
GFLIB User's Guide
ARM® Cortex® M4F

Document Number: CM4FGFLIBUG
Rev. 3, 05/2020

GFLIB User's Guide, Rev. 3, 05/2020

2 NXP Semiconductors

Contents

Section number Title Page

Chapter 1
Library

1.1 Introduction.. 5

1.2 Library integration into project (MCUXpresso IDE) ..8

1.3 Library integration into project (Kinetis Design Studio) .. 15

1.4 Library integration into project (Keil µVision) ... 21

1.5 Library integration into project (IAR Embedded Workbench) ... 28

Chapter 2
Algorithms in detail

2.1 GFLIB_Sin... 35

2.2 GFLIB_Cos.. 37

2.3 GFLIB_Tan.. 39

2.4 GFLIB_Asin... 42

2.5 GFLIB_Acos.. 44

2.6 GFLIB_Atan...46

2.7 GFLIB_AtanYX... 48

2.8 GFLIB_Sqrt..51

2.9 GFLIB_Limit..53

2.10 GFLIB_LowerLimit... 55

2.11 GFLIB_UpperLimit..57

2.12 GFLIB_VectorLimit...58

2.13 GFLIB_VectorLimit1...62

2.14 GFLIB_Hyst... 65

2.15 GFLIB_Lut1D.. 67

2.16 GFLIB_LutPer1D...71

2.17 GFLIB_Ramp... 75

2.18 GFLIB_DRamp.. 79

2.19 GFLIB_FlexRamp..85

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 3

Section number Title Page

2.20 GFLIB_DFlexRamp... 90

2.21 GFLIB_FlexSRamp..97

2.22 GFLIB_Integrator...110

2.23 GFLIB_CtrlBetaIPpAW...114

2.24 GFLIB_CtrlBetaIPDpAW..121

2.25 GFLIB_CtrlPIpAW.. 129

2.26 GFLIB_CtrlPIDpAW... 135

GFLIB User's Guide, Rev. 3, 05/2020

4 NXP Semiconductors

Chapter 1
Library

1.1 Introduction

1.1.1 Overview

This user's guide describes the General Functions Library (GFLIB) for the family of
ARM Cortex M4F core-based microcontrollers. This library contains optimized
functions.

1.1.2 Data types

GFLIB supports several data types: (un)signed integer, fractional, and accumulator, and
floating point. The integer data types are useful for general-purpose computation; they
are familiar to the MPU and MCU programmers. The fractional data types enable
powerful numeric and digital-signal-processing algorithms to be implemented. The
accumulator data type is a combination of both; that means it has the integer and
fractional portions.The floating-point data types are capable of storing real numbers in
wide dynamic ranges. The type is represented by binary digits and an exponent. The
exponent allows scaling the numbers from extremely small to extremely big numbers.
Because the exponent takes part of the type, the overall resolution of the number is
reduced when compared to the fixed-point type of the same size.

The following list shows the integer types defined in the libraries:

• Unsigned 16-bit integer —<0 ; 65535> with the minimum resolution of 1
• Signed 16-bit integer —<-32768 ; 32767> with the minimum resolution of 1
• Unsigned 32-bit integer —<0 ; 4294967295> with the minimum resolution of 1
• Signed 32-bit integer —<-2147483648 ; 2147483647> with the minimum resolution

of 1

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 5

The following list shows the fractional types defined in the libraries:

• Fixed-point 16-bit fractional —<-1 ; 1 - 2-15> with the minimum resolution of 2-15

• Fixed-point 32-bit fractional —<-1 ; 1 - 2-31> with the minimum resolution of 2-31

The following list shows the accumulator types defined in the libraries:

• Fixed-point 16-bit accumulator —<-256.0 ; 256.0 - 2-7> with the minimum
resolution of 2-7

• Fixed-point 32-bit accumulator —<-65536.0 ; 65536.0 - 2-15> with the minimum
resolution of 2-15

The following list shows the floating-point types defined in the libraries:

• Floating point 32-bit single precision —<-3.40282 · 1038 ; 3.40282 · 1038> with the
minimum resolution of 2-23

1.1.3 API definition

GFLIB uses the types mentioned in the previous section. To enable simple usage of the
algorithms, their names use set prefixes and postfixes to distinguish the functions'
versions. See the following example:

f32Result = MLIB_Mac_F32lss(f32Accum, f16Mult1, f16Mult2);

where the function is compiled from four parts:

• MLIB—this is the library prefix
• Mac—the function name—Multiply-Accumulate
• F32—the function output type
• lss—the types of the function inputs; if all the inputs have the same type as the

output, the inputs are not marked

The input and output types are described in the following table:

Table 1-1. Input/output types

Type Output Input

frac16_t F16 s

frac32_t F32 l

acc32_t A32 a

float_t FLT f

Introduction

GFLIB User's Guide, Rev. 3, 05/2020

6 NXP Semiconductors

1.1.4 Supported compilers
GFLIB for the ARM Cortex M4F core is written in . The library is built and tested using
the following compilers:

• Kinetis Design Studio
• MCUXpresso IDE
• IAR Embedded Workbench
• Keil µVision

For the MCUXpresso IDE, the library is delivered in the gflib.a file.

For the Kinetis Design Studio, the library is delivered in the gflib.a file.

For the IAR Embedded Workbench, the library is delivered in the gflib.a file.

For the Keil µVision, the library is delivered in the gflib.lib file.

The interfaces to the algorithms included in this library are combined into a single public
interface include file, gflib.h. This is done to lower the number of files required to be
included in your application.

1.1.5 Library configuration

GFLIB for the ARM Cortex M4F core is written in . Some functions from this library are
inline type, which are compiled together with project using this library. The optimization
level for inline function is usually defined by the specific compiler setting. It can cause an
issue especially when high optimization level is set. Therefore the optimization level for
all inline assembly written functions is defined by compiler pragmas using macros. The
configuration header file RTCESL_cfg.h is located in: specific library folder\MLIB
\Include. The optimization level can be changed by modifying the macro value for
specific compiler. In case of any change the library functionality is not guaranteed.

1.1.6 Special issues
1. The equations describing the algorithms are symbolic. If there is positive 1, the

number is the closest number to 1 that the resolution of the used fractional type
allows. If there are maximum or minimum values mentioned, check the range
allowed by the type of the particular function version.

2. The library functions that round the result (the API contains Rnd) round to nearest
(half up).

Chapter 1 Library

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 7

1.2 Library integration into project (MCUXpresso IDE)

This section provides a step-by-step guide on how to quickly and easily include GFLIB
into any MCUXpresso SDK example or demo application projects using MCUXpresso
IDE. This example uses the default installation path (C:\NXP\RTCESL
\CM4F_RTCESL_4.5_MCUX). If you have a different installation path, use that path
instead.

1.2.1 Library path variable

To make the library integration easier, create a variable that holds the information about
the library path.

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
Properties, or select Project > Properties from the menu. A project properties dialog
appears.

2. Expand the Resource node and click Linked Resources. See Figure 1-1.

Library integration into project (MCUXpresso IDE)

GFLIB User's Guide, Rev. 3, 05/2020

8 NXP Semiconductors

Figure 1-1. Project properties
3. Click the New… button in the right-hand side.
4. In the dialog that appears (see Figure 1-2), type this variable name into the Name

box: RTCESL_LOC.
5. Select the library parent folder by clicking Folder…, or just type the following path

into the Location box: C:\NXP\RTCESL\CM4F_RTCESL_4.5_MCUX. Click OK.

Chapter 1 Library

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 9

Figure 1-2. New variable
6. Create such variable for the environment. Expand the C/C++ Build node and click

Environment.
7. Click the Add… button in the right-hand side.
8. In the dialog that appears (see Figure 1-3), type this variable name into the Name

box: RTCESL_LOC.
9. Type the library parent folder path into the Value box: C:\NXP\RTCESL

\CM4F_RTCESL_4.5_MCUX.
10. Tick the Add to all configurations box to use this variable in all configurations. See

Figure 1-3.
11. Click OK.
12. In the previous dialog, click OK.

Library integration into project (MCUXpresso IDE)

GFLIB User's Guide, Rev. 3, 05/2020

10 NXP Semiconductors

Figure 1-3. Environment variable

1.2.2 Library folder addition

To use the library, add it into the Project tree dialog.

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
New > Folder, or select File > New > Folder from the menu. A dialog appears.

2. Click Advanced to show the advanced options.
3. To link the library source, select the Link to alternate location (Linked Folder)

option.
4. Click Variables..., select the RTCESL_LOC variable in the dialog, click OK, and/or

type the variable name into the box. See Figure 1-4.
5. Click Finish, and the library folder is linked in the project. See Figure 1-5.

Chapter 1 Library

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 11

Figure 1-4. Folder link

Figure 1-5. Projects libraries paths

1.2.3 Library path setup

GFLIB requires MLIB to be included too. These steps show how to include all dependent
modules:

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
Properties, or select Project > Properties from the menu. The project properties
dialog appears.

2. Expand the C/C++ General node, and click Paths and Symbols.
3. In the right-hand dialog, select the Library Paths tab. See Figure 1-7.
4. Click the Add… button on the right, and a dialog appears.

Library integration into project (MCUXpresso IDE)

GFLIB User's Guide, Rev. 3, 05/2020

12 NXP Semiconductors

5. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the
path in the box by adding the following (see Figure 1-6): ${RTCESL_LOC}\MLIB.

6. Click OK, and then click the Add… button.
7. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the

path in the box by adding the following: ${RTCESL_LOC}\GFLIB.
8. Click OK, you will see the paths added into the list. See Figure 1-7.

Figure 1-6. Library path inclusion

Figure 1-7. Library paths
9. After adding the library paths, add the library files. Click the Libraries tab. See

Figure 1-9.
10. Click the Add… button on the right, and a dialog appears.
11. Type the following into the File text box (see Figure 1-8): :mlib.a
12. Click OK, and then click the Add… button.
13. Type the following into the File text box: :gflib.a
14. Click OK, and you will see the libraries added in the list. See Figure 1-9.

Chapter 1 Library

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 13

Figure 1-8. Library file inclusion

Figure 1-9. Libraries
15. In the right-hand dialog, select the Includes tab, and click GNU C in the Languages

list. See Figure 1-11.
16. Click the Add… button on the right, and a dialog appears. See Figure 1-10.
17. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the

path in the box to be: ${RTCESL_LOC}\MLIB\Include
18. Click OK, and then click the Add… button.
19. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the

path in the box to be: ${RTCESL_LOC}\GFLIB\Include
20. Click OK, and you will see the paths added in the list. See Figure 1-11. Click OK.

Figure 1-10. Library include path addition

Library integration into project (MCUXpresso IDE)

GFLIB User's Guide, Rev. 3, 05/2020

14 NXP Semiconductors

Figure 1-11. Compiler setting

Type the #include syntax into the code where you want to call the library functions. In
the left-hand dialog, open the required .c file. After the file opens, include the following
lines into the #include section:

#include "mlib_FP.h"
#include "gflib_FP.h"

When you click the Build icon (hammer), the project is compiled without errors.

1.3 Library integration into project (Kinetis Design Studio)

This section provides a step-by-step guide on how to quickly and easily include GFLIB
into an empty project or any MCUXpresso SDK example or demo application projects
using Kinetis Design Studio. This example uses the default installation path (C:\NXP
\RTCESL\CM4F_RTCESL_4.5_KDS). If you have a different installation path, use that
path instead. If you want to use an existing MCUXpresso SDK project (for example the
hello_world project) see Library path variable. If not, continue with the next section.

Chapter 1 Library

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 15

1.3.1 Library path variable

To make the library integration easier, create a variable that will hold the information
about the library path.

1. Right-click the MyProject01 or MCUXpresso SDK project name node in the left-
hand part and click Properties, or select Project > Properties from the menu. A
project properties dialog appears.

2. Expand the Resource node and click Linked Resources. See Figure 1-12.

Figure 1-12. Project properties
3. Click the New… button in the right-hand side.
4. In the dialog that appears (see Figure 1-13), type this variable name into the Name

box: RTCESL_LOC.
5. Select the library parent folder by clicking Folder…, or just type the following path

into the Location box: C:\NXP\RTCESL\CM4F_RTCESL_4.5_KDS. Click OK.

Library integration into project (Kinetis Design Studio)

GFLIB User's Guide, Rev. 3, 05/2020

16 NXP Semiconductors

Figure 1-13. New variable
6. Create such variable for the environment. Expand the C/C++ Build node and click

Environment.
7. Click the Add… button in the right-hand side.
8. In the dialog that appears (see Figure 1-14), type this variable name into the Name

box: RTCESL_LOC.
9. Type the library parent folder path into the Value box: C:\NXP\RTCESL

\CM4F_RTCESL_4.5_KDS.
10. Tick the Add to all configurations box to use this variable in all configurations. See

Figure 1-14.
11. Click OK.
12. In the previous dialog, click OK.

Figure 1-14. Environment variable

Chapter 1 Library

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 17

1.3.2 Library folder addition

To use the library, add it into the Project tree dialog.

1. Right-click the MyProject01 or MCUXpresso SDK project name node in the left-
hand part and click New > Folder, or select File > New > Folder from the menu. A
dialog appears.

2. Click Advanced to show the advanced options.
3. To link the library source, select the option Link to alternate location (Linked

Folder).
4. Click Variables..., select the RTCESL_LOC variable in the dialog, click OK, and/or

type the variable name into the box. See Figure 1-15.
5. Click Finish, and you will see the library folder linked in the project. See Figure

1-16.

Figure 1-15. Folder link

Library integration into project (Kinetis Design Studio)

GFLIB User's Guide, Rev. 3, 05/2020

18 NXP Semiconductors

Figure 1-16. Projects libraries paths

1.3.3 Library path setup

GFLIB requires MLIB to be included too. These steps show how to include all dependent
modules:

1. Right-click the MyProject01 or MCUXpresso SDK project name node in the left-
hand part and click Properties, or select Project > Properties from the menu. A
project properties dialog appears.

2. Expand the C/C++ General node, and click Paths and Symbols.
3. In the right-hand dialog, select the Library Paths tab. See Figure 1-18.
4. Click the Add… button on the right, and a dialog appears.
5. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the

path in the box by adding the following (see Figure 1-17): ${RTCESL_LOC}\MLIB.
6. Click OK, and then click the Add… button.
7. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the

path in the box by adding the following: ${RTCESL_LOC}\GFLIB.
8. Click OK, and the paths will be visible in the list. See Figure 1-18.

Figure 1-17. Library path inclusion

Chapter 1 Library

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 19

Figure 1-18. Library paths
9. After adding the library paths, add the library files. Click the Libraries tab. See

Figure 1-20.
10. Click the Add… button on the right, and a dialog appears.
11. Type the following into the File text box (see Figure 1-19): :mlib.a
12. Click OK, and then click the Add… button.
13. Type the following into the File text box: :gflib.a
14. Click OK, and you will see the libraries added in the list. See Figure 1-20.

Figure 1-19. Library file inclusion

Figure 1-20. Libraries
15. In the right-hand dialog, select the Includes tab, and click GNU C in the Languages

list. See Figure 1-22.
16. Click the Add… button on the right, and a dialog appears. See Figure 1-21.
17. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the

path in the box to be: ${RTCESL_LOC}\MLIB\Include

Library integration into project (Kinetis Design Studio)

GFLIB User's Guide, Rev. 3, 05/2020

20 NXP Semiconductors

18. Click OK, and then click the Add… button.
19. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the

path in the box to be: ${RTCESL_LOC}\GFLIB\Include
20. Click OK, and you will see the paths added in the list. See Figure 1-22. Click OK.

Figure 1-21. Library include path addition

Figure 1-22. Compiler setting

Type the #include syntax into the code. Include the library into the main.c file. In the left-
hand dialog, open the Sources folder of the project, and double-click the main.c file.
After the main.c file opens up, include the following lines in the #include section:

#include "mlib_FP.h"
#include "gflib_FP.h"

When you click the Build icon (hammer), the project will be compiled without errors.

1.4 Library integration into project (Keil µVision)

This section provides a step-by-step guide on how to quickly and easily include GFLIB
into an empty project or any MCUXpresso SDK example or demo application projects
using Keil µVision. This example uses the default installation path (C:\NXP\RTCESL

Chapter 1 Library

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 21

\CM4F_RTCESL_4.5_KEIL). If you have a different installation path, use that path
instead. If any MCUXpresso SDK project is intended to use (for example hello_world
project) go to Linking the files into the project chapter otherwise read next chapter.

1.4.1 NXP pack installation for new project (without MCUXpresso
SDK)

This example uses the NXP part, and the default installation path (C:\NXP\RTCESL
\CM4F_RTCESL_4.5_KEIL) is supposed. If the compiler has never been used to create
any NXP MCU-based projects before, check whether the NXP MCU pack for the
particular device is installed. Follow these steps:

1. Launch Keil µVision.
2. In the main menu, go to Project > Manage > Pack Installer….
3. In the left-hand dialog (under the Devices tab), expand the All Devices > Freescale

(NXP) node.
4. Look for a line called "KVxx Series" and click it.
5. In the right-hand dialog (under the Packs tab), expand the Device Specific node.
6. Look for a node called "Keil::Kinetis_KVxx_DFP." If there are the Install or Update

options, click the button to install/update the package. See Figure 1-23.
7. When installed, the button has the "Up to date" title. Now close the Pack Installer.

Figure 1-23. Pack Installer

Library integration into project (Keil µVision)

GFLIB User's Guide, Rev. 3, 05/2020

22 NXP Semiconductors

1.4.2 New project (without MCUXpresso SDK)
To start working on an application, create a new project. If the project already exists and
is opened, skip to the next section. Follow these steps to create a new project:

1. Launch Keil µVision.
2. In the main menu, select Project > New µVision Project…, and the Create New

Project dialog appears.
3. Navigate to the folder where you want to create the project, for example C:

\KeilProjects\MyProject01. Type the name of the project, for example MyProject01.
Click Save. See Figure 1-24.

Figure 1-24. Create New Project dialog
4. In the next dialog, select the Software Packs in the very first box.
5. Type '' into the Search box, so that the device list is reduced to the devices.
6. Expand the node.
7. Click the MKV46F256xxx15 node, and then click OK. See Figure 1-25.

Figure 1-25. Select Device dialog

Chapter 1 Library

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 23

8. In the next dialog, expand the Device node, and tick the box next to the Startup node.
See Figure 1-26.

9. Expand the CMSIS node, and tick the box next to the CORE node.

Figure 1-26. Manage Run-Time Environment dialog
10. Click OK, and a new project is created. The new project is now visible in the left-

hand part of Keil µVision. See Figure 1-27.

Figure 1-27. Project
11. In the main menu, go to Project > Options for Target 'Target1'…, and a dialog

appears.
12. Select the Target tab.
13. Select Use Single Precision in the Floating Point Hardware option. See Figure 1-27.

Library integration into project (Keil µVision)

GFLIB User's Guide, Rev. 3, 05/2020

24 NXP Semiconductors

Figure 1-28. FPU

1.4.3 Linking the files into the project

GFLIB requires MLIB to be included too. The following steps show how to include all
dependent modules.

To include the library files in the project, create groups and add them.

1. Right-click the Target 1 node in the left-hand part of the Project tree, and select Add
Group… from the menu. A new group with the name New Group is added.

2. Click the newly created group, and press F2 to rename it to RTCESL.
3. Right-click the RTCESL node, and select Add Existing Files to Group 'RTCESL'…

from the menu.
4. Navigate into the library installation folder C:\NXP\RTCESL

\CM4F_RTCESL_4.5_KEIL\MLIB\Include, and select the mlib_FP.h file. If the file
does not appear, set the Files of type filter to Text file. Click Add. See Figure 1-29.

Figure 1-29. Adding .h files dialog
5. Navigate to the parent folder C:\NXP\RTCESL\CM4F_RTCESL_4.5_KEIL\MLIB,

and select the mlib.lib file. If the file does not appear, set the Files of type filter to
Library file. Click Add. See Figure 1-30.

Chapter 1 Library

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 25

Figure 1-30. Adding .lib files dialog
6. Navigate into the library installation folder C:\NXP\RTCESL

\CM4F_RTCESL_4.5_KEIL\GFLIB\Include, and select the gflib_FP.h file. If the
file does not appear, set the Files of type filter to Text file. Click Add.

7. Navigate to the parent folder C:\NXP\RTCESL\CM4F_RTCESL_4.5_KEIL\GFLIB,
and select the gflib.lib file. If the file does not appear, set the Files of type filter to
Library file. Click Add.

8. Now, all necessary files are in the project tree; see Figure 1-31. Click Close.

Figure 1-31. Project workspace

1.4.4 Library path setup

The following steps show the inclusion of all dependent modules.

1. In the main menu, go to Project > Options for Target 'Target1'…, and a dialog
appears.

2. Select the C/C++ tab. See Figure 1-32.

Library integration into project (Keil µVision)

GFLIB User's Guide, Rev. 3, 05/2020

26 NXP Semiconductors

3. In the Include Paths text box, type the following paths (if there are more paths, they
must be separated by ';') or add them by clicking the … button next to the text box:

• "C:\NXP\RTCESL\CM4F_RTCESL_4.5_KEIL\MLIB\Include"
• "C:\NXP\RTCESL\CM4F_RTCESL_4.5_KEIL\GFLIB\Include"

4. Click OK.
5. Click OK in the main dialog.

Figure 1-32. Library path addition

Type the #include syntax into the code. Include the library into a source file. In the new
project, it is necessary to create a source file:

1. Right-click the Source Group 1 node, and Add New Item to Group 'Source Group
1'… from the menu.

2. Select the C File (.c) option, and type a name of the file into the Name box, for
example 'main.c'. See Figure 1-33.

Chapter 1 Library

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 27

Figure 1-33. Adding new source file dialog
3. Click Add, and a new source file is created and opened up.
4. In the opened source file, include the following lines into the #include section, and

create a main function:

#include "mlib_FP.h"
#include "gflib_FP.h"

int main(void)
{
 while(1);
}

When you click the Build (F7) icon, the project will be compiled without errors.

1.5 Library integration into project (IAR Embedded
Workbench)

This section provides a step-by-step guide on how to quickly and easily include the
GFLIB into an empty project or any MCUXpresso SDK example or demo application
projects using IAR Embedded Workbench. This example uses the default installation
path (C:\NXP\RTCESL\CM4F_RTCESL_4.5_IAR). If you have a different installation
path, use that path instead. If any MCUXpresso SDK project is intended to use (for
example hello_world project) go to Linking the files into the project chapter otherwise
read next chapter.

Library integration into project (IAR Embedded Workbench)

GFLIB User's Guide, Rev. 3, 05/2020

28 NXP Semiconductors

1.5.1 New project (without MCUXpresso SDK)
This example uses the NXP MKV46F256xxx15 part, and the default installation path (C:
\NXP\RTCESL\CM4F_RTCESL_4.5_IAR) is supposed. To start working on an
application, create a new project. If the project already exists and is opened, skip to the
next section. Perform these steps to create a new project:

1. Launch IAR Embedded Workbench.
2. In the main menu, select Project > Create New Project… so that the "Create New

Project" dialog appears. See Figure 1-34.

