresso

SDK)

This example uses the NXP part, and the default installation path (C:\NXP\RTCESL
\CM4F_RTCESL_4.5_KEIL) is supposed. If the compiler has never been used to create
any NXP MCU-based projects before, check whether the NXP MCU pack for the
particular device is installed. Follow these steps:

1.
2.
3.

AN

Launch Keil pVision.

In the main menu, go to Project > Manage > Pack Installer....

In the left-hand dialog (under the Devices tab), expand the All Devices > Freescale
(NXP) node.

Look for a line called "KVxx Series" and click it.

In the right-hand dialog (under the Packs tab), expand the Device Specific node.
Look for a node called "Keil::Kinetis_ KVxx_DFP." If there are the Install or Update
options, click the button to install/update the package. See Figure 1-23.

. When installed, the button has the "Up to date" title. Now close the Pack Installer.

g Pack Installer - C:iKeil_ySVARM\PACK. [=[E] =]
File Packs Window Help
,'i_" Device: Freescale - KVio Series
ﬂ Devices Boards ﬂ ﬂ Packs Examples ﬂ
| Search: - X Pack Action Description
Toieg /| Summary =1-Device Specific 1 Pack
| © @ Atmel 257 Dewices =] +-Keil:Kinetis_KVix DFP | < _Install Freescale Kinetis KViox Series Device Support
- % Freescale 234 Devices =l-Generic 10 Packs
5% K Series 1 Device +1- ARM:CMSIS € Up to date | CMSIS (Cortex Micracontroller Software Interface Standard)
%2 KDD Series 2 Devices +-Keil:ARM_Compiler | Up to date | Keil ARM Compiler extensions
%8 K10 Series 73 Devices +1-Keil:Jansson & Install___|Jansson s a C library for encoding, decoding and manipula
2% K20 Series 1 Devices +-Keil:MDK-Middleware | Update | Keil MDK-ARM Professional Middleware for ARM Cortex-M
%8 K30 Series 5 Devices +1-Keil:MDK-Network_DS Install Keil MDK-ARM Professional Middleware Dual-Stack IPud/TP
%8 KAD Series 6 Devices #- PP & Install | IwIP is light-weight implementation of the TCP/IP protoc:
48 K50 Series 1 Devices +1-Micrium:RTOS & Install | Micrium software components
%2 K60 Series 18 Devices +- Oryx-Embedded:Midd...| € Install | Middleware Package (CycloneTCP, CycloneSSL and Cyclon
%8 K0 Series + Devices +1-wolfSSLi:CyaSSL & _Install Light weight SSL/TLS and Crypt Library for Embedded Syste|
%2 KBD Series 2 Devices | #- YOGITECH:fRSTL_AR... |5 Install YOGITECH fRSTL Functional Safety EVAL Software Pack for
+ 7% KEAvex Series 6 Devices
#-“ KBor Series 11 Devices
#-7E Kboc Series 54 Devices
#-“ Kbt Series 14 Devices
+7E Kiboe Series 26 Devices
#-7H Koot Series 8 Devices
#- % WPRL516 Series 1 Device
PR i || K1 0|
Output a X
Refresh Pack descriptions
Update available for Keil:: MDK-Middleware (installed: 6.4.0, available: 7.0.0-beta)
Ready ONLINE

Figure 1-23. Pack Installer

GMCLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 23

Library integration into project (Keil pVision)

1.4.2 New project (without MCUXpresso SDK)

To start working on an application, create a new project. If the project already exists and
is opened, skip to the next section. Follow these steps to create a new project:
1. Launch Keil pVision.
2. In the main menu, select Project > New uVision Project..., and the Create New
Project dialog appears.
3. Navigate to the folder where you want to create the project, for example C:
\KeilProjects\MyProjectO1. Type the name of the project, for example MyProjectO1.
Click Save. See Figure 1-24.

E Create New Project

¥| .. » Computer » System (C) » KeilProjects » MyProjectll hd Search MyProject01

File name: MyProject01

Save as type: [Project Files (".uvpraj; *.uvprojx)

¥ Browse Folders

Figure 1-24. Create New Project dialog
4. In the next dialog, select the Software Packs in the very first box.
5. Type " into the Search box, so that the device list is reduced to the devices.
6. Expand the node.
7. Click the MKV46F256xxx15 node, and then click OK. See Figure 1-25.

, _

cru |
ISoﬂware Packs ;I
Vendor: Freescale
Device: MKV46F25Gooc]5
Toolset: ARM
Search: I
Diescription:
€1 MKV43F1 280015 :I The Kinetis K\dx family of MCUs is a high-performance solution for -
offering exceptional precision, sensing and control for the some of the
€8 MKV43F6dcod most demanding applications in motor and power control .
£ MKV44F1 28005 Buitt upon the ARM Cortex-M4 core running at 150 MHz with DSP and
floating point unit, it features dual 12-bit analogto-digital converters
€1 MKV4dFedeods (ADCz) with 240 ng conversion time, eFlexP WM module with 312ps
£ MKVA5FL 283005 resolution and NanoEdge support, up to 30 PWM channels for support
of mutti-motor systems and dual FlexCAN modules.
€3 MKVA5F256:00d5 The Kinetis KV4x family is supported by a comprehensive enablement
£ MKV46F1 28005 suite from Freescale and third-party resources including reference
o designs, software libraries and motor configuration tools.
A Kvsx
< | -] -
ok | cance | Help

Figure 1-25. Select Device dialog
8. In the next dialog, expand the Device node, and tick the box next to the Startup node.
See Figure 1-26.

GMCLIB User's Guide, Rev. 3, 05/2020
24 NXP Semiconductors

Chapter 1 Library

9. Expand the CMSIS node, and tick the box next to the CORE node.

it L =

Software Component Sel. Variant Version Description
= ’ CMSIS Cortex Microcontroller Software Interface Components
¥ CORE e 410 CMSIS-CORE for Cortex-h. 5C000. and SC300
¥ DSP r 145 CMSIS-DSP Library for Cortex-M, 50000, and 5C300
4 RTOS (4P]) 10 CMSIS-RTOS APT for Cortex-M, 5C000. and 5C300
¥ CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
& Compiler ARM Compiler Software Extensions
= ’ Device Startup, System Setup
@ Startup il 100 Systern Startup for Kinetis KV45 150MHz devices devices devices
& File System MDK-Pro 6.4.0 File Accese on various storage devices
@ Graphics MDK-Pro 5261 User Interface on graphical LCD displays
’ Network MDK-Pro 6.4.0 IP Networking using Ethernet or Serial protocels
’ UsB MDK-Pro 6.4.0 USB Communication with various device classes

Figure 1-26. Manage Run-Time Environment dialog
10. Click OK, and a new project is created. The new project is now visible in the left-

hand part of Keil uVision. See Figure 1-27.
EE C:\.KeiIijEds\MﬂoEectﬂl\MyPrcjectﬂl.uvpmjx - u\.ﬁsfua

File Edit Wiew Project Flash Debug Peripherals Too

NS @ &4 o | |

bl M | ey | Target1 El 8N |
Project i
= Project: MyProject0l
-5 Targetl
3 Source Group1
& cmsis
=9 Device

|] startup_MKV4&F15.s (Startup)
|1 system_MKV4&F15.c (Startup)
|1 system_MKV4EF15.h (Startup)

Figure 1-27. Project
11. In the main menu, go to Project > Options for Target '"Targetl'..., and a dialog
appears.
12. Select the Target tab.
13. Select Use Single Precision in the Floating Point Hardware option. See Figure 1-27.

— Code Generation
ARM Compiler: IUse default compiler version LI

[~ Use Cross-Module Optimization
™ Use MicroLIB ™ BigEndian

Floating Poirt Hardware: Use Single Precision [

Figure 1-28. FPU

GMCLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 25

Library integration into project (Keil pVision)

1.4.3 Linking the files into the project
GMCLIB requires MLIB and GFLIB to be included too. The following steps show how

to include all dependent modules.

To include the library files in the project, create groups and add them.

1. Right-click the Target 1 node in the left-hand part of the Project tree, and select Add
Group... from the menu. A new group with the name New Group is added.

2. Click the newly created group, and press F2 to rename it to RTCESL.

3. Right-click the RTCESL node, and select Add Existing Files to Group 'RTCESL'...

from the menu.

4. Navigate into the library installation folder C:\NXP\RTCESL

\CM4F_RTCESL_4.5 KEIL\MLIB\Include, and select the mlib_FP.h file. If the file
does not appear, set the Files of type filter to Text file. Click Add. See Figure 1-29.

Look in: |) Include

-
Mame

(& MUB_DiniQ_F32

[mlib_FP

(2 MLIB_Log2_U16

[MLIB_Mac_a32

[2 MLIB_Mac_F16_Asmi
[MLIB_Mac_F32

(2 MLIB_Mac_F32_Asmi
[MLUIB_Mac_FLT

[MLIB_Mact_F32

[MLIB_Macd_F32_Asmi

[a0 1D Kaaca O T
4 I

~| & & ey B
Date modified
6/20/2016 9:49 AM
7/22/2016 1:15 PM
6/20/2016 9:49 AM
6/20/2016 9:49 AM
7/25/2016 8:27 AM
6/20/2016 9:49 AM
7/25/2016 8:27 AM
6/20/2016 9:49 AM
6/20/2016 9:49 AM
7/25/2016 8:27 AM

ENNTE LD AR

File name: |m|ib_FF'

Files of type: |Text file {*bd; =h; “inc)

.

-

k

j Close

Figure 1-29. Adding .h files dialog
5. Navigate to the parent folder C:\NXP\RTCESL\CM4F_RTCESL_4.5_KEIL\MLIB,

and select the mlib.lib file. If the file does not appear, set the Files of type filter to

Library file. Click Add. See Figure 1-30.

GMCLIB User's Guide, Rev. 3, 05/2020

26

NXP Semiconductors

4
Chapter 1 Library

Lookin: | J. MLIB ~| & & e B
MName : Date modified Ty
. Include 2010.2014 15:37 Fi
|| MLIB.lib 16.10.2014 2:19 LI
4 | 1l 3
File name: |MLIB.Iib
Files of type: | Library file (" ib) | Closs

Figure 1-30. Adding .lib files dialog

6. Navigate into the library installation folder C:\NXP\RTCESL
\CM4F_RTCESL_4.5_KEIL\GFLIB\Include, and select the gflib_FP.h file. If the
file does not appear, set the Files of type filter to Text file. Click Add.

7. Navigate to the parent folder C:\NXP\RTCESL\CM4F_RTCESL_4.5_KEIL\GFLIB,
and select the gflib.lib file. If the file does not appear, set the Files of type filter to
Library file. Click Add.

8. Navigate into the library installation folder C:\NXP\RTCESL
\CM4F_RTCESL_4.5_KEIL\GMCLIB\Include, and select the gmclib_FP.h file. If
the file does not appear, set the Files of type filter to Text file. Click Add.

9. Navigate to the parent folder C:\ANXP\RTCESL\CM4F_RTCESL_4.5_KEIL
\GMCLIB, and select the gmclib.lib file. If the file does not appear, set the Files of
type filter to Library file. Click Add.

10. Now, all necessary files are in the project tree; see Figure 1-31. Click Close.

!l project o @
-1 Project: MyProject01
=g Targetl
[Source Group 1
o [RTCESL
_1 mlib_FP.h
1 MUB.lib
_1 goflib_FP.h
1 GFLIBIib
_1 gmeclib_FP.h
.1 GMCLIB.lib
& cMmsis
E|’ Device

Figure 1-31. Project workspace

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 27

A ————
Library integration into project (Keil pVision)

1.4.4 Library path setup

The following steps show the inclusion of all dependent modules.

I.

2.
3.

i

In the main menu, go to Project > Options for Target 'Targetl'..., and a dialog
appears.
Select the C/C++ tab. See Figure 1-32.
In the Include Paths text box, type the following paths (if there are more paths, they
must be separated by ;') or add them by clicking the ... button next to the text box:
o "C:\NXP\RTCESL\CM4F_RTCESL_4.5_KEIL\MLIB\Include"
e "C:\NXP\RTCESL\CM4F_RTCESL_4.5_KEIL\GFLIB\Include"
e "C:\NXP\RTCESL\CM4F_RTCESL_4.5_KEIL\GMCLIB\Include"
Click OK.
Click OK in the main dialog.

,

Device] Target] Outpl_rt] Usting] User C/Ce+ lﬂsm] Unker] Debug] Lhilities]

Preprocessor Symbols
Define: |
Undefine: |
Language / Code Generation
[Strict ANSIC ST
‘ Optimization: |Level 0 (O0) = [~ Enum Container always int All Wamings i
[~ Optimize for Time [Plain Charis Signed I
[~ Split Load and Store Muttiple [~ Read-Only Position Independert ™ No Auto Includes
[~ One ELF Section per Function [Read-Write Position Independent [C59 Mode
w | N
Misc |
Controls
‘ Compiler |- —cpu Cortex-M0+ -D__EVAL g 00 —apcs=intenwork -
cc;tr:;c; - C:\KeilProjects " MyProject01\RTE i

Figure 1-32. Library path addition

Type the #include syntax into the code. Include the library into a source file. In the new
project, it is necessary to create a source file:

1. Right-click the Source Group 1 node, and Add New Item to Group 'Source Group

1'... from the menu.

GMCLIB User's Guide, Rev. 3, 05/2020

28

NXP Semiconductors

4
Chapter 1 Library

2. Select the C File (.c) option, and type a name of the file into the Name box, for
example 'main.c'. See Figure 1-33.

-

Add MNew Item to Group "Source Group 1°

Create a new C source file and add it to the projed
C | CFie ()

@ C++ File (cpp)
\ﬂ Asm File (.5)

\ﬂ Header File (h)
é Teat File (i)
@ Image File (%)
7‘@ User Code Template

Type:
Marme: | i, &
Location: | C:\KeilProjects\MyProjectd1
Add Close |
—

Figure 1-33. Adding new source file dialog
3. Click Add, and a new source file is created and opened up.
4. In the opened source file, include the following lines into the #include section, and
create a main function:
#include "mlib FP.h"

#include "gflib FP.h"
#include "gmclib FP.h"

int main(void)

{

while (1) ;

}
When you click the Build (F7) icon, the project will be compiled without errors.

1.5 Library integration into project (IAR Embedded
Workbench)

This section provides a step-by-step guide on how to quickly and easily include the
GMCLIB into an empty project or any MCUXpresso SDK example or demo application
projects using IAR Embedded Workbench. This example uses the default installation
path (C:\NXP\RTCESL\CM4F_RTCESL_4.5_IAR). If you have a different installation

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 29

Library integration into project (IAR Embedded Workbench)

path, use that path instead. If any MCUXpresso SDK project is intended to use (for
example hello_world project) go to Linking the files into the project chapter otherwise

read next chapter.

1.5.1 New project (without MCUXpresso SDK)

This example uses the NXP MKV46F256xxx15 part, and the default installation path (C:
\NXP\RTCESL\CM4F_RTCESL_4.5_IAR) is supposed. To start working on an
application, create a new project. If the project already exists and is opened, skip to the
next section. Perform these steps to create a new project:

1. Launch IAR Embedded Workbench.
2. In the main menu, select Project > Create New Project... so that the "Create New

Project" dialog appears. See Figure 1-34.

Create New Project ‘_ @

Taol chain: [&RM -

Project templates:

[+ azm i
- C++

i DLIB [C, C++ with exceptions and RTTI]
DLIE [C, Extended Embedded C++) -

R e |

m

Dezcription:
C project uzing default tool gettings inchuding an empty main.c file.

[oK] [Cancel]

Figure 1-34. Create New Project dialog

Expand the C node in the tree, and select the "main" node. Click OK.

4. Navigate to the folder where you want to create the project, for example, C:
\[ARProjects\MyProjectO1. Type the name of the project, for example, MyProjectO1.
Click Save, and a new project is created. The new project is now visible in the left-
hand part of IAR Embedded Workbench. See Figure 1-35.

W

GMCLIB User's Guide, Rev. 3, 05/2020
30 NXP Semiconductors

Chapter 1 Library

Eile Edit View Project Simulator JTools Window Help
Dedd | S 2R o~ ~ 4
Workspace x main.cl

lDebug v]

Files £ B P

E}& JMyProjectd] -Deb__ | v | | return 0;

FrIEin.c *]

L@ 3 Output

Figure 1-35. New project
5. In the main menu, go to Project > Options..., and a dialog appears.
6. In the Target tab, select the Device option, and click the button next to the dialog to
select the MCU. In this example, select NXP > KV4x > NXP MKV46F256xxx15.
Select VFPv4 single precision in the FPU option. Click OK. See Figure 1-36.

F ™
e~

Categony:

Static Analysis
Runtime Checking
C/C++ Compiler Target | Qutput | Library Configuration | Library Options | MISRAC.200/ 4 | »
Assembler
Qutput Converter
Custom Build
Build Actions 71 Caore Cortex-M4
Linker -
Debugger @ Device NP MKVA46F25600c15
Simulator
Angel
CMS3IS DAP
GDE Server
IAR ROM-monitor @ Little FPU
I4et/TTAGIet Big -
J-Link/1-Trace BE3
TI Stellaris @ BES
Macraigor - =
PE micro
RDI
STLIMK
Third-Party Driver
TI XDS [0K

Processor variant

Endian mode Floating poirt settings

D reqisters 16

Advanced SIMD (NEON)

] [Cancel

Figure 1-36. Options dialog

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 31

Library integration into project (IAR Embedded Workbench)

1.5.2 Library path variable

To make the library integration easier, create a variable that will hold the information
about the library path.

1.

2.

e

In the main menu, go to Tools > Configure Custom Argument Variables..., and a
dialog appears.

Click the New Group button, and another dialog appears. In this dialog, type the
name of the group PATH, and click OK. See Figure 1-37.

B ' Configure Custom Argument Variables

Workspace | Global

~ahle Grour
Enable Group

MNew Group m

Mame: PATH

lable...

|'\

. Fiable
OK] l Cancel ‘ =

)

prt...

Expand/Collapse Al

[Hide disabled groups

[OK] [Cancel

Figure 1-37. New Group
Click on the newly created group, and click the Add Variable button. A dialog
appears.
Type this name: RTCESL_LOC
To set up the value, look for the library by clicking the '..." button, or just type the
installation path into the box: C:\NXP\RTCESL\CM4F_RTCESL_4.5_IAR. Click
OK.
In the main dialog, click OK. See Figure 1-38.

GMCLIB User's Guide, Rev. 3, 05/2020

32

NXP Semiconductors

Chapter 1 Library

B ' Configure Custom Argument Variables

Workspace | Global
[PATH Disable Group

Add Variable [

Mame: RCTESL_LOC

Value: | C:\NXP\RTCESL\CM4F_RCTESL XX_IAR (]

Figure 1-38. New variable

1.5.3 Linking the files into the project

GMCLIB requires MLIB and GFLIB to be included too. The following steps show the
inclusion of all dependent modules.

To include the library files into the project, create groups and add them.

1.
2.
3.

Go to the main menu Project > Add Group...

Type RTCESL, and click OK.

Click on the newly created node RTCESL, go to Project > Add Group..., and create
a MLIB subgroup.

Click on the newly created node MLIB, and go to the main menu Project > Add
Files... See Figure 1-40.

Navigate into the library installation folder C:\NXP\RTCESL
\CM4F_RTCESL_4.5_TAR\MLIB\Include, and select the mlib_FP.h file. (If the file
does not appear, set the file-type filter to Source Files.) Click Open. See Figure 1-39.
Navigate into the library installation folder C:\NXP\RTCESL
\CM4F_RTCESL_4.5 TAR\MLIB, and select the mlib.a file. If the file does not
appear, set the file-type filter to Library / Object files. Click Open.

. T |
b System (C:) » NXP » RTCESL » CMAF_RTCESL 4.3 IAR » MLE » Include

it Mame Date modified Type
| mlib.h 16.10.2015 9:38 H File
|| MLIB_Abs_F16.h 16.10.2015 9:38 H File

Figure 1-39. Add Files dialog
Click on the RTCESL node, go to Project > Add Group..., and create a GFLIB

subgroup.

GMCLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 33

A ————
Library integration into project (IAR Embedded Workbench)

8.

9.

10.

1.

12.

13.

14.

15.

Click on the newly created node GFLIB, and go to the main menu Project > Add
Files....

Navigate into the library installation folder C:\NXP\RTCESL
\CM4F_RTCESL_4.5_IAR\GFLIB\Include, and select the gflib_FP.h file. (If the file
does not appear, set the file-type filter to Source Files.) Click Open.

Navigate into the library installation folder C:\NXP\RTCESL
\CM4F_RTCESL_4.5_IAR\GFLIB, and select the gflib.a file. If the file does not
appear, set the file-type filter to Library / Object files. Click Open.

Click on the RTCESL node, go to Project > Add Group..., and create a GMCLIB
subgroup.

Click on the newly created node GMCLIB, and go to the main menu Project > Add
Files....

Navigate into the library installation folder C:\NXP\RTCESL
\CM4F_RTCESL_4.5_IAR\GMCLIB\Include, and select the gmclib_FP.h file. If the
file does not appear, set the file-type filter to Source Files. Click Open.

Navigate into the library installation folder C:\NXP\RTCESL
\CM4F_RTCESL_4.5_ITAR\GMCLIB, and select the gmclib.a file. If the file does
not appear, set the file-type filter to Library / Object files. Click Open.

Now you will see the files added in the workspace. See Figure 1-40.

Workspace x
[Debug -]

Files o H
B F MyProject01 - Debug * v
2 CIRTCESL
FECGFUB
| D GFLBA
| L— & oflib_FP.h
o e
| — DO GMcuB.a
| Y— &) gmclib_FPh
L@ ML
— O MLUE.a
L— [mlib_FP.h
main.c
= (] Output

Figure 1-40. Project workspace

1.5.4 Library path setup

The following steps show the inclusion of all dependent modules:

1.
2.
3.

In the main menu, go to Project > Options..., and a dialog appears.

In the left-hand column, select C/C++ Compiler.

In the right-hand part of the dialog, click on the Preprocessor tab (it can be hidden in
the right; use the arrow icons for navigation).

GMCLIB User's Guide, Rev. 3, 05/2020

34

NXP Semiconductors

L __4
Chapter 1 Library
4. In the text box (at the Additional include directories title), type the following folder
(using the created variable):
e SRTCESL_LOCS$\MLIB\Include
« SRTCESL_LOCS$\GFLIB\Include
* SRTCESL_LOC$\GMCLIB\Include
5. Click OK in the main dialog. See Figure 1-41.

F hl
Options for node "MyProject01” _ u

Categony: Factary Settings

General Options [Multi-file Compilatior

Static Analysis Dizzard Unuzed Publics

Runtime Checking

| Language 1 | Language 2 | Code | Optimizations | Output | List | F+ |
Assembler
Qutput Converter
Custom Build
Build Actions [lanore standard include directories
Linker
Debugger

Additional include directories: (one per ling)

i $RTCESL_LOCS\MLIBinclude ~| &)
Simulator SRTCESL_LOCS\GFLIBNncluds

Angel SRTCESL_LOCS\GMCLIE include]|

CMSIS DAP

GDE Server N

IAR ROM-meniter Preinclude file:

Ijet/ITAGjet E]
J-Link/1-Trace
TI Stellaris Defined symbols: (one per line)

Macraigor L [Preprocessor output to file
PE micro Preserve comments

RDIL Generate Hine directives
ST-LIMK
Third-Party Driver
TI XDS

[Ok] [Cancel

Figure 1-41. Library path adition

Type the #include syntax into the code. Include the library included into the main.c file.
In the workspace tree, double-click the main.c file. After the main.c file opens up, include
the following lines into the #include section:

#include "mlib FP.h"
#include "gflib FP.h"
#include "gmclib FP.h"

When you click the Make icon, the project will be compiled without errors.

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 35

A ————
Library integration into project (IAR Embedded Workbench)

GMCLIB User's Guide, Rev. 3, 05/2020
36 NXP Semiconductors

Chapter 2
Algorithms in detail

2.1 GMCLIB_Clark

The GMCLIB_Clark function calculates the Clarke transformation, which is used to
transform values (flux, voltage, current) from the three-phase coordinate system to the
two-phase (a-3) orthogonal coordinate system, according to the following equations:

a=a

Equation 1

_ 1, 1
NN

Equation 2

2.1.1 Available versions
This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

* Floating-point output - the output is the floating-point result within the type's full
range.

The available versions of the GMCLIB_Clark function are shown in the following table:

Table 2-1. Function versions

Function name Input type Output type Result type
GMCLIB_Clark_F16 GMCLIB_3COOR_T_F16 * GMCLIB_2COOR_ALBE_T_F16 * void

Clarke transformation of a 16-bit fractional three-phase system input to a 16-bit fractional two-
phase system. The input and output are within the fractional range <-1; 1).

GMCLIB_Clark_FLT GMCLIB_3COOR_T_FLT * GMCLIB_2COOR_ALBE_T_FLT * void

Table continues on the next page...

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 37

GMCLIB_Clark

Table 2-1. Function versions (continued)

Function name Input type

| Output type | Result type

Clarke transformation of a 32-bit single precision floating-point three-phase system input to a 32-
bit single-point floating-point two-phase system. The input and output are within the full 32-bit
single-point floating-point range.

2.1.2 Declaration

The available GMCLIB_Clark functions have the following declarations:

void GMCLIB Clark F16 (const GMCLIB 3COOR T F16 *psIn, GMCLIB 2COOR ALBE T F16 *psOut)
void GMCLIB Clark FLT (const GMCLIB 3COOR T FLT *psIn, GMCLIB 2COOR ALBE T FLT *psOut)

2.1.3 Function use

The use of the GMCLIB_Clark function is shown in the following examples:

Fixed-point version:

#include "gmclib.h"

static GMCLIB_2COOR_ALBE_ T F16 sAlphaBeta;
static GMCLIB 3COOR_T F16 sAbc;

void Isr (void) ;
void main (void)

{

/* ABC structure initialization */

sAbc.f16A = FRAC16(0.0) ;
sAbc.f16B = FRAC16(0.0) ;
sAbc.f16C = FRAC16(0.0) ;

}

/* Periodical function or interrupt */
void Isr (void)

/* Clarke Transformation calculation */
GMCLIB Clark F16 (&sAbc, &sAlphaBeta) ;

}

Floating-point version:

#include "gmclib.h"

static GMCLIB 2COOR_ALBE T FLT sAlphaBeta;
static GMCLIB_3COOR_T FLT sAbc;

void Isr (void) ;

GMCLIB User's Guide, Rev. 3, 05/2020

38

NXP Semiconductors

4
Chapter 2 Algorithms in detail

void main (void)

/* ABC structure initialization */

sAbc.fltA = 0.0F;
sAbc.f1ltB = 0.0F;
sAbc.fltC = 0.0F;

}

/* Periodical function or interrupt */
void Isr (void)

/* Clarke Transformation calculation */
GMCLIB_Clark_FLT (&sAbc, &sAlphaBeta) ;

}

2.2 GMCLIB_Clarkinv

The GMCLIB_ClarkInv function calculates the Clarke transformation, which is used to
transform values (flux, voltage, current) from the two-phase (a-f) orthogonal coordinate
system to the three-phase coordinate system, according to the following equations:

a=a

Equation 3

LB

3
b=—qat3h
Equation 4

c=—(a+b)

Equation 5

2.2.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

* Floating-point output - the output is the floating-point result within the type's full
range.

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 39

GMCLIB_Clarkinv

The available versions of the GMCLIB_ClarkInv function are shown in the following
table:

Table 2-2. Function versions

Function name Input type Output type Result type
GMCLIB_Clarklnv_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * void

Inverse Clarke transformation with a 16-bit fractional two-phase system input and a 16-bit
fractional three-phase output. The input and output are within the fractional range <-1; 1).

GMCLIB_Clarkinv_FLT GMCLIB_2COOR_ALBE_T_FLT * GMCLIB_3COOR_T_FLT * | void

Inverse Clarke transformation with a 32-bit single precision floating-point two-phase system input
and a 32-bit single precision floating-point three-phase output. The input and output are within
the full 32-bit single-point floating-point range.

2.2.2 Declaration
The available GMCLIB_ClarkInv functions have the following declarations:

void GMCLIB_ClarkInv_F16 (const GMCLIB_2COOR_ALBE_T_F16 *psIn, GMCLIB_3COOR_T_ F16 *psOut)
void GMCLIB_ClarkInv_ FLT (const GMCLIB_2COOR_ALBE T _FLT *psIn, GMCLIB_3COOR_T FLT *psOut)

2.2.3 Function use
The use of the GMCLIB_ClarkInv function is shown in the following examples:

Fixed-point version:

#include "gmclib.h"

static GMCLIB_2COOR_ALBE T F16 sAlphaBeta;
static GMCLIB 3COOR_T F16 sAbc;

void Isr (void) ;
void main (void)

/* Alpha, Beta structure initialization */
sAlphaBeta.fl16Alpha = FRAC16(0.0) ;
sAlphaBeta.fl6Beta = FRAC16(0.0) ;

/* Periodical function or interrupt */
void Isr(void)

{

/* Inverse Clarke Transformation calculation */
GMCLIB ClarkInv F16 (&sAlphaBeta, &sAbc);

}

GMCLIB User's Guide, Rev. 3, 05/2020
40 NXP Semiconductors

4
Chapter 2 Algorithms in detail

Floating-point version:

#include "gmclib.h"

static GMCLIB 2COOR ALBE T FLT sAlphaBeta;
static GMCLIB_3COOR T FLT sAbc;

void Isr (void) ;
void main (void)
/* Alpha, Beta structure initialization */

sAlphaBeta.fltAlpha = 0.0F;
sAlphaBeta.fltBeta = 0.0F;

/* Periodical function or interrupt */
void Isr (void)

/* Inverse Clarke Transformation calculation */
GMCLIB_ClarkInv_FLT (&sAlphaBeta, &sAbc);

}

2.3 GMCLIB_Park

The GMCLIB_Park function calculates the Park transformation, which transforms values
(flux, voltage, current) from the stationary two-phase (a-f3) orthogonal coordinate system
to the rotating two-phase (d-q) orthogonal coordinate system, according to the following
equations:

d = a-cos(0)+ f-sin(0)
Equation 6
q= ﬁ~cos(z9)— a~sin(9)
Equation 7
where:

* O is the position (angle)

2.3.1 Available versions
This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

* Floating-point output - the output is the floating-point result within the type's full
range.

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 41

A
GMCLIB_Park

The available versions of the GMCLIB_Park function are shown in the following table:

Table 2-3. Function versions

Function name Input type Output type Result type
GMCLIB_Park_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_2COOR_DQ_T_F16 * void
GMCLIB_2COOR_SINCOS_T_F16 *

The Park transformation of a 16-bit fractional two-phase stationary system input to a 16-bit
fractional two-phase rotating system, using a 16-bit fractional angle two-component (sin / cos)
position information. The inputs and the output are within the fractional range <-1 ; 1).

GMCLIB_Park_FLT GMCLIB_2COOR_ALBE_T_FLT * GMCLIB_2COOR_DQ_T_FLT * void
GMCLIB_2COOR_SINCOS_T_FLT *

The Park transformation of a 32-bit single precision floating-point two-phase stationary system
input to a 32-bit single precision floating-point two-phase rotating system, using a 32-bit single
precision floating-point angle two-component (sin / cos) position information. The two-phase
stationary system input and the output are within the full 32-bit single-point floating-point range;
the angle input is within the range <-1.0; 1.0>.

2.3.2 Declaration
The available GMCLIB_Park functions have the following declarations:

void GMCLIB_Park F16 (const GMCLIB_2COOR_ALBE T_F16 *psIn, const GMCLIB_2COOR_SINCOS T F16
*psAnglePos, GMCLIB 2COOR _DQ T Fl6 *psOut)

void GMCLIB_ Park FLT (const GMCLIB 2COOR_ALBE T FLT *psIn, const GMCLIB 2COOR_SINCOS T FLT
*psAnglePos, GMCLIB_2COOR_DQ T FLT *psOut)

2.3.3 Function use
The use of the GMCLIB_Park function is shown in the following examples:

Fixed-point version:

#include "gmclib.h"
static GMCLIB 2COOR_ALBE T F16 sAlphaBeta;
static GMCLIB 2COOR DQ T F16 sDQ;
static GMCLIB 2COOR_SINCOS T F16 sAngle;
void Isr (void) ;
void main (void)

/* Alpha, Beta structure initialization */

sAlphaBeta.fl6Alpha = FRAC16(0.0);
sAlphaBeta.fl6Beta = FRAC16(0.0) ;

GMCLIB User's Guide, Rev. 3, 05/2020
42 NXP Semiconductors

4
Chapter 2 Algorithms in detail

/* Angle structure initialization */
sAngle.f16Sin = FRAC16(0.0) ;
sAngle.f16Cos = FRAC16(1.0);

}

/* Periodical function or interrupt */
void Isr(void)

/* Park Transformation calculation */
GMCLIB Park F16 (&sAlphaBeta, &sAngle, &sDQ) ;

Floating-point version:

#include "gmclib.h"

static GMCLIB 2COOR ALBE T FLT sAlphaBeta;
static GMCLIB 2COOR DQ T FLT sDQ;
static GMCLIB 2COOR_SINCOS T FLT sAngle;

void Isr (void) ;
void main (void)

{

/* Alpha, Beta structure initialization */
sAlphaBeta.fltAlpha = 0.0F;
sAlphaBeta.fltBeta = 0.0F;

/* Angle structure initialization */

sAngle.fltSin = 0.0F;
sAngle.fltCos = 1.0F;

}

/* Periodical function or interrupt */
void Isr (void)

/* Park Transformation calculation */
GMCLIB Park FLT(&sAlphaBeta, &sAngle, &sDQ) ;

2.4 GMCLIB_Parkinv

The GMCLIB_ParkInv function calculates the Park transformation, which transforms
values (flux, voltage, current) from the rotating two-phase (d-q) orthogonal coordinate
system to the stationary two-phase (a-f8) coordinate system, according to the following
equations:

a=d-cos(#) — g-sin(h)
Equation 8
p=d-sin(0)+g-cos(0)
Equation 9
where:

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 43

A
GMCLIB_Parkinv

* O is the position (angle)

2.4.1 Available versions
This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

* Floating-point output - the output is the floating-point result within the type's full
range.