Figure 1-34. Create New Project dialog
3. Expand the C node in the tree, and select the "main" node. Click OK.
4. Navigate to the folder where you want to create the project, for example, C:

\IARProjects\MyProject01. Type the name of the project, for example, MyProject01.
Click Save, and a new project is created. The new project is now visible in the left-
hand part of IAR Embedded Workbench. See Figure 1-35.

Chapter 1 Library

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 29

Figure 1-35. New project
5. In the main menu, go to Project > Options…, and a dialog appears.
6. In the Target tab, select the Device option, and click the button next to the dialog to

select the MCU. In this example, select NXP > KV4x > NXP MKV46F256xxx15.
Select VFPv4 single precision in the FPU option. Click OK. See Figure 1-36.

Figure 1-36. Options dialog

Library integration into project (IAR Embedded Workbench)

GFLIB User's Guide, Rev. 3, 05/2020

30 NXP Semiconductors

1.5.2 Library path variable

To make the library integration easier, create a variable that will hold the information
about the library path.

1. In the main menu, go to Tools > Configure Custom Argument Variables…, and a
dialog appears.

2. Click the New Group button, and another dialog appears. In this dialog, type the
name of the group PATH, and click OK. See Figure 1-37.

Figure 1-37. New Group
3. Click on the newly created group, and click the Add Variable button. A dialog

appears.
4. Type this name: RTCESL_LOC
5. To set up the value, look for the library by clicking the '…' button, or just type the

installation path into the box: C:\NXP\RTCESL\CM4F_RTCESL_4.5_IAR. Click
OK.

6. In the main dialog, click OK. See Figure 1-38.

Chapter 1 Library

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 31

Figure 1-38. New variable

1.5.3 Linking the files into the project

GFLIB requires MLIB to be included too. The following steps show the inclusion of all
dependent modules.

To include the library files into the project, create groups and add them.

1. Go to the main menu Project > Add Group…
2. Type RTCESL, and click OK.
3. Click on the newly created node RTCESL, go to Project > Add Group…, and create

a MLIB subgroup.
4. Click on the newly created node MLIB, and go to the main menu Project > Add

Files… See Figure 1-40.
5. Navigate into the library installation folder C:\NXP\RTCESL

\CM4F_RTCESL_4.5_IAR\MLIB\Include, and select the mlib_FP.h file. (If the file
does not appear, set the file-type filter to Source Files.) Click Open. See Figure 1-39.

6. Navigate into the library installation folder C:\NXP\RTCESL
\CM4F_RTCESL_4.5_IAR\MLIB, and select the mlib.a file. If the file does not
appear, set the file-type filter to Library / Object files. Click Open.

Figure 1-39. Add Files dialog
7. Click on the RTCESL node, go to Project > Add Group…, and create a GFLIB

subgroup.

Library integration into project (IAR Embedded Workbench)

GFLIB User's Guide, Rev. 3, 05/2020

32 NXP Semiconductors

8. Click on the newly created node GFLIB, and go to the main menu Project > Add
Files….

9. Navigate into the library installation folder C:\NXP\RTCESL
\CM4F_RTCESL_4.5_IAR\GFLIB\Include, and select the gflib_FP.h file. (If the file
does not appear, set the file-type filter to Source Files.) Click Open.

10. Navigate into the library installation folder C:\NXP\RTCESL
\CM4F_RTCESL_4.5_IAR\GFLIB, and select the gflib.a file. If the file does not
appear, set the file-type filter to Library / Object files. Click Open.

11. Now you will see the files added in the workspace. See Figure 1-40.

Figure 1-40. Project workspace

1.5.4 Library path setup

The following steps show the inclusion of all dependent modules:

1. In the main menu, go to Project > Options…, and a dialog appears.
2. In the left-hand column, select C/C++ Compiler.
3. In the right-hand part of the dialog, click on the Preprocessor tab (it can be hidden in

the right; use the arrow icons for navigation).
4. In the text box (at the Additional include directories title), type the following folder

(using the created variable):
• $RTCESL_LOC$\MLIB\Include
• $RTCESL_LOC$\GFLIB\Include

5. Click OK in the main dialog. See Figure 1-41.

Chapter 1 Library

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 33

Figure 1-41. Library path adition

Type the #include syntax into the code. Include the library included into the main.c file.
In the workspace tree, double-click the main.c file. After the main.c file opens up, include
the following lines into the #include section:

#include "mlib_FP.h"
#include "gflib_FP.h"

When you click the Make icon, the project will be compiled without errors.

Library integration into project (IAR Embedded Workbench)

GFLIB User's Guide, Rev. 3, 05/2020

34 NXP Semiconductors

Chapter 2
Algorithms in detail

2.1 GFLIB_Sin

The GFLIB_Sin function implements the polynomial approximation of the sine function.
It provides a computational method for the calculation of a standard trigonometric sine
function sin(x), using the 9th order Taylor polynomial approximation. The Taylor
polynomial approximation of a sine function is expressed as follows:

Equation 1.

Equation 2.

where the constants are:

The fractional arithmetic is limited to the range <-1 ; 1), so the input argument can only
be within this range. The input argument is the multiplier of π: sin(π · x), where the user
passes the x argument. Example: if the input is -0.5, it corresponds to -0.5π.

The fractional function sin(π · x) is expressed using the 9th order Taylor polynomial as
follows:

Equation 3.

where:

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 35

2.1.1 Available versions

The function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

• Floating-point output - the output is the floating-point result within the range <-1.0 ;
1.0>.

• Floating-point output with accumulator input - the output is the floating-point result
within the range <-1.0 ; 1.0>. The input is the accumulator angle in radians divided
by π.

The available versions of the GFLIB_Sin function are shown in the following table:

Table 2-1. Function versions

Function name Input type Result type Description

GFLIB_Sin_F16 frac16_t frac16_t Calculation of the sin(π · x), where the input argument is a 16-bit fractional
value normalized to the range <-1 ; 1) that represents an angle in radians
within the range <-π; π). The output is a 16-bit fractional value within the
range <-1 ; 1).

GFLIB_Sin_FLT float_t float_t Calculation of the sin(x), where the input argument is a 32-bit single
precision floating-point value in radians within the range <-π; π). The output
is a 32-bit single precision floating-point value within the range <-1.0 ; 1.0>.

GFLIB_Sin_FLTa acc32_t float_t Calculation of the sin(π · x), where the input argument is a 32-bit
accumulator value where the fractional part <-1 ; 1) represents the angle
within the range <-π; π). The output is a 32-bit single precision floating-
point value within the range <-1.0 ; 1.0>.

2.1.2 Declaration

The available GFLIB_Sin functions have the following declarations:

frac16_t GFLIB_Sin_F16(frac16_t f16Angle)
float_t GFLIB_Sin_FLT(float_t fltAngle)
float_t GFLIB_Sin_FLTa(acc32_t a32Angle)

GFLIB_Sin

GFLIB User's Guide, Rev. 3, 05/2020

36 NXP Semiconductors

2.1.3 Function use

The use of the GFLIB_Sin function is shown in the following examples:

Fixed-point version:

#include "gflib.h"

static frac16_t f16Result;
static frac16_t f16Angle;

void main(void)
{
 f16Angle = FRAC16(0.333333); /* f16Angle = 0.333333 [60°] */

 /* f16Result = sin(f16Angle); (π * f16Angle[rad]) = deg * (π / 180) */
 f16Result = GFLIB_Sin_F16(f16Angle);
}

Floating-point version:

#include "gflib.h"

static float_t fltResult;
static float_t fltAngle;

void main(void)
{
 fltAngle = 1.04719F; /* fltAngle = 1.04719 rad [60°] */

 /* fltResult = sin(fltAngle); fltAngle[rad] = deg * (pi / 180) */
 fltResult = GFLIB_Sin_FLT(fltAngle);
}

2.2 GFLIB_Cos

The GFLIB_Cos function implements the polynomial approximation of the cosine
function. This function computes the cos(x) using the ninth-order Taylor polynomial
approximation of the sine function, and its equation is as follows:

Equation 4.

Because the fractional arithmetic is limited to the range <-1 ; 1), the input argument can
only be within this range. The input argument is the multiplier of π: cos(π · x), where the
user passes the x argument. For example, if the input is -0.5, it corresponds to -0.5π.

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 37

2.2.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

• Floating-point output - the output is the floating-point result within the range <-1.0 ;
1.0>.

• Floating-point output with accumulator input - the output is the floating-point result
within the range <-1.0 ; 1.0>. The input is the accumulator angle in radians divided
by π.

The available versions of the GFLIB_Cos function are shown in the following table:

Table 2-2. Function versions

Function name Input type Result type Description

GFLIB_Cos_F16 frac16_t frac16_t Calculation of cos(π · x), where the input argument is a 16-bit fractional
value, normalized to the range <-1 ; 1) that represents an angle in radians
within the range <- π; π). The output is a 16-bit fractional value within the
range <-1 ; 1).

GFLIB_Cos_FLT float_t float_t Calculation of cos(x), where the input argument is a 32-bit single precision
floating-point value in radians within the range <-π; π). The output is a 32-
bit single precision floating-point value within the range <-1.0 ; 1.0>.

GFLIB_Cos_FLTa acc32_t float_t Calculation of the cos(π · x), where the input argument is a 32-bit
accumulator value where the fractional part <-1 ; 1) represents the angle
within the range <-π; π). The output is a 32-bit single precision floating-
point value within the range <-1.0 ; 1.0>.

2.2.2 Declaration

The available GFLIB_Cos functions have the following declarations:

frac16_t GFLIB_Cos_F16(frac16_t f16Angle)
float_t GFLIB_Cos_FLT(float_t fltAngle)
float_t GFLIB_Cos_FLTa(acc32_t a32Angle)

2.2.3 Function use

The use of the GFLIB_Cos function is shown in the following examples:

Fixed-point version:

#include "gflib.h"

GFLIB_Cos

GFLIB User's Guide, Rev. 3, 05/2020

38 NXP Semiconductors

static frac16_t f16Result;
static frac16_t f16Angle;

void main(void)
{
 f16Angle = FRAC16(0.333333); /* f16Angle = 0.333333 [60°] */

 /* f16Result = cos(f16Angle); f16Angle[rad] = deg * (π / 180) */
 f16Result = GFLIB_Cos_F16(f16Angle);
}

Floating-point version:

#include "gflib.h"

static float_t fltResult;
static float_t fltAngle;

void main(void)
{
 fltAngle = 1.04719F; /* fltAngle = 1.04719 rad [60°] */

 /* fltResult = cos(fltAngle); fltAngle[rad] = deg * (π / 180) */
 fltResult = GFLIB_Cos_FLT(fltAngle);
}

2.3 GFLIB_Tan

The GFLIB_Tan function provides a computational method for calculation of a standard
trigonometric tangent function tan(x), using the piece-wise polynomial approximation.
Function tan(x) takes an angle and returns the ratio of two sides of a right-angled triangle.
The ratio is the length of the side opposite the angle divided by the length of the side
adjacent to the angle.

Equation 5.

Because both sin(x) and cos(x) are defined in interval <-π ; π>, the function tan(x) is
equal to zero when sin(x)=0 and is equal to infinity when cos(x)=0. The graph of tan(x) is
shown in the following figure:

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 39

Figure 2-1. Course of the function GFLIB_Tan

The fractional arithmetic is limited to the range <-1 ; 1) so the input argument can only be
within this range. The input argument is the multiplier of π: tan(π · x) where you pass the
x argument. Example: if the input is -0.5, it corresponds to -0.5π. The output of the
function is limited to the range <-1 ; 1) for the fractional arithmetic. For the points where
the function is not defined, the output is fractional -1.

2.3.1 Available versions

The function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

• Floating-point output - the output is the floating-point result.
• Floating-point output with accumulator input - the output is the floating-point result.

The input is the accumulator angle in radians divided by π.

The available versions of the GFLIB_Tan function are shown in the following table:

Table 2-3. Function versions

Function name Input type Result type Description

GFLIB_Tan_F16 frac16_t frac16_t Calculation of the tan(π · x) where the input argument is a 16-bit fractional
value normalized to the range <-1 ; 1) that represents an angle in radians
within the range <-π ; π). The output is a 16-bit fractional value within the
range <-1 ; 1).

Table continues on the next page...

GFLIB_Tan

GFLIB User's Guide, Rev. 3, 05/2020

40 NXP Semiconductors

Table 2-3. Function versions (continued)

Function name Input type Result type Description

GFLIB_Tan_FLT float_t float_t Calculation of the tan(x) where the input argument is a 32-bit single
precision floating-point value in radians within the range <-π ; π). The
output is a 32-bit single precision floating-point value within the full range.

GFLIB_Tan_FLTa acc32_t float_t Calculation of the tan(π · x), where the input argument is a 32-bit
accumulator value where the fractional part <-1 ; 1) represents the angle
within the range <-π ; π). The output is a 32-bit single precision floating-
point value within the full range.

2.3.2 Declaration

The available GFLIB_Tan functions have the following declarations:

frac16_t GFLIB_Tan_F16(frac16_t f16Angle)
float_t GFLIB_Tan_FLT(float_t fltAngle)
float_t GFLIB_Tan_FLTa(acc32_t a32Angle)

2.3.3 Function use

The use of the GFLIB_Tan function is shown in the following examples:

Fixed-point version:

#include "gflib.h"

static frac16_t f16Result;
static frac16_t f16Angle;

void main(void)
{
 f16Angle = FRAC16(0.1); /* f16Angle = 0.1 [18°] */

 /* f16Result = tan(f16Angle); (π * f16Angle[rad]) = deg * (π / 180) */
 f16Result = GFLIB_Tan_F16(f16Angle);
}

Floating-point version:

#include "gflib.h"

static float_t fltResult;
static float_t fltAngle;

void main(void)
{
 fltAngle = 0.1F; /* fltAngle = 0.1 [5.72°] */

 /* fltResult = tan(fltAngle); (π * f16Angle[rad]) = deg * (π / 180) */

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 41

 fltResult = GFLIB_Tan_FLT(fltAngle);
}

2.4 GFLIB_Asin

The GFLIB_Asin function provides a computational method for calculation of a standard
inverse trigonometric arcsine function arcsin(x), using the piece-wise polynomial
approximation. Function arcsin(x) takes the ratio of the length of the opposite side to the
length of the hypotenuse and returns the angle.

Figure 2-2. Course of the function GFLIB_Asin

The fractional arithmetic is limited by the range <-1;1) so the output can only be within
this range. This range corresponds to the angle <-1;1). Example: if the output is -0.5 it
corresponds to -0.5π.

2.4.1 Available versions

The function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1;1). The result may saturate.

• Floating point output - the output is the floating point result within the range <-π;π>.

GFLIB_Asin

GFLIB User's Guide, Rev. 3, 05/2020

42 NXP Semiconductors

The available versions of the GFLIB_Asin function are shown in the following table:

Table 2-4. Function versions

Function name Input type Result type Description

GFLIB_Asin_F16 frac16_t frac16_t Calculation of the arcsin(x) / π where the input argument is a 16-bit
fractional within the range <-1;1). The output is a 16-bit fractional value
within the range <-1;1) that represents an angle in radians within the range
<-π;π).

GFLIB_Asin_FLT float_t float_t Calculation of the arcsin(x) where the input argument is a 32-bit single
precision floating point value within the range <-1;1>. The output is a 32-bit
single precision floating point value within the range <-π;π>.

2.4.2 Declaration

The available GFLIB_Asin functions have the following declarations:

frac16_t GFLIB_Asin_F16(frac16_t f16Val)
float_t GFLIB_Asin_FLT(float_t fltVal)

2.4.3 Function use

The use of the GFLIB_Asin function is shown in the following examples:

Fixed-point version:

#include "gflib.h"

static frac16_t f16Result;
static frac16_t f16Value;

void main(void)
{
 f16Value = FRAC16(0.5); /* f16Value = 0.5 */

 /* f16Result = arcsin(f16Value); */
 f16Result = GFLIB_Asin_F16(f16Value);
}

Floating-point version:

#include "gflib.h"

static float_t fltResult;
static float_t fltValue;

void main(void)
{
 fltValue = 1.57F; /* fltValue = 1.57 rad */

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 43

 /* fltResult = arcsin(fltValue); */
 fltResult = GFLIB_Asin_FLT(fltValue);
}

2.5 GFLIB_Acos

The GFLIB_Acos function provides a computational method for calculation of a standard
inverse trigonometric arccosine function arccos(x), using the piece-wise polynomial
approximation. Function arccos(x) takes the ratio of the length of the adjacent side to the
length of the hypotenuse and returns the angle.

Figure 2-3. Course of the function GFLIB_Acos

The fractional arithmetic is limited by the range <-1;1) so the output can only be within
this range. This range corresponds to the angle <-1;1). Example: if the output is -0.5 it
corresponds to -0.5π.

2.5.1 Available versions

The function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1;1). The result may saturate.

• Floating point output - the output is the floating point result within the range <-π;π>.

GFLIB_Acos

GFLIB User's Guide, Rev. 3, 05/2020

44 NXP Semiconductors

The available versions of the GFLIB_Acos function are shown in the following table:

Table 2-5. Function versions

Function name Input type Result type Description

GFLIB_Acos_F16 frac16_t frac16_t Calculation of the arccos(x) / π where the input argument is a 16-bit
fractional within the range <-1;1). The output is a 16-bit fractional value
within the range <-1;1) that represents an angle in radians within the range
<-π;π).

GFLIB_Acos_FLT float_t float_t Calculation of the arccos(x) where the input argument is a 32-bit single
precision floating point value within the range <-1;1>. The output is a 32-bit
single precision floating point value within the range <-π;π>.

2.5.2 Declaration

The available GFLIB_Acos functions have the following declarations:

frac16_t GFLIB_Acos_F16(frac16_t f16Val)
float_t GFLIB_Acos_FLT(float_t fltVal)

2.5.3 Function use

The use of the GFLIB_Acos function is shown in the following examples:

Fixed-point version:

#include "gflib.h"

static frac16_t f16Result;
static frac16_t f16Value;

void main(void)
{
 f16Value = FRAC16(0.5); /* f16Value = 0.5 */

 /* f16Result = arccos(f16Value); */
 f16Result = GFLIB_Acos_F16(f16Value);
}

Floating-point version:

#include "gflib.h"

static float_t fltResult;
static float_t fltValue;

void main(void)
{
 fltValue = 1.57F; /* fltValue = 1.57 rad */

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 45

 /* fltResult = arccos(fltValue); */
 fltResult = GFLIB_Acos_FLT(fltValue);
}

2.6 GFLIB_Atan

The GFLIB_Atan function implements the polynomial approximation of the arctangent
function. It provides a computational method for calculating the standard trigonometric
arctangent function arctan(x), using the piece-wise minimax polynomial approximation.
Function arctan(x) takes a ratio, and returns the angle of two sides of a right-angled
triangle. The ratio is the length of the side opposite to the angle divided by the length of
the side adjacent to the angle. The graph of the arctan(x) is shown in the following figure:

Figure 2-4. Course of the GFLIB_Atan function

The fractional arithmetic version of the GFLIB_Atan function is limited to a certain
range of inputs <-1 ; 1). Because the arctangent values are the same, with just an opposite
sign for the input ranges <-1 ; 0) and <0 ; 1), the approximation of the arctangent function
over the entire defined range of input ratios can be simplified to the approximation for a
ratio in the range <0 ; 1). After that, the result will be negated, depending on the input
ratio.

GFLIB_Atan

GFLIB User's Guide, Rev. 3, 05/2020

46 NXP Semiconductors

2.6.1 Available versions

The function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-0.25 ; 0.25), which corresponds to the angle <-π / 4 ; π / 4).

• Floating-point output - the output is the floating-point result within the range <-π /
2 ;π / 2>.

• Accumulator output with floating-point input - the output is the accumulator angle
within the range (-0.5 ; 0.5), which corresponds to the angle (-π / 2 ; π / 2). The input
is the floating-point value.

The available versions of the GFLIB_Atan function are shown in the following table:

Table 2-6. Function versions

Function name Input type Result type Description

GFLIB_Atan_F16 frac16_t frac16_t Input argument is a 16-bit fractional value within the range <-1 ; 1). The
output is the arctangent of the input as a 16-bit fractional value, normalized
within the range <-0.25 ; 0.25), which represents an angle (in radians) in
the range <-π / 4 ; π / 4) <-45° ; 45°).

GFLIB_Atan_FLT float_t float_t Input argument is a 32-bit single precision floating-point value within the
full type's range. The output is the arctangent of the input as a 32-bit single
precision floating-point value in radians.

GFLIB_Atan_A32f float_t acc32_t Input argument is a 32-bit single precision floating-point value within the
full type's range. The output is the arctangent of the input as a 32-bit
accumulator value, normalized within the range (-0.5 ; 0.5), which
represents an angle (in radians) in the range (-π / 2 ; π / 2) (-90° ; 90°).

2.6.2 Declaration

The available GFLIB_Atan functions have the following declarations:

frac16_t GFLIB_Atan_F16(frac16_t f16Val)
float_t GFLIB_Atan_FLT(float_t fltVal)
acc32_t GFLIB_Atan_A32f(float_t fltVal)

2.6.3 Function use

The use of the GFLIB_Atan function is shown in the following examples:

Fixed-point version:

#include "gflib.h"

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 47

static frac16_t f16Result;
static frac16_t f16Val;

void main(void)
{
 f16Val = FRAC16(0.1666666); /* f16Val = 0.1666666 (30°) */

 /* f16Result = atan(f16Val); f16Result * 180 => angle[degree] */
 f16Result = GFLIB_Atan_F16(f16Val);
}

Floating-point version:

#include "gflib.h"

static float_t fltResult;
static float_t fltVal;

void main(void)
{
 fltVal = 0.52359f; /* fltVal = 0.52359 rad (30°) */

 /* fltResult = atan(fltVal); fltResult * 180 => angle[degree] */
 fltResult = GFLIB_Atan_FLT(fltVal);
}

2.7 GFLIB_AtanYX

The GFLIB_AtanYX function computes the angle, where its tangent is y / x (see the
figure below). This calculation is based on the input argument division (y divided by x),
and the piece-wise polynomial approximation.

GFLIB_AtanYX

GFLIB User's Guide, Rev. 3, 05/2020

48 NXP Semiconductors

Figure 2-5. Course of the GFLIB_AtanYX function

The first parameter Y is the ordinate (the x coordinate), and the second parameter X is the
abscissa (the x coordinate). The counter-clockwise direction is assumed to be positive,
and thus a positive angle is computed if the provided ordinate (Y) is positive. Similarly, a
negative angle is computed for the negative ordinate. The calculations are performed in
several steps. In the first step, the angle is positioned within the correct half-quarter of the
circumference of a circle by dividing the angle into two parts: the integral multiple of 45o

(half-quarter), and the remaining offset within the 45o range. Simple geometric properties
of the Cartesian coordinate system are used to calculate the coordinates of the vector with
the calculated angle offset. In the second step, the vector ordinate is divided by the vector
abscissa (y / x) to obtain the tangent value of the angle offset. The angle offset is
computed by applying the GFLIB_Atan function. The sum of the integral multiple of
half-quarters and the angle offset within a single halfquarter form the angle is computed.