The available versions of the GMCLIB_ParkInv function are shown in the following
table:

Table 2-4. Function versions

Function name Input type Output type Result type
GMCLIB_Parkinv_F16 GMCLIB_2COOR_DQ_T_F16 * GMCLIB_2COOR_ALBE_T_F16 * |void
GMCLIB_2COOR_SINCOS_T_F16 *
Inverse Park transformation of a 16-bit fractional two-phase rotating system input to a 16-bit

fractional two-phase stationary system, using a 16-bit fractional angle two-component (sin / cos)
position information. The inputs and the output are within the fractional range <-1 ; 1).

GMCLIB_Parkinv_FLT GMCLIB_2COOR_DQ_T_FLT * GMCLIB_2COOR_ALBE_T_FLT * |void
GMCLIB_2COOR_SINCOS_T_FLT *

Inverse Park transformation of a 32-bit single precision floating-point two-phase rotating system
input to a 32-bit single precision floating-point two-phase stationary system, using a 32-bit single
precision floating-point angle two-component (sin / cos) position information. The two-phase
rotating system input and the output are within the full 32-bit single-point floating-point range; the
angle input is within the range <-1.0 ; 1.0> .

2.4.2 Declaration

The available GMCLIB_ParkInv functions have the following declarations:

void GMCLIB ParkInv F16 (const GMCLIB 2COOR _DQ T F16 *psIn, const GMCLIB 2COOR_SINCOS T F16
*psAnglePos, GMCLIB 2COOR_ALBE T F1l6 *psOut)

void GMCLIB_ParkInv_ FLT (const GMCLIB_2COOR_DQ T FLT *psIn, const GMCLIB_2COOR_SINCOS_T_FLT
*psAnglePos, GMCLIB_ 2COOR_ALBE T FLT *psOut)

2.4.3 Function use
The use of the GMCLIB_ParkInv function is shown in the following examples:

GMCLIB User's Guide, Rev. 3, 05/2020
44 NXP Semiconductors

Fixed-point version:

#include "gmclib.h"
static GMCLIB_2COOR_ALBE T F16 sAlphaBeta;
static GMCLIB 2COOR DQ T F16 sDQ;
static GMCLIB 2COOR_SINCOS T F16 sAngle;
void Isr (void) ;
void main (void)

/* D, Q structure initialization */

sDQ.f16D = FRAC16(0.0) ;
sDQ.£16Q FRAC16 (0.0) ;

/* Angle structure initialization */
sAngle.f16Sin = FRAC16(0.0) ;
sAngle.f16Cos = FRAC16(1.0);

}

/* Periodical function or interrupt */
void Isr(void)

/* Inverse Park Transformation calculation */

GMCLIB ParkInv_ F16 (&sDQ, &sAngle, &sAlphaBeta);

}

Floating-point version:

#include "gmclib.h"
static GMCLIB 2COOR_ALBE T FLT sAlphaBeta;
static GMCLIB 2COOR _DQ T FLT sDQ;
static GMCLIB 2COOR_SINCOS T FLT sAngle;
void Isr (void) ;
void main (void)

/* D, Q structure initialization */

sDQ.f1tD 0.0F;
sDQ.f1tQ = 0.0F;

/* Angle structure initialization */
sAngle.fltSin = 0.0F;
sAngle.fltCos = 1.0F;

}

/* Periodical function or interrupt */
void Isr (void)

/* Inverse Park Transformation calculation */

GMCLIB ParkInv_ FLT (&sDQ, &sAngle, &sAlphaBeta);

}

2.5 GMCLIB_DecouplingPMSM

GMCLIB User's Guide, Rev. 3, 05/2020

Chapter 2 Algorithms in detail

NXP Semiconductors

45

A
GMCLIB_DecouplingPMSM

The GMCLIB_DecouplingPMSM function calculates the cross-coupling voltages to
eliminate the d-q axis coupling that causes nonlinearity of the control.

The d-q model of the motor contains cross-coupling voltage that causes nonlinearity of
the control. Figure 2-1 represents the d-q model of the motor that can be described using
the following equations, where the underlined portion is the cross-coupling voltage:

p iy ,
Ug=Rsig T Lagriqt Ly~ gl

. d . .
Ug =Ry igt Logziqg— Ly 0y igt 0y y,
Equation 10

where:

* ug, ug are the d and q voltages

* iy, iq are the d and q currents

* R, is the stator winding resistance

* Ly, L are the stator winding d and q inductances
* W is the electrical angular speed

* Y, is the rotor flux constant

PMSM
g+ Ug 14 1 lg
> Pl :»Q > >
_ controller : + Rs + Lgs |
E Werlq i
! WelLg i
iq % P| Ug 1+Y¥- 1 g
> . > > !
controller ! - Rs + Lgs :

Figure 2-1. The d-q PMSM model

To eliminate the nonlinearity, the cross-coupling voltage is calculated using the
GMCLIB_DecouplingPMSM algorithm, and feedforwarded to the d and q voltages. The
decoupling algorithm is calculated using the following equations:

GMCLIB User's Guide, Rev. 3, 05/2020
46 NXP Semiconductors

4
Chapter 2 Algorithms in detail

Ujdoe=Uqg~ Lg g Iq
Ugdec = Ug T Ly wy-iy

Equation 11

where:

* ug, ug are the d and q voltages; inputs to the algorithm
Uddec> Uqdec are the d and q decoupled voltages; outputs from the algorithm

The fractional representation of the d-component equation is as follows:
Ugdec = Ug ™ Wer iq(Lq * Wel max lllm_mz))cc)

_ Imax
kq - Lq * Wel max " tpax

Ugdee = Ug — Og;" g kg

Equation 12

The fractional representation of the g-component equation is as follows

_ . imax
Ugdec = Ug+ Wy ld(Ld * Wel max * umax)

_ imax
kd - Ld - wel_max * Umax

Ugdec = ugt g id ' kd

Equation 13

where:

* kg, kq are the scaling coefficients
* iax 18 the maximum current
* Upax 1S the maximum voltage
Wel max 18 the maximum electrical speed

The k4 and k parameters must be set up properly.

The principle of the algorithm is depicted in Figure 2-2 :

GMCLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors

GMCLIB_DecouplingPMSM

Decoupling PMSM
g+ PI 1 ld i
%_ controller % ZE Ry + Lys g i
WeilLq |
WeiLg i
o P 1 i
controller Ry + Lgs g i

Figure 2-2. Algorithm diagram

2.5.1 Available versions
This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate. The parameters use the
accumulator types.

* Floating-point output - the output is the floating-point result within the type's full
range.

The available versions of the GMCLIB_DecouplingPMSM function are shown in the
following table:

Table 2-5. Function versions

Function name Input/output type Result type
GMCLIB_DecouplingPMSM_F16 Input GMCLIB_2COOR_DQ_T_F16 * void
GMCLIB_2COOR_DQ_T_F16 *
frac16_t
Parameters GMCLIB_DECOUPLINGPMSM_T_A32 *
Output GMCLIB_2COOR_DQ_T_F16 *

Table continues on the next page...

GMCLIB User's Guide, Rev. 3, 05/2020
48 NXP Semiconductors

Chapter 2 Algorithms in detail

Table 2-5. Function versions (continued)

Function name Input/output type | Result type

The PMSM decoupling with a 16-bit fractional d-q voltage, current inputs, and a 16-
bit fractional electrical speed input. The parameters are 32-bit accumulator types.
The output is a 16-bit fractional decoupled d-q voltage. The inputs and the output are
within the range <-1; 1).

GMCLIB_DecouplingPMSM_FLT Input GMCLIB_2COOR_DQ_T_FLT * void
GMCLIB_2COOR_DQ_T_FLT *
float_t
Parameters GMCLIB_DECOUPLINGPMSM_T_FLT *
Output GMCLIB_2COOR_DQ_T_FLT *

The PMSM decoupling with a 32-bit single precision floating-point d-q voltage,
current, and electrical speed input. The parameters are 32-bit single precision
floating-point types. The output is a 32-bit single precision floating-point decoupled d-
g voltage. The inputs and the output are within the full 32-bit single-point floating-
point range.

2.5.2 GMCLIB_DECOUPLINGPMSM_T_A32 type description

Variable name Input type Description
a32KdGain acc32_t Direct axis decoupling parameter. The parameter is within the range <0 ; 65536.0)
a32KqgGain acc32_t Quadrature axis decoupling parameter. The parameter is within the range <0 ;
65536.0)

2.5.3 GMCLIB_DECOUPLINGPMSM_T_FLT type description

Variable name Input type Description
fliLd float_t Direct axis inductance parameter. The parameter is a nonnegative value.
fltLq float_t Quadrature axis inductance parameter. The parameter is a nonnegative value.

2.5.4 Declaration
The available GMCLIB_DecouplingPMSM functions have the following declarations:

void GMCLIB DecouplingPMSM F16 (const GMCLIB 2COOR DQ T Fl6 *psUDQ, const
GMCLIB 2COOR DQ T Fl16 *psIDQ, fraclé t flé6SpeedEl, const GMCLIB DECOUPLINGPMSM T A32
*psParam, GMCLIB 2COOR DQ T F1l6 *psUDQDec)

void GMCLIB DecouplingPMSM FLT (const GMCLIB 2COOR DQ T FLT *psUDQ, const

GMCLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 49

GMCLIB_DecouplingPMSM

GMCLIB 2COOR_DQ T FLT *psIDQ, float t fltSpeedEl, const GMCLIB_DECOUPLINGPMSM T FLT

*psParam, GMCLIB 2COOR DQ T FLT *psUDQDec)

2.5.5 Function use

The use of the GMCLIB_DecouplingPMSM function is shown in the following

examples:

Fixed-point version:

#include "gmclib.h"

static GMCLIB _2COOR DQ T F1l6 sVoltageDQ;

static GMCLIB 2COOR DQ T F16 sCurrentDQ;

static fraclé t fl6AngularSpeed;

static GMCLIB DECOUPLINGPMSM T A32 sDecouplingParam;
static GMCLIB _2COOR DQ T F1l6 sVoltageDQDecoupled;

void Isr (void) ;

void main (void)

{
/* Voltage D, Q structure initialization */
sVoltageDQ.f16D = FRAC16(0.0) ;
sVoltageDQ.f16Q = FRAC16(0.0) ;

/* Current D, Q structure initialization */
sCurrentDQ.f16D = FRAC16(0.0) ;
sCurrentDQ.f16Q FRAC16(0.0) ;

/* Speed initialization */
fl6AngularSpeed = FRAC16(0.0);

/* Motor parameters for decoupling Kd = 40, Kg = 20 */
sDecouplingParam.a32KdGain = ACC32(40.0) ;
sDecouplingParam.a32KgGain ACC32(20.0) ;

}

/* Periodical function or interrupt */
void Isr(void)

/* Decoupling calculation */
GMCLIB DecouplingPMSM F16 (&sVoltageDQ, &sCurrentDQ, fl6AngularSpeed,
&sVoltageDQDecoupled) ;

}

Floating-point version:

#include "gmclib.h"

static GMCLIB 2COOR DQ T FLT sVoltageDQ;

static GMCLIB 2COOR DQ T FLT sCurrentDQ;

static float t fltAngularSpeed;

static GMCLIB_DECOUPLINGPMSM_T FLT sDecouplingParam;
static GMCLIB 2COOR DQ T FLT sVoltageDQDecoupled;

void Isr (void) ;

GMCLIB User's Guide, Rev. 3, 05/2020

&sDecouplingParam,

50

NXP Semiconductors

4
Chapter 2 Algorithms in detail

void main (void)

/* Voltage D, Q structure initialization */
sVoltageDQ.£f1tD 0.0F;
sVoltageDQ.f1tQ 0.0F;

/* Current D, Q structure initialization */
sCurrentDQ.f1tD 0.0F;
sCurrentDQ.£1tQ 0.0F;

/* Speed initialization */
fltAngularSpeed = 0.0F;

/* Motor parameters for decoupling Kd = 40, Kg = 20 */
sDecouplingParam.f1ltLd 40.0F;
sDecouplingParam.fltLg 20.0F;

}

/* Periodical function or interrupt */
void Isr (void)

/* Decoupling calculation */
GMCLIB DecouplingPMSM FLT (&sVoltageDQ, &sCurrentDQ, fltAngularSpeed, &sDecouplingParam,
&sVoltageDQDecoupled) ;

2.6 GMCLIB_ElimDcBusRipFOC

The GMCLIB_ElimDcBusRipFOC function is used for the correct PWM duty cycle
output calculation, based on the measured DC-bus voltage. The side effect is the
elimination of the the DC-bus voltage ripple in the output PWM duty cycle. This function
is meant to be used with a space vector modulation, whose modulation index (with
respect to the DC-bus voltage) is an inverse square root of 3.

The general equation to calculate the duty cycle for the above-mentioned space vector
modulation is as follows:

_ Yroc
UP WM ™ Ugchus

Equation 14

where:

* Upwy 1s the duty cycle output
* ugoc 1s the real FOC voltage
* Ugchys 18 the real measured DC-bus voltage

Using the previous equations, the GMCLIB_ElimDcBusRipFOC function compensates
an amplitude of the direct-a and the quadrature-3 component of the stator-reference
voltage vector, using the formula shown in the following equations:

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 51

A
GMCLIB_ElimDcBusRipFOC

0, Ua=0 A Udcbus=0
L UaEO A ‘Ua|2Udcbus
g
Ug* = U,
‘ -1, U0 A |Ug 2=
Uq
Udcbus) \/57 else
Equation 15
0, Uﬁ:() N Udcbus:()
L Up>0 A |Up|> b
B p g
Uﬂ*z Udcbm‘
-1, Up<0 A |Ug|= g
Yp
Udcbus.\/g’ else
Equation 16

where:

* Ug* is the direct-a duty cycle ratio

* Ug* is the quadrature-B duty cycle ratio
* Ug is the direct-a voltage

* Ug is the quadrature-f3 voltage

If the fractional arithmetic is used, the FOC and DC-bus voltages have their scales, which
take place in Equation 14 on page 51; the equation is as follows:

U _ UrocUFroc max \/—
PWM Ud‘-bus'Udcbus_max

Equation 17

where:

* Ugoc 1s the scaled FOC voltage

* Ugcbus 18 the scaled measured DC-bus voltage
* Uroc_max 18 the FOC voltage scale

* Ugcbus_max 18 the DC-bus voltage scale

If this algorithm is used with the space vector modulation with the ratio of square root
equal to 3, then the FOC voltage scale is expressed as follows :

_ Udcbusimax
UF OC_max — \I}

Equation 18

The equation can be simplified as follows:

GMCLIB User's Guide, Rev. 3, 05/2020
52 NXP Semiconductors

4
Chapter 2 Algorithms in detail

U Udcbus max
FoC
U _ A [z = Yroc
PWM U dcbus'Udcbusimax Udcbus
Equation 19

The GMCLIB_ElimDcBusRipFOC function compensates an amplitude of the direct-a
and the quadrature-3 component of the stator-reference voltage vector in the fractional
arithmetic, using the formula shown in the following equations:

0, Ua=0 N Ugeps=0
L U,>0 A |Ua|2Udcbus
Uds*=1{ -1 Ua<O0 A Ul Z U jepys
Ugy 1
Udcbus’ ene
Equation 20
0, Up=0 A Ugepus=0
1, Up>0 A Ul Z U yepys
Uﬂ*: '17 Uﬁ<0 AN |Uﬂ|2UdcbuS
Ys
Udcbus’ clse
Equation 21

where:

» Ug™ 1s the direct-a duty cycle ratio

* Ug* is the quadrature-B duty cycle ratio
* Ug is the direct-a voltage

* Ug is the quadrature-f3 voltage

The GMCLIB_ElimDcBusRipFOC function can be used in general motor-control
applications, and it provides elimination of the voltage ripple on the DC-bus of the power
stage. Figure 2-3 shows the results of the DC-bus ripple elimination, while compensating
the ripples of the rectified voltage using a three-phase uncontrolled rectifier.