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 49

The function returns 0 if both input arguments equal 0, and sets the output error flag; in
other cases, the output flag is cleared. When compared to the GFLIB_Atan function, the
GFLIB_AtanYX function places the calculated angle correctly within the fractional range
<-π ; π>.

In the fractional arithmetic, both input parameters are assumed to be in the fractional
range <-1 ; 1). The output is within the range <-1 ; 1), which corresponds to the real
range <-π ; π).

2.7.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1), which corresponds to the angle <-π ; π).

• Floating-point output - the output is the floating-point result within the range <- π;
π>.

• Accumulator output with floating-point input - the output is the accumulator angle
within the range <-1 ; 1>, which corresponds to the angle <-π ; π>. The input is the
floating-point value.

The available versions of the GFLIB_AtanYX function are shown in the following table:

Table 2-7. Function versions

Function name Input type Output type Result type

Y X Error flag

GFLIB_AtanYX_F16 frac16_t frac16_t bool_t * frac16_t

The first input argument is a 16-bit fractional value that contains the ordinate of the input vector (y
coordinate). The second input argument is a 16-bit fractional value that contains the abscissa of the
input vector (x coordinate). The result is the arctangent of the input arguments as a 16-bit fractional
value within the range <-1 ; 1), which corresponds to the real angle range <- π; π). The function sets
the boolean error flag pointed to by the output parameter if both inputs are zero; in other cases, the
output flag is cleared.

GFLIB_AtanYX_FLT float_t float_t bool_t * float_t

The first input argument is a 32-bit single precision floating-point value, which contains the ordinate
of the input vector (y coordinate). The second input argument is a 32-bit single precision floating-
point value, which contains the abscissa of the input vector (x coordinate). The result is the
arctangent of the input arguments as a 32-bit single precision floating-point value within the range
<- π; π>. The function sets the boolean error flag pointed to by the output parameter if both inputs
are zero; in other cases, the output flag is cleared.

GFLIB_AtanYX_A32ff float_t float_t bool_t * acc32_t

The first input argument is a 32-bit single precision floating-point value, which contains the ordinate
of the input vector (y coordinate). The second input argument is a 32-bit single precision floating-
point value, which contains the abscissa of the input vector (x coordinate). The result is the
arctangent of the input arguments as a 32-bit accumulator value within the range <-1 ; 1>, which
corresponds to the real angle range <- π; π>. The function sets the boolean error flag pointed to by
the output parameter if both inputs are zero; in other cases, the output flag is cleared.

GFLIB_AtanYX

GFLIB User's Guide, Rev. 3, 05/2020

50 NXP Semiconductors

2.7.2 Declaration

The available GFLIB_AtanYX functions have the following declarations:

frac16_t GFLIB_AtanYX_F16(frac16_t f16Y, frac16_t f16X, bool_t *pbErrFlag)
float_t GFLIB_AtanYX_FLT(float_t fltY, float_t fltX, bool_t *pbErrFlag)
acc32_t GFLIB_AtanYX_a32ff(float_t fltY, float_t fltX, bool_t *pbErrFlag)

2.7.3 Function use

The use of the GFLIB_AtanYX function is shown in the following examples:

Fixed-point version:

#include "gflib.h"

static frac16_t f16Result;
static frac16_t f16Y, f16X;
static bool_t bErrFlag;

void main(void)
{
 f16Y = FRAC16(0.9); /* f16Y = 0.9 */
 f16X = FRAC16(0.3); /* f16X = 0.3 */

 /* f16Result = atan(f16Y / f16X); f16Result * 180 => angle [degree] */
 f16Result = GFLIB_AtanYX_F16(f16Y, f16X, &bErrFlag);
}

Floating-point version:

#include "gflib.h"

static float_t fltResult;
static float_t fltY, fltX;
static bool_t bErrFlag;

void main(void)
{
 fltY = 0.9F; /* fltY = 0.9 */
 fltX = 0.3F; /* fltX = 0.3 */

/* fltResult = atan(fltY / fltX); fltResult * 180 / 3.14 => angle [degree] */
 fltResult = GFLIB_AtanYX_FLT(fltY, fltX, &bErrFlag);
}

2.8 GFLIB_Sqrt

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 51

The GFLIB_Sqrt function returns the square root of the input value. The input must be a
non-negative number, otherwise the function returns undefined results. See the following
equation:

Equation 6. Algorithm formula

2.8.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <0 ; 1). The function is only defined for non-negative inputs. The
function returns undefined results out of this condition.

• Floating-point output - the output is the floating-point non-negative result. The
function is only defined for non-negative inputs. The function returns undefined
results out of this condition.

The available versions of the GFLIB_Sqrt function are shown in the following table:

Table 2-8. Function versions

Function name Input
type

Result
type

Description

GFLIB_Sqrt_F16 frac16_t frac16_t The input value is a 16-bit fractional value, limited to the range <0 ; 1). The
function is not defined out of this range. The output is a 16-bit fractional value
within the range <0 ; 1).

GFLIB_Sqrt_F16l frac32_t frac16_t The input value is a 32-bit fractional value, limited to the range <0 ; 1). The
function is not defined out of this range. The output is a 16-bit fractional value
within the range <0 ; 1).

GFLIB_Sqrt_FLT float_t float_t The input value is a 32-bit single precision floating-point non-negative value.
The function is not defined for the negative inputs. The output is a 32-bit single
precision floating-point non-negative value.

2.8.2 Declaration

The available GFLIB_Sqrt functions have the following declarations:

frac16_t GFLIB_Sqrt_F16(frac16_t f16Val)
frac16_t GFLIB_Sqrt_F16l(frac32_t f32Val)
float_t GFLIB_Sqrt_FLT(float_t fltVal)

GFLIB_Sqrt

GFLIB User's Guide, Rev. 3, 05/2020

52 NXP Semiconductors

2.8.3 Function use

The use of the GFLIB_Sqrt function is shown in the following examples:

Fixed-point version:

#include "gflib.h"

static frac16_t f16Result;
static frac16_t f16Val;

void main(void)
{
 f16Val = FRAC16(0.5); /* f16Val = 0.5 */

 /* f16Result = sqrt(f16Val) */
 f16Result = GFLIB_Sqrt_F16(f16Val);
}

Floating-point version:

#include "gflib.h"

static float_t fltResult;
static float_t fltVal;

void main(void)
{
 fltVal = 0.5F; /* fltVal = 0.5 */

 /* fltResult = sqrt(fltVal) */
 fltResult = GFLIB_Sqrt_FLT(fltVal);
}

2.9 GFLIB_Limit

The GFLIB_Limit function returns the value limited by the upper and lower limits. See
the following equation:

Equation 7. Algorithm formula

2.9.1 Available versions

This function is available in the following versions:

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 53

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

• Floating-point output - the output is the floating-point result within the type's full
range.

The available versions of the GFLIB_Limit functions are shown in the following table:

Table 2-9. Function versions

Function name Input type Result
type

Description

Input Lower
limit

Upper
limit

GFLIB_Limit_F16 frac16_t frac16_t frac16_t frac16_t The inputs are 16-bit fractional values within the range
<-1 ; 1). The function returns a 16-bit fractional value in
the range <f16LLim ; f16ULim>.

GFLIB_Limit_F32 frac32_t frac32_t frac32_t frac32_t The inputs are 32-bit fractional values within the range
<-1 ; 1). The function returns a 32-bit fractional value in
the range <f32LLim ; f32ULim>.

GFLIB_Limit_FLT float_t float_t float_t float_t The inputs are 32-bit single precision floating-point
values within the full range. The function returns a 32-
bit single precision floating-point value in the range
<fltLLim ; fltULim>.

2.9.2 Declaration

The available GFLIB_Limit functions have the following declarations:

frac16_t GFLIB_Limit_F16(frac16_t f16Val, frac16_t f16LLim, frac16_t f16ULim)
frac32_t GFLIB_Limit_F32(frac32_t f32Val, frac32_t f32LLim, frac32_t f32ULim)
float_t GFLIB_Limit_FLT(float_t fltVal, float_t fltLLim, float_t fltULim)

2.9.3 Function use

The use of the GFLIB_Limit function is shown in the following examples:

Fixed-point version:

#include "gflib.h"

static frac16_t f16Val, f16ULim, f16LLim, f16Result;

void main(void)
{
 f16ULim = FRAC16(0.8);
 f16LLim = FRAC16(-0.3);
 f16Val = FRAC16(0.9);

GFLIB_Limit

GFLIB User's Guide, Rev. 3, 05/2020

54 NXP Semiconductors

 f16Result = GFLIB_Limit_F16(f16Val, f16LLim, f16ULim);
}

Floating-point version:

#include "gflib.h"

static float_t fltVal, fltULim, fltLLim, fltResult;

void main(void)
{
 fltULim = 0.8F;
 fltLLim = -0.3F;
 fltVal = 0.9F;

 fltResult = GFLIB_Limit_FLT(fltVal, fltLLim, fltULim);
}

2.10 GFLIB_LowerLimit

The GFLIB_LowerLimit function returns the value limited by the lower limit. See the
following equation:

Equation 8. Algorithm formula

2.10.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

• Floating-point output - the output is the floating-point result within the type's full
range.

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 55

The available versions of the GFLIB_LowerLimit functions are shown in the following
table:

Table 2-10. Function versions

Function name Input type Result
type

Description

Input Lower
limit

GFLIB_LowerLimit_F16 frac16_t frac16_t frac16_t The inputs are 16-bit fractional values within the range <-1 ;
1). The function returns a 16-bit fractional value in the range
<f16LLim ; 1).

GFLIB_LowerLimit_F32 frac32_t frac32_t frac32_t The inputs are 32-bit fractional values within the range <-1 ;
1). The function returns a 32-bit fractional value in the range
<f32LLim ; 1).

GFLIB_LowerLimit_FLT float_t float_t float_t The inputs are 32-bit single precision floating-point values
within the full range. The function returns a 32-bit single
precision floating-point value greater than or equal to fltLLim.

2.10.2 Declaration

The available GFLIB_LowerLimit functions have the following declarations:

frac16_t GFLIB_LowerLimit_F16(frac16_t f16Val, frac16_t f16LLim)
frac32_t GFLIB_LowerLimit_F32(frac32_t f32Val, frac32_t f32LLim)
float_t GFLIB_LowerLimit_FLT(float_t fltVal, float_t fltLLim)

2.10.3 Function use

The use of the GFLIB_LowerLimit function is shown in the following examples:

Fixed-point version:

#include "gflib.h"

static frac16_t f16Val, f16LLim, f16Result;

void main(void)
{
 f16LLim = FRAC16(0.3);
 f16Val = FRAC16(0.1);

 f16Result = GFLIB_LowerLimit_F16(f16Val, f16LLim);
}

Floating-point version:

GFLIB_LowerLimit

GFLIB User's Guide, Rev. 3, 05/2020

56 NXP Semiconductors

#include "gflib.h"

static float_t fltVal, fltLLim, fltResult;

void main(void)
{
 fltLLim = 0.3F;
 fltVal = 0.1F;

 fltResult = GFLIB_LowerLimit_FLT(fltVal, fltLLim);
}

2.11 GFLIB_UpperLimit

The GFLIB_UpperLimit function returns the value limited by the upper limit. See the
following equation:

Equation 9. Algorithm formula

2.11.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

• Floating-point output - the output is the floating-point result within the type's full
range.

The available versions of the GFLIB_UpperLimit functions are shown in the following
table:

Table 2-11. Function versions

Function name Input type Result
type

Description

Input Upper
limit

GFLIB_UpperLimit_F16 frac16_t frac16_t frac16_t The inputs are 16-bit fractional values within the range <-1 ;
1). The function returns a 16-bit fractional value in the range
<-1 ; f16ULim>.

GFLIB_UpperLimit_F32 frac32_t frac32_t frac32_t The inputs are 32-bit fractional values within the range <-1 ;
1). The function returns a 32-bit fractional value in the range
<-1 ; f32ULim>.

GFLIB_UpperLimit_FLT float_t float_t float_t The inputs are 32-bit single precision floating-point values
within the full range. The function returns a 32-bit single
precision floating-point value, which is lower or equal to
fltULim.

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 57

2.11.2 Declaration

The available GFLIB_UpperLimit functions have the following declarations:

frac16_t GFLIB_UpperLimit_F16(frac16_t f16Val, frac16_t f16ULim)
frac32_t GFLIB_UpperLimit_F32(frac32_t f32Val, frac32_t f32ULim)
float_t GFLIB_UpperLimit_FLT(float_t fltVal, float_t fltULim)

2.11.3 Function use

The use of the GFLIB_UpperLimit function is shown in the following examples:

Fixed-point version:

#include "gflib.h"

static frac16_t f16Val, f16ULim, f16Result;

void main(void)
{
 f16ULim = FRAC16(0.3);
 f16Val = FRAC16(0.9);

 f16Result = GFLIB_UpperLimit_F16(f16Val, f16ULim);
}

Floating-point version:

#include "gflib.h"

static float_t fltVal, fltULim, fltResult;

void main(void)
{
 fltULim = 0.3F;
 fltVal = 0.9F;

 fltResult = GFLIB_UpperLimit_FLT(fltVal, fltULim);
}

2.12 GFLIB_VectorLimit

The GFLIB_VectorLimit function returns the limited vector by an amplitude. This
limitation is calculated to achieve the zero angle error.

GFLIB_VectorLimit

GFLIB User's Guide, Rev. 3, 05/2020

58 NXP Semiconductors

Figure 2-6. Input and releated output

The GFLIB_VectorLimit function limits the amplitude of the input vector. The input
vector a, b components, are passed into the function as the input arguments. The resulting
limited vector is transformed back into the a, b components. The limitation is performed
according to the following equations:

Equation 10. Algorithm formulas

Equation 11

where:

• a, b are the vector coordinates
• a*, b* are the vector coordinates after limitation
• lim is the maximum amplitude

The relationship between the input and limited output vectors is obvious from Figure 2-6.

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 59

If the amplitude of the input vector is greater than the input Lim value, the function
calculates the new coordinates from the Lim value; otherwise the function copies the
input values to the output.

2.12.1 Available versions

The function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1;1). The result may saturate.

• Floating point output - the output is the floating point result within the type's full
range.

The available versions of the GFLIB_VectorLimit functions are shown in the following
table:

Table 2-12. Function versions

Function name Input type Output type Result
typeInput Limit

GFLIB_VectorLimit_F16 GFLIB_VECTORLIMIT_T_F16 * frac16_t GFLIB_VECTORLIMIT_T_F16 * void

Limitation of a two-component 16-bit fractional vector within the range <-1;1) with a 16-bit
fractional limitation amplitude. The function returns a two-component 16-bit fractional vector.

GFLIB_VectorLimit_FLT GFLIB_VECTORLIMIT_T_FLT * float_t GFLIB_VECTORLIMIT_T_FLT * void

Limitation of a two-component 32-bit single precision floating point vector within the full range
with a 32-bit single precision floating point limitation amplitude. The function returns a two-
component 32-bit single precision floating point vector.

2.12.2 GFLIB_VECTORLIMIT_T_F16 type description

Variable name Input type Description

f16A frac16_t A-component; 16-bit fractional type.

f16B frac16_t B-component; 16-bit fractional type

2.12.3 GFLIB_VECTORLIMIT_T_FLT type description

Variable name Input type Description

fltA float_t A-component; 32-bit single precision floating point type.

fltB float_t B-component; 32-bit single precision floating point type.

GFLIB_VectorLimit

GFLIB User's Guide, Rev. 3, 05/2020

60 NXP Semiconductors

2.12.4 Declaration

The available GFLIB_VectorLimit functions have the following declarations:

frac16_t GFLIB_VectorLimit_F16(const GFLIB_VECTORLIMIT_T_F16 *psVectorIn, frac16_t f16Lim,
GFLIB_VECTORLIMIT_T_F16 *psVectorOut)

float_t GFLIB_VectorLimit_FLT(const GFLIB_VECTORLIMIT_T_FLT *psVectorIn, float_t fltLim,
GFLIB_VECTORLIMIT_T_FLT *psVectorOut)

2.12.5 Function use

The use of the GFLIB_VectorLimit function is shown in the following examples:

Fixed-point version:

#include "gflib.h"

static GFLIB_VECTORLIMIT_T_F16 sVector, sResult;
static frac16_t f16MaxAmpl;

void main(void)
{
 f16MaxAmpl = FRAC16(0.8);
 sVector.f16A = FRAC16(-0.79);
 sVector.f16B = FRAC16(0.86);

 GFLIB_VectorLimit_F16(&sVector, f16MaxAmpl, &sResult);
}

Floating-point version:

#include "gflib.h"

static GFLIB_VECTORLIMIT_T_FLT sVector, sResult;
static float_t fltMaxAmpl;

void main(void)
{
 fltMaxAmpl = 0.8F;
 sVector.fltA = -0.79F;
 sVector.fltB = 0.86F;

 GFLIB_VectorLimit_FLT(&sVector, fltMaxAmpl, &sResult);
}

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 61

2.13 GFLIB_VectorLimit1

The GFLIB_VectorLimit1 function returns the limited vector by an amplitude. This
limitation is calculated to achieve that the first component remains unchanged (if the
limitation factor allows).

Figure 2-7. Input and releated output

The GFLIB_VectorLimit1 function limits the amplitude of the input vector. The input
vector a, b components are passed to the function as the input arguments. The resulting
limited vector is transformed back into the a, b components. The limitation is performed
according to the following equations:

Equation 12

Equation 13

GFLIB_VectorLimit1

GFLIB User's Guide, Rev. 3, 05/2020

62 NXP Semiconductors

where:

• a, b are the vector coordinates
• a*, b* are the vector coordinates after limitation
• lim is the maximum amplitude

The relationship between the input and limited output vectors is shown in Figure 2-7.

If the amplitude of the input vector is greater than the input Lim value, the function
calculates the new coordinates from the Lim value; otherwise the function copies the
input values to the output.

2.13.1 Available versions

The function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

• Floating-point output - the output is the floating-point result within the type's full
range.

The available versions of the GFLIB_VectorLimit1 function are shown in the following
table:

Table 2-13. Function versions

Function name Input type Output type Result
typeInput Limit

GFLIB_VectorLimit1_F16 GFLIB_VECTORLIMIT_T_F16 * frac16_t GFLIB_VECTORLIMIT_T_F16 * void

Limitation of a two-component 16-bit fractional vector within the range <-1 ; 1) with a 16-bit
fractional limitation amplitude. The function returns a two-component 16-bit fractional vector.

GFLIB_VectorLimit1_FLT GFLIB_VECTORLIMIT_T_FLT * float_t GFLIB_VECTORLIMIT_T_FLT * void

Limitation of a two-component 32-bit single precision floating-point vector within the full range
with a 32-bit single precision floating-point limitation amplitude. The function returns a two-
component 32-bit single precision floating-point vector.

2.13.2 GFLIB_VECTORLIMIT_T_F16 type description

Variable name Input type Description

f16A frac16_t A-component; 16-bit fractional type.

f16B frac16_t B-component; 16-bit fractional type.

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 63

2.13.3 GFLIB_VECTORLIMIT_T_FLT type description

Variable name Input type Description

fltA float_t A-component; 32-bit single precision floating-point type.

fltB float_t B-component; 32-bit single precision floating-point type.

2.13.4 Declaration

The available GFLIB_VectorLimit1 functions have the following declarations:

frac16_t GFLIB_VectorLimit1_F16(const GFLIB_VECTORLIMIT_T_F16 *psVectorIn, frac16_t f16Lim,
GFLIB_VECTORLIMIT_T_F16 *psVectorOut)

float_t GFLIB_VectorLimit1_FLT(const GFLIB_VECTORLIMIT_T_FLT *psVectorIn, float_t fltLim,
GFLIB_VECTORLIMIT_T_FLT *psVectorOut)

2.13.5 Function use

The use of the GFLIB_VectorLimit1 function is shown in the following examples:

Fixed-point version:

#include "gflib.h"

static GFLIB_VECTORLIMIT_T_F16 sVector, sResult;
static frac16_t f16MaxAmpl;

void main(void)
{
 f16MaxAmpl = FRAC16(0.5);
 sVector.f16A = FRAC16(-0.4);
 sVector.f16B = FRAC16(0.2);

 GFLIB_VectorLimit1_F16(&sVector, f16MaxAmpl, &sResult);
}

Floating-point version:

#include "gflib.h"

static GFLIB_VECTORLIMIT_T_FLT sVector, sResult;
static float_t fltMaxAmpl;

GFLIB_VectorLimit1

GFLIB User's Guide, Rev. 3, 05/2020

64 NXP Semiconductors

void main(void)
{
 fltMaxAmpl = 0.8F;
 sVector.fltA = -0.79F;
 sVector.fltB = 0.86F;

 GFLIB_VectorLimit1_FLT(&sVector, fltMaxAmpl, &sResult);
}

2.14 GFLIB_Hyst

The GFLIB_Hyst function represents a hysteresis (relay) function. The function switches
the output between two predefined values. When the input is higher than the upper
threshold, the output is high; when the input is lower than the lower threshold, the output
is low. When the input is between the two thresholds, the output retains its value. See the
following figure:

Figure 2-8. GFLIB_Hyst functionality

The four points in the figure are to be set up in the parameters structure of the function.
For a proper functionality, the HystOn point must be greater than the HystOff point.

2.14.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result, and the result is
within the range <-1 ; 1).

• Floating-point output - the output is the floating-point result within the type's full
range.

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 65

The available versions of the GFLIB_Hyst function are shown in the following table.

Table 2-14. Function versions

Function name Input
type

Parameters Result
type

Description

GFLIB_Hyst_F16 frac16_t GFLIB_HYST_T_F16 * frac16_t The input is a 16-bit fractional value within
the range <-1 ; 1). The output is a two-
state 16-bit fractional value.

GFLIB_Hyst_FLT float_t GFLIB_HYST_T_FLT * float_t The input is a 32-bit single precision
floating-point value within its full range.
The output is a two-state 32-bit single
precision floating-point value.

2.14.2 GFLIB_HYST_T_F16

Variable name Input
type

Description

f16HystOn frac16_t The point where the output sets the output to the f16OutValOn value when the input rises.
Set by the user.

f16HystOff frac16_t The point where the output sets the output to the f16OutValOff value when the input falls.
Set by the user.

f16OutValOn frac16_t The ON value. Set by the user.

f16OutValOff frac16_t The OFF value. Set by the user.

f16OutState frac16_t The output state. Set by the algorithm. Must be initialized by the user.

2.14.3 GFLIB_HYST_T_FLT

Variable name Input
type

Description

fltHystOn float_t The point where the output sets the output to the fltOutValOn value when the input rises.
Set by the user.

fltHystOff float_t The point where the output sets the output to the fltOutValOff value when the input falls.
Set by the user.

fltOutValOn float_t The ON value. Set by the user.

fltOutValOff float_t The OFF value. Set by the user.

fltOutState float_t The output state. Set by the algorithm. Must be initialized by the user.