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 53

A
GMCLIB_ElimDcBusRipFOC

Measured Voltage on the DC-Bus

15
N

10

voltage

uDcBus
\ \

0 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 t_0.1

Ime

Standard Space Vector Modulation with Elimination of the DC-Bus Ripple
0.5 I"“-\, F s"l \ ‘,I : = PhaséA B

/
‘I\‘- I \‘/j v ‘I\'w.‘- | \ f'; \/ A/ \\;’ “"‘. / \/ /
/\J\f’ _/‘\J‘VA—’_/'L"\ :L/\—)\/\j\/ —w fen |] __ E’:zzz 2
\ \

voltage

0 0.01 002 003 004 005 006 007 008 0.09 0.1
time
Angular Velocity of the PMSM with/without Elimination of the DC-Bus Ripple

200

100 AR

0 \/ Angular Velocity of the PMSM with Eliminating of the DC_BUS Ripple —

velocity
S

Angular Velocity of the PMSM without Eliminating of the DC_BUS Ripple
} \ \ | \ | | \ \
0 0.01 002 003 004 005 006 007 008 0.09 0.1

time

100

Figure 2-3. Results of the DC-bus voltage ripple elimination

2.6.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

 Fractional output with floating-point input - the output is the fractional portion of the
result; the result is within the range <-1 ; 1). The result may saturate. The inputs are
floating-point values.

GMCLIB User's Guide, Rev. 3, 05/2020
54 NXP Semiconductors

4
Chapter 2 Algorithms in detail

The available versions of the GMCLIB_ElimDcBusRipFOC function are shown in the
following table:

Table 2-6. Function versions

Function name Input type Output type Result
type
GMCLIB_ElimDcBusRipFOC_F16 frac16_t GMCLIB_2COOR_ALBE_T_F16 * |void
GMCLIB_2COOR_ALBE_T_F16 *

Compensation of a 16-bit fractional two-phase system input to a 16-bit fractional
two-phase system, using a 16-bit fractional DC-bus voltage information. The DC-
bus voltage input is within the fractional range <0 ; 1); the stationary (a-B) voltage
input and the output are within the fractional range <-1; 1).

GMCLIB_ElimDcBusRipFOC_F16ff float_t GMCLIB_2COOR_ALBE_T_F16 * |void
GMCLIB_2COOR_ALBE_T_FLT *

Compensation of a 32-bit single precision floating-point two-phase system input to
a 16-bit fractional two-phase system, using a 32-bit single precision floating-point
DC-bus voltage information. The DC-bus voltage input is a nonnegative value; the
two-phase voltage input is within the full 32-bit single-point floating-point range, and
the output is within the fractional range <-1; 1).

2.6.2 Declaration
The available GMCLIB_ElimDcBusRipFOC functions have the following declarations:

void GMCLIB_ElimDcBusRipFOC F16 (fraclé t f16UDCBus, const GMCLIB 2COOR ALBE T F16 *psUAlBe,
GMCLIB 2COOR_ALBE T _F16 *psUAlBeComp)

void GMCLIB_ElimDcBusRipFOC _F16ff (float_t f1ltUDCBus, const GMCLIB_2COOR_ALBE_T_FLT *psUAlBe,
GMCLIB 2COOR_ALBE T F16 *psUAlBeComp)

2.6.3 Function use

The use of the GMCLIB_ElimDcBusRipFOC function is shown in the following
example:

#include "gmclib.h"

static fraclé t £16UDcBus;

static GMCLIB_ 2COOR ALBE T F16 sUAlBe;
static GMCLIB 2COOR ALBE T F16 sUAlBeComp;
void Isr (void) ;

void main (void)

/* Voltage Alpha, Beta structure initialization */

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 55

A
GMCLIB_ElimDcBusRip

sUAl1Be.fl6Alpha = FRAC16(0.0);
sUAl1Be.fl16Beta = FRAC16(0.0);

/* DC bus voltage initialization */
f16UDcBus = FRAC16(0.8) ;

}

/* Periodical function or interrupt */
void Isr (void)

/* FOC Ripple elimination calculation */
GMCLIB ElimDcBusRipFOC_F16 (£16UDcBus, &sUAlBe, &sUAlBeComp) ;

}

2.7 GMCLIB_ElimDcBusRip

The GMCLIB_ElimDcBusRip function is used for a correct PWM duty cycle output
calculation, based on the measured DC-bus voltage. The side effect is the elimination of
the the DC-bus voltage ripple in the output PWM duty cycle. This function can be used
with any kind of space vector modulation; it has an additional input - the modulation
index (with respect to the DC-bus voltage).

The general equation to calculate the duty cycle is as follows:

U _ Uroc .
PWM ™ Tgepys “Ymod

Equation 22

where:

Upww 1s the duty cycle output

ugoc 1s the real FOC voltage

Ugchus 18 the real measured DC-bus voltage
* 104 18 the space vector modulation index

Using the previous equations, the GMCLIB_ElimDcBusRip function compensates an
amplitude of the direct-a and the quadrature-8 component of the stator-reference voltage
vector, using the formula shown in the following equations:

0, Ug=0 A Uyps=0 V ipy=0
L Us>0 A |Ua|z% A dpoa>0
R Ua<O A U258 A >0
%'imod, Imod > 0
Equation 23

GMCLIB User's Guide, Rev. 3, 05/2020
56 NXP Semiconductors

4
Chapter 2 Algorithms in detail

0, Ug=0 AN Uypys=0 V 10y =0
Udcbus .
1, Up>0 A |Uﬂ|2m A >0
Ug* = U
g -1, Up<O A |Up| 2T A g >0
Us . .
Udcbux " mod> tmod >0
Equation 24

where:

» Ug™ 1s the direct-a duty cycle ratio

* Ug* is the quadrature- duty cycle ratio
* Uy 1s the direct-a voltage

* Ug is the quadrature-f voltage

If the fractional arithmetic is used, the FOC and DC-bus voltages have their scales, which
take place in Equation 22 on page 56; the equation is as follows:

U _UpocUroc max . _ Upoc YFOC max .
PWM Udcbus'Udcbusimux bmod Udcbus UdL'bMSinlLX Ymod

Equation 25

where:

* Ugoc is the scaled FOC voltage

* Ugcbus 18 the scaled measured DC-bus voltage
* Uroc max 18 the FOC voltage scale

* Ugcbus_max 1S the DC-bus voltage scale

Thus, the modulation index in the fractional representation is expressed as follows :

. _ Uroc_max .
bmod fr = Udcbus max “Umod

Equation 26
where:

* in0dfr 1 the space vector modulation index in the fractional arithmetic

The GMCLIB_ElimDcBusRip function compensates an amplitude of the direct-a and the
quadrature-3 component of the stator-reference voltage vector in the fractional
arithmetic, using the formula shown in the following equations:

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 57

GMCLIB_ElimDcBusRip

0, U= 0 A Udcbus =0 v imadf re 0
> Udcbus .
1, Ue>0 A |Ud 2708 A lyodsr>0
U *= U gebus
¢ -1, Ug<0 A |Ua|2#% A imodfr>0
Uy . - >0
Udcbus “tmod fr> tmod fr
Equation 27
O; Uﬁ =0 A Udcbus =0 Vv imodfr =0
U debus .
L Up>0 A NUp[2 F00py A tmodsr™ 0
Uﬁ* = U dcbus .
-1, Up<0 A |Up| =705 N dnoasr>0
Us_ . ~ >0
Udcbus) lmOdf ” lmodfr
Equation 28

where:

* Uy* is the direct-a duty cycle ratio

* Ug* is the quadrature-B duty cycle ratio
» Uy is the direct-a voltage

* Ug is the quadrature-f3 voltage

The GMCLIB_ElimDcBusRip function can be used in general motor-control
applications, and it provides elimination of the voltage ripple on the DC-bus of the power
stage. Figure 2-4 shows the results of the DC-bus ripple elimination, while compensating
the ripples of the rectified voltage, using a three-phase uncontrolled rectifier.

GMCLIB User's Guide, Rev. 3, 05/2020
58 NXP Semiconductors

4
Chapter 2 Algorithms in detail

Measured Voltage on the DC-Bus

15
N

10

voltage

uDcBus

0 001 002 003 004 005 006 007 008 009 J[_0.1
Ime

Standard Space Vector Modulation with Elimination of the DC-Bus Ripple

i\

/ /O
0.5 ‘ .‘:" \ Phase A | |

/
/
AL AP PLL LI PraseB
\ \

voltage
)
S

0 0.01 002 003 004 005 006 007 008 0.09 0.1
time
Angular Velocity of the PMSM with/without Elimination of the DC-Bus Ripple

I ;\
I
f

N

0 \/ Angular Velocity of the PMSM with Eliminating of the DC_BUS Ripple —

200

100

velocity

Angular Velocity of the PMSM without Eliminating of the DC_BUS Ripple
} \ \ | \ | | \ \
0 0.01 002 003 004 005 006 007 008 0.09 0.1

time

100

Figure 2-4. Results of the DC-bus voltage ripple elimination

2.7.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate. The modulation index is a non-
negative accumulator type value.

* Fractional output with floating-point input - the output is the fractional portion of the
result; the result is within the range <-1 ; 1). The result may saturate. The inputs are
floating-point values.

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 59

A
GMCLIB_ElimDcBusRip

The available versions of the GMCLIB_ElimDcBusRip function are shown in the
following table:

Table 2-7. Function versions

Function name Input type Output type Result
type
GMCLIB_ElimDcBusRip_F16sas frac16_t GMCLIB_2COOR_ALBE_T_F16 * |void
acc32_t
GMCLIB_2COOR_ALBE_T_F16 *

Compensation of a 16-bit fractional two-phase system input to a 16-bit fractional
two-phase system using a 16-bit fractional DC-bus voltage information and a 32-bit
accumulator modulation index. The DC-bus voltage input is within the fractional
range <0 ; 1); the modulation index is a non-negative value; the stationary (a-B)
voltage input and output are within the fractional range <-1; 1).

GMCLIB_EIlimDcBusRip_F16fff float_t GMCLIB_2COOR_ALBE_T_F16 * |void
float_t
GMCLIB_2COOR_ALBE_T_FLT *

Compensation of a 32-bit single precision floating-point two-phase system input to
a 16-bit fractional two-phase system using a 32-bit single precision floating-point
DC-bus voltage information and modulation index. The DC-bus voltage and
modulation index inputs are non-negative values; the two-phase voltage input is
within the full 32-bit single-point floating-point range, and the output is within the
fractional range <-1 ; 1).

2.7.2 Declaration
The available GMCLIB_ElimDcBusRip functions have the following declarations:

void GMCLIB_ElimDcBusRip_Flésas(fraclé_t f16UDCBus, acc32_t a32IdxMod, const
GMCLIB 2COOR_ALBE T F16 *psUAlBeComp, GMCLIB 2COOR_ALBE T F16 *psUAlBe)

void GMCLIB_ElimDcBusRip_ Fl6fff (float_t f1tUDCBus, float_t fltIdxMod, const
GMCLIB 2COOR_ALBE T FLT *psUAlBeComp, GMCLIB 2COOR _ALBE T F16 *psUAlBe)

2.7.3 Function use
The use of the GMCLIB_ElimDcBusRip function is shown in the following example:

#include "gmclib.h"

static fraclé_t £16UDcBus;

static acc32 t a32IdxMod;

static GMCLIB 2COOR_ALBE T F16 sUAlBe;
static GMCLIB 2COOR ALBE T F16 sUAlBeComp;

GMCLIB User's Guide, Rev. 3, 05/2020
60 NXP Semiconductors

4
Chapter 2 Algorithms in detail

void Isr (void) ;

void main (void)

{

/* Voltage Alpha, Beta structure initialization */
sUAlBe.fl6Alpha = FRAC16(0.0);
sUAlBe.fl6Beta = FRAC16(0.0);

/* SVM modulation index */
a32IdxMod = ACC32(1.3);

/* DC bus voltage initialization */
f16UDcBus = FRAC16(0.8) ;

}

/* Periodical function or interrupt */
void Isr (void)

/* Ripple elimination calculation */
GMCLIB ElimDcBusRip Flésas (£16UDcBus, a32IdxMod, &sUAlBe, &sUAlBeComp) ;

}

2.8 GMCLIB_SvmStd

The GMCLIB_SvmStd function calculates the appropriate duty-cycle ratios, which are
needed for generation of the given stator-reference voltage vector, using a special
standard space vector modulation technique.

The GMCLIB_SvmStd function for calculating the duty-cycle ratios is widely used in
modern electric drives. This function calculates the appropriate duty-cycle ratios, which
are needed for generating the given stator reference voltage vector, using a special space
vector modulation technique, called standard space vector modulation.

The basic principle of the standard space vector modulation technique can be explained
using the power stage diagram shown in Figure 2-5.

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 61

GMCLIB_SvmStd

Figure 2-5. Power stage schematic diagram

The top and bottom switches are working in a complementary mode; for example, if the
top switch S, is on, then the corresponding bottom switch Sy, s off, and vice versa.
Considering that the value 1 is assigned to the ON state of the top switch, and value 0 is
assigned to the ON state of the bottom switch, the switching vector [a, b, ¢]T can be
defined. Creating of such vector allows for numerical definition of all possible switching
states. Phase-to-phase voltages can then be expressed in terms of the following states:

Uus 1 -1 0
Upc|=Upcp 0 1 —1 [Z]
UCA _1 0 1 C

Equation 29

where Upcpys 18 the instantaneous voltage measured on the DC-bus.

Assuming that the motor is completely symmetrical, it is possible to write a matrix
equation, which expresses the motor phase voltages shown in Equation 29 on page 62.

2 -1 -1
-1 2 —1-[2]
-1 -1 21%%

Equation 30

Ua
Uy
U,

_ UDC Bus

GMCLIB User's Guide, Rev. 3, 05/2020
62 NXP Semiconductors

In a three-phase power stage configuration (as shown in Figure 2-5), eight possible

switching states (shown in Figure 2-6) are feasible. These states, together with the

resulting instantaneous output line-to-line and phase voltages, are listed in Table 2-8.

Table 2-8. Switching patterns

Chapter 2 Algorithms in detail

A(B|C U, Up U Uas Ugc Uca Vector
0[{0|O0O 0 0 0 0 0 0 Oo00
11010 2Upceus/3 -Upcaus/3 -Upcaus/3 Ubcaus 0 -Ubcaus Uo
11110 Upceus/3 Upcaus/3 -2UpcBus/3 0 UpcBus -Upceus Ugo
0110 -Upceus/3 2Upceus/3 -Upceus/3 -Ubcsus Ubcsus 0 Ui20
0|11 -2UpcBus/3 Ubcaus/3 Ubcaus/3 -Upcsus 0 Ubcsus U240
0(0]|1 -Upceus/3 -Upceus/3 2UpcBus/3 0 -Ubcsus Ubcsus Usoo
1101 Ubceus/3 -2Upcpus/3 Upcaus/3 Ubcaus -Ubcaus 0 Uss0
1111 0 0 0 0 0 0 O111

The quantities of the direct-a and the quadrature-f3 components of the two-phase
orthogonal coordinate system, describing the three-phase stator voltages, are expressed
using the Clark transformation, arranged in a matrix form:

The three-phase stator voltages - U,, Uy, and U, are transformed using the Clark

-4

1
2

&8
2 2

tl

C

Equation 31

transformation into the direct-a and the quadrature-f3 components of the two-phase
orthogonal coordinate system. The transformation results are listed in Table 2-9.

Table 2-9. Switching patterns and space vectors

A B C Uq Ug Vector
0 0 0 0 0 Oooo
1 0o | o 2Upcaus/3 0 Uo

1 1 0 Ubceus/3 Upcaus/v3 Ueo

0 1 0 -Upceus/3 Ubcaus/v3 Ui20
0 1 1 -2Upcaus/3 0 Usao
0 0 1 -Upceus/3 -Upceus/V3 Usoo
1 0 1 Upcaus/3 -Upcaus/v3 Useo
]]] 0 0 O114

GMCLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors

63

A
GMCLIB_SvmStd

Figure 2-6 depicts the basic feasible switching states (vectors). There are six nonzero
vectors - Ug, Ug,U120, Uigo, Unag, and Uz, and two zero vectors - O;11 and Oy, usable
for switching. Therefore, the principle of the standard space vector modulation lies in
applying the appropriate switching states for a certain time, and thus generating a voltage
vector identical to the reference one.

U120 UGO
(010) (110)
[1/N3,-1] [1/73,1]

U, Il. I u,
(011) Ouo (100)
(000)
[-2/7/3,0] < P [2/13,0]
IV. VI.

U240 USOD

(001) (101)

[-1/73,-1] [-1/3,1]

Figure 2-6. Basic space vectors

Referring to this principle, the objective of the standard space vector modulation is an
approximation of the reference stator voltage vector Ug, with an appropriate combination
of the switching patterns, composed of basic space vectors. The graphical explanation of
this objective is shown in Figure 2-7 and Figure 2-8.

GMCLIB User's Guide, Rev. 3, 05/2020
64 NXP Semiconductors

Chapter 2 Algorithms in detail

Uiz] Ugo
(010) f-axis (110)
[1N3,-1] [1N3,1]
I Sector Number
To/T*Uq, ' Maximal phase
. N A~ | voltage magnitude = 1
' A 4 v -
b o U S \
Usgo UE / i U0
(011) WA (100) a-axis
[-23,0] ~ X [243,0]
u
T/T*U, *
IV. 30 degrees V.
V.
[AN3-1] [1A3,1]
U240 300
(001) (101)

Figure 2-7. Projection of reference voltage vector in the respective sector

The stator reference voltage vector Ug is phase-advanced by 30° from the direct-a, and
thus can be generated with an appropriate combination of the adjacent basic switching
states U and Ug. These figures also indicate the resultant direct-a and quadrature-3
components for space vectors Uy and Ugy.

GMCLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors

65

GMCLIB_SvmStd

USO
(110)
[1/V3,1]
Il. Sector Number
Teo/ T"Ueo 60 degrees /

2W3*U,

U,
(100) g-axis

/B 7~ [2/7/3,0]

TJ/T*U, 1N3*u,

30 degrees | VI.

Figure 2-8. Detail of the voltage vector projection in the respective sector

In this case, the reference stator voltage vector Ug is located in sector I, and can be
generated using the appropriate duty-cycle ratios of the basic switching states Uy and
Ugo- The principal equations concerning this vector location are as follows:

T=Te+ T+ T

null

_ T Ty
Us=7 Ugot7 - Up

Equation 32

where Tg(and Ty are the respective duty-cycle ratios, for which the basic space vectors
Teo and T should be applied within the time period T. T is the time, for which the null
vectors Ogyp and Oq; are applied. Those duty-cycle ratios can be calculated using the
following equations:

GMCLIB User's Guide, Rev. 3, 05/2020
66 NXP Semiconductors

Chapter 2 Algorithms in detail

=2 |U - sin60°
Uﬂ

T
=T [Ud+ e

Equation 33

Considering that normalized magnitudes of basic space vectors are [Uggl = [Ugl = 2/ 3,
and by the substitution of the trigonometric expressions sin 60° and tan 60° by their
quantities 2 / y/3, and V3, respectively, the Equation 33 on page 67 can be rearranged for
the unknown duty-cycle ratios Tgy / T and Ty / T as follows:

Teo _

T ~ U

T130 To
Us=—7 "Upot7 "Uso

Equation 34

Sector II is depicted in Figure 2-9. In this particular case, the reference stator voltage
vector Ug is generated using the appropriate duty-cycle ratios of the basic switching
states Ty and Ty,. The basic equations describing this sector are as follows:

T=Tiy0t Tt T

T120 Te0
Us=—7 Uit 7 "Uso

null

Equation 35

where Ty, and Ty are the respective duty-cycle ratios, for which the basic space vectors
Uj,0 and Ug(should be applied within the time period T. T, is the time, for which the
null vectors Oy and Oy are applied. These resultant duty-cycle ratios are formed from
the auxiliary components, termed A and B. The graphical representation of the auxiliary
components is shown in Figure 2-10.

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 67

GMCLIB_SvmStd

U1ZU U60
(010) B-axis (110)
[1A3,-1] (H3.1]
ug __"; s Sector Number

. /

74 degrees \

Maximal phase
| voltage magnitude = 1

Ugo D }Ten/T*er \ Us
(011) } (100) o-axis
[-23,0] TTU, [2/7/3,0]
uLI
V. VL.
V.
[-1A3,-1] [-13,1]
U240 USOU
(001) (101)

Figure 2-9. Projection of the reference voltage vector in the respective sector

GMCLIB User's Guide, Rev. 3, 05/2020

68

NXP Semiconductors

Chapter 2 Algorithms in detail

60 degrees
U2 -axis Ueo
(010) b-ax (110)
(13, -1] 1. [1A31]
u,
30 degrees
Teo/ T"Ug,

Sector Number
B=u,

A=1N3*u, o-axis

Figure 2-10. Detail of the voltage vector projection in the respective sector

The equations describing those auxiliary time-duration components are as follows:

sin30° _ 4

sin120° ~ Y8
sin60° _ B

sin60° Ha

Equation 36

Equations in Equation 36 on page 69 have been created using the sine rule.

The resultant duty-cycle ratios T,y / T and Ty / T are then expressed in terms of the
auxiliary time-duration components, defined by Equation 37 on page 69 as follows:

I
A—Jg uﬂ
B=u,

Equation 37

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 69

A
GMCLIB_SvmStd

Using these equations, and also considering that the normalized magnitudes of the basic
space vectors are [U gl = [Ugl = 2 / V3 , the equations expressed for the unknown duty-
cycle ratios of basic space vectors Tj5o/ T and Tg / T can be expressed as follows:

TR U g =4~ B)
FUed=4+5)
Equation 38

The duty-cycle ratios in the remaining sectors can be derived using the same approach.
The resulting equations will be similar to those derived for sector I and sector II.

T
=3)
T,
T =303)

Equation 39

To depict the duty-cycle ratios of the basic space vectors for all sectors, we define:

* Three auxiliary variables:
X= uﬁ
Y =43 - ug)
Z=3us—\3)
Equation 40
* Two expressions - t_1 and t_2, which generally represent the duty-cycle ratios of the
basic space vectors in the respective sector (for example, for the first sector, t_1 and
t_2), represent duty-cycle ratios of the basic space vectors Ugy and U; for the second

sector, t_1 and t_2 represent duty-cycle ratios of the basic space vectors Uj,q and
Ugp, and so on.

The expressions t_1 and t_2, in terms of auxiliary variables X, Y, and Z for each sector,
are listed in Table 2-10.

Table 2-10. Determination of t_1 and t_2 expressions

Sectors Uo, Ugo Ugo, U120 U120, U1go U4g0, U240 U240, Usgo Uszg0, U
t 1 X Y -Y Z -Z -X
t 2 -Z Z X -X -Y Y

For the determination of auxiliary variables X, Y, and Z, the sector number is required.
This information can be obtained using several approaches. The approach discussed here
requires the use of modified Inverse Clark transformation to transform the direct-a and
quadrature-3 components into balanced three-phase quantities Uy, Urerr, and Uz, used
for straightforward calculation of the sector number, to be shown later.

GMCLIB User's Guide, Rev. 3, 05/2020
70 NXP Semiconductors

4
Chapter 2 Algorithms in detail
Uref1= Up

- \I”T'“a

Upef2= 2

_ g \Ig'”a
Uref3= 2

Equation 41

The modified Inverse Clark transformation projects the quadrature-ug component into
U1, @S shown in Figure 2-11 and Figure 2-12, whereas voltages generated by the
conventional Inverse Clark transformation project the direct-ug component into Ueg;.

Components of the Stator Reference Voltage Vector

S 08 ~ N 7
= 0.6 / N //
e 041 / N N /
© 02 N X 7
0.2 N\ /
04 N\ N / /
. N N4
3 A==
;1] l

o

60 120 180 240 300 360
angle

Figure 2-11. Direct-u, and quadrature-u, components of the stator reference voltage
Figure 2-11 depicts the direct-ug and quadrature-ug components of the stator reference

voltage vector Ug, which were calculated using equations ug = cos & and ug = sin 9,
respectively.

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 71

A
GMCLIB_SvmStd

Sinusoidal Three-Phase Reference Voltage
L N L

1
08 [~ ~_ NI
0.6 >< >< ><
04 77 7N 7N
.0 \
0.2

amplitude

- NIV NS B—
-04 >< >< m—uref1 |
-0.6 m—uref2]
i AN AN — |
0.8 . uref3
-1 |

0 60 120 180 240 300 360

D10 1B D DR

Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 6
angle

Figure 2-12. Reference voltages U ef1, Urefo, and U esz

The sector identification tree shown in Figure 2-13 can be a numerical solution of the
approach shown in GMCLIB_SvmStd_Img8.

/\

Urer3 <0 Urefz > 0
Uref2 > 0 Uref2 <0 Urefp > 0 Uef2 <0
Urer1 <0 Urert > 0 Uref1 <0 Uref1 > 0
Sector = VI Sector=1 Sector=11 Sector =V Sector =1V Sector = |l

Figure 2-13. Identification of the sector number

In the worst case, at least three simple comparisons are required to precisely identify the
sector of the stator reference voltage vector. For example, if the stator reference voltage
vector is located as shown in Figure 2-7, the stator-reference voltage vector is phase-
advanced by 30° from the direct a-axis, which results in the positive quantities of uf
and u,.p, and the negative quantity of u,g3; see Figure 2-12. If these quantities are used
as the inputs for the sector identification tree, the product of those comparisons will be
sector I. The same approach identifies sector II, if the stator-reference voltage vector is

GMCLIB User's Guide, Rev. 3, 05/2020
72 NXP Semiconductors

L __4
Chapter 2 Algorithms in detail
located as shown in Figure 2-9. The variables t;, t,, and t3, which represent the switching
duty-cycle ratios of the respective three-phase system, are calculated according to the
following equations:
T—t 1-t 2
h=—">
tz = tl + t_ 1
ty=t,+t 2

Equation 42

where T is the switching period, and t_1 and t_2 are the duty-cycle ratios of the basic
space vectors given for the respective sector; Table 2-10, Equation 31 on page 63, and
Equation 42 on page 73 are specific solely to the standard space vector modulation
technique; other space vector modulation techniques discussed later will require deriving
different equations.

The next step is to assign the correct duty-cycle ratios - t;, t,, and t3, to the respective
motor phases. This is a simple task, accomplished in a view of the position of the stator
reference voltage vector; see Table 4.

Table 2-11. Assignment of the duty-cycle ratios to motor phases

Sectors Ug, Ugo

Uso, U120

U120, U1go

U1g0, U240

U240, Usgo

Uszg0, U

pwm_a

t3

ty

to

pwm_b

to

to

t

pwm_c

t4

t3

t3

The principle of the space vector modulation technique consists of applying the basic
voltage vectors Uxxx and Oxxx for certain time, in such a way that the main vector
generated by the pulse width modulation approach for the period T is equal to the original
stator reference voltage vector Ug. This provides a great variability of arrangement of the
basic vectors during the PWM period T. These vectors might be arranged either to lower
the switching losses, or to achieve diverse results, such as center-aligned PWM, edge-
aligned PWM, or a minimal number of switching states. A brief discussion of the widely
used center-aligned PWM follows.

Generating the center-aligned PWM pattern is accomplished by comparing the threshold
levels pwm_a, pwm_b, and pwm_c with a free-running up-down counter. The timer
counts to one, and then down to zero. It is supposed that when a threshold level is larger
than the timer value, the respective PWM output is active. Otherwise, it is inactive; see
Figure 2-14.

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 73

A
GMCLIB_SvmStd

Center-Aligned PWM

pwm_a i :

pwm_cC _}

: T :

[
ol
<

-"-

PHASE_A iJrwg) Tej2 | To2

PHASE_B | v T §

el
b 3

PHASE_C i Jr/a

; 0111 UBO UG ODUD OGUO UCI UBO 0111 E
£ (111) | (110)| (100): (000) (000) (100); (110) (111)

Sector I.
Figure 2-14. Standard space vector modulation technique — center-aligned PWM

Figure 2-15 shows the waveforms of the duty-cycle ratios, calculated using standard
space vector modulation.

For the accurate calculation of the duty-cycle ratios, direct-a, and quadrature-[3
components of the stator reference voltage vector, it must be considered that the duty

cycle cannot be higher than one (100 %); in other words, the assumption V2+4° <1 must be
met.

GMCLIB User's Guide, Rev. 3, 05/2020
74 NXP Semiconductors

Chapter 2 Algorithms in detail

Components of the Stator Reference Voltage Vector

1 H -
) N Ny .
E AN N v
a 05 N\ N\ /
0 N N | / /
N\ Vs /
-0.5 N N == alpha
\\ N —1 beta
y L ! —
0 60 120 180 240 300 360

angle

Standard Space Vector Modulation Technique

o 1 ~ [T NP> Ny

© 09 / /

*é 0.8 Y / /f i

o 0.7 / \ / \ /

9 gg / \\ / ; : \ / f :

204 7 T X : .

_g 03 ;"K \ / Phase A H
0.2[7 _ ,, N s Phase B ;
01— VG ﬁ'_‘__‘f‘se C/
0o 60 120 180 240 300 360

angle

Figure 2-15. Standard space vector modulation technique

2.8.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <0 ; 1). The result may saturate.

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 75

GMCLIB_Svmlict

The available versions of the GMCLIB_SvmStd function are shown in the following

table.
Table 2-12. Function versions
Function name Input type Output type Result type
GMCLIB_SvmStd_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * uint16_t

Standard space vector modulation with a 16-bit fractional stationary (a-B) input and a 16-bit
fractional three-phase output. The result type is a 16-bit unsigned integer, which indicates the
actual SVM sector. The input is within the range <-1 ; 1); the output duty cycle is within the range

<0 ; 1). The output sector is an integer value within the range <1 ; 6>.

2.8.2 Declaration
The available GMCLIB_SvmStd functions have the following declarations:

uintlé t GMCLIB_SvmStd F16 (const GMCLIB 2COOR_ALBE T F16 *psIn, GMCLIB 3COOR T F16 *psOut)

2.8.3 Function use

The use of the GMCLIB_SvmStd function is shown in the following example:

#include "gmclib.h"

static uintlé_t uléSector;
static GMCLIB_2COOR_ALBE T F16 sAlphaBeta;
static GMCLIB 3COOR T F16 sAbc;

void Isr (void) ;

void main (void)

/* Alpha, Beta structure initialization */

sAlphaBeta.fl6Alpha
sAlphaBeta.fl6Beta

= FRAC16(0.0) ;

= FRAC16(0.0) ;

/* Periodical function or interrupt */

void Isr (void)

{

/* SVM calculation */
ul6Sector = GMCLIB SvmStd F16 (&sAlphaBeta, &sAbc);

}

2.9 GMCLIB_Svmict

GMCLIB User's Guide, Rev. 3, 05/2020

76

NXP Semiconductors

4
Chapter 2 Algorithms in detail

The GMCLIB_Svmlct function calculates the appropriate duty-cycle ratios, which are
needed for generation of the given stator-reference voltage vector using the general
sinusoidal modulation technique.

The GMCLIB_Svmlct function calculates the appropriate duty-cycle ratios, needed for
generation of the given stator reference voltage vector using the conventional Inverse
Clark transformation. Finding the sector in which the reference stator voltage vector Ug
resides is similar to GMCLIB_SvmStd. This is achieved by first converting the direct-a
and the quadrature-3 components of the reference stator voltage vector Ug into the
balanced three-phase quantities U.f;, Ugefr, and u.r3 using the modified Inverse Clark
transformation:

Upe f1 =u B
g

Upref2 = 2

_TupT \I?:'”a
Upef3= 2

Equation 43

The calculation of the sector number is based on comparing the three-phase reference
voltages Uref;, Uger, and u.p3 with zero. This computation is described by the following
set of rules:

L Uref] >0
a {0, else
. {2, Upef2> 0
0, else
4, Uref3 >0
€ {0, else
Equation 44

After passing these rules, the modified sector numbers are then derived using the
following formula:

sector*=a+b+c

Equation 45

The sector numbers determined by this formula must be further transformed to
correspond to those determined by the sector identification tree. The transformation
which meets this requirement is shown in the following table:

Table 2-13. Transformation of the sectors

Sector* 1 2 3 4

Sector 2 6 1 4

GMCLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors

77

A
GMCLIB_Svmict

Use the Inverse Clark transformation for transforming values such as flux, voltage, and
current from an orthogonal rotating coordination system (ug, ug) to a three-phase rotating
coordination system (u,, u,, and u.). The original equations of the Inverse Clark
transformation are scaled here to provide the duty-cycle ratios in the range <0 ; 1). These
scaled duty cycle ratios pwm_a, pwm_b, and pwm_c can be used directly by the registers

of the PWM block.

U,
pwm_a=0.5+=

—ugty3up

pwm_b=05+—7
“Ug\3upg

pwm_c=05+—F—

Equation 46

The following figure shows the waveforms of the duty-cycle ratios calculated using the
Inverse Clark transformation.