GFLIB_Hyst

GFLIB User's Guide, Rev. 3, 05/2020

66 NXP Semiconductors

2.14.4 Declaration

The available GFLIB_Hyst functions have the following declarations:

frac16_t GFLIB_Hyst_F16(frac16_t f16Val, GFLIB_HYST_T_F16 *psParam)
float_t GFLIB_Hyst_FLT(float_t fltVal, GFLIB_HYST_T_FLT *psParam)

2.14.5 Function use

The use of the GFLIB_Hyst function is shown in the following examples:

Fixed-point version:

#include "gflib.h"

static frac16_t f16Result, f16InVal;
static GFLIB_HYST_T_F16 sParam;

void main(void)
{
 f16InVal = FRAC16(-0.11);
 sParam.f16HystOn = FRAC16(0.5);
 sParam.f16HystOff = FRAC16(-0.1);
 sParam.f16OutValOn = FRAC16(0.7);
 sParam.f16OutValOff = FRAC16(0.3);
 sParam.f16OutState = FRAC16(0.0);

 f16Result = GFLIB_Hyst_F16(f16InVal, &sParam);
}

Floating-point version:

#include "gflib.h"

static float_t fltResult, fltInVal;
static GFLIB_HYST_T_FLT sParam;

void main(void)
{
 fltInVal = -0.11F;
 sParam.fltHystOn = 0.5F;
 sParam.fltHystOff = -0.1F;
 sParam.fltOutValOn = 0.7F;
 sParam.fltOutValOff = 0.3F;
 sParam.fltOutState = 0.0F;

 fltResult = GFLIB_Hyst_FLT(fltInVal, &sParam);
}

2.15 GFLIB_Lut1D

The GFLIB_Lut1D function implements the one-dimensional look-up table.

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 67

Equation 14.

where:

• y is the interpolated value
• y1 and y2 are the ordinate values at the beginning and end of the interpolating

interval, respectively
• x1 and x2 are the abscissa values at the beginning and end of the interpolating

interval, respectively
• x is the input value provided to the function in the X input argument

Figure 2-9. Algorithm diagram - fractional version

The GFLIB_Lut1D function fuses a table of the precalculated function points. These
points are selected with a fixed step.

The fractional version of the algorithm has a defined interval of inputs within the range
<-1 ; 1>. The last table point is intended for the real value of 1, not the value of 1 from
the fraction numbers, which is lower than the real value of 1. The calculations are based
on the same intervals among the table points. The number of points must be 2n + 1, where
n can range from 1 through to 15.

The floating-point version of the algorithm has a defined interval of inputs within the
range <min ; max>, where the min and max values are the parameters of the algorithms.
The number of points is within the range <2 ; 65535>, where the first point lies at the min
position, and the last point lies at the max position.

GFLIB_Lut1D

GFLIB User's Guide, Rev. 3, 05/2020

68 NXP Semiconductors

The function finds two nearest precalculated points of the input argument, and calculates
the output value using the linear interpolation between these two points.

2.15.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1).

• Floating-point output - the output is the floating-point result within the type's full
range. The input values are defined by the minimum and maximum input parameters
of the GFLIB_Lut1DInit function.

The available versions of the GFLIB_Lut1DInit function are shown in the following
table:

Table 2-15. Init function versions

Function name Input type Parameters Result
typeMin Max Table size Table

GFLIB_Lut1DInit_FLT float_t float_t uint16_t GFLIB_LUT1D_T_FLT * void

The input arguments are the 32-bit single precision floating-point values that contain the minimum
and maximum x-coordinates of the look-up table. The table size parameter can be in the range <2 ;
65535> and the pointer to the structure that contains the parameters defined in Table 2-16.

The available versions of the GFLIB_Lut1D function are shown in the following table:

Table 2-16. Function versions

Function name Input type Parameters Result type

Table Table size

GFLIB_Lut1D_F16 frac16_t frac16_t * uint16_t frac16_t

The input arguments are the 16-bit fractional value that contains the abscissa for which the 1-D
interpolation is performed, the pointer to a table which contains the 16-bit fractional values of the
look-up table, and the size of the look-up table. The table size parameter can be in the range <1 ;
15> (that means the parameter is log2 of the number of points + 1). The output is the interpolated 16-
bit fractional value computed from the look-up table.

GFLIB_Lut1D_F32 frac32_t frac32_t * uint16_t frac32_t

The input arguments are the 32-bit fractional value that contains the abscissa for which the 1-D
interpolation is performed, the pointer to a table which contains the 32-bit fractional values of the
look-up table, and the size of the look-up table. The table size parameter can be in the range <1 ;
15> (that means the parameter is log2 of the number of points + 1). The output is the interpolated 32-
bit fractional value computed from the look-up table.

GFLIB_Lut1D_FLT float_t float_t * GFLIB_LUT1D_T_FLT * float_t

Table continues on the next page...

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 69

Table 2-16. Function versions (continued)

Function name Input type Parameters Result type

Table Table size

The input arguments are the 32-bit single precision floating-point value that contains the abscissa for
which the 1-D interpolation is performed, the pointer to a table which contains the 32-bit single
precision floating-point values of the look-up table, and the pointer to a structure that contains the
size of the look-up table together with the minimum and maximum borders of the input interval. The
table size parameter can be in the range <2 ; 65535>. The first value of the table is located at the
fltMin position, and the last value of the table is located at the fltMax position. The output is the
interpolated 32-bit single precision floating-point value computed from the look-up table.

2.15.2 GFLIB_LUT1D_T_FLT type description

Variable name Input type Description

fltMin float_t The minimum of the look-up table x-coordinate; a 32-bit single precision floating-point type.
Set by the user in GFLIB_Lut1DInit_FLT.

fltMax float_t The maximum of the look-up table x-coordinate; a 32-bit single precision floating-point
type. Set by the user in GFLIB_Lut1DInit_FLT.

fltIntInv float_t Inverse interval of the look-up table; a 32-bit single precision floating-point type. Set by the
algoritm in GFLIB_Lut1DInit_FLT.

u16TableSize uint16_t Size of the table; a 16-bit unsigned integer type within the range <2 ; 65535>. Set by the
user in GFLIB_Lut1DInit_FLT.

2.15.3 Declaration

The available GFLIB_Lut1D functions have the following declarations:

frac16_t GFLIB_Lut1D_F16(frac16_t f16X, const frac16_t *pf16Table, uint16_t u16TableSize)

void GFLIB_Lut1DInit_FLT(float_t fltMin,float_t fltMax, uint16_t u16TableSize, const
GFLIB_LUT1D_T_FLT *psParam)

float_t GFLIB_Lut1D_FLT(float_t fltX, const float_t *pfltTable, const GFLIB_LUT1D_T_FLT
*psParam)

2.15.4 Function use

The use of the GFLIB_Lut1D function is shown in the following examples:

Fixed-point version:

GFLIB_Lut1D

GFLIB User's Guide, Rev. 3, 05/2020

70 NXP Semiconductors

#include "gflib.h"

static frac16_t f16Result, f16X;
static uint16_t u16TableSize;
static frac16_t f16Table[9] = {FRAC16(0.8), FRAC16(0.1), FRAC16(-0.2), FRAC16(0.7),
FRAC16(0.2), FRAC16(-0.3), FRAC16(-0.8), FRAC16(0.91), FRAC16(0.99)};

void main(void)
{
 u16TableSize = 3; /* size of table = 2 ^ 3 + 1 */
 f16X = FRAC16(0.625); /* f16X = 0.625 */

 /* f16Result = value from look-up table between 7th and 8th position */
 f16Result = GFLIB_Lut1D_F16(f16X, f16Table, u16TableSize);
}

Floating-point version:

#include "gflib.h"

static float_t fltResult, fltX;
GFLIB_LUT1D_T_FLT sParam;
static float_t fltTable[9] = {0.8F, 0.1F, -0.2F, 0.7F, 0.2F, -0.3F, -0.8F, 0.9F, 0.99F};

void main(void)
{
 fltX = 0.25F; /* fltX = 0.25 */
 sParam.fltMin = 0.0F;
 sParam.fltMax = 8.0F;
 sParam.u16TableSize = 9;

 GFLIB_Lut1DInit_FLT(sParam.fltMin, sParam.fltMax, sParam.u16TableSize, &sParam);
}

/* periodically called function */
void Isr()
{
 fltResult = GFLIB_Lut1D_FLT(fltX, fltTable, &sParam);
}

2.16 GFLIB_LutPer1D

The GFLIB_LutPer1D function approximates the one-dimensional arbitrary user function
using the interpolation look-up method. It is periodic.

Equation 15.

where:

• y is the interpolated value
• y1 and y2 are the ordinate values at the beginning and end of the interpolating

interval, respectively

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 71

• x1 and x2 are the abscissa values at the beginning and end of the interpolating
interval, respectively

• x is the input value provided to the function in the X input argument

Figure 2-10. Algorithm diagram - fractional version

The GFLIB_LutPer1D fuses a table of the pre-calculated function points. These points
are selected with a fixed step.

The fractional version of the algorithm has a defined interval of inputs within the range
<-1 ; 1>. The last table point is intended for the real value of 1 not the value of 1 from the
fraction numbers, which is lower than the real value of 1. The calculations are based on
the same intervals among the table points. The floating-point version of the algorithm has
a defined interval of inputs within the range <min ; max>, where the min and max values
are the parameters of the algorithms. The number of points is within the range <2 ;
65535>, where the first point lies at the min position, and the last point lies at the max
position.

The function finds two nearest precalculated points of the input argument, and calculates
the output value using the linear interpolation between these two points. This algorithm
serves for periodical functions. That means that when the input argument lies behind the
last pre-calculated point of the function, the interpolation is calculated between the last
and first points of the table.

2.16.1 Available versions

This function is available in the following versions:

GFLIB_LutPer1D

GFLIB User's Guide, Rev. 3, 05/2020

72 NXP Semiconductors

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1).

• Floating-point output - the output is the floating-point result within the type's full
range. The input values are defined by the minimum and maximum input parameter
of the GFLIB_LutPer1DInit function.

The available versions of the GFLIB_LutPer1DInit function are shown in the following
table:

Table 2-17. Init function versions

Function name Input type Parameters Result
typeMin Max Table size Table

GFLIB_LutPer1DInit_FLT float_t float_t uint16_t GFLIB_LUT1D_T_FLT * void

The input arguments are the 32-bit single precision floating-point values that contain the
minimum and maximum x-coordinates of the periodic look-up table. The table size parameter can
be in the range <2 ; 65535> and the pointer to the structure that contains the parameters defined
in .Table 2-18

The available versions of the GFLIB_LutPer1D function are shown in the following
table:

Table 2-18. Function versions

Function name Input type Parameters Result type

Table Table size

GFLIB_LutPer1D_F16 frac16_t frac16_t * uint16_t frac16_t

The input arguments are the 16-bit fractional value that contains the abscissa for which the 1-D
interpolation is performed, the pointer to a structure which contains the 16-bit fractional values of
the periodic look-up table, and the size of the look-up table. The table size parameter can be in
the range <1 ; 15> (that means the parameter is log2 of the number of points). The output is the
interpolated 16-bit fractional value computed from the periodic look-up table.

GFLIB_LutPer1D_F32 frac32_t frac32_t * uint16_t frac32_t

The input arguments are the 32-bit fractional value that contains the abscissa for which the 1-D
interpolation is performed, the pointer to a table which contains the 32-bit fractional values of the
periodic look-up table, and the size of the periodic look-up table. The table size parameter can be
in the range <1 ; 15> (that means the parameter is log2 of the number of points). The output is
the interpolated 32-bit fractional value computed from the periodic look-up table.

GFLIB_LutPer1D_FLT float_t float_t * GFLIB_LUT1D_T_FLT * float_t

The input arguments are the 32-bit single precision floating-point value that contains the abscissa
for which the 1-D interpolation is performed, the pointer to a structure which contains the 32-bit
single precision floating-point values of the periodic look-up table, and the pointer a to structure
that contains the size of the periodic look-up table together with the minimum and maximum
borders of the input interval. The table size parameter can be in the range <2 ; 65535>. The first
value of the table is located at the fltMin position, and the last value of the table is located at the
fltMax position. The output is the interpolated 32-bit single precision floating-point value
computed from the periodic look-up table.

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 73

2.16.2 GFLIB_LUTPER1D_T_FLT type description

Variable name Input type Description

fltMin float_t The minimum of the periodic look-up table x-coordinate; a 32-bit single precision floating-
point type. Set by the user in GFLIB_LutPer1DInit_FLT.

fltMax float_t The maximum of the periodic look-up table x-coordinate; a 32-bit single precision floating-
point type. Set by the user in GFLIB_LutPer1DInit_FLT.

fltIntInv float_t Inverse interval of the periodic look-up table; a 32-bit single precision floating-point type.
Set by the algorithm in GFLIB_LutPer1DInit_FLT.

u16TableSize uint16_t Size of the table; a 16-bit unsigned integer type within the range <2 ; 65535>. Set by the
user in GFLIB_LutPer1DInit_FLT.

2.16.3 Declaration

The available GFLIB_LutPer1D functions have the following declarations:

frac16_t GFLIB_LutPer1D_F16(frac16_t f16X, const frac16_t *pf16Table, uint16_t u16TableSize)

void GFLIB_LutPer1DInit_FLT(float_t fltMin,float_t fltMax, uint16_t u16TableSize, const
GFLIB_LUTPER1D_T_FLT *psParam)

float_t GFLIB_LutPer1D_FLT(float_t fltX, const float_t *pfltTable, const
GFLIB_LUTPER1D_T_FLT *psParam)

2.16.4 Function use

The use of the GFLIB_LutPer1D function is shown in the following examples:

Fixed-point version:

#include "gflib.h"

static frac16_t f16Result, f16X;
static uint16_t u16TableSize;
static frac16_t f16Table[8] = {FRAC16(0.8), FRAC16(0.1), FRAC16(-0.2), FRAC16(0.7),
FRAC16(0.2), FRAC16(-0.3), FRAC16(-0.8), FRAC16(0.91)};

void main(void)
{
 u16TableSize = 3; /* size of table = 2 ^ 3 */
 f16X = FRAC16(0.25); /* f16X = 0.25 */

 /* f16Result = value from periodic look-up table at 6th position */
 f16Result = GFLIB_LutPer1D_F16(f16X, f16Table, u16TableSize);
}

GFLIB_LutPer1D

GFLIB User's Guide, Rev. 3, 05/2020

74 NXP Semiconductors

Floating-point version:

#include "gflib.h"

static float_t fltResult, fltX;
static float_t fltTable[8] = {0.8F, 0.1F, -0.2F, 0.7F, 0.2F, -0.3F, -0.8F, 0.9F};
GFLIB_LUTPER1D_T_FLT sParam;

void Isr(void);

void main(void)
{
 fltX = 0.25F; /* fltX = 0.25 */
 sParam.fltMin = 0.0F;
 sParam.fltMax = 7.0F;
 sParam.u16TableSize = 8;

 GFLIB_LutPer1DInit_FLT(sParam.fltMin, sParam.fltMax, sParam.u16TableSize, &sParam);
}

/* periodically called function */
void Isr()
{
 fltResult = GFLIB_LutPer1D_FLT(fltX, fltTable, &sParam);
}

2.17 GFLIB_Ramp

The GFLIB_Ramp function calculates the up / down ramp with the defined fixed-step
increment / decrement. These two parameters must be set by the user.

For a proper use, it is recommended that the algorithm is initialized by the
GFLIB_RampInit function, before using the GFLIB_Ramp function. The
GFLIB_RampInit function initializes the internal state variable of the GFLIB_Ramp
algorithm with a defined value. You must call the init function when you want the ramp
to be initialized.

The use of the GFLIB_Ramp function is as follows: If the target value is greater than the
ramp state value, the function adds the ramp-up value to the state output value. The
output will not trespass the target value, that means it will stop at the target value. If the
target value is lower than the state value, the function subtracts the ramp-down value
from the state value. The output is limited to the target value, that means it will stop at the
target value. This function returns the actual ramp output value. As time passes, it is
approaching the target value by step increments defined in the algorithm parameters'
structure. The functionality of the implemented ramp algorithm is explained in the next
figure:

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 75

Figure 2-11. GFLIB_Ramp functionality

2.17.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

• Floating-point output - the output is the floating-point result within the type's full
range.

The available versions of the GFLIB_RampInit functions are shown in the following
table:

Table 2-19. Init function versions

Function name Input
type

Parameters Result
type

Description

GFLIB_RampInit_F16 frac16_t GFLIB_RAMP_T_F16 * void Input argument is a 16-bit fractional value that
represents the initialization value. The
parameters' structure is pointed to by a pointer.
The input data value is in the range <-1 ; 1).

GFLIB_RampInit_F32 frac32_t GFLIB_RAMP_T_F32 * void Input argument is a 32-bit fractional value that
represents the initialization value. The
parameters' structure is pointed to by a pointer.
The input data value is in the range <-1 ; 1).

Table continues on the next page...

GFLIB_Ramp

GFLIB User's Guide, Rev. 3, 05/2020

76 NXP Semiconductors

Table 2-19. Init function versions (continued)

Function name Input
type

Parameters Result
type

Description

GFLIB_RampInit_FLT float_t GFLIB_RAMP_T_FLT * void Input argument is a 32-bit single precision
floating-point value that represents the
initialization value. The parameters' structure is
pointed to by a pointer. The input value is within
the full 32-bit single-point floating-point range.

The available versions of the GFLIB_Ramp functions are shown in the following table:

Table 2-20. Function versions

Function name Input
type

Parameters Result
type

Description

GFLIB_Ramp_F16 frac16_t GFLIB_RAMP_T_F16 * frac16_t Input argument is a 16-bit fractional value that
represents the target output value. The
parameters' structure is pointed to by a pointer.
The function returns a 16-bit fractional value,
which represents the actual ramp output value.
The input data value is in the range <-1 ; 1), and
the output data value is in the range <-1 ; 1).

GFLIB_Ramp_F32 frac32_t GFLIB_RAMP_T_F32 * frac32_t Input argument is a 32-bit fractional value that
represents the target output value. The
parameters' structure is pointed to by a pointer.
The function returns a 32-bit fractional value,
which represents the actual ramp output value.
The input data value is in the range <-1 ; 1), and
the output data value is in the range <-1 ; 1).

GFLIB_Ramp_FLT float_t GFLIB_RAMP_T_FLT * float_t Input argument is a 32-bit single precision floating-
point value that represents the target output value.
The parameters' structure is pointed to by a
pointer. The function returns a 32-bit single
precision floating-point value, which represents
the actual ramp output value. The input and output
values are within the full 32-bit single-point
floating-point range.

2.17.2 GFLIB_RAMP_T_F16

Variable name Type Description

f16State frac16_t Actual value - controlled by the algorithm.

f16RampUp frac16_t Value of the ramp-up increment. The data value is in the range <0 ; 1). Set by the user.

f16RampDown frac16_t Value of the ramp-down increment. The data value is in the range <0 ; 1). Set by the user.

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 77

2.17.3 GFLIB_RAMP_T_F32

Variable name Type Description

f32State frac32_t Actual value - controlled by the algorithm.

f32RampUp frac32_t Value of the ramp-up increment. The data value is in the range <0 ; 1). Set by the user.

f32RampDown frac32_t Value of the ramp-down increment. The data value is in the range <0 ; 1). Set by the user.

2.17.4 GFLIB_RAMP_T_FLT

Variable name Type Description

fltState float_t Actual value - controlled by the algorithm.

fltRampUp float_t Value of the ramp-up increment. The data value is within the full 32-bit single precision
floating point. Set by the user as non- negative value.

fltRampDown float_t Value of the ramp-down increment. The data value is within the full 32-bit single precision
floating point. Set by the user as non- negative value.

2.17.5 Declaration

The available GFLIB_RampInit functions have the following declarations:

void GFLIB_RampInit_F16(frac16_t f16InitVal, GFLIB_RAMP_T_F16 *psParam)
void GFLIB_RampInit_F32(frac32_t f32InitVal, GFLIB_RAMP_T_F32 *psParam)
void GFLIB_RampInit_FLT(float_t fltInitVal, GFLIB_RAMP_T_FLT *psParam)

The available GFLIB_Ramp functions have the following declarations:

frac16_t GFLIB_Ramp_F16(frac16_t f16Target, GFLIB_RAMP_T_F16 *psParam)
frac32_t GFLIB_Ramp_F32(frac32_t f32Target, GFLIB_RAMP_T_F32 *psParam)
float_t GFLIB_Ramp_FLT(float_t fltTarget, GFLIB_RAMP_T_FLT *psParam)

2.17.6 Function use

The use of the GFLIB_RampInit and GFLIB_Ramp functions is shown in the following
examples:

Fixed-point version:

#include "gflib.h"

static frac16_t f16InitVal;
static GFLIB_RAMP_T_F16 sParam;
static frac16_t f16Target, f16Result;

GFLIB_Ramp

GFLIB User's Guide, Rev. 3, 05/2020

78 NXP Semiconductors

void Isr(void);

void main(void)
{
 sParam.f16RampUp = FRAC16(0.1);
 sParam.f16RampDown = FRAC16(0.02);
 f16Target = FRAC16(0.75);
 f16InitVal = FRAC16(0.9);
 GFLIB_RampInit_F16(f16InitVal, &sParam);
}

/* periodically called function */
void Isr()
{
 f16Result = GFLIB_Ramp_F16(f16Target, &sParam);
}

Floating-point version:

#include "gflib.h"

static float_t fltInitVal;
static GFLIB_RAMP_T_FLT psParam;
static float_t fltTarget, fltResult;

void Isr(void);

void main(void)
{
 psParam.fltRampUp = 0.1F;
 psParam.fltRampDown = 0.02F;
 fltTarget = 0.75F;
 fltInitVal = 0.9F;
 GFLIB_RampInit_FLT(fltInitVal, &psParam);
}

/* periodically called function */
void Isr()
{
 fltResult = GFLIB_Ramp_FLT(fltTarget, &psParam);
}

2.18 GFLIB_DRamp

The GFLIB_DRamp function calculates the up / down ramp with the defined step
increment / decrement. The algorithm approaches the target value when the stop flag is
not set, and/or returns to the instant value when the stop flag is set.

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 79

Figure 2-12. GFLIB_DRamp functionality

For a proper use, it is recommended that the algorithm is initialized by the
GFLIB_DRampInit function, before using the GFLIB_DRamp function. This function
initializes the internal state variable of GFLIB_DRamp algorithm with the defined value.
You must call this function when you want the ramp to be initialized.

The GFLIB_DRamp function calculates a ramp with a different set of up / down
parameters, depending on the state of the stop flag. If the stop flag is cleared, the function
calculates the ramp of the actual state value towards the target value, using the up or
down increments contained in the parameters' structure. If the stop flag is set, the
function calculates the ramp towards the instant value, using the up or down saturation
increments.

If the target value is greater than the state value, the function adds the ramp-up value to
the state value. The output cannot be greater than the target value (case of the stop flag
being cleared), nor lower than the instant value (case of the stop flag being set).