GMCLIB User's Guide, Rev. 3, 05/2020
78 NXP Semiconductors

4
Chapter 2 Algorithms in detail

Components of the Stator Reference Voltage Vector

11— :
@ - - ~{ ~
5 0.5 \\’{\ \\ ////
2 VAR \ /
© / \\ AN //
0
N\, AN / e
N\ \\ // //
-0.5 - § m—— alpha [
\\\ >< — hetg
_1 ™ ~ - - |
0 60 120 180 240 300 360
angle
Inverse Clark Transform Modulation Technique
8 1 x&“\\\\ ////f x\\\‘\\\ /-’/ ‘.\H.‘.\“x\ /"//f
= 08— ,/ N
. N\ / \\
S 06— ZEN AN
O / \ \ / AN
> 04 T
-] / N\ / e Phase A
o] rs ’ L
0.2 Fam s = Phase B |/
/ \\ a — }Phase C
0 S - . - -
0 60 120 180 240 300 360
angle

Figure 2-16. Inverse Clark transform modulation technique

For an accurate calculation of the duty-cycle ratios and the direct-a and quadrature-3
components of the stator reference voltage vector, the duty cycle cannot be higher than

one (100 %); in other words, the assumption Va2+ £ <1 must be met.

2.9.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <0 ; 1). The result may saturate.

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 79

GMCLIB_SvmUOn

The available versions of the GMCLIB_Svmlct function are shown in the following

table:
Table 2-14. Function versions
Function name Input type Output type Result type
GMCLIB_Svmict_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * uint16_t

General sinusoidal space vector modulation with a 16-bit fractional stationary (a-B) input and a
16-bit fractional three-phase output. The result type is a 16-bit unsigned integer, which indicates
the actual SVM sector. The input is within the range <-1 ; 1); the output duty cycle is within the
range <0 ; 1). The output sector is an integer value within the range <1 ; 6>.

2.9.2 Declaration

The available GMCLIB_Svmlct functions have the following declarations:

uintlé t GMCLIB_SvmIct F16 (const GMCLIB 2COOR_ALBE T F16 *psIn, GMCLIB 3COOR T F16 *psOut)

2.9.3 Function use

The use of the GMCLIB_Svmlct function is shown in the following example:

#include "gmclib.h"

static uintlé_t uléSector;
static GMCLIB_2COOR_ALBE T F16 sAlphaBeta;
static GMCLIB 3COOR T F16 sAbc;

void Isr (void) ;

void main (void)

/* Alpha, Beta structure initialization */

sAlphaBeta.fl6Alpha
sAlphaBeta.fl6Beta

= FRAC16(0.0) ;

= FRAC16(0.0) ;

/* Periodical function or interrupt */

void Isr (void)

{

/* SVM calculation */
ul6Sector = GMCLIB SvmIct F16 (&sAlphaBeta, &sAbc);

}

2.10 GMCLIB_SvmUOn

GMCLIB User's Guide, Rev. 3, 05/2020

80

NXP Semiconductors

L __4

Chapter 2 Algorithms in detail
The GMCLIB_SvmUOn function calculates the appropriate duty-cycle ratios, which are
needed for generation of the given stator-reference voltage vector using the general
sinusoidal modulation technique.

The GMCLIB_SvmUOn function for calculating of duty-cycle ratios is widely used in
modern electric drives. This function calculates the appropriate duty-cycle ratios, which
are needed for generating the given stator reference voltage vector using a special space
vector modulation technique called space vector modulation with Og, nulls, where only
one type of null vector Oy is used (all bottom switches are turned on in the invertor).

The derivation approach of the space vector modulation technique with Oy nulls is in
many aspects identical to the approach presented in GMCLIB_SvmStd. However, a
distinct difference lies in the definition of the variables t;, t,, and t3 that represent
switching duty-cycle ratios of the respective phases:

t]:0
L=t +t_2

Equation 47

where T is the switching period, and t_1 and t_2 are the duty-cycle ratios of the basic
space vectors that are defined for the respective sector in Table 2-10.

The generally used center-aligned PWM is discussed briefly in the following sections.
Generating the center-aligned PWM pattern is accomplished practically by comparing the
threshold levels pwm_a, pwm_b, and pwm_c with the free-running up/down counter. The
timer counts up to 1 (Ox7FFF) and then down to 0 (0x0000). It is supposed that when a
threshold level is larger than the timer value, the respective PWM output is active.
Otherwise it is inactive (see Figure 2-17).

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 81

A
GMCLIB_SvmUOn

Centre-Aligned PWM

pwm_a

pwm_b _

pwm_c,

k4

PHASE_A § =23 o2 |

PHASE_B i =12,

PHASE C

UGU UD ODUU ODDD OUOU ODOD U[] UBU
(110)1 (100} (000)| (000)i (000) | (000) } (100){ (110)

Sector |.

Figure 2-17. Space vector modulation technique with Ogygo nulls — center-aligned PWM

Figure Figure 2-17 shows calculated waveforms of the duty cycle ratios using space
vector modulation with O nulls.

For an accurate calculation of the duty-cycle ratios, direct-a, and quadrature-f3
components of the stator reference voltage vector, consider that the duty cycle cannot be

higher than one (100 %); in other words, the assumption V*+4° <1 must be met.

GMCLIB User's Guide, Rev. 3, 05/2020
82 NXP Semiconductors

Chapter 2 Algorithms in detail

Components of the Stator Reference Voltage Vector

Q : : : : :
© : : : : :
=) - : ; f i ;
3
@© 0 oo /
N s - Toha T
i m— heta
1 i i i l — 1
0 60 120 180 240 300 360
angle
Space Vector Modulation Technique with Oy, Nulls
1 ;
3 f
'E 0.8f
3 0.6
@)
> 04r ; :
S : : : Phase A
© V] R s Phase B H
| : | } /| me— Phase C |
0 0 60 120 180 240 300 360

angle

Figure 2-18. Space vector modulation technique with Ogygo nulls

2.10.1 Available versions
This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is
within the range <0 ; 1). The result may saturate.

GMCLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 83

GMCLIB_SvmU7n

The available versions of the GMCLIB_SvmUOn function are shown in the following

table:
Table 2-15. Function versions
Function name Input type Output type Result type
GMCLIB_SvmUOn_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * uint16_t

General sinusoidal space vector modulation with a 16-bit fractional stationary (a-B) input, and a
16-bit fractional three-phase output. The result type is a 16-bit unsigned integer, which indicates
the actual SVM sector. The input is within the range <-1 ; 1); the output duty cycle is within the
range <0 ; 1). The output sector is an integer value within the range <1 ; 6>.

2.10.2 Declaration
The available GMCLIB_SvmUOn functions have the following declarations:

uintlé_t GMCLIB_SvmUOn_F16 (const GMCLIB 2COOR ALBE T F16 *psIn, GMCLIB 3COOR_T F16 *psOut)

2.10.3 Function use

The use of the GMCLIB_SvmUOn function is shown in the following example:

#include "gmclib.h"

static uintlé_t uléSector;
static GMCLIB_2COOR_ALBE T F16 sAlphaBeta;
static GMCLIB 3COOR T F16 sAbc;

void Isr (void) ;

void main (void)

/* Alpha, Beta structure initialization */

sAlphaBeta.fl6Alpha
sAlphaBeta.fl6Beta

= FRAC16(0.0) ;

= FRAC16(0.0) ;

/* Periodical function or interrupt */

void Isr (void)

{

/* SVM calculation */
ul6Sector = GMCLIB SvmUOn F16 (&sAlphaBeta, &sAbc);

}

2.11 GMCLIB_SvmU7n

GMCLIB User's Guide, Rev. 3, 05/2020

84

NXP Semiconductors

L __4

Chapter 2 Algorithms in detail
The GMCLIB_SvmU7n function calculates the appropriate duty-cycle ratios, which are
needed for generation of the given stator-reference voltage vector, using the general
sinusoidal modulation technique.

The GMCLIB_SvmU7n function for calculating the duty-cycle ratios is widely used in
modern electric drives. This function calculates the appropriate duty-cycle ratios, which
are needed for generating the given stator reference voltage vector using a special space
vector modulation technique called space vector modulation with Oy nulls, where only
one type of null vector Oy is used (all top switches are turned on in the invertor).

The derivation approach of the space vector modulation technique with O;; nulls is
identical (in many aspects) to the approach presented in GMCLIB_SvmStd. However, a
distinct difference lies in the definition of variables t;, t,, and t3 that represent switching
duty-cycle ratios of the respective phases:

ti=T-t_1-t_2
L=t+t_1
L=t,+t_ 2

Equation 48

where T is the switching period, and t_1 and t_2 are the duty-cycle ratios of the basic
space vectors defined for the respective sector in Table 2-10.

The generally-used center-aligned PWM is discussed briefly in the following sections.
Generating the center-aligned PWM pattern is accomplished by comparing threshold
levels pwm_a, pwm_b, and pwm_c with the free-running up/down counter. The timer
counts up to 1 (Ox7FFF) and then down to 0 (0x0000). It is supposed that when a
threshold level is larger than the timer value, the respective PWM output is active.
Otherwise, it is inactive (see Figure 2-19).

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 85

A
GMCLIB_SvmU7n

Centre-Aligned PWM

1
pwm_a
pwm_b
pwm_c
0

£ T _f

PHASE_A |

PHASE_B | wwa | Tewa | T

PHASE_C EJNU"LM: INULLM: i

e NN VRS RN VAR BN VAN MUME N M o

F(11) L (111)[(110)] (100)} (100) | (110)} (111) L (111)

’ Sector I. '

Figure 2-19. Space vector modulation technique with O411 nulls — center-aligned PWM

Figure Figure 2-19 shows calculated waveforms of the duty-cycle ratios using Space
Vector Modulation with O nulls.

For an accurate calculation of the duty-cycle ratios, direct-a, and quadrature-[3
components of the stator reference voltage vector, it must be considered that the duty

cycle cannot be higher than one (100 %); in other words, the assumption V> +4° <1 must be
met.

GMCLIB User's Guide, Rev. 3, 05/2020
86 NXP Semiconductors

Chapter 2 Algorithms in detail

Components of the Stator Reference Voltage Vector

1

amplitude
o
(&)

_ alpha

= hetg

p i i i —
0 60 120 180 240 300 360
angle
Space Vector Modulation Technique with O, Nulls
1
(%3]
L
_.é 08 ... -
o)
(—5)‘ 0.6 ... -
O . .
>‘ .. E. ? =
5 04 : : : i | m— Phase A
' /\ : ‘/\ "] === Phase C
0 \ i i =~ 7
120 180 240 300 360

angle

Figure 2-20. Space vector modulation technique with O411 nulls

2.11.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <0 ; 1). The result may saturate.

GMCLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 87

GMCLIB_SvmDpwm

The available versions of the GMCLIB_SvmU7n function are shown in the following

table:
Table 2-16. Function versions
Function name Input type Output type Result type
GMCLIB_SvmU7n_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * uint16_t

General sinusoidal space vector modulation with a 16-bit fractional stationary (a-B) input and a
16-bit fractional three-phase output. The result type is a 16-bit unsigned integer, which indicates
the actual SVM sector. The input is within the range <-1 ; 1); the output duty cycle is within the
range <0 ; 1). The output sector is an integer value within the range <1 ; 6>.

2.11.2 Declaration

The available GMCLIB_SvmU7n functions have the following declarations:

uintlé_t GMCLIB_SvmU7n_F16 (const GMCLIB 2COOR ALBE T F16 *psIn, GMCLIB 3COOR_T F16 *psOut)

2.11.3 Function use

The use of the GMCLIB_SvmU7n function is shown in the following example:

#include "gmclib.h"

static uintlé_t uléSector;
static GMCLIB_2COOR_ALBE T F16 sAlphaBeta;
static GMCLIB 3COOR T F16 sAbc;

void Isr (void) ;

void main (void)

/* Alpha, Beta structure initialization */

sAlphaBeta.fl6Alpha
sAlphaBeta.fl6Beta

= FRAC16(0.0) ;

= FRAC16(0.0) ;

/* Periodical function or interrupt */

void Isr (void)

{

/* SVM calculation */
ul6Sector = GMCLIB SvmU7n_ F16 (&sAlphaBeta, &sAbc);

}

2.12 GMCLIB_SvmDpwm

GMCLIB User's Guide, Rev. 3, 05/2020

88

NXP Semiconductors

L __4

Chapter 2 Algorithms in detail
The GMCLIB_SvmDpwm function calculates the appropriate duty-cycle ratios needed
for the generation of the given stator-reference voltage vector using the general non-
sinusoidal modulation technique. The GMCLIB_SvmDpwm function is a subset of the
GMCLIB_SvmExDpwm function and includes a power factor angle input. Both
functions are identical if ¢ = 0.

The GMCLIB_SvmDpwm function belongs to the discontinuous PWM modulation
techniques for 3-phase voltage inverters. The advantages of the discontinuous PWM
technique are lower switching loses, but, on the other hand, it can cause higher harmonic
distortion at low modulation indexes. The current sensing at low modulation indexes is
more complicated and less precise when compared with the symmetrical modulation
techniques like GMCLIB_SvmStd. Therefore, the discontinuous and continous SVM are
usually combined together.

Finding the sector in which the reference stator voltage vector Ug resides is similar to
GMCLIB_SvmStd. This is achieved by converting the direct-a and quadrature-[3
components of the reference stator voltage vector Ug into the balanced 3-phase quantities
Uref], Urer2, and U3 using the modified Inverse Clarke transformation:

urefl = uﬂ
\Ig-ua—u/;

Uref2 = 2

*\E Ug U

Uref3= "7

Equation 49

The sector calculation is based on comparing the 3-phase reference voltages Uef;, Ugef,
and u,.s3 with zero. This computation is described by the following figure:

/\

Uref3 < 0 Uref3 > 0
Urefr > 0 Uref2 <0 Uref2 > 0 Uref2 <0
Uref1 < 0 Uref1 > 0 Uref1 < 0 Uref1 > 0
Sector = VI Sector =1 Sector =1l Sector =V Sector = IV Sector =l

Figure 2-21. Identification of the sector number

The knowledge of the sector is necessary for the current sensing especially when shunt
resistors are used. The GMCLIB_SvmDpwm function does not require the sector
directly, but it requires the portion identification explained in the following. The Inverse
Clarke transformation converts the ug, ug voltage components of the reference stator

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 89

GMCLIB_SvmDpwm

voltage vector Ug to 3-phase voltage components u,, up, and u.. The portion
identification selects the portion from the u,, uy, and u. voltages, based on the following

conditions.

u* =0

Partion =l/[Partion=]

u* <0

ua* < 0

Partion = JJ Partion=V Partion=]V

u* <0

Partion=[]]

Figure 2-22. Identification of the portion number

Finally, the corresponding duty cycle is selected according to the portion from the
column of the following table.

Table 2-17. Duty cycle calculation from portions

Portions | Il 1} v \) Vi
Voltage Us30,U30 Usq,Ug0 Ugo,U150 U4s0,U210 Uz10,U270 Usz70,U330
boundaries
pwm_a 1 0 - Urer3 1+ Uper2 0 1 - Urerz 0 + Ureto
pwm_b 1 - Uefo 0 + Uper1 = U 1 0 - Upepo 1+ Uerr=1+Ug 0
pwm_cC 1+ Uref3 0 1- Upef1 = 1- ug 0+ Uref3 1 0- Upef1 = 0- ug

2.12.1 Available versions

This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is
within the range <0 ; 1). The result may saturate.

The available versions of the GMCLIB_SvmDpwm function are shown in the following

table:
Table 2-18. Function versions
Function name Input type Output type Result type
GMCLIB_SvmDpwm_F16 |GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * uint16_t

Standard discontinuous PWM with a 16-bit fractional stationary (a-B) input, and a 16-bit fractional
3-phase output. The result type is a 16-bit unsigned integer, which indicates the actual SVM
sector. The input is within the range <-1 ; 1); the output duty cycle is within the range <0 ; 1). The

output sector is an integer value within the range <1 ; 6>.

GMCLIB User's Guide, Rev. 3, 05/2020
90 NXP Semiconductors

4
Chapter 2 Algorithms in detail

2.12.2 Declaration

The available GMCLIB_SvmDpwm functions have the following declarations:

uintl6_t GMCLIB_SvmDpwm F16 (const GMCLIB 2COOR_ALBE T F16 *psIn, GMCLIB 3COOR T F16 *psOut)

2.12.3 Function use

The use of the GMCLIB_SvmDpwm function is shown in the following example:

#include "gmclib.h"

static uintlé_t uléSector;
static GMCLIB 2COOR_ALBE T F16 sAlphaBeta;
static GMCLIB 3COOR T F16 sAbc;

void Isr(void) ;
void main (void)

/* Alpha, Beta structure initialization */
sAlphaBeta.fl6Alpha = FRAC16(0.0) ;
sAlphaBeta.fl6Beta = FRAC16(0.0) ;

/* Periodical function or interrupt */

}

void Isr (void)

/* Standard Discountinues PWM SVM calculation */
uléSector = GMCLIB SvmGenDpwm F16 (&sAlphaBeta, &sAbc) ;

2.13 GMCLIB_SvmExDpwm

The GMCLIB_SvmExDpwm function calculates the appropriate duty-cycle ratios needed
for the generation of the given stator-reference voltage vector using the general non-
sinusoidal modulation technique. The GMCLIB_SvmExDpwm function is a superset of
the GMCLIB_SvmDpwm function without the power factor angle input.