If the target value is lower than the state value, the function subtracts the ramp-down
value from the state value. The output cannot be lower than the target value (case of the
stop flag being cleared), nor greater than the instant value (case of the stop flag being
set).

If the actual internal state reaches the target value, the reach flag is set.

GFLIB_DRamp

GFLIB User's Guide, Rev. 3, 05/2020

80 NXP Semiconductors

2.18.1 Available versions

The function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

• Floating-point output - the output is the floating-point result within the type's full
range.

The available versions of the GFLIB_DRampInit function are shown in the following
table:

Table 2-21. Init function versions

Function name Input
type

Parameters Result
type

Description

GFLIB_DRampInit_F16 frac16_t GFLIB_DRAMP_T_F16 * void Input argument is a 16-bit fractional value
that represents the initialization value. The
parameters' structure is pointed to by a
pointer. The input data value is in the range
<-1 ; 1).

GFLIB_DRampInit_F32 frac32_t GFLIB_DRAMP_T_F32 * void Input argument is a 32-bit fractional value
that represents the initialization value. The
parameters' structure is pointed to by a
pointer. The input data value is in the range
<-1 ; 1).

GFLIB_DRampInit_FLT float_t GFLIB_DRAMP_T_FLT * void Input argument is a 32-bit single precision
floating-point value that represents the
initialization value. The parameters'
structure is pointed to by a pointer. The
input value is within the full 32-bit single-
point floating-point range.

The available versions of the GFLIB_DRamp function are shown in the following table:

Table 2-22. Function versions

Function name Input type Parameters Result type

Target Instant Stop flag

GFLIB_DRamp_F16 frac16_t frac16_t bool_t * GFLIB_DRAMP_T_F16 * frac16_t

The target and instant arguments are 16-bit fractional values. The parameters' structure is pointed to
by a pointer. The function returns a 16-bit fractional value, which represents the actual ramp output
value. The input data values are in the range of <-1 ; 1), the Stop flag parameter is a pointer to a
boolean value, and the output data value is in the range <-1 ; 1).

GFLIB_DRamp_F32 frac32_t frac32_t bool_t * GFLIB_DRAMP_T_F32 * frac32_t

Table continues on the next page...

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 81

Table 2-22. Function versions (continued)

Function name Input type Parameters Result type

Target Instant Stop flag

The target and instant arguments are 32-bit fractional values. The parameters' structure is pointed to
by a pointer. The function returns a 32-bit fractional value, which represents the actual ramp output
value. The input data values are in the range <-1 ; 1), the Stop flag parameter is a pointer to a boolean
value, and the output data value is in the range <-1 ; 1).

GFLIB_DRamp_FLT float_t float_t bool_t * GFLIB_DRAMP_T_FLT * float_t

The target and instant arguments are 32-bit single precision floating-point values. The parameters'
structure is pointed to by a pointer. The function returns a 32-bit single precision floating-point value,
which represents the actual ramp output value. The input and output values are within the full 32-bit
single-point floating-point range, the Stop flag parameter is a pointer to a boolean value.

2.18.2 GFLIB_DRAMP_T_F16

Variable name Type Description

f16State frac16_t Actual value - controlled by the algorithm.

f16RampUp frac16_t Value of non-saturation ramp-up increment. The data value is in the range <0 ; 1). Set by
the user.

f16RampDown frac16_t Value of non-saturation ramp-down increment. The data value is in the range <0 ; 1). Set
by the user.

f16RampUpSat frac16_t Value of saturation ramp-up increment. The data value is in the range <0 ; 1). Set by the
user.

f16RampDownSat frac16_t Value of saturation ramp-down increment. The data value is in the range <0 ; 1). Set by the
user.

bReachFlag bool_t If the actual state value reaches the target value, this flag is set, otherwise, it is cleared.
Set by the algorithm.

2.18.3 GFLIB_DRAMP_T_F32

Variable name Type Description

f32State frac32_t Actual value - controlled by the algorithm.

f32RampUp frac32_t Value of non-saturation ramp-up increment. The data value is in the range <0 ; 1). Set by
the user.

f32RampDown frac32_t Value of non-saturation ramp-down increment. The data value is in the range <0 ; 1). Set
by the user.

f32RampUpSat frac32_t Value of saturation ramp-up increment. The data value is in the range <0 ; 1). Set by the
user.

f32RampDownSat frac32_t Value of saturation ramp-down increment. The data value is in the range <0 ; 1). Set by the
user.

Table continues on the next page...

GFLIB_DRamp

GFLIB User's Guide, Rev. 3, 05/2020

82 NXP Semiconductors

Variable name Type Description

bReachFlag bool_t If the actual state value reaches the target value, this flag is set, otherwise, it is cleared.
Set by the algorithm.

2.18.4 GFLIB_DRAMP_T_FLT

Variable name Type Description

fltState float_t Actual value - controlled by the algorithm.

fltRampUp float_t Value of non-saturation ramp-up increment. The data value is within the full 32-bit single
precision floating point. Set by the user as non- negative value.

fltRampDown float_t Value of non-saturation ramp-down increment. The data value is within the full 32-bit single
precision floating point. Set by the user as non- negative value.

fltRampUpSat float_t Value of saturation ramp-up increment. The data value is within the full 32-bit single
precision floating point. Set by the user as non- negative value.

fltRampDownSat float_t Value of saturation ramp-down increment. The data value is within the full 32-bit single
precision floating point. Set by the user as non- negative value.

bReachFlag bool_t If the actual state value reaches the target value, this flag is set, otherwise, it is cleared.
Set by the algorithm.

2.18.5 Declaration

The available GFLIB_DRampInit functions have the following declarations:

void GFLIB_DRampInit_F16(frac16_t f16InitVal, GFLIB_DRAMP_T_F16 *psParam)
void GFLIB_DRampInit_F32(frac32_t f32InitVal, GFLIB_DRAMP_T_F32 *psParam)
void GFLIB_DRampInit_FLT(float_t fltInitVal, GFLIB_DRAMP_T_FLT *psParam)

The available GFLIB_DRamp functions have the following declarations:

frac16_t GFLIB_DRamp_F16(frac16_t f16Target, frac16_t f16Instant, const bool_t *pbStopFlag,
GFLIB_DRAMP_T_F16 *psParam)

frac32_t GFLIB_DRamp_F32(frac32_t f32Target, frac32_t f32Instant, const bool_t *pbStopFlag,
GFLIB_DRAMP_T_F32 *psParam)

float_t GFLIB_DRamp_FLT(float_t fltTarget, float_t fltInstant, const bool_t *pbStopFlag,
GFLIB_DRAMP_T_FLT *psParam)

2.18.6 Function use

The use of the GFLIB_DRampInit and GFLIB_DRamp functions is shown in the
following examples:

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 83

Fixed-point version:

#include "gflib.h"

static frac16_t f16InitVal, f16Target, f16Instant, f16Result;
static GFLIB_DRAMP_T_F16 sParam;
static bool_t bStopFlag;

void Isr(void);

void main(void)
{
 sParam.f16RampUp = FRAC16(0.05);
 sParam.f16RampDown = FRAC16(0.02);
 sParam.f16RampUpSat = FRAC16(0.025);
 sParam.f16RampDownSat = FRAC16(0.01);
 f16Target = FRAC16(0.7);
 f16InitVal = FRAC16(0.3);
 f16Instant = FRAC16(0.6);
 bStopFlag = FALSE;

 GFLIB_DRampInit_F16(f16InitVal, &sParam);
}

/* periodically called function */
void Isr()
{
 f16Result = GFLIB_DRamp_F16(f16Target, f16Instant, &bStopFlag, &sParam);
}

Floating-point version:

#include "gflib.h"

static float_t fltInitVal, fltTarget, fltInstant, fltResult;
static GFLIB_DRAMP_T_FLT psParam;
static bool_t bStopFlag;

void Isr(void);

void main(void)
{
 psParam.fltRampUp = 0.05F;
 psParam.fltRampDown = 0.02F;
 psParam.fltRampUpSat = 0.025F;
 psParam.fltRampDownSat = 0.01F;
 fltTarget = 0.7F;
 fltInitVal = 0.3F;
 fltInstant = 0.6F;
 bStopFlag = FALSE;

 GFLIB_DRampInit_FLT(fltInitVal, &psParam);
}

/* periodically called function */
void Isr()
{
 fltResult = GFLIB_DRamp_FLT(fltTarget, fltInstant, &bStopFlag, &psParam);
}

GFLIB_DRamp

GFLIB User's Guide, Rev. 3, 05/2020

84 NXP Semiconductors

2.19 GFLIB_FlexRamp

The GFLIB_FlexRamp function calculates the up/down ramp with a fixed-step increment
that is calculated according to the required speed change per a defined duration. These
parameters must be set by the user.

The GFLIB_FlexRamp algorithm consists of three functions that must be used for a
proper functionality of the algorithm:

• GFLIB_FlexRampInit - this function initializes the state variable with a defined
value and clears the reach flag

• GFLIB_FlexRampCalcIncr - this function calculates the increment and clears the
reach flag

• GFLIB_FlexRamp - this function calculates the ramp in the periodically called loop

For a proper use, it is recommended to initialize the algorithm by the
GFLIB_FlexRampInit function. The GFLIB_FlexRampInit function initializes the
internal state variable of the algorithm with a defined value and clears the reach flag. Call
the init function when you want to initialize the ramp.

To calculate the increment, use the GFLIB_FlexRampCalcIncr function. This function is
called at the point when you want to change the ramp output value. This function's inputs
are the target value and duration. The target value is the destination value that you want
to get to. The duration is the time required to change the ramp output from the actual state
to the target value. To be able to calculate the ramp increment, fill the control structure
with the sample time, that means the period of the loop where the GFLIB_FlexRamp
function is called. The structure also contains a variable which determines the maximum
value of the increment. It is necessary to set it up too. The equation for the increment
calculation is as follows:

Equation 16.

where:

• I is the increment
• Vt is the target value
• Vs is the state (actual) value (in the structure)
• T is the duration of the ramp (to reach the target value starting at the state value)
• Ts is the sample time, that means the period of the loop where the ramp algorithm is

called (set in the structure)

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 85

If the increment is greater than the maximum increment (set in the structure), the
increment uses the maximum increment value.

As soon as the new increment is calculated, call the GFLIB_FlexRamp algorithm in the
periodical control loop. The function works as follows: The function adds the increment
to the state value (from the previous step), which results in a new state. The new state is
returned by the function. As the time passes, the algorithm is approaching the target
value. If the new state trespasses the target value, that new state is limited to the target
value and the reach flag is set. The functionality of the implemented algorithm is shown
in this figure:

Figure 2-13. GFLIB_FlexRamp functionality

2.19.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The input parameters are the fractional and accumulator
types.

• Floating-point output - the output is the floating-point result within the type's full
range.

GFLIB_FlexRamp

GFLIB User's Guide, Rev. 3, 05/2020

86 NXP Semiconductors

The available versions of the GFLIB_FlexRampInit function are shown in the following
table:

Table 2-23. Init function versions

Function name Input
type

Parameters Result
type

Description

GFLIB_FlexRampInit_F16 frac16_t GFLIB_FLEXRAMP_T_F32 * void The input argument is a 16-bit
fractional value that represents the
initialization value. The
parameters' structure is pointed to
by a pointer. The input data value
is in the range <-1 ; 1).

GFLIB_FlexRampInit_FLT float_t GFLIB_FLEXRAMP_T_FLT * void The input argument is a 32-bit
single precision floating-point
value that represents the
initialization value. The
parameters' structure is pointed to
by a pointer. The input value is
within the full 32-bit single-point
floating-point range.

The available versions of the GFLIB_FlexRamp function are shown in the following
table:

Table 2-24. Increment calculation function versions

Function name Input type Parameters Result
typeTarget Duration

GFLIB_FlexRampCalcIncr_F16 frac16_t acc32_t GFLIB_FLEXRAMP_T_F32 * void

The input arguments are a 16-bit fractional value in the range <-1 ; 1) that represents
the target output value and a 32-bit accumulator value in the range (0 ; 65536.0) that
represents the duration of the ramp (in seconds) to reach the target value. The
parameters' structure is pointed to by a pointer.

GFLIB_FlexRampCalcIncr_FLT float_t float_t GFLIB_FLEXRAMP_T_FLT * void

The input arguments are 32-bit single precision floating-point values that represent
the target output value and the duration of the ramp (in seconds, except zero value)
to reach the target value. The parameters' structure is pointed to by a pointer. The
target argument is within the full range; the duration argument is a non-negative
value.

Table 2-25. Function versions

Function name Parameters Result
type

Description

GFLIB_FlexRamp_F16 GFLIB_FLEXRAMP_T_F32 * frac16_t The parameters' structure is pointed to by a
pointer. The function returns a 16-bit fractional
value, which represents the actual ramp
output value. The output data value is in the
range <-1 ; 1).

Table continues on the next page...

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 87

Table 2-25. Function versions (continued)

Function name Parameters Result
type

Description

GFLIB_FlexRamp_FLT GFLIB_FLEXRAMP_T_FLT * float_t The parameters' structure is pointed to by a
pointer. The function returns a 32-bit single
precision floating-point value, which
represents the actual ramp output value. The
output value is within the full 32-bit single-
point floating-point range.

2.19.2 GFLIB_FLEXRAMP_T_F32

Variable name Type Description

f32State frac32_t The actual value. Controlled by the GFLIB_FlexRampInit_F16 and GFLIB_FlexRamp_F16
algorithms.

f32Incr frac32_t The value of the flex ramp increment. Controlled by the GFLIB_FlexRampCalcIncr_F16
algorithm.

f32Target frac32_t The target value of the flex ramp algorithm. Controlled by the
GFLIB_FlexRampCalcIncr_F16 algorithm.

f32Ts frac32_t The sample time, that means the period of the loop where the GFLIB_FlexRamp_F16
algorithms are periodically called. The data value (in seconds) is in the range (0 ; 1). Set by
the user.

f32IncrMax frac32_t The maximum value of the flex ramp increment. The data value is in the range (0 ; 1). Set
by the user.

bReachFlag bool_t The reach flag. This flag is controlled by the GFLIB_FlexRamp_F16 algorithm. It is cleared
by the GFLIB_FlexRampInit_F16 and GFLIB_FlexRampCalcIncr_F16 algorithms.

2.19.3 GFLIB_FLEXRAMP_T_FLT

Variable name Type Description

fltState float_t The actual value. Controlled by the GFLIB_FlexRampInit_FLT and GFLIB_FlexRamp_FLT
algorithms.

fltIncr float_t The value of the flex ramp increment. Controlled by the GFLIB_FlexRampCalcIncr_FLT
algorithm.

fltTarget float_t The target value of the flex ramp algorithm. Controlled by the
GFLIB_FlexRampCalcIncr_FLT algorithm.

fltTs float_t The sample time, that means the period of the loop where the GFLIB_FlexRamp_FLT
algorithm is periodically called. The data value (in seconds, except zero value) is a non-
negative value. Set by the user.

fltIncrMax float_t The maximum value of the flex ramp increment. The data is a positive value. Set by the
user.

bReachFlag bool_t The reach flag. This flag is controlled by the GFLIB_FlexRamp_FLT algorithm. It is cleared
by the GFLIB_FlexRampInit_FLT and GFLIB_FlexRampCalcIncr_FLT algorithms.

GFLIB_FlexRamp

GFLIB User's Guide, Rev. 3, 05/2020

88 NXP Semiconductors

2.19.4 Declaration

The available GFLIB_FlexRampInit functions have the following declarations:

void GFLIB_FlexRampInit_F16(frac16_t f16InitVal, GFLIB_FLEXRAMP_T_F32 *psParam)

void GFLIB_FlexRampInit_FLT(float_t fltInitVal, GFLIB_FLEXRAMP_T_FLT *psParam)

The available GFLIB_FlexRampCalcIncr functions have the following declarations:

void GFLIB_FlexRampCalcIncr_F16(frac16_t f16Target, acc32_t a32Duration,
GFLIB_FLEXRAMP_T_F32 *psParam)

void GFLIB_FlexRampCalcIncr_FLT(float_t fltTarget, float_t fltDuration, GFLIB_FLEXRAMP_T_FLT
*psParam)

The available GFLIB_FlexRamp functions have the following declarations:

frac16_t GFLIB_FlexRamp_F16(GFLIB_FLEXRAMP_T_F32 *psParam)

float_t GFLIB_FlexRamp_FLT(GFLIB_FLEXRAMP_T_FLT *psParam)

2.19.5 Function use

The use of the GFLIB_FlexRampInit, GFLIB_FlexRampCalcIncr, and
GFLIB_FlexRamp functions is shown in the following examples:

Fixed-point version:

#include "gflib.h"

static frac16_t f16InitVal;
static GFLIB_FLEXRAMP_T_F32 sFlexRamp;
static frac16_t f16Target, f16RampResult;
static acc32_t a32RampDuration;

void Isr(void);

void main(void)
{
 /* Control loop period is 0.002 s; maximum increment value is 0.15 */
 sFlexRamp.f32Ts = FRAC32(0.002);
 sFlexRamp.f32IncrMax = FRAC32(0.15);

 /* Initial value to 0 */
 f16InitVal = FRAC16(0.0);

 /* Flex ramp initialization */

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 89

 GFLIB_FlexRampInit_F16(f16InitVal, &sFlexRamp);

 /* Target value is 0.7 in duration of 5.3 s */
 f16Target = FRAC16(0.7);
 a32RampDuration = ACC32(5.3);;

 /* Flex ramp increment calculation */
 GFLIB_FlexRampCalcIncr_F16(f16Target, a32RampDuration, &sFlexRamp);
}

/* periodically called control loop with a period of 2 ms */
void Isr()
{
 f16RampResult = GFLIB_FlexRamp_F16(&sFlexRamp);
}

Floating-point version:

#include "gflib.h"

static float_t fltInitVal;
static GFLIB_FLEXRAMP_T_FLT sFlexRamp;
static float_t fltTarget, fltRampResult;
static float_t fltRampDuration;

void Isr(void);

void main(void)
{
 /* Control loop period is 0.002 s; maximum increment value is 0.15 */
 sFlexRamp.fltTs = 0.002F;
 sFlexRamp.fltIncrMax = 0.15F;

 /* Initial value to 0 */
 fltInitVal = 0.0F;

 /* Flex ramp initialization */
 GFLIB_FlexRampInit_FLT(fltInitVal, &sFlexRamp);

 /* Target value is 0.7 in duration of 5.3 s */
 fltTarget = 0.7F;
 fltRampDuration = 5.3F;

 /* Flex ramp increment calculation */
 GFLIB_FlexRampCalcIncr_FLT(fltTarget, fltRampDuration, &sFlexRamp);
}

/* periodically called control loop */
void Isr()
{
 fltRampResult = GFLIB_FlexRamp_FLT(&sFlexRamp);
}

2.20 GFLIB_DFlexRamp

GFLIB_DFlexRamp

GFLIB User's Guide, Rev. 3, 05/2020

90 NXP Semiconductors

The GFLIB_DFlexRamp function calculates the up/down ramp with a fixed-step
increment that is calculated according to the required speed change per a defined
duration.These parameters must be set by the user. The algorithm has stop flags. If none
of them is set, the ramp behaves normally. If one of them is set, the ramp can run in the
opposite direction.

The GFLIB_DFlexRamp algorithm consists of three functions that must be used for a
proper functionality of the algorithm:

• GFLIB_DFlexRampInit - this function initializes the state variable with a defined
value and clears the reach flag

• GFLIB_DFlexRampCalcIncr - this function calculates the increment and clears the
reach flag

• GFLIB_DFlexRamp - this function calculates the ramp in the periodically called
loop

For a proper use, initialize the algorithm by the GFLIB_DFlexRampInit function. The
GFLIB_DFlexRampInit function initializes the internal state variable of the algorithm
with a defined value and clears the reach flag. Call the init function when you want to
initialize the ramp.

To calculate the increment, use the GFLIB_DFlexRampCalcIncr function. Call this
function when you want to change the ramp output value. This function's inputs are the
target value and duration, and the ramp increments for motoring and generating
saturation modes. The target value is the destination value that you want to get to. The
duration is the time required to change the ramp output from the actual state to the target
value. To calculate the ramp increment, fill the control structure with the sample time,
that means the period of the loop where the GFLIB_DFlexRamp funciton is called. The
structure also contains a variable which determines the maximum value of the increment.
It is necessary to set it up too. The equation for the increment calculation is as follows:

Equation 17.

where:

• I is the increment
• Vt is the target value
• Vs is the state (actual) value (in the structure)
• T is the duration of the ramp (to reach the target value starting at the state value)
• Ts is the sample time, that means the period of the loop where the ramp algorithm is

called (set in the structure)

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 91

If the increment is greater than the maximum increment (set in the structure), the
increment uses the maximum increment value.

The state, target, and instant values must have the same sign, otherwise the saturation
modes don't work properly.

As soon as the new increment is calculated, you can call the GFLIB_DFlexRamp
algorithm in the periodical control loop. If none of the stop flags is set, the function
works as follows: The function adds the increment to the state value (from the previous
step), which results in a new state. The new state is returned by the function. As time
passes, the algorithm is approaching the target value. If the new state trespasses the target
value that new state is limited to, the target value and the reach flag are set. The
functionality of the implemented algorithm is shown in the following figure:

Figure 2-14. GFLIB_DFlexRamp functionality

If the motoring mode stop flag is set and the absolute value of the target value is greater
than the absolute value of the state value, the function uses the increment for the
motoring saturation mode to return to the instant value. Use case: when the application is
in the saturation mode and cannot supply more power to increase the speed, then a
saturation (motoring mode) flag is generated. To get out of the saturation, the ramp
output value is being reduced.

GFLIB_DFlexRamp

GFLIB User's Guide, Rev. 3, 05/2020

92 NXP Semiconductors

If the generating mode stop flag is set and the absolute value of the target value is lower
than the absolute value of the state value, the funcion uses the increment for the
generating saturation mode to return to the instant value. Use case: when the application
is braking a motor and voltage increases on the DC-bus capacitor, then a saturation
(generating mode) flag is generated. To avoid trespassing the DC-bus safe voltage limit,
the speed requirement is increasing to disipate the energy of the capacitor.

2.20.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The input parameters are the fractional and accumulator
types.

The available versions of the GFLIB_DFlexRampInit functions are shown in the
following table:

Table 2-26. Init function versions

Function name Input
type

Parameters Result
type

Description

GFLIB_FlexRampInit_F16 frac16_t GFLIB_DFLEXRAMP_T_F32 * void The input argument is a 16-bit
fractional value that represents
the initialization value. The
parameters' structure is pointed
to by a pointer. The input data
value is in the range <-1 ; 1).

GFLIB_FlexRampInit_FLT float_t GFLIB_DFLEXRAMP_T_FLT * void The input argument is a 32-bit
single precision floating-point
value that represents the
initialization value. The
parameters' structure is pointed
to by a pointer. The input value is
within the full 32-bit single-point
floating-point range.