The GMCLIB_SvmExDpwm function belongs to the discontinuous PWM modulation
techniques for a 3-phase voltage inverter. The advantages of the discontinuous PWM
technique are lower switching loses, but, on the other hand, it can cause higher harmonic
distortion at low modulation indexes. The current sensing at low modulation indexes is

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 91

A
GMCLIB_SvmExDpwm

more complicated and less precise when compared to the symmetrical modulation
techniques like GMCLIB_SvmStd. Therefore, the discontinuous and continuous SVM
are usually combined together.

Finding the sector in which the reference stator voltage vector Ug resides is similar to
GMCLIB_SvmStd. This is achieved by converting the direct-a and quadrature-[3
components of the reference stator voltage vector Ug into the balanced 3-phase quantities
Uref], Urer2, and U3 using the modified Inverse Clarke transformation:

urefl = uﬂ

\E Ug U

Uref2 = 2

*\E Ug U
Uref3= 73

Equation 50

The sector calculation is based on comparing the 3-phase reference voltages Uefq, Uref,
and u,.s3 with zero. This computation is described by the following figure:

/\

Uref3 <0 Uref3 > 0
Urefp > 0 Urefp < 0 Uref2 > 0 Urefp < 0
Uref1 < 0 Uref1 > 0 Uref1 < 0 Uref1 > 0
Sector = VI Sector =1 Sector =1l Sector =V Sector = IV Sector =l

Figure 2-23. Identification of the sector number

The knowledge of the sector is necessary for the current sensing especially when shunt
resistors are used. The GMCLIB_SvmExDpwm function does not require the sector
directly, but it requires the portion identification explained in following text. The Park
transformation uses the phase shift of the generated phase voltages and currents - ¢ angle
to rotate the reference stator voltage vector Ug to Ug* with the ug™*, ug* components. The
inverse Clarke transformation converts the ug*, ug* voltage components to 3-phase
voltage components u,*, uy*, and u.*. The portion identification selects the portion from
the u,*, uy*, and u.* voltages based on the following conditions.

GMCLIB User's Guide, Rev. 3, 05/2020
92 NXP Semiconductors

Chapter 2 Algorithms in detail

u==0 us< 0
Uo<< () ur = 0 Ue < (0 Ue = ()
uc =0 Uc< 0 Uc > 0 uc< 0

Partion =)/] Partion=] Partion=]] Partion=V Partion=]J|/ Partion=]]]

Figure 2-24. Identification of the portion number

Finally, the corresponding duty cycle is selected according to the portion from the
column of the following table.

Table 2-19. Duty cycle calculation from portions

Portions | Il i v \'} VI
Voltage Us30,Us0 U3zo,Ug0 Ugo,U150 U1s0,U210 Uz10,U270 Usz70,U330
boundaries
pwm_a 1 0 - Urerz 1+ Upero 0 1 - Upefz 0 + Upepo
me_b 1- Urefo 0+ Upef1 = Uﬁ 1 0- Urefo 1+ Upef1 = 1+ UB 0
pwm_c 1 + Upeis 0 1-Uerr=1-Ug 0 + Upefz 1 0-Upetx=0-ug

2.13.1 Available versions

This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <0 ; 1). The result may saturate.

The available versions of the GMCLIB_SvmExDpwm function are shown in the
following table:

Table 2-20. Function versions

Function name

Input type

Output type

Result type

6

GMCLIB_SvmExDpwm_F1

GMCLIB_2COOR_ALBE_T_F16 *

GMCLIB_2COOR_SINCOS_T_F16 *

GMCLIB_2COOR_DQ_T_F16 *

uint16_t

Extended discontinuous PWM with a 16-bit fractional stationary (a-8) input, the second input
using a 16-bit fractional (sin(p) / cos(9)) structure of @ angle (-1/6 ; 1/6) in fraction corresponding
(-n/6 ; n/6) in radians - angle of the power factor, it is a phase shift of the generated phase
voltages and currents and a 16-bit fractional 3-phase output. The result type is a 16-bit unsigned
integer which indicates the actual SVM sector. The input is within the range <-1 ; 1); the output
duty cycle is within the range <0 ; 1). The output sector is an integer value within the range <1 ;
6>.

GMCLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors

93

A
GMCLIB_SvmExDpwm

2.13.2 Declaration
The available GMCLIB_SvmExDpwm functions have the following declarations:

uintlé t GMCLIB_SvmExDpwm F16 (const GMCLIB 2COOR ALBE T F16 *psIn,const
GMCLIB_2COOR_SINCOS_T_F16 *psAngle, GMCLIB_ 3COOR_T_F16 *psOut)

2.13.3 Function use

The use of the GMCLIB_SvmExDpwm function is shown in the following example:

#include "gmclib.h"

static uintlé_t uléSector;

static GMCLIB 2COOR ALBE T F16 sAlphaBeta;
static GMCLIB 2COOR_SINCOS T F16 sAlphaBeta;
static GMCLIB 3COOR T F16 sAbc;

void Isr (void) ;

void main (void)

{
/* Alpha, Beta structure initialization */
sAlphaBeta.fl6Alpha = FRAC16(0.0);
sAlphaBeta.fl6Beta = FRAC16(0.0) ;

/* Power factor angle structure initialization */
sAngle.f16Cos = FRAC16(1.0);
sAngle.f16Sin = FRAC16(0.0) ;

}

/* Periodical function or interrupt */
void Isr (void)
/* Extended Discountinues PWM calculation */
ul6Sector = GMCLIB SvmExDpwm F16 (&sAlphaBeta, &sAngle, &sAbc);

}

GMCLIB User's Guide, Rev. 3, 05/2020
94 NXP Semiconductors

Appendix A
Library types

A.1 bool t

The bool_t type 1s a logical 16-bit type. It is able to store the boolean variables with two
states: TRUE (1) or FALSE (0). Its definition is as follows:

typedef unsigned short bool t;
The following figure shows the way in which the data is stored by this type:
Table A-1. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Unused LC(;?i
0 | 0 | 0 | oo | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | 1
TRUE
0 0 0 1
0 | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | 0
FALSE
0 0 0 0

To store a logical value as bool_t, use the FALSE or TRUE macros.

A.2 uint8_t

The uint8_t type is an unsigned 8-bit integer type. It is able to store the variables within
the range <0 ; 255>. Its definition is as follows:

typedef unsigned char uint8 t;

The following figure shows the way in which the data is stored by this type:

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 95

uint16_t
Table A-2. Data storage
7 6 5 4 3 2 1 0
Value Integer
1 | 1 | 1 | 1 1 | 1 | 1 | 1
255
F F
y 0 | 0 | 0 | 0 1 | 0 | 1 | 1
0 B
0 | 1 | 1 | 1 1 | 1 | 0 | 0
124
7 C
156 1 | o | o | A R
9 F

A.3 uint16_t

The uint16_t type is an unsigned 16-bit integer type. It is able to store the variables
within the range <0 ; 65535>. Its definition is as follows:

typedef unsigned short uintlé t;
The following figure shows the way in which the data is stored by this type:
Table A-3. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Value Integer
1 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1
65535
F F F F
0 | 0 | 0 | oo | 0 | 0 | o] o | 0 | 0 | o] o | 1 | 0 | 1
5
0 0 0 5
0 | 0 | 1 | 1] 1 | 1 | 0 | o | 1 | 0 | 0 | 1] 1 | 1 | 1 | 0
15518
3 C 9 E
1 | 0 | 0 | 1] 1 | 1 | 1 | 1]o | 1 | 0 | o] o | 0 | 0 | 0
40768
9 F 4 0

A.4 uint32_t

GMCLIB User's Guide, Rev. 3, 05/2020
96 NXP Semiconductors

4
Appendix A Library types

The uint32_t type is an unsigned 32-bit integer type. It is able to store the variables
within the range <0 ; 4294967295>. Its definition is as follows:

typedef unsigned long uint32 t;
The following figure shows the way in which the data is stored by this type:
Table A-4. Data storage

31 24 23 16 15 87 0
Value Integer
4294967295 F F F F F F F F
2147483648 8 0 0 0 0 0 0 0
55977296 0 3 5 6 2 5 5 0
3451051828 C D B 2 D F 3 4
A5 int8_t

The int8_t type is a signed 8-bit integer type. It is able to store the variables within the
range <-128 ; 127>. Its definition is as follows:

typedef char int8 t;
The following figure shows the way in which the data is stored by this type:
Table A-5. Data storage

7 6 5 4 3 2 1 0
Value Sign Integer
0 1 | 1 | 1 1 | 1 | 1 | 1
127
7 F
1 | 0 | 0 | 0 0 | 0 | 0 | 0
-128
8 0
0 | 0 | 1 | 1 1 | 1 | 0 | 0
60
3 o}
o7 1 | o | o | A R
9 F

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 97

A
int16_t

A.6 int16_t

The int16_t type is a signed 16-bit integer type. It is able to store the variables within the
range <-32768 ; 32767>. Its definition is as follows:

typedef short intlé t;
The following figure shows the way in which the data is stored by this type:
Table A-6. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer
0o | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1
32767
7 F F F
1 | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | oo | 0 | 0 | 0
-32768
8 0 0 0
0 | 0 | 1 | 1] 1 | 1 | 0 | o | 1 | 0 | 0 | 1] 1 | 1 | 1 | 0
15518
3 C 9 E
1 | 0 | 0 | 1] 1 | 1 | 1 | 1]o | 1 | 0 | o] o | 0 | 0 | 0
-24768
9 F 4 0

A.7 Int32_t

The int32_t type is a signed 32-bit integer type. It is able to store the variables within the
range <-2147483648 ; 2147483647>. Its definition is as follows:

typedef long int32 t;
The following figure shows the way in which the data is stored by this type:
Table A-7. Data storage

31 24 23 16 15 87 0
Value S | Integer
2147483647 7 F F F F F F F
-2147483648 8 0 0 0 0 0 0 0
55977296 0 3 5 6 2 5 5 0
-843915468 C D B 2 D F 3 4

GMCLIB User's Guide, Rev. 3, 05/2020
98 NXP Semiconductors

4
Appendix A Library types

A.8 frac8 t

The frac8_t type is a signed 8-bit fractional type. It is able to store the variables within

the range <-1 ; 1). Its definition is as follows:

typedef char frac8 t;

The following figure shows the way in which the data is stored by this type:
Table A-8. Data storage

7 6 5 4 3 2 1 0
Value Sign Fractional
0 1 | 1 | 1 1 | 1 | 1 | 1
0.99219
7 F
1 | 0 | 0 | 0 0 | 0 | 0
-1.0
8 0
0 | 0 | 1 | 1 1 | 1 | 0
0.46875
3 c
1 | 0 | 0 | 1 1 | 1 | 1
-0.75781
9 F

To store a real number as frac8_t, use the FRACS8 macro.

A.9 frac16 t

The frac16_t type is a signed 16-bit fractional type. It is able to store the variables within

the range <-1 ; 1). Its definition is as follows:

typedef short fraclé t;

The following figure shows the way in which the data is stored by this type:
Table A-9. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2

Value

0.99997

-1.0

Fractional

1|1|1|1

1|1|1|1

F

F

1|o|o|o o|o|o|o o|o|o|o o|o|o|o

Table continues on the next page...

GMCLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors

99

frac32_t
Table A-9. Data storage (continued)
8 0 0 0
o|o|1|11|1|o|o1|o|o|11|1|1|o
0.47357
3 C 9 E
1|o|o|11|1|1|1o|1|o|o o|o|o|o
-0.75586
9 F 4 0

To store a real number as frac16_t, use the FRAC16 macro.

A.10 frac32_ t

The frac32_t type is a signed 32-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef long frac32 t;
The following figure shows the way in which the data is stored by this type:
Table A-10. Data storage

31 24 23 16 15 87 0
Value S Fractional
0.9999999995 7 F F F F F F F
-1.0 8 0 0 0 0 0 0 0
0.02606645970 0 3 5 6 2 5 5 0
-0.3929787632 C D B 2 D F 3 4

To store a real number as frac32_t, use the FRAC32 macro.

A.11 acci16_t

The accl6_t type is a signed 16-bit fractional type. It is able to store the variables within
the range <-256 ; 256). Its definition is as follows:

typedef short acclé t;

The following figure shows the way in which the data is stored by this type:

GMCLIB User's Guide, Rev. 3, 05/2020
100 NXP Semiconductors

4
Appendix A Library types

Table A-11. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer Fractional
o1|1|11|1|1|111|1|11|1|1|1
255.9921875
7 F F F
1|o|o|o o|o|o|o o|o|o|o o|o|o|o
-256.0
8 0 0 0
o|o|o|o o|o|o|o1|o|o|o o|o|o|o
1.0
0 0 8 0
o t 1111|111]1]o]lofo]o]o]o]o
F F 8 0
o|o|o|o o|1|1|o1|1|1|o o|1|o|1
13.7890625
0 6 E 5
1|1|o|1o|o|1|1o|o|1|o o|1|o|o
-89.71875
D 3 2 4

To store a real number as accl16_t, use the ACC16 macro.

A.12 acc32_ t

The acc32_t type is a signed 32-bit accumulator type. It is able to store the variables
within the range <-65536 ; 65536). Its definition is as follows:

typedef long acc32_t;
The following figure shows the way in which the data is stored by this type:
Table A-12. Data storage

31 24 23 16 15 87 0
Value S Integer | Fractional
65535.999969
-65536.0
1.0
-1.0
23.789734
-1171.306793

Mm|o|m|lo|w| N
U|lo|mn|o|o|m
Wjo|m|lo|o|m
o|m|m|o|o|m
o|m|o|o|o|m
w|lo|lo|lo|o|m
W| —=|o|o|o|m
Olo|lo|o|o|m

To store a real number as acc32_t, use the ACC32 macro.

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 101

float_t

A.13 float t

The float_t type is a signed 32-bit single precision floating-point type, defined by IEEE
754. 1t is able to store the full precision (normalized) finite variables within the range
<-3.40282 - 1033 ; 3.40282 - 1038) with the minimum resolution of 2723, The smallest
normalized number is =1.17549 - 10738, Nevertheless, the denormalized numbers (with
reduced precision) reach yet lower values, from +1.40130 - 10"% to £1.17549 - 1038, The
standard also defines the additional values:

* Negative zero

* Infinity

e Negative infinity
e Not a number

The 32-bit type is composed of:

* Sign (bit 31)
* Exponent (bits 23 to 30)
e Mantissa (bits O to 22)

The conversion of the number is straighforward. The sign of the number is stored in bit
31. The binary exponent is decoded as an integer from bits 23 to 30 by subtracting 127.
The mantissa (fraction) is stored in bits O to 22. An invisible leading bit (it is not actually
stored) with value 1.0 is placed in front; therefore, bit 23 has a value of 0.5, bit 22 has a
value 0.25, and so on. As a result, the mantissa has a value between 1.0 and 2. If the
exponent reaches -127 (binary 00000000), the leading 1.0 is no longer used to enable the
gradual underflow.

The float_t type definition is as follows:
typedef float float t;
The following figure shows the way in which the data is stored by this type:

Table A-13. Data storage - normalized values

31 24 23 16 15 87 0
Value S Exponent Mantissa

20-22%.227 {0f1 1111110111111 1111111111111 1111

~ 3.40282 - 10% 7 F | 7 F | F F | F F

(20-22.22711[1 1111 110[1 1111111111111 111111111

% -3.40282 - 10% F F | 7 F | F F | F =

Table continues on the next page...

GMCLIB User's Guide, Rev. 3, 05/2020
102 NXP Semiconductors

4
Appendix A Library types

Table A-13. Data storage - normalized values (continued)

2-126 o|ooooooo1|ooooooooooooooooooooooo
~1.17549 - 1038 0 0 | 8 0 | 0 0 | 0 0
2126 1|ooooooo1|ooooooooooooooooooooooo
~-1.17549 . 1038 8 0 | 8 0 | 0 0 | 0 0
1.0 o|o1111111|ooooooooooooooooooooooo
3 F | 8 0 | 0 0 | 0 0
1.0 1|o1111111|ooooooooooooooooooooooo
B F | 8 0 | 0 0 | 0 0
n o|1ooooooo|1oo1oo1oooo111111011011

~ 3.1415927 4 0 | 4 9 | 0 F | D B

-20810.086 1|1ooo11o1|o1ooo1o1oo1o1oooo1o11oo
C 6 | A 2 | 9 4 | 2 c

Table A-14. Data storage - denormalized values

31 24 23 16 15 87 0

Value S Exponent Mantissa

0.0 0/l 0o0o00000/00000000000O0O0OOOOOOOGOOQO
0 o | o o | o o | o 0

-0.0 10 0000000/00000000000000000000000O
8 o | o o | o o | o 0

(1.0-2-23)-2-126o|oooooooo|11111111111111111111111
~1.17549 - 1098 0 o | 7 F | F F | F F

-(1.0-2-23)-2-1261|oooooooo|11111111111111111111111
~-1.17549 - 1038 8 o | 7 F | F F | F F

21 2126 o|oooooooo|1oooooooooooooooooooooo
~ 5.87747 - 1039 0 0 | 4 0 | 0 0 | 0 0

1. 0126 1|oooooooo|1oooooooooooooooooooooo
~ -5.87747 - 1039 8 0 | 4 0 | 0 0 | 0 0

223 . 126 o|oooooooo|oooooooooooooooooooooo1
~1.40130 - 1045 0 0 | 0 0 | 0 0 | 0 1

023, p-126 1|oooooooo|oooooooooooooooooooooo1
~-1.40130 - 1045 8 0 | 0 0 | 0 0 | 0 1

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 103

A
GMCLIB_3COOR_T_F16

Table A-15. Data storage - special values

31 24 23 16 15 87 0
Value S Exponent Mantissa
oo 0/[1t1111111/00000000000000000000O0O0GO0O0
7 F | 8 0 | 0 0 | 0 0
o0 1|11111111|ooooooooooooooooooooooo
F F | 8 0 | 0 0 | 0 0
Not a number *1T 1111 11 1| non zero
7/F F | 800001 to FFFFFF

A.14 GMCLIB_3COOR_T_F16

The GMCLIB_3COOR_T_F16 structure type corresponds to the three-phase stationary
coordinate system, based on the A, B, and C components. Each member is of the frac16_t
data type. The structure definition is as follows:

typedef struct
fracle_t fl6A;
fracle t £f16B;

fracle t f16C;
} GMCLIB_3COOR T F16;

The structure description is as follows:

Table A-16. GMCLIB_3COOR_T_F16 members description

Type Name Description
frac16_t f16A A component; 16-bit fractional type
frac16_t f16B B component; 16-bit fractional type
frac16_t f16C C component; 16-bit fractional type

A.15 GMCLIB_3COOR_T_FLT

The GMCLIB_3COOR_T_FLT structure type corresponds to the three-phase stationary
coordinate system, based on the A, B, and C components. Each member is of the float_t
data type. The structure definition is as follows:

typedef struct

GMCLIB User's Guide, Rev. 3, 05/2020
104 NXP Semiconductors

4
Appendix A Library types

float_t fltA;
float_t fltB;
float t f£1tC;

} GMCLIB 3COOR T FLT;

The structure description is as follows:

Table A-17. GMCLIB_3COOR_T_FLT members description

Type Name Description
float_t fltA A component; 32-bit single precision floating-point type
float_t fltB B component; 32-bit single precision floating-point type
float_t fltC C component; 32-bit single precision floating-point type

A.16 GMCLIB_2COOR_AB_T_F16

The GMCLIB_2COOR_AB_T_F16 structure type corresponds to the general two-phase
stationary coordinate system, based on the A and B orthogonal components. Each
member is of the frac16_t data type. The structure definition is as follows:
typedef struct

fracle_t fl6A;

fracle_t f16B;
} GMCLIB 2COOR AB T F16;

The structure description is as follows:

Table A-18. GMCLIB_2COOR_AB_T_F16 members description

Type Name Description
frac16_t f16A A-component; 16-bit fractional type
frac16_t f16B B-component; 16-bit fractional type

A.17 GMCLIB_2COOR_AB_T_F32

The GMCLIB_2COOR_AB_T_F32 structure type corresponds to the general two-phase
stationary coordinate system, based on the A and B orthogonal components. Each
member is of the frac32_t data type. The structure definition is as follows:

typedef struc

frac32_t f£32Alpha;
frac32 t f32Beta;
} GMCLIB 2COOR_AB T F32;

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 105

A
GMCLIB_2COOR_AB_T_FLT

The structure description is as follows:

Table A-19. GMCLIB_2COOR_AB_T_F32 members description

Type Name Description
frac32_t f32A A component; 32-bit fractional type
frac32_t f32B B component; 32-bit fractional type

A.18 GMCLIB_2COOR_AB_T_FLT

The GMCLIB_2COOR_AB_T_FLT structure type corresponds to the general two-phase
stationary coordinate system, based on the A and B orthogonal components. Each
member is of the float_t data type. The structure definition is as follows:
typedef struct

float t fltAlpha;

float_t fltBeta;
} GMCLIB_2COOR_AB T FLT;

The structure description is as follows:

Table A-20. GMCLIB_2COOR_AB_T_FLT members description

Type Name Description
float_t fltA B-component; 32-bit single precision floating-point type
float_t fltB B-component; 32-bit single precision floating-point type

A.19 GMCLIB_2COOR_ALBE_T_F16

The GMCLIB_2COOR_ALBE_T_F16 structure type corresponds to the two-phase
stationary coordinate system, based on the Alpha and Beta orthogonal components. Each
member is of the frac16_t data type. The structure definition is as follows:
typedef struct

fraclé t flé6Alpha;

fracle_t fléBeta;
} GMCLIB 2COOR ALBE T F16;

GMCLIB User's Guide, Rev. 3, 05/2020
106 NXP Semiconductors

4
Appendix A Library types

The structure description is as follows:

Table A-21. GMCLIB_2COOR_ALBE_T_F16 members description

Type Name Description
frac16_t f16Apha a-component; 16-bit fractional type
frac16_t f16Beta B-component; 16-bit fractional type

A.20 GMCLIB_2COOR_ALBE_T_FLT

The GMCLIB_2COOR_ALBE_T_FLT structure type corresponds to the two-phase
stationary coordinate system based on the Alpha and Beta orthogonal components. Each
member is of the float_t data type. The structure definition is as follows:
typedef struct

float t fltAlpha;

float_t fltBeta;
} GMCLIB_2COOR_ALBE T_FLT;

The structure description is as follows:

Table A-22. GMCLIB 2COOR_ALBE T FLT members

description
Type Name Description
float_t fltApha a-component; 32-bit single precision floating-point type
float_t fltBeta B-component; 32-bit single precision floating-point type

A.21 GMCLIB_2COOR_DQ_T_F16

The GMCLIB_2COOR_DQ_T_F16 structure type corresponds to the two-phase rotating
coordinate system, based on the D and Q orthogonal components. Each member is of the
frac16_t data type. The structure definition is as follows:

typedef struct

fraclée t £f16D;
fracle t £16Q;
} GMCLIB_2COOR DQ T F16;

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 107

GMCLIB_2COOR_DQ_T_F32
The structure description is as follows:

Table A-23. GMCLIB_2COOR_DQ_T_F16 members description

Type Name Description
frac16_t f16D D-component; 16-bit fractional type
frac16_t f16Q Q-component; 16-bit fractional type

A.22 GMCLIB_2COOR_DQ_T_F32

The GMCLIB_2COOR_DQ_T_F32 structure type corresponds to the two-phase rotating
coordinate system, based on the D and Q orthogonal components. Each member is of the
frac32_t data type. The structure definition is as follows:

typedef struct
frac32 t £32D;

frac32 t £32Q;
} GMCLIB_2COOR DQ T F32;

The structure description is as follows:

Table A-24. GMCLIB_2COOR_DQ_T_F32 members description

Type Name Description
frac32_t f32D D-component; 32-bit fractional type
frac32_t 32Q Q-component; 32-bit fractional type

A.23 GMCLIB_2COOR_DQ_T_FLT

The GMCLIB_2COOR_DQ_T_FLT structure type corresponds to the two-phase rotating
coordinate system, based on the D and Q orthogonal components. Each member is of the
float_t data type. The structure definition is as follows:

typedef struct

float t £1tD;
float_t f£1tQ;
} GMCLIB 2COOR DQ T FLT;

GMCLIB User's Guide, Rev. 3, 05/2020
108 NXP Semiconductors

Appendix A Library types

The structure description is as follows:

Table A-25. GMCLIB_2COOR_DQ_T_FLT members description

Type Name Description
float_t fltD D-component; 32-bit single precision floating-point type
float_t fltQ Q-component; 32-bit single precision floating-point type

A.24 GMCLIB_2COOR_SINCOS_T_F16

The GMCLIB_2COOR_SINCOS_T_F16 structure type corresponds to the two-phase
coordinate system, based on the Sin and Cos components of a certain angle. Each
member is of the frac16_t data type. The structure definition is as follows:

typedef struct
fracle t fle6Sin;

fracle _t fléCos;
} GMCLIB_2COOR_SINCOS T F16;

The structure description is as follows:

Table A-26. GMCLIB_2COOR_SINCOS_T_F16 members description

Type Name Description
frac16_t f16Sin Sin component; 16-bit fractional type
frac16_t f16Cos Cos component; 16-bit fractional type

A.25 GMCLIB_2COOR_SINCOS_T_FLT

The GMCLIB_2COOR_SINCOS_T_FLT structure type corresponds to the two-phase
coordinate system, based on the Sin and Cos components of a certain angle. Each
member is of the float_t data type. The structure definition is as follows:

typedef struct
float t fltSin;

float_t fltCos;
} GMCLIB_2COOR_SINCOS T FLT;

GMCLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 109

A
FALSE

The structure description is as follows:

Table A-27. GMCLIB_2COOR_SINCOS_T_FLT members

description
Type Name Description
float_t fltSin Sin component; 32-bit single precision floating-point type
float_t fltCos Cos component; 32-bit single precision floating-point type

A.26 FALSE

The FALSE macro serves to write a correct value standing for the logical FALSE value
of the bool_t type. Its definition is as follows:

#define FALSE ((bool t)0)

#include "mlib.h"
static bool t bval;
void main (void)

bval = FALSE; /* bval = FALSE */

}

A.27 TRUE

The TRUE macro serves to write a correct value standing for the logical TRUE value of
the bool_t type. Its definition is as follows:

#define TRUE ((bool_t)1)

#include "mlib.h"
static bool_t bval;
void main (void)

{

bval = TRUE; /* bval = TRUE */

A.28 FRACS

GMCLIB User's Guide, Rev. 3, 05/2020
110 NXP Semiconductors

4
Appendix A Library types

The FRACS8 macro serves to convert a real number to the frac8_t type. Its definition is as
follows:

#define FRAC8 (x) ((frac8 t) ((x) < 0.9921875 ? ((x) >= -1 ? (x)*0x80 : 0x80) : 0x7F))

The input is multiplied by 128 (=27). The output is limited to the range <0x80 ; 0x7F>,
which corresponds to <-1.0 ; 1.0-277>.

#include "mlib.h"
static frac8 t f8Val;
void main (void)

f8val = FRAC8(0.187); /* £8val = 0.187 */

A.29 FRAC16

The FRAC16 macro serves to convert a real number to the frac16_t type. Its definition is
as follows:

#define FRAC16(x) ((fraclé_t) ((x) < 0.999969482421875 ? ((x) >= -1 ? (x)*0x8000 : 0x8000)
0x7FFF))

The input is multiplied by 32768 (=213). The output is limited to the range <0x8000 ;
0x7FFF>, which corresponds to <-1.0 ; 1.0-215>,

#include "mlib.h"
static fraclé_t flé6Val;
void main (void)

fleval = FRAC16(0.736); /* fleval = 0.736 */

}

A.30 FRAC32

The FRAC32 macro serves to convert a real number to the frac32_t type. Its definition is
as follows:

#define FRAC32(x) ((frac32 t) ((x) < 1 ? ((x) >= -1 ? (x)*0x80000000 : 0x80000000)
0x7FFFFFFF))

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 111

A
ACC16

The input is multiplied by 2147483648 (=231). The output is limited to the range
<0x80000000 ; Ox7FFFFFFF>, which corresponds to <-1.0 ; 1.0-2731>,

#include "mlib.h"
static frac32 t £32val;
void main (void)

f32val = FRAC32(-0.1735667) ; /* £32Val = -0.1735667 */

}

A.31 ACC16

The ACC16 macro serves to convert a real number to the acc16_t type. Its definition is as
follows:

#define ACCl6 (x) ((acclé_t) ((x) < 255.9921875 ? ((x) >= -256 ? (x)*0x80 : 0x8000) : OX7FFF))

The input is multiplied by 128 (=27). The output is limited to the range <0x8000 ;
0x7FFF> that corresponds to <-256.0 ; 255.9921875>.

#include "mlib.h"
static acclé_t aléeVal;
void main (void)

{

aléVal = ACC16(19.45627); /* aleVal = 19.45627 */

}

A.32 ACC32

The ACC32 macro serves to convert a real number to the acc32_t type. Its definition is as
follows:

#define ACC32(x) ((acc32 t) ((x) < 65535.999969482421875 ? ((x) >= -65536 ? (x)*0x8000 :
0x80000000) : Ox7FFFFFFF))

The input is multiplied by 32768 (=21°). The output is limited to the range
<0x80000000 ; Ox7FFFFFFF>, which corresponds to <-65536.0 ; 65536.0-2"15>

#include "mlib.h"

static acc32_t a32val;

GMCLIB User's Guide, Rev. 3, 05/2020
112 NXP Semiconductors

void main (void)

a32Val = ACC32(-13.654437); /* a32Val = -13.654437 */

}

GMCLIB User's Guide, Rev. 3, 05/2020
NXP Semiconductors 113

GMCLIB User's Guide, Rev. 3, 05/2020

114

NXP Semiconductors

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

arm

Information in this document is provided solely to enable system and software implementers to use
Freescale products. There are no express or implied copyright licenses granted hereunder to design
or fabricate any integrated circuits based on the information in this document. Freescale reserves the
right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical’ parameters that may be provided in Freescale data
sheets and/or specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for each customer
application by customer's technical experts. Freescale does not convey any license under its patent
rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of
sale, which can be found at the following address: www.freescale.com/salestermsandconditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc. ARM and Cortex
are the registered trademarks of ARM Limited, in EU and/or elsewhere. ARM logo is the trademark of
ARM Limited. All rights reserved. All other product or service names are the property of their
respective owners.

© 2020 NXP B.V.

Document Number CM4FGMCLIBUG
Revision 3, 05/2020

r
4\

http://www.nxp.com
http://www.nxp.com/support
http://www.freescale.com/salestermsandconditions

	Chapter 1​: Library
	Introduction
	Overview
	Data types
	API definition
	Supported compilers
	Library configuration
	Special issues

	Library integration into project (MCUXpresso IDE)
	Library path variable
	Library folder addition
	Library path setup

	Library integration into project (Kinetis Design Studio)
	Library path variable
	Library folder addition
	Library path setup

	Library integration into project (Keil µVision)
	NXP pack installation for new project (without MCUXpresso SDK)
	New project (without MCUXpresso SDK)
	Linking the files into the project
	Library path setup

	Library integration into project (IAR Embedded Workbench)
	New project (without MCUXpresso SDK)
	Library path variable
	Linking the files into the project
	Library path setup

	Chapter 2​: Algorithms in detail
	GMCLIB_Clark
	Available versions
	Declaration
	Function use

	GMCLIB_ClarkInv
	Available versions
	Declaration
	Function use

	GMCLIB_Park
	Available versions
	Declaration
	Function use

	GMCLIB_ParkInv
	Available versions
	Declaration
	Function use

	GMCLIB_DecouplingPMSM
	Available versions
	GMCLIB_DECOUPLINGPMSM_T_A32 type description
	GMCLIB_DECOUPLINGPMSM_T_FLT type description
	Declaration
	Function use

	GMCLIB_ElimDcBusRipFOC
	Available versions
	Declaration
	Function use

	GMCLIB_ElimDcBusRip
	Available versions
	Declaration
	Function use

	GMCLIB_SvmStd
	Available versions
	Declaration
	Function use

	GMCLIB_SvmIct
	Available versions
	Declaration
	Function use

	GMCLIB_SvmU0n
	Available versions
	Declaration
	Function use

	GMCLIB_SvmU7n
	Available versions
	Declaration
	Function use

	GMCLIB_SvmDpwm
	Available versions
	Declaration
	Function use

	GMCLIB_SvmExDpwm
	Available versions
	Declaration
	Function use

	Appendix A: Library types
	bool_t
	uint8_t
	uint16_t
	uint32_t
	int8_t
	int16_t
	int32_t
	frac8_t
	frac16_t
	frac32_t
	acc16_t
	acc32_t
	float_t
	GMCLIB_3COOR_T_F16
	GMCLIB_3COOR_T_FLT
	GMCLIB_2COOR_AB_T_F16
	GMCLIB_2COOR_AB_T_F32
	GMCLIB_2COOR_AB_T_FLT
	GMCLIB_2COOR_ALBE_T_F16
	GMCLIB_2COOR_ALBE_T_FLT
	GMCLIB_2COOR_DQ_T_F16
	GMCLIB_2COOR_DQ_T_F32
	GMCLIB_2COOR_DQ_T_FLT
	GMCLIB_2COOR_SINCOS_T_F16
	GMCLIB_2COOR_SINCOS_T_FLT
	FALSE
	TRUE
	FRAC8
	FRAC16
	FRAC32
	ACC16
	ACC32

	
	