The available versions of the GFLIB_DFlexRamp functions are shown in the following
table:

Table 2-27. Increment calculation function versions

Function name Input type Parameters Result
typeTarget Duration Incr. sat-

mot
Incr. sat-

gen

GFLIB_DFlexRampCalcIncr_F16 frac16_t acc32_t frac32_t frac32_t GFLIB_DFLEXRAMP_T_
F32 *

void

Table continues on the next page...

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 93

Table 2-27. Increment calculation function versions (continued)

Function name Input type Parameters Result
typeTarget Duration Incr. sat-

mot
Incr. sat-

gen

The input arguments are 16-bit fractional values in the range <-1 ; 1) that represent
the target output value and a 32-bit accumulator value in the range (0 ; 65536.0) that
represents the duration (in seconds) of the ramp to reach the target value. The other
two arguments are increments for the saturation mode when in the motoring and
generating modes. The parameters' structure is pointed to by a pointer.

GFLIB_DFlexRampCalcIncr_FLT float_t float_t float_t float_t GFLIB_DFLEXRAMP_T_
FLT *

void

The input arguments are 32-bit single precision floating-point values that represent
the target output value and the duration of the ramp (in seconds, except zero value)
to reach the target value. The other two arguments are increments for the saturation
mode when in the motoring and generating modes. The parameters' structure is
pointed to by a pointer. The target argument is within the full range; the duration
argument is a non-negative value.

Table 2-28. Function versions

Function name Input type Parameters Result
typeInstant Stop flag-

mot
Stop flag-

gen

GFLIB_DFlexRamp_F16 frac16_t bool_t * bool_t * GFLIB_DFLEXRAMP_T_F32 * frac16_t

The input argument is a 16-bit fractional value in the range <-1 ; 1) that represents
the measured instant value. The stop flags are pointers to the bool_t types. The
parameters' structure is pointed to by a pointer. The function returns a 16-bit
fractional value, which represents the actual ramp output value. The output data
value is in the range <-1 ; 1).

GFLIB_DFlexRamp_FLT float_t bool_t * bool_t * GFLIB_DFLEXRAMP_T_FLT * float_t

The input arguments are 32-bit single precision floating-point values that represent
the measured instant value. The stop flags are pointers to bool_t types. The
parameters' structure is pointed to by a pointer. The function returns a 32-bit single
precision floating-point value, which represents the actual ramp output value. The
output value is within the full 32-bit single-point floating-point range.

2.20.2 GFLIB_DFLEXRAMP_T_F32

Variable name Type Description

f32State frac32_t The actual value. Controlled by the GFLIB_FlexRampInit_F16 and GFLIB_FlexRamp_F16
algorithms.

f32Incr frac32_t The value of the dyn. flex ramp increment. Controlled by the
GFLIB_FlexRampCalcIncr_F16 algorithm.

f32IncrSatMot frac32_t The value of the dyn. flex ramp increment when in the motoring saturation mode.
Controlled by the GFLIB_DFlexRampCalcIncr_F16 algorithm.

Table continues on the next page...

GFLIB_DFlexRamp

GFLIB User's Guide, Rev. 3, 05/2020

94 NXP Semiconductors

Variable name Type Description

f32IncrSatGen frac32_t The value of the dyn. flex ramp increment when in the generating saturation mode.
Controlled by the GFLIB_DFlexRampCalcIncr_F16 algorithm.

f32Target frac32_t The target value of the flex ramp algorithm. Controlled by the
GFLIB_DFlexRampCalcIncr_F16 algorithm.

f32Ts frac32_t The sample time, that means the period of the loop where the GFLIB_DFlexRamp_F16
algorithm is periodically called. The data value (in seconds) is in the range (0 ; 1). Set by
the user.

f32IncrMax frac32_t The maximum value of the flex ramp increment. The data value is in the range (0 ; 1). Set
by the user.

bReachFlag bool_t Reach flag. This flag is controlled by the GFLIB_DFlexRamp_F16 algorithm. It is cleared
by the GFLIB_DFlexRampInit_F16 and GFLIB_DFlexRampCalcIncr_F16 algorithms.

2.20.3 GFLIB_DFLEXRAMP_T_FLT

Variable name Type Description

fltState float_t The actual value. Controlled by the GFLIB_DFlexRampInit_FLT and
GFLIB_DFlexRamp_FLT algorithms.

fltIncr float_t The value of the flex ramp increment. Controlled by the GFLIB_DFlexRampCalcIncr_FLT
algorithm.

fltIncrSatMot float_t The value of the dyn. flex ramp increment when in the motoring saturation mode.
Controlled by the GFLIB_DFlexRampCalcIncr_FLT algorithm.

fltIncrSatGen float_t The value of the dyn. flex ramp increment when in the generating saturation mode.
Controlled by the GFLIB_DFlexRampCalcIncr_FLT algorithm.

fltTarget float_t The target value of the flex ramp algorithm. Controlled by the
GFLIB_DFlexRampCalcIncr_FLT algorithm.

fltTs float_t The sample time, that means the period of the loop where the GFLIB_DFlexRamp_FLT
algorithm is periodically called. The data value (in seconds, except zero value) is a non-
negative value. Set by the user.

fltIncrMax float_t The maximum value of the flex ramp increment. The data is a positive value. Set by the
user.

bReachFlag bool_t The reach flag. This flag is controlled by the GFLIB_DFlexRamp_FLT algorithm. It is
cleared by the GFLIB_DFlexRampInit_FLT and GFLIB_DFlexRampCalcIncr_FLT
algorithms.

2.20.4 Declaration

The available GFLIB_DFlexRampInit functions have the following declarations:

void GFLIB_DFlexRampInit_F16(frac16_t f16InitVal, GFLIB_DFLEXRAMP_T_F32 *psParam)
void GFLIB_DFlexRampInit_FLT(float_t fltInitVal, GFLIB_DFLEXRAMP_T_FLT *psParam)

The available GFLIB_DFlexRampCalcIncr functions have the following declarations:

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 95

 void GFLIB_DFlexRampCalcIncr_F16(frac16_t f16Target, acc32_t a32Duration, frac32_t
f32IncrSatMot, frac32_t f32IncrSatGen, GFLIB_DFLEXRAMP_T_F32 *psParam)

 void GFLIB_DFlexRampCalcIncr_FLT(float_t fltTarget, float_t fltDuration, float_t
f32IncrSatMot, float_t f32IncrSatGen, GFLIB_DFLEXRAMP_T_FLT *psParam)

The available GFLIB_DFlexRamp functions have the following declarations:

 frac16_t GFLIB_DFlexRamp_F16(frac16_t f16Instant, const bool_t *pbStopFlagMot, const
bool_t *pbStopFlagGen, GFLIB_DFLEXRAMP_T_F32 *psParam)

 float_t GFLIB_DFlexRamp_FLT(float_t fltInstant, const bool_t *pbStopFlagMot, const bool_t
*pbStopFlagGen, GFLIB_DFLEXRAMP_T_FLT *psParam)

2.20.5 Function use

The use of the GFLIB_DFlexRampInit, GFLIB_DFlexRampCalcIncr, and
GFLIB_DFlexRamp functions is shown in the following examples:

Fixed-point version:

#include "gflib.h"

static frac16_t f16InitVal;
static GFLIB_DFLEXRAMP_T_F32 sDFlexRamp;
static frac16_t f16Target, f16RampResult, f16Instant;
static acc32_t a32RampDuration;
static frac32_t f32IncrSatMotMode, f32IncrSatGenMode;
static bool_t bSatMot, bSatGen;

void Isr(void);

void main(void)
{
 /* Control loop period is 0.002 s; maximum increment value is 0.15 */
 sDFlexRamp.f32Ts = FRAC32(0.002);
 sDFlexRamp.f32IncrMax = FRAC32(0.15);

 /* Initial value to 0 */
 f16InitVal = FRAC16(0.0);

 /* Dyn. flex ramp initialization */
 GFLIB_FlexRampInit_F16(f16InitVal, &sDFlexRamp);

 /* Target value is 0.7 in duration of 5.3 s */
 f16Target = FRAC16(0.7);
 a32RampDuration = ACC32(5.3);;

 /* Saturation increments */
 f32IncrSatMotMode = FRAC32(0.000015);
 f32IncrSatGenMode = FRAC32(0.00002);

 /* Saturation flags init */
 bSatMot = FALSE;
 bSatGen = FALSE;

 /* Dyn. flex ramp increment calculation */
 GFLIB_DFlexRampCalcIncr_F16(f16Target, a32RampDuration, f32IncrSatMotMode,

GFLIB_DFlexRamp

GFLIB User's Guide, Rev. 3, 05/2020

96 NXP Semiconductors

f32IncrSatGenMode, &sDFlexRamp);
}

/* periodically called control loop with a period of 2 ms */
void Isr()
{
 f16RampResult = GFLIB_DFlexRamp_F16(f16Instant, &bSatMot, &bSatGen, &sDFlexRamp);
}

Floating-point version:

#include "gflib.h"

static float_t fltInitVal;
static GFLIB_DFLEXRAMP_T_FLT sDFlexRamp;
static float_t fltTarget, fltRampResult, fltInstant;
static float_t fltRampDuration;
static float_t fltIncrSatMotMode, fltIncrSatGenMode;
static bool_t bSatMot, bSatGen;

void Isr(void);

void main(void)
{
 /* Control loop period is 0.002 s; maximum increment value is 0.15 */
 sDFlexRamp.fltTs = 0.002F;
 sDFlexRamp.fltIncrMax = 0.15F;

 /* Initial value to 0 */
 fltInitVal = 0.0F;

 /* Dyn. flex ramp initialization */
 GFLIB_DFlexRampInit_FLT(fltInitVal, &sDFlexRamp);

 /* Target value is 0.7 in duration of 5.3 s */
 fltTarget = 0.7F;
 fltRampDuration = 5.3F;

 /* Saturation increments */
 fltIncrSatMotMode = 0.000015F;
 fltIncrSatGenMode = 0.00002F;

 /* Saturation flags init */
 bSatMot = FALSE;
 bSatGen = FALSE;

 /* Dyn. flex ramp increment calculation */
 GFLIB_DFlexRampCalcIncr_FLT(fltTarget, fltRampDuration, fltIncrSatMotMode,
fltIncrSatGenMode, &sDFlexRamp);
}

/* periodically called control loop with a period of 2 ms */
void Isr()
{
 fltRampResult = GFLIB_DFlexRamp_FLT(fltInstant, &bSatMot, &bSatGen, &sDFlexRamp);
}

2.21 GFLIB_FlexSRamp

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 97

The GFLIB_FlexSRamp function calculates the up/down ramp with a variable increment
that is calculated according to the required speed change per a defined duration. These
parameters must be set by the user. The variable increment is profiled to reach the S-
profile of the resulting ramp.

The GFLIB_FlexSRamp algorithm consists of three functions that must be used for a
proper functionality of the algorithm:

• GFLIB_FlexSRampInit - this function initializes the state variable with a defined
value, resets the accelaration increment to zero, sets the acceleration state to zero,
and clears the reach flag

• GFLIB_FlexSRampCalcIncr - this function calculates the desired acceleraion, two
points of the speed where the acceleration changes from a variable to a constant and
vice-versa, acceleration (derivative) increment, resets the increment to zero, sets the
acceleration state to zero, and clears the reach flag

• GFLIB_FlexSRamp - this function calculates the ramp in the periodically called loop

For a proper use, initialize the algorithm by the GFLIB_FlexSRampInit function. The
GFLIB_FlexSRampInit function initializes the internal state variable of the algorithm
with a defined value, resets the acceleration increment to zero, sets the acceleration state
to zero, and clears the reach flag. This function does not affect the other parameters of the
ramp. Call the init function to initialize the ramp.

To calculate the profile of the ramp, use the GFLIB_FlexSRampCalcIncr function. This
function is called when you want to change the ramp output value. This function's inputs
are the target value and duration. The target value is the destination value that you want
to get to. The duration is the time required to change the ramp output from the actual state
to the target value. To calculate the ramp increment, fill the control structure with the
sample time, that means the period of the loop where the GFLIB_FlexSRamp function is
called. Set up the desirable acceleration derivative that is necessary for the acceleration
and decceleration states. The structure also contains a variable that determines the
maximum value of the increment (acceleration). It is necessary to set it up too. The
equations for the ramp calculation are derived from the following figure:

GFLIB_FlexSRamp

GFLIB User's Guide, Rev. 3, 05/2020

98 NXP Semiconductors

Figure 2-15. GFLIB_FlexSRamp profile

For the ramp output change in each state, these equations apply:

Equation 18.

Equation 19.

Equation 20.

where:

• x is the ramp output
• Δx1 is the ramp change in state 0
• Δx2 is the ramp change in state 1
• Δx3 is the ramp change in state 2
• T1 is the instant when the desired acceleration is reached and becomes constant
• T2 is the instant when the desired acceleration starts to decrease

To get the full ramp change between the actual state value and the target value, this
equation applies:

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 99

Equation 21.

The value of the desired accelelarion that is reached by the integration of the acceleration
derivative along the time within state 0 is:

Equation 22.

where:

• ades is the desired acceleration
• dA is the derivative of the acceleration

Similarly, the Δx1 and Δx2 values are given by integrating the acceleration in time:

Equation 23.

Equation 24.

Because the ramp is symetrical, time T2 is expressed as:

Equation 25.

where:

• T is the duration of the ramp

Using the equations for ades and T2, Equation 24 on page 100 is rewritten as:

Equation 26.

Putting Equation 26 on page 100 and Equation 26 on page 100 into Equation 21 on page
100, the following equation is reached:

Equation 27.

GFLIB_FlexSRamp

GFLIB User's Guide, Rev. 3, 05/2020

100 NXP Semiconductors

Having normalized the previous equation, a quadrature equation is reached:

Equation 28.

One root of this quadrature equation is T1:

Equation 29.

Using Equation 22 on page 100, the desired acceleration is expressed as:

Equation 30.

This equation has a solution within the range of real numbers only if the square root
argument is not negative, so this condition must be met:

Equation 31.

If this condition is met and the desired acceleration is not greater than the maximum
increment (set in the structure), the ramp is achievable within the defined duration and
the function's output flag is TRUE. If the acceleration is greater than the maximum
increment, the function uses the maximum increment value and then the ramp is not
achieved on time, the output flag is FALSE.

If the condition given by Equation 31 on page 101 is not met, the ramp is not achievable
within the defined duration and the function returns the flag FALSE. In such case, the
ramp skips state 1 (where the acceleration is constant) and goes directly from state 0 to
state 2. The following figure shows the ramp profile:

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 101

Figure 2-16. GFLIB_FlexSRamp delayed profile

This ramp takes longer time than desirable duration. In this case, Δx1 is exactly a half of
the full ramp change output. The T1 instant is derived from Equation 23 on page 100 as:

Equation 32.

The desired acceleration is given by Equation 22 on page 100 as:

Equation 33.

Similarly to the previous case (when the ramp is achievable within the desired time), the
desired acceleration cannot be greater than the maximum increment, otherwise the
function uses the maximum increment value. If the desired acceleration is trimmed, the
ramp is in state 1 with a constant acceleration.

In both cases, the desired acceleration could have been reduced to the maximum
increment value, therefore it is necessary to adjust the T1 value using Equation 22 on
page 100 :

GFLIB_FlexSRamp

GFLIB User's Guide, Rev. 3, 05/2020

102 NXP Semiconductors

Equation 34.

where:

• ades can be changed to the maximum increment

By putting T1 into Equation 23 on page 100, the Δx1 value is given as:

Equation 35.

Because the ramp output profile is now symetrical, the ramp output value in time T1 is
given by adding (or subracting) the Δx1 value to the state value. Similarly, the ramp
output value in time T2 is given by subtracting (or adding) the Δx1 value from the target
value. These two values are returned within the function structure together with the
desired acceleration value.

Another parameter that must be calculated is the acceleration increment. The increment
uses the derivative of acceleration dA and the sample time of the application. This must
apply:

Equation 36.

where:

• Aincr is the acceleration increment
• Ts is the sample time

The acceleration increment needed for the algorithm is:

Equation 37.

As soon as the necessary parameters are calculated, call the GFLIB_FlexSRamp
algorithm in the periodical control loop. The function works in these three states:

• State 0 - acceleration rises from 0 towards the desired acceleration
• State 1 - acceleration is constant
• State 2 - acceleration is falling from the desired acceleration towards zero

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 103

In state 0, the function adds the acceleration increment to the increment. In the first step,
it only adds half of the acceleration increment (to form the trapezoidal integration). The
resulting increment is added to or subtracted from the state value (from the previous
step), which results in a new state. The new state is returned by the function. After the
X(T1) value is reached, the function switches to state 1. At the same time, the function
checks whether the condition X(T2) value is reached. In such case, the function goes
directly to state 2.

In state 1, the function does not change the increment; it stays constant from the last
value in state 0. The increment is added to or subtracted from the state value (from the
previous step), which results in a new state. The new state is returned by the function.
When the X(T2) value is reached, the function switches to state 2.

In state 2, the function subtracts the acceleration increment from the increment. The
resulting increment is added to or subtracted from the state value (from the previous
step), which results in a new state. The new state is returned by the function. If the new
state trespasses the target value, it is trimmed to the target value. It can happen that the
function output does not reach the target value before the increment returns to zero. If the
increment is zero before reaching the target value, the output stops before the target
value. This can happen because the function does not work with the continuous time. The
incrementation depends on the sampling time and the arithmetic accuracy used. To
ensure that the function always reaches the target value, the function checks if the
increment is not lower than the half of the acceleration increment. If the resulting
increment is lower than half of the acceleration increment, the increment is set to a half of
the acceleration increment. Using this approach, the function always reaches the target
value. As soon as the target value is reached, the reach flag is set.

The functionality of the implemented algorithm is shown in this figure:

GFLIB_FlexSRamp

GFLIB User's Guide, Rev. 3, 05/2020

104 NXP Semiconductors

Figure 2-17. GFLIB_FlexSRamp functionality

2.21.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The input parameters are the fractional and accumulator
types.

The available versions of the GFLIB_FlexSRampInit function are shown in the following
table:

Table 2-29. Init function versions

Function name Input
type

Parameters Result
type

Description

GFLIB_FlexSRampInit_F16 frac16_t GFLIB_FLEXSRAMP_T_F32 * void The input argument is a 16-bit
fractional value that represents the
initialization value. The
parameters' structure is pointed to
by a pointer. The input data value
is in the range <-1 ; 1).

GFLIB_FlexSRampInit_FLT float_t GFLIB_FLEXSRAMP_T_FLT * void The input argument is a 32-bit
single precision floating-point
value that represents the
initialization value. The

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 105

Table 2-29. Init function versions

Function name Input
type

Parameters Result
type

Description

parameters' structure is pointed to
by a pointer. The input value is
within the full 32-bit single-point
floating-point range.

The available versions of the GFLIB_FlexSRamp function are shown in the following
table:

Table 2-30. Increment calculation function versions

Function name Input type Parameters Result
typeTarget Duration

GFLIB_FlexSRampCalcIncr_F16 frac16_t acc32_t GFLIB_FLEXSRAMP_T_F32 * bool_t

The input arguments are a 16-bit fractional value in the range <-1 ; 1) that represents
the target output value and a 32-bit accumulator value in the range (0 ; 1/ f16DA) that
represents the duration of the ramp (in seconds) to reach the target value. The
parameters' structure is pointed to by a pointer. The function returns TRUE if the
ramp is achievable within the defined duration; if it is not achievable, it returns
FALSE. The parameters are calculated, but the ramp takes longer.

GFLIB_FlexSRampCalcIncr_FLT float_t float_t GFLIB_FLEXSRAMP_T_FLT * bool_t

The input arguments are 32-bit single precision floating-point values that represent
the target output value and the duration of the ramp (in seconds, except zero value)
to reach the target value. The parameters' structure is pointed to by a pointer. The
target argument is within the full range; the duration argument is a non-negative
value. The function returns TRUE if the ramp is achievable within the defined
duration; if it is not achievable, it returns FALSE. The parameters are calculated, but
the ramp takes longer.

Table 2-31. Function versions

Function name Parameters Result
type

Description

GFLIB_FlexSRamp_F16 GFLIB_FLEXSRAMP_T_F32 * frac16_t The parameters' structure is pointed to by a
pointer. The function returns a 16-bit fractional
value, which represents the actual ramp
output value. The output data value is in the
range <-1 ; 1).

GFLIB_FlexSRamp_FLT GFLIB_FLEXSRAMP_T_FLT * float_t The parameters' structure is pointed to by a
pointer. The function returns a 32-bit single
precision floating-point value, which
represents the actual ramp output value. The
output value is within the full 32-bit single-
point floating-point range.

GFLIB_FlexSRamp

GFLIB User's Guide, Rev. 3, 05/2020

106 NXP Semiconductors

2.21.2 GFLIB_FLEXSRAMP_T_F32

Variable name Type Description

f32State frac32_t The actual value. Controlled by the GFLIB_FlexSRampInit_F16 and
GFLIB_FlexSRamp_F16 algorithms.

f32Incr frac32_t The value of the flex s-ramp increment. Controlled by the GFLIB_FlexSRamp_F16
algorithm. It is reset to zero by the GFLIB_FlexSRampInit_F16 and
GFLIB_FlexSRampCalcIncr_F16 algorithms.

f32AIncr frac32_t The value of the flex s-ramp acceleration increment. Controlled by the
GFLIB_FlexSRampCalcIncr_F16 algorithm.

f32ADes frac32_t The value of the flex s-ramp desired acceleration. Controlled by the
GFLIB_FlexSRampCalcIncr_F16 algorithm.

f32Target frac32_t The target value of the flex s-ramp algorithm. Controlled by the
GFLIB_FlexSRampCalcIncr_F16 algorithm.

f32Ts frac32_t The sample time, that means the period of the loop where the GFLIB_FlexSRamp_F16
algorithms are periodically called. The data value (in seconds) is in the range (0 ; 1). Set by
the user.

f32IncrMax frac32_t The maximum value of the flex s-ramp increment. The data value is in the range (0 ; 1). Set
by the user.

f32XT1 frac32_t The flex s-ramp value of the point where the increment must stop incrementing. Controlled
by the GFLIB_FlexSRampCalcIncr_F16 algorithm.

f32XT2 frac32_t The flex s-ramp value of the point where the increment must start decrementing. Controlled
by the GFLIB_FlexSRampCalcIncr_F16 algorithm.

f16DA frac16_t The acceleration derivative. The data value (in accelaration change per second or ramp
output value change per square second) is in the range <0 ; 0.5). Set by the user.

u16AccState uint_16_t The acceleration state of the function: 0 - acceleration rises; 1 - acceleration is constant; 2 -
acceleration falls. Controlled by the GFLIB_FlexSRamp_F16 algorithm. It is reset to zero
by the GFLIB_FlexSRampInit_F16 and GFLIB_FlexSRampCalcIncr_F16 algorithms.

bReachFlag bool_t Reach flag. This flag is controlled by the GFLIB_FlexSRamp_F16 algorithm. It is cleared by
the GFLIB_FlexSRampInit_F16 and GFLIB_FlexSRampCalcIncr_F16 algorithms.

2.21.3 GFLIB_FLEXSRAMP_T_FLT

Variable name Type Description

fltState float_t The actual value. Controlled by the GFLIB_FlexSRampInit_FLT and
GFLIB_FlexSRamp_FLT algorithms.

fltIncr float_t The value of the flex s-ramp increment. Controlled by the GFLIB_FlexSRamp_FLT
algorithm. It is reset to zero by the GFLIB_FlexSRampInit_FLT and
GFLIB_FlexSRampCalcIncr_FLT algorithms.

fltAIncr float_t The value of the flex s-ramp acceleration increment. Controlled by the
GFLIB_FlexSRampCalcIncr_FLT algorithm.

fltADes float_t The value of the flex s-ramp desired acceleration. Controlled by the
GFLIB_FlexSRampCalcIncr_FLT algorithm.

fltTarget float_t The target value of the flex s-ramp algorithm. Controlled by the
GFLIB_FlexSRampCalcIncr_FLT algorithm.

Table continues on the next page...

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 107

Variable name Type Description

fltTs float_t The sample time, that means the period of the loop where the GFLIB_FlexSRamp_FLT
algorithms are periodically called. The data value (in seconds, except zero value) is in the
32-bit single precision floating-point range. Set by the user.

fltIncrMax float_t The maximum value of the flex s-ramp increment. The data value is in the 32-bit single
precision floating-point range. Set by the user.

fltXT1 float_t The flex s-ramp value of the point where the increment must stop incrementing. Controlled
by the GFLIB_FlexSRampCalcIncr_FLT algorithm.

fltXT2 float_t The flex s-ramp value of the point where the increment must start decrementing. Controlled
by the GFLIB_FlexSRampCalcIncr_FLT algorithm.

fltDA float_t The acceleration derivative. The data value (in accelaration change per second or ramp
output value change per square second) is in the range <0 ; 1). Set by the user.

u16AccState uint_16_t The acceleration state of the function: 0 - acceleration rises; 1 - acceleration is constant; 2 -
acceleration falls. Controlled by the GFLIB_FlexSRamp_FLT algorithm. It is reset to zero
by the GFLIB_FlexSRampInit_FLT and GFLIB_FlexSRampCalcIncr_FLT algorithms.

bReachFlag bool_t The reach flag. This flag is controlled by the GFLIB_FlexSRamp_FLT algorithm. It is
cleared by the GFLIB_FlexSRampInit_FLT and GFLIB_FlexSRampCalcIncr_FLT
algorithms.

2.21.4 Declaration

The available GFLIB_FlexSRampInit functions have the following declarations:

void GFLIB_FlexSRampInit_F16(frac16_t f16InitVal, GFLIB_FLEXSRAMP_T_F32 *psParam)
void GFLIB_FlexSRampInit_FLT(float_t fltInitVal, GFLIB_FLEXSRAMP_T_FLT *psParam)

The available GFLIB_FlexSRampCalcIncr functions have the following declarations:

bool_t GFLIB_FlexSRampCalcIncr_F16(frac16_t f16Target, acc32_t a32Duration,
GFLIB_FLEXSRAMP_T_F32 *psParam)

bool_t GFLIB_FlexSRampCalcIncr_FLT(float_t fltTarget, float_t fltDuration,
GFLIB_FLEXSRAMP_T_FLT *psParam)

The available GFLIB_FlexSRamp functions have the following declarations:

frac16_t GFLIB_FlexSRamp_F16(GFLIB_FLEXSRAMP_T_F32 *psParam)
float_t GFLIB_FlexSRamp_FLT(GFLIB_FLEXSRAMP_T_FLT *psParam)

2.21.5 Function use

The use of the GFLIB_FlexSRampInit, GFLIB_FlexRampSCalcIncr, and
GFLIB_FlexSRamp functions is shown in the following examples:

GFLIB_FlexSRamp

GFLIB User's Guide, Rev. 3, 05/2020

108 NXP Semiconductors

A ramp with a profile as in Figure 2-15 is generated. The ramp must change the speed
from 100 RPM to 900 RPM in 20 s. The speed scale is 5000 RPM. The ramp must
change the speed in 20 s. The acceleration derivative is 15 RPM / s2. The sample time is
0.1 s. The maximum acceleraion is 50 RPM / s.

Fixed-point version:

#include "gflib.h"

static frac16_t f16InitVal;
static GFLIB_FLEXSRAMP_T_F32 sFlexSRamp;
static frac16_t f16Target, f16RampResult;
static acc32_t a32RampDuration;
static bool_t bFlexSRampFlag;

void Isr(void);

void main(void)
{
 /* Control loop period is 0.1 s */
 sFlexSRamp.f32Ts = FRAC32(0.1);

 /* Maximum increment value is 50 RPM / s */
 sFlexSRamp.f32IncrMax = FRAC32(50.0 / 5000.0 * 0.1);

 /* Desired acceleration derivative 15 RPM / s ^ 2 */
 sFlexSRamp.f16DA = FRAC16(15.0 / 5000.0);

 /* Initial value to 100 RPM */
 f16InitVal = FRAC16(100.0 / 5000.0);

 /* Flex ramp initialization */
 GFLIB_FlexSRampInit_F16(f16InitVal, &sFlexSRamp);

 /* Target value is 900 RPM in duration of 20 s */
 f16Target = FRAC16(900.0 / 5000.0);
 a32RampDuration = ACC32(20.0);

 /* Flex s-ramp parameters calculation */
 bFlexSRampFlag = GFLIB_FlexSRampCalcIncr_F16(f16Target, a32RampDuration, &sFlexSRamp);
}

/* periodically called control loop with a period of 100 ms */
void Isr()
{
 f16RampResult = GFLIB_FlexSRamp_F16(&sFlexSRamp);
}

Floating-point version:

#include "gflib.h"

static float_t fltInitVal;
static GFLIB_FLEXSRAMP_T_FLT sFlexSRamp;
static float_t fltTarget, fltRampResult;
static float_t fltRampDuration;
static bool_t bFlexSRampFlag;

void Isr(void);

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 109

void main(void)
{
 /* Control loop period is 0.1 s */
 sFlexSRamp.fltTs = 0.1F;

 /* Maximum increment value is 50 RPM / s (50 * 0.1) */
 sFlexSRamp.fltIncrMax = 5.0f;

 /* Desired acceleration derivative 15 RPM / s ^ 2 */
 sFlexSRamp.fltDA = 15.0f;

 /* Initial value to 100 RPM */
 fltInitVal = 100.0f;

 /* Flex ramp initialization */
 GFLIB_FlexSRampInit_FLT(fltInitVal, &sFlexSRamp);

 /* Target value is 900 RPM in duration of 20 s */
 fltTarget = 900.0f;
 fltRampDuration = 20.0f;

 /* Flex s-ramp parameters calculation */
 bFlexSRampFlag = GFLIB_FlexSRampCalcIncr_FLT(fltTarget, fltRampDuration, &sFlexSRamp);
}

/* periodically called control loop with a period of 100 ms */
void Isr()
{
 fltRampResult = GFLIB_FlexSRamp_FLT(&sFlexSRamp);
}

2.22 GFLIB_Integrator

The GFLIB_Integrator function calculates a discrete implementation of the integrator
(sum), discretized using a trapezoidal rule in Tustin's method (bi-linear transformation).

The continuous time domain representation of the integrator is defined as follows:

Equation 38.

In a continuous time domain, the transfer function for this integrator is described using
the Laplace transformation as follows:

Equation 39.

Transforming the above equation into a digital time domain using the bi-linear
transformation leads to the following transfer function:

GFLIB_Integrator

GFLIB User's Guide, Rev. 3, 05/2020

110 NXP Semiconductors

Equation 40.

where Ts is the sampling period of the system. The discrete implementation of the digital
transfer function in the above equation is expressed as follows:

Equation 41.

Considering integrator gain KI, the transfer function leads to the following equation:

Equation 42.

where:

• uI(k) is the integrator's output in the actual step
• uI(k - 1) is the integrator's output from the previous step
• e(k) is the integrator's input in the actual step
• e(k - 1) is the integrator's input from the previous step
• KI is the integrator's gain coefficient
• Ts is the sampling period of the system

Equation 42 on page 111 can be used in the fractional arithmetic as follows:

Equation 43.

where:

• umax is the integrator output scale
• uIsc(k) is the scaled integrator output in the actual step
• uIsc(k - 1) is the scaled integrator output from the previous step
• emax is the integrator input scale
• esc(k) is the scaled integrator input in the actual step
• esc(k - 1) is the scaled integrator input in the previous step

For a proper use of this function, it is recommended to initialize the function's data by the
GFLIB_IntegratorInit functions, before using the GFLIB_Integrator function. You must
call the init function when you want the integrator to be initialized.

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 111

2.22.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result, the result is within
the range <-1 ; 1), and it may overflow from one limit to the other. The parameters
use the accumulator types.

• Floating-point output - the output is the floating-point result within the type's full
range, with defined upper and lower limits. The result can not overflow from one
limit to the other.

The available versions of the GFLIB_IntegratorInit function are shown in the following
table:

Table 2-32. Init function versions

Function name Input
type

Parameters Result
type

Description

GFLIB_IntegratorInit_F16 frac16_t GFLIB_INTEGRATOR_T_A32 * void The inputs are a 16-bit fractional
initial value and a pointer to the
integrator parameters' structure.

GFLIB_IntegratorInit_FLT float_t GFLIB_INTEGRATOR_T_FLT * void The inputs are a 32-bit single
precision floating-point initial value
and a pointer to the integrator
parameters' structure.

The available versions of the GFLIB_Integrator function are shown in the following
table:

Table 2-33. Function versions

Function name Input
type

Parameters Result
type

Description

GFLIB_Integrator_F16 frac16_t GFLIB_INTEGRATOR_T_A32 * frac16_t The inputs are a 16-bit fractional
value to be integrated and a pointer
to the integrator parameters'
structure. The output is limited to
range <-1 ; 1>. When the integrator
reaches the limit, it overflows to the
other limit.

GFLIB_Integrator_FLT float_t GFLIB_INTEGRATOR_T_FLT * float_t The inputs are a 32-bit single
precision floating-point value to be
integrated and a pointer to the
integrator parameters' structure. The
output is limited to range
<fltLowerLim ; fltUpperLim>. The
output can not overflow to the other
limit.

GFLIB_Integrator

GFLIB User's Guide, Rev. 3, 05/2020

112 NXP Semiconductors

2.22.2 GFLIB_INTEGRATOR_T_A32

Variable name Input
type

Description

a32Gain acc32_t Integrator gain is set up according to Equation 43 on page 111 as follows:

The parameter is a 32-bit accumulator type within the range <-65536.0 ; 65536.0). Set by
the user.

f32IAccK_1 frac32_t Integral portion in the step k - 1. Controlled by the algorithm.

f16InValK_1 frac16_t Input value in the step k - 1. Controlled by the algorithm.

2.22.3 GFLIB_INTEGRATOR_T_FLT

Variable name Input
type

Description

fltGain float_t Integrator gain is set up according to Equation 42 on page 111 as KITS.

The parameter is a 32-bit single precision floating-point type within the full range. Set by
the user.

fltIAccK_1 float_t Integral portion in the step k - 1 without any limitation. Controlled by the algorithm.

fltInValK_1 float_t Input value in the step k - 1. Controlled by the algorithm.

fltUpperLim float_t Upper limit. This parameter must be greater than fltLowerLim. Set by the user.

fltLowerLim float_t Lower limit. This parameter must be lower than fltUpperLim. Set by the user.

2.22.4 Declaration

The available GFLIB_IntegratorInit functions have the following declarations:

void GFLIB_IntegratorInit_F16(frac16_t f16InitVal, GFLIB_INTEGRATOR_T_A32 *psParam)
void GFLIB_IntegratorInit_FLT(float_t fltInitVal, GFLIB_INTEGRATOR_T_FLT *psParam)

The available GFLIB_Integrator functions have the following declarations:

frac16_t GFLIB_Integrator_F16(frac16_t f16InVal, GFLIB_INTEGRATOR_T_A32 *psParam)
float_t GFLIB_Integrator_FLT(float_t fltInVal, GFLIB_INTEGRATOR_T_FLT *psParam)

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 113

2.22.5 Function use

The use of the GFLIB_IntegratorInit and GFLIB_Integrator functions is shown in the
following examples:

Fixed-point version:

#include "gflib.h"

static frac16_t f16Result, f16InVal, f16InitVal;
static GFLIB_INTEGRATOR_T_A32 sParam;

void Isr(void);

void main(void)
{
 f16InVal = FRAC16(-0.4);
 sParam.a32Gain = ACC32(0.1);

 f16InitVal = FRAC16(0.1);

 GFLIB_IntegratorInit_F16(f16InitVal, &sParam);
}

/* periodically called function */
void Isr()
{
 f16Result = GFLIB_Integrator_F16(f16InVal, &sParam);
}

Floating-point version:

#include "gflib.h"

static float_t fltResult, fltInVal, fltInitVal;
static GFLIB_INTEGRATOR_T_FLT sParam;

void Isr(void);

void main(void)
{
 fltInVal = -0.4F;
 sParam.fltGain = 0.1F;

 fltInitVal = 0.1F;

 GFLIB_IntegratorInit_FLT(fltInitVal, &sParam);
}

/* periodically called function */
void Isr()
{
 fltResult = GFLIB_Integrator_FLT(fltInVal, &sParam);
}

2.23 GFLIB_CtrlBetaIPpAW

GFLIB_CtrlBetaIPpAW

GFLIB User's Guide, Rev. 3, 05/2020

114 NXP Semiconductors

The GFLIB_CtrlBetaIPpAW function calculates the parallel form of the Beta-Integral-
Proportional (Beta-IP) controller with an implemented integral anti-windup functionality.
The Beta-IP controller is an extended PI controller, which enables to separate the
responses from the setpoint change and the load change (if β = 1, the Beta-IP controller
has the same response as the PI controller). Therefore the Beta-IP controller allows for
reducing the overshoot caused by the change of the setpoint without affecting the load
change response. The B parameter can be set in the range from zero to one, where zero
means the maximal overshoot limitation and one means no limitation.

The Beta-IP controller attempts to correct the error between the measured process
variable (feedback) and the desired set-point by calculating a corrective action that can
adjust the process accordingly. The GFLIB_CtrlBetaIPpAW function calculates the Beta-
IP algorithm according to the equations below. The Beta-IP algorithm is implemented in
the parallel (non-interacting) form, enabling you to define the P, I, and β parameters
independently and without interaction. The controller output is limited and the limit
values (the upper limit and the lower limit) are defined by the user.

The Beta-IP controller algorithm also returns a limitation flag, which indicates that the
controller's output is at the limit. If the Beta-IP controller output reaches the upper or
lower limits, the limit flag is set to one. Otherwise, it is zero (integer values).

An anti-windup strategy is implemented by limiting the integral portion. The integral
state is limited by the controller limits in the same way as the controller output. The
integration can be stopped by a flag that is pointed to by the function's API.

The Beta-IP algorithm in the continuous time domain can be expressed as follows:

Equation 44.

where:

• u(t) is the controller output in the continuous time domain
• w(t) is the required value in the continuous time domain
• y(t) is the measured value (feedback) in the continuous time domain
• KP is the proportional gain
• KI is the integral gain
• β is the beta gain (overshoot reduction gain in the range from zero to one)

Equation 44 on page 115 can be expressed using the Laplace transformation as follows:

Equation 45.

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 115

The proportional part (uP) of Equation 44 on page 115 is transformed into the discrete
time domain as follows:

Equation 46.

where:

• uP(k) is the proportional action in the actual step
• w(k) is the required value in the actual step
• y(k) is the measured value in the actual step
• KP is the proportional gain coefficient
• β is the beta gain coefficient

Equation 46 on page 116 can be used in the fractional arithmetic as follows:

Equation 47.

where:

• umax is the action output scale
• uPsc(k) is the scaled proportional action in the actual step
• emax is the error input scale
• wsc(k) is the scale required value in the actual step
• ysc(k) is the scale measured value in the actual step

Transforming the integral part (uI) of Equation 44 on page 115 into a discrete time
domain using the bi-linear method (also known as the trapezoidal approximation) is as
follows:

Equation 48.

where:

• uI(k) is the integral action in the actual step
• uI(k - 1) is the integral action from the previous step
• w(k) is the required value in the actual step
• y(k) is the measured value in the actual step
• e(k - 1) is the error in the previous step
• Ts is the sampling period of the system
• KI is the integral gain coefficient

Equation 48 on page 116 can be used in the fractional arithmetic as follows:

GFLIB_CtrlBetaIPpAW

GFLIB User's Guide, Rev. 3, 05/2020

116 NXP Semiconductors

Equation 49.

where:

• umax is the action output scale
• uIsc(k) is the scaled integral action in the actual step
• uIsc(k - 1) is the scaled integral action from the previous step
• emax is the error input scale
• esc(k) is the scaled error in the actual step
• esc(k - 1) is the scaled error in the previous step

The output signal limitation is implemented in this controller. The actual output u(k) is
bounded not to exceed the given limit values UpperLimit and LowerLimit. This is either
due to the bounded power of the actuator or due to the physical constraints of the plant.

Equation 50.

The bounds are described by a limitation element, as shown in Equation 50 on page 117.
When the bounds are exceeded, the non-linear saturation characteristic takes effect and
influences the dynamic behavior. The described limitation is implemented on the integral
part accumulator (limitation during the calculation) and the overall controller output.
Therefore, if the limitation occurs, the controller output is clipped to its bounds, and the
wind-up occurrence of the accumulator portion is avoided by saturating the actual sum.

For a proper use of this function, it is recommended to initialize the function data by the
GFLIB_CtrlBetaIPpAWInit function, before using the GFLIB_CtrlBetaIPpAW function.

2.23.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The parameters use the accumulator types.

• Floating-point output - the output is the floating-point result within the type's full
range.

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 117

The available versions of the GFLIB_CtrlBetaIPpAWInit function are shown in the
following table:

Table 2-34. Init function versions

Function name Input
type

Parameters Result
type

Description

GFLIB_CtrlBetaIPpAWInit_F16 frac16_t GFLIB_CTRL_BETA_IP_P_AW_T_A
32 *

void The inputs are a 16-bit
fractional initial value and a
pointer to the controller's
parameters structure.

GFLIB_CtrlBetaIPpAWInit_FLT float_t GFLIB_CTRL_BETA_IP_P_AW_T_F
LT *

void The inputs are a 32-bit single
precision floating-point initial
value and a pointer to the
controller's parameters
structure.

The available versions of the GFLIB_CtrlBetaIPpAW function are shown in the
following table:

Table 2-35. Function versions

Function name Input type Parameters Result
typerequired

value
measured

value
Stop flag

GFLIB_CtrlBetaIPpAW_F16 frac16_t frac16_t bool_t * GFLIB_CTRL_BETA_IP_P_AW_T
_A32 *

frac16_t

The required value input is a 16-bit fractional value within the range <-1 ; 1). The measured
value input is a 16-bit fractional value within the range <-1 ; 1). The integration of the Beta-
IP controller is suspended if the stop flag is set. When it is cleared, the integration
continues. The parameters are pointed to by an input pointer. The function returns a 16-bit
fractional value in the range <f16LowerLim ; f16UpperLim>.

GFLIB_CtrlBetaIPpAW_FLT float_t float_t bool_t * GFLIB_CTRL_BETA_IP_P_AW_T
_FLT *

float_t

The required value input is a 32-bit single precision floating-point value within the full type's
range. The measured value input is a 32-bit single precision floating-point value within the
full type's range.The integration of the Beta-IP controller is suspended if the stop flag is set.
When it is cleared, the integration continues. The parameters are pointed to by an input
pointer. The function returns a 32-bit single precision floating-point value in the range
<fltLowerLim ; fltUpperLim>.

2.23.2 GFLIB_CTRL_BETA_IP_P_AW_T_A32

Variable name Input
type

Description

a32PGain acc32_t The proportional gain is set up according to Equation 47 on page 116 as follows:

Table continues on the next page...

GFLIB_CtrlBetaIPpAW

GFLIB User's Guide, Rev. 3, 05/2020

118 NXP Semiconductors

Variable name Input
type

Description

The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.

a32IGain acc32_t The integral gain is set up according to Equation 49 on page 117 as follows:

The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.

f32IAccK_1 frac32_t State variable of the internal accumulator (integrator). Controlled by the algorithm.

f16InErrK_1 frac16_t Input error at the step k - 1. Controlled by the algorithm.

f16UpperLim frac16_t Upper limit of the controller's output and the internal accumulator (integrator). This
parameter must be greater than f16LowerLim. Set by the user.

f16LowerLim frac16_t Lower limit of the controller's output and the internal accumulator (integrator). This
parameter must be lower than f16UpperLim. Set by the user.

f16BetaGain frac16_t The beta gain is a fraction 16-bit type in the range [0 ; 1). The beta gain defines the
reduction overshot when the required value is changed. Set by the user.

bLimFlag bool_t Limitation flag which identifies that the controller's output reached the limits. 1 - the limit is
reached; 0 - the output is within the limits. Controlled by the application.

2.23.3 GFLIB_CTRL_BETA_IP_P_AW_T_FLT

Variable name Input
type

Description

fltPGain float_t The proportional gain is set up according to Equation 46 on page 116 as KP.

The parameter is a 32-bit single precision floating-point type non-negative value. Set by
the user.

fltIGain float_t The integral gain is set up according to Equation 48 on page 116 as KITs.

The parameter is a 32-bit single precision floating-point type non-negative value. Set by
the user.

fltIAccK_1 float_t State variable of the internal accumulator (integrator). Controlled by the algorithm.

fltInErrK_1 float_t Input error at the step k - 1. Controlled by the algorithm.

fltUpperLim float_t Upper limit of the controller's output and the internal accumulator (integrator). This
parameter must be greater than fltLowerLim. Set by the user.

fltLowerLim float_t Lower limit of the controller's output and the internal accumulator (integrator). This
parameter must be lower than fltUpperLim. Set by the user.

fltBetaGain float_t The beta gain is a 32-bit single precision floating-point type non-negative value. Set by the
user. The beta gain defines the reduction overshot when the required value is changed.
Set by the user.

bLimFlag bool_t Limitation flag which identifies that the controller's output reached the limits. 1 - the limit is
reached; 0 - the output is within the limits. Controlled by the application.

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 119

2.23.4 Declaration

The available GFLIB_CtrlBetaIPpAWInit functions have the following declarations:

void GFLIB_CtrlBetaIPpAWInit_F16(frac16_t f16InitVal, GFLIB_CTRL_BETA_IP_P_AW_T_A32 *psParam)
void GFLIB_CtrlBetaIPpAWInit_FLT(float_t fltInitVal, GFLIB_CTRL_BETA_IP_P_AW_T_FLT *psParam)

The available GFLIB_CtrlBetaIPpAW functions have the following declarations:

frac16_t GFLIB_CtrlBetaIPpAW_F16(frac16_t f16InReq, frac16_t f16In, const bool_t
*pbStopIntegFlag, GFLIB_CTRL_BETA_IP_P_AW_T_A32 *psParam)

float_t GFLIB_CtrlBetaIPpAW_FLT(float_t fltInReq, float_t fltIn, const bool_t
*pbStopIntegFlag, GFLIB_CTRL_BETA_IP_P_AW_T_FLT *psParam)

2.23.5 Function use

The use of the GFLIB_CtrlBetaIPpAWInit and GFLIB_CtrlBetaIPpAW functions is
shown in the following examples:

Fixed-point version:

#include "gflib.h"

static frac16_t f16Result, f16InitVal, f16InReq, f16In;
static bool_t bStopIntegFlag;
static GFLIB_CTRL_BETA_IP_P_AW_T_A32 sParam;

void Isr(void);

void main(void)
{
 f16InReq = FRAC16(-0.3);
 f16In = FRAC16(-0.4);
 sParam.a32PGain = ACC32(0.1);
 sParam.a32IGain = ACC32(0.2);
 sParam.f16UpperLim = FRAC16(0.9);
 sParam.f16LowerLim = FRAC16(-0.9);
 sParam.f16BetaGain = FRAC16(0.5);
 bStopIntegFlag = FALSE;

 f16InitVal = FRAC16(0.0);

 GFLIB_CtrlBetaIPpAWInit_F16(f16InitVal, &sParam);
}

/* periodically called function */
void Isr()
{
 f16Result = GFLIB_CtrlBetaIPpAW_F16(f16InReq, f16In, &bStopIntegFlag, &sParam);
}

Floating-point version:

GFLIB_CtrlBetaIPpAW

GFLIB User's Guide, Rev. 3, 05/2020

120 NXP Semiconductors

#include "gflib.h"

static float_t fltResult, fltInitVal, fltInReq, fltIn, fltInErrD;
static bool_t bStopIntegFlag;
static GFLIB_CTRL_BETA_IP_P_AW_T_FLT sParam;

void Isr(void);

void main(void)
{
 fltInReq = -0.3F;
 fltIn = -0.4F;
 fltInErrD = -0.7F;
 sParam.fltPGain = 0.1F;
 sParam.fltIGain = 0.2F;
 sParam.fltUpperLim = 0.9F;
 sParam.fltLowerLim = -0.9F;
 sParam.fltBetaGain = 0.5F;
 bStopIntegFlag = FALSE;
 fltInitVal = 0.0F;
 GFLIB_CtrlBetaIPpAWInit_FLT(fltInitVal, &sParam);
}

/* periodically called function */
void Isr()
{
 fltResult = GFLIB_CtrlBetaIPpAW_FLT(fltInReq, fltIn, &bStopIntegFlag, &sParam);
}

2.24 GFLIB_CtrlBetaIPDpAW

The GFLIB_CtrlBetaIPDpAW function calculates the parallel form of the Beta-Integral-
Proportional-Derivative (Beta-IPD) controller with the implemented integral anti-windup
functionality. The Beta-IPD controller is an extended PID controller, which enables to
separate the responses from the setpoint change and the load change (if β = 1 then the
Beta-IPD controller has the same response as the PID controller). Therefore, the Beta-
IPD controller enables to reduce the overshoot caused by a change of the setpoint without
affecting the load change response. The B parameter can be set in a range from zero to
one, where zero means the maximal overshoot limitation and one means no limitation.

The Beta-IPD controller attempts to correct the error between the measured process
variable and the desired set-point by calculating a corrective action that can adjust the
process accordingly. The GFLIB_CtrlBetaIPDpAW function calculates the Beta-IPD
algorithm according to the equations below. The Beta-IPD algorithm is implemented in
the parallel (non-interacting) form, enabling you to define the P, I, D, and β parameters
independently and without interaction. The controller output is limited, and the limit
values (upper limit and lower limit) are defined by the user.

The algorithm has an error input for the D portion calculation. This enables you to apply
different filters for the D error input and for the required and measured value inputs.

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 121

The Beta-IPD controller algorithm also returns a limitation flag, which indicates that the
controller's output is at the limit. If the Beta-IPD controller output reaches the upper or
lower limit, then the limit flag is set to one. Otherwise, it is zero (integer values).

An anti-windup strategy is implemented by limiting the integral portion. The integral
state is limited by the controller limits in the same way as the controller output. The
integration can be stopped by a flag, which is pointed to by the function's API.

The Beta-IPD algorithm in the continuous time domain can be expressed as follows:

Equation 51.

where:

• u(t) is the controller output in the continuous time domain
• w(t) is the required value in the continuous time domain
• y(t) is the measured value (feedback) in the continuous time domain
• eD(t) is the input error for the derivative calculation in the continuous time domain
• KP is the proportional gain
• KI is the integral gain
• KD is the derivative gain
• β is the beta gain (overshoot reduction gain in the range from zero to one)

Equation 51 on page 122 can be expressed using the Laplace transformation as follows:

Equation 52.

The proportional part (uP) of Equation 51 on page 122 is transformed into the discrete
time domain as follows:

Equation 53.

where:

• uP(k) is the proportional action in the actual step
• w(k) is the required value in the actual step
• y(k) is the measured value in the actual step
• KP is the proportional gain coefficient
• β is the beta gain coefficient

Equation 53 on page 122 can be used in the fractional arithmetic as follows:

GFLIB_CtrlBetaIPDpAW

GFLIB User's Guide, Rev. 3, 05/2020

122 NXP Semiconductors

Equation 54.

where:

• umax is the action output scale
• uPsc(k) is the scaled proportional action in the actual step
• emax is the error input scale
• wsc(k) is the scale required value in the actual step
• ysc(k) is the scale measured value in the actual step

Transforming the integral part (uI) of Equation 51 on page 122 into a discrete time
domain using the bi-linear method (also known as the trapezoidal approximation) is as
follows:

Equation 55.

where:

• uI(k) is the integral action in the actual step
• uI(k - 1) is the integral action from the previous step
• w(k) is the required value in the actual step
• y(k) is the measured value in the actual step
• e(k - 1) is the error in the previous step
• Ts is the sampling period of the system
• KI is the integral gain coefficient

Equation 55 on page 123 can be used in the fractional arithmetic as follows:

Equation 56.

where:

• umax is the action output scale
• uIsc(k) is the scaled integral action in the actual step
• uIsc(k - 1) is the scaled integral action from the previous step
• emax is the error input scale
• esc(k) is the scaled error in the actual step
• esc(k - 1) is the scaled error in the previous step

The derivative part (uD) of Equation 51 on page 122 is transformed into the discrete time
domain as follows:

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 123

Equation 57.

where:

• uD(k) is the proportional action in the actual step
• eD(k) is the error used for the derivative input in the actual step
• eD(k - 1) is the error used for the derivative input in the previous step
• KD is the proportional gain coefficient

Equation 53 on page 122 can be used in the fractional arithmetic as follows:

Equation 58.

where:

• umax is the action output scale
• uDsc(k) is the scaled derivative action in the actual step
• emax is the error input scale
• eDsc(k) is the scaled error for the derivative input in the actual step
• eDsc(k - 1) is the scaled error for the derivative input in the previous step

The output signal limitation is implemented in this controller. The actual output u(k) is
bounded to not exceed the given limit values - UpperLimit and LowerLimit. This is either
due to the bounded power of the actuator, or due to the physical constraints of the plant.

Equation 59.

The bounds are described by a limitation element, as shown in Equation 59 on page 124.
When the bounds are exceeded, the non-linear saturation characteristic takes place and
influences the dynamic behavior. The described limitation is implemented in the integral
part accumulator (limitation during the calculation) and in the overall controller output.
Therefore, if the limitation occurs, the controller output is clipped to its bounds, and the
wind-up occurrence of the accumulator portion is avoided by saturating the actual sum.

For a proper use of this function, it is recommended to initialize the function data by the
GFLIB_CtrlBetaIPDpAWInit functions, before using the GFLIB_CtrlBetaIPDpAW
function.

GFLIB_CtrlBetaIPDpAW

GFLIB User's Guide, Rev. 3, 05/2020

124 NXP Semiconductors

2.24.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The parameters use the accumulator types.

• Floating-point output - the output is the floating-point result within the type's full
range.

The available versions of the GFLIB_CtrlBetaIPDpAWInit function are shown in the
following table:

Table 2-36. Init function versions

Function name Input
type

Parameters Result
type

Description

GFLIB_CtrlBetaIPDpAWInit_F16 frac16_t GFLIB_CTRL_BETA_IPD_P_AW_T_
A32 *

void The inputs are a 16-bit
fractional initial value and a
pointer to the controller's
parameters structure.

GFLIB_CtrlBetaIPDpAWInit_FLT float_t GFLIB_CTRL_BETA_IPD_P_AW_T_
FLT *

void The inputs are a 32-bit
single precision floating-
point initial value and a
pointer to the controller's
parameters structure.

The available versions of the GFLIB_CtrlBetaIPDpAW function are shown in the
following table:

Table 2-37. Function versions

Function name Input type Parameters Result
typeRequired

value
Measured

value
D error Stop flag

GFLIB_CtrlBetaIPDpAW_F16 frac16_t frac16_t frac16_t bool_t * GFLIB_CTRL_BETA_IPD_P_
AW_T_A32 *

frac16_t

The required value input is a 16-bit fractional value within the range <-1 ; 1). The measured
value input is a 16-bit fractional value within the range <-1 ; 1). The D error input is a 16-bit
fractional value within the range <-1 ; 1). The integration of the Beta-IPD controller is
suspended if the stop flag is set. When it is cleared, the integration continues. The
parameters are pointed to by an input pointer. The function returns a 16-bit fractional value
in the range <f16LowerLim ; f16UpperLim>.

GFLIB_CtrlBetaIPDpAW_FLT float_t float_t float_t bool_t * GFLIB_CTRL_BETA_IPD_P_
AW_T_FLT *

float_t

The required value input is a 32-bit single precision floating-point value within the full type's
range. The measured value input is a 32-bit single precision floating-point value within the
full type's range. The error input is a 32-bit single precision floating-point value within the full
type's range. The integration of the Beta-IPD controller is suspended if the stop flag is set.

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 125

Table 2-37. Function versions

Function name Input type Parameters Result
typeRequired

value
Measured

value
D error Stop flag

When it is cleared, the integration continues. The parameters are pointed to by an input
pointer. The function returns a 32-bit single precision floating-point value in the range
<fltLowerLim ; fltUpperLim>.

2.24.2 GFLIB_CTRL_BETA_IPD_P_AW_T_A32

Variable name Input
type

Description

a32PGain acc32_t The proportional gain is set up according to Equation 54 on page 123 as follows:

The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.

a32IGain acc32_t The integral gain is set up according to Equation 56 on page 123 as follows:

The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.

a32DGain acc32_t The derivative gain is set up according to Equation 58 on page 124 as follows:

The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.

f32IAccK_1 frac32_t State variable of the internal accumulator (integrator). Controlled by the algorithm.

f16InErrK_1 frac16_t Input error in the step k - 1. Controlled by the algorithm.

f16UpperLim frac16_t Upper limit of the controller's output and the internal accumulator (integrator). This
parameter must be greater than f16LowerLim. Set by the user.

f16LowerLim frac16_t Lower limit of the controller's output and the internal accumulator (integrator). This
parameter must be lower than f16UpperLim. Set by the user.

f16InErrDK_1 frac16_t Input error for the derivative calculation in the step k - 1. Controlled by the algorithm.

f16BetaGain frac16_t The beta gain is a fraction 16-bit type in the range [0 ; 1). The beta gain defines the
reduction overshot when the required value is changed. Set by the user.

bLimFlag bool_t The limitation flag which identifies that the controller's output reached the limits. 1 - the limit
is reached; 0 - the output is within the limits. Controlled by the application.

GFLIB_CtrlBetaIPDpAW

GFLIB User's Guide, Rev. 3, 05/2020

126 NXP Semiconductors

2.24.3 GFLIB_CTRL_BETA_IPD_P_AW_T_FLT

Variable name Input
type

Description

fltPGain float_t The proportional gain is set up according to Equation 53 on page 122 as KP.

The parameter is a 32-bit single precision floating-point type non-negative value. Set by the
user.

fltIGain float_t The integral gain is set up according to Equation 55 on page 123 as KITs.

The parameter is a 32-bit single precision floating-point type non-negative value. Set by the
user.

fltDGain float_t The derivative gain is set up according to Equation 57 on page 124 as KD / Ts.

The parameter is a 32-bit single precision floating-point type non-negative value. Set by the
user.

fltIAccK_1 float_t State variable of the internal accumulator (integrator). Controlled by the algorithm.

fltInErrK_1 float_t Input error in the step k - 1. Controlled by the algorithm.

fltUpperLim float_t Upper limit of the controller's output and the internal accumulator (integrator). This
parameter must be greater than fltLowerLim. Set by the user.

fltLowerLim float_t Lower limit of the controller's output and the internal accumulator (integrator). This
parameter must be lower than fltUpperLim. Set by the user.

fltInErrDK_1 float_t Input error for the derivative calculation in the step k - 1. Controlled by the algorithm.

fltBetaGain float_t The beta gain is a 32-bit single precision floating-point type non-negative value. Set by the
user. The beta gain defines the reduction overshot when the required value is changed.
Set by the user.

bLimFlag bool_t The limitation flag which identifies that the controller's output reached the limits. 1 - the limit
is reached; 0 - the output is within the limits. Controlled by the application.

2.24.4 Declaration

The available GFLIB_CtrlBetaIPDpAWInit functions have the following declarations:

void GFLIB_CtrlBetaIPDpAWInit_F16(frac16_t f16InitVal, GFLIB_CTRL_BETA_IPD_P_AW_T_A32
*psParam)

void GFLIB_CtrlBetaIPDpAWInit_FLT(float_t fltInitVal, GFLIB_CTRL_BETA_IPD_P_AW_T_FLT
*psParam)

The available GFLIB_CtrlBetaIPDpAW functions have the following declarations:

frac16_t GFLIB_CtrlBetaIPDpAW_F16(frac16_t f16InReq, frac16_t f16In, frac16_t f16InErrD,
const bool_t *pbStopIntegFlag, GFLIB_CTRL_BETA_IPD_P_AW_T_A32 *psParam)

float_t GFLIB_CtrlBetaIPDpAW_FLT(float_t fltInReq, float_t fltIn, float_t fltInErrD, const
bool_t *pbStopIntegFlag, GFLIB_CTRL_BETA_IPD_P_AW_T_FLT *psParam)

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 127

2.24.5 Function use

The use of the GFLIB_CtrlBetaIPDpAWInit and GFLIB_CtrlBetaIPDpAW functions is
shown in the following examples:

Fixed-point version:

#include "gflib.h"

static frac16_t f16Result, f16InitVal, f16InReq, f16In, f16InErrD;
static bool_t bStopIntegFlag;
static GFLIB_CTRL_BETA_IPD_P_AW_T_A32 sParam;

void Isr(void);

void main(void)
{
 f16InReq = FRAC16(-0.3);
 f16In = FRAC16(-0.4);
 f16InErrD = FRAC16(-0.7);
 sParam.a32PGain = ACC32(0.1);
 sParam.a32IGain = ACC32(0.2);
 sParam.a32DGain = ACC32(0.001);
 sParam.f16UpperLim = FRAC16(0.9);
 sParam.f16LowerLim = FRAC16(-0.9);
 sParam.f16BetaGain = FRAC16(0.5);
 bStopIntegFlag = FALSE;

 f16InitVal = FRAC16(0.0);

 GFLIB_CtrlBetaIPDpAWInit_F16(f16InitVal, &sParam);
}

/* periodically called function */
void Isr()
{
 f16Result = GFLIB_CtrlBetaIPDpAW_F16(f16InReq, f16In, f16InErrD, &bStopIntegFlag,
&sParam);
}

Floating-point version:

#include "gflib.h"

static float_t fltResult, fltInitVal, fltInReq, fltIn, fltInErrD;
static boot_t bStopIntegFlag;
static GFLIB_CTRL_BETA_IPD_P_AW_T_FLT sParam;

void Isr(void);

void main(void)
{
 fltInReq = -0.3F;
 fltIn = -0.4F;
 fltInErrD = -0.7F;
 sParam.fltPGain = 0.1F;
 sParam.fltIGain = 0.2F;
 sParam.fltDGain = 0.001F;
 sParam.fltUpperLim = 0.9F;
 sParam.fltLowerLim = -0.9F;
 sParam.fltBetaGain = 0.5F;

GFLIB_CtrlBetaIPDpAW

GFLIB User's Guide, Rev. 3, 05/2020

128 NXP Semiconductors

 bStopIntegFlag = FALSE;

 fltInitVal = 0.0F;

 GFLIB_CtrlBetaIPDpAWInit_FLT(fltInitVal, &sParam);
}

/* periodically called function */
void Isr()
{
 fltResult = GFLIB_CtrlBetaIPDpAW_FLT(fltInReq, fltIn, fltInErrD, &bStopIntegFlag,
&sParam);
}

2.25 GFLIB_CtrlPIpAW

The GFLIB_CtrlPIpAW function calculates the parallel form of the Proportional-Integral
(PI) controller with implemented integral anti-windup functionality.

The PI controller attempts to correct the error between the measured process variable and
the desired set-point by calculating a corrective action that can adjust the process
accordingly. The GFLIB_CtrlPIpAW function calculates the PI algorithm according to
the equations below. The PI algorithm is implemented in the parallel (non-interacting)
form, allowing the user to define the P and I parameters independently and without
interaction. The controller output is limited and the limit values (upper limit and lower
limit) are defined by the user.

The PI controller algorithm also returns a limitation flag, which indicates that the
controller's output is at the limit. If the PI controller output reaches the upper or lower
limit, then the limit flag is set to 1, otherwise it is 0 (integer values).

An anti-windup strategy is implemented by limiting the integral portion. The integral
state is limited by the controller limits in the same way as the controller output. The
integration can be stopped by a flag that is pointed to by the function's API.

The PI algorithm in the continuous time domain can be expressed as follows:

Equation 60.

where:

• u(t) is the controller output in the continuous time domain
• e(t) is the input error in the continuous time domain
• KP is the proportional gain
• KI is the integral gain

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 129

Equation 60 on page 129 can be expressed using the Laplace transformation as follows:

Equation 61.

The proportional part (uP) of Equation 60 on page 129 is transformed into the discrete
time domain as follows:

Equation 62.

where:

• uP(k) is the proportional action in the actual step
• e(k) is the error in the actual step
• KP is the proportional gain coefficient

Equation 62 on page 130 can be used in the fractional arithmetic as follows:

Equation 63.

where:

• umax is the action output scale
• uPsc(k) is the scaled proportional action in the actual step
• emax is the error input scale
• esc(k) is the scale error in the actual step

Transforming the integral part (uI) of Equation 60 on page 129 into a discrete time
domain using the bi-linear method, also known as the trapezoidal approximation, is as
follows:

Equation 64.

where:

• uI(k) is the integral action in the actual step
• uI(k - 1) is the integral action from the previous step
• e(k) is the error in the actual step
• e(k - 1) is the error in the previous step
• Ts is the sampling period of the system
• KI is the integral gain coefficient

GFLIB_CtrlPIpAW

GFLIB User's Guide, Rev. 3, 05/2020

130 NXP Semiconductors

Equation 64 on page 130 can be used in the fractional arithmetic as follows:

Equation 65.

where:

• umax is the action output scale
• uIsc(k) is the scaled integral action in the actual step
• uIsc(k - 1) is the scaled integral action from the previous step
• emax is the error input scale
• esc(k) is the scaled error in the actual step
• esc(k - 1) is the scaled error in the previous step

The output signal limitation is implemented in this controller. The actual output u(k) is
bounded not to exceed the given limit values UpperLimit and LowerLimit. This is due to
either the bounded power of the actuator or due to the physical constraints of the plant.

Equation 66.

The bounds are described by a limitation element, as shown in Equation 66 on page 131.
When the bounds are exceeded, the nonlinear saturation characteristic will take effect and
influence the dynamic behavior. The described limitation is implemented on the integral
part accumulator (limitation during the calculation) and on the overall controller output.
Therefore, if the limitation occurs, the controller output is clipped to its bounds, and the
wind-up occurrence of the accumulator portion is avoided by saturating the actual sum.

For a proper use of this function, it is recommended to initialize the function data by the
GFLIB_CtrlPIpAWInit functions, before using the GFLIB_CtrlPIpAW function. You
must call this function when you want the PI controller to be initialized.

2.25.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The parameters use the accumulator types.

• Floating-point output - the output is the floating-point result within the type's full
range.

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 131

The available versions of the GFLIB_CtrlPIpAWInit function are shown in the following
table:

Table 2-38. Init function versions

Function name Input
type

Parameters Result
type

Description

GFLIB_CtrlPIpAWInit_F16 frac16_t GFLIB_CTRL_PI_P_AW_T_A32 * void The inputs are a 16-bit
fractional initial value and a
pointer to the controller's
parameters structure.

GFLIB_CtrlPIpAWInit_FLT float_t GFLIB_CTRL_PI_P_AW_T_FLT * void The inputs are a 32-bit single
precision floating-point initial
value and a pointer to the
controller's parameters
structure.

The available versions of the GFLIB_CtrlPIpAW function are shown in the following
table:

Table 2-39. Function versions

Function name Input type Parameters Result type

Error Stop flag

GFLIB_CtrlPIpAW_F16 frac16_t bool_t * GFLIB_CTRL_PI_P_AW_T_A32 * frac16_t

The error input is a 16-bit fractional value within the range <-1 ; 1). The integration of the PI
controller is suspended if the stop flag is set. When it is cleared, the integration continues. The
parameters are pointed to by an input pointer. The function returns a 16-bit fractional value in
the range <f16LowerLim ; f16UpperLim>.

GFLIB_CtrlPIpAW_FLT float_t bool_t * GFLIB_CTRL_PI_P_AW_T_FLT * float_t

The error input is a 32-bit single precision floating-point value within the full type's range. The
integration of the PI controller is suspended if the stop flag is set. When it is cleared, the
integration continues. The parameters are pointed to by an input pointer. The function returns a
32-bit single precision floating-point value in the range <fltLowerLim ; fltUpperLim>.

2.25.2 GFLIB_CTRL_PI_P_AW_T_A32

Variable name Input
type

Description

a32PGain acc32_t Proportional gain is set up according to Equation 63 on page 130 as follows:

The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.

a32IGain acc32_t Integral gain is set up according to Equation 65 on page 131 as follows:

Table continues on the next page...

GFLIB_CtrlPIpAW

GFLIB User's Guide, Rev. 3, 05/2020

132 NXP Semiconductors

Variable name Input
type

Description

The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.

f32IAccK_1 frac32_t State variable of the internal accumulator (integrator). Controlled by the algorithm.

f16InErrK_1 frac16_t Input error at the step k - 1. Controlled by the algorithm.

f16UpperLim frac16_t Upper limit of the controller's output and the internal accumulator (integrator). This
parameter must be greater than f16LowerLim. Set by the user.

f16LowerLim frac16_t Lower limit of the controller's output and the internal accumulator (integrator). This
parameter must be lower than f16UpperLim. Set by the user.

bLimFlag bool_t Limitation flag, which identifies that the controller's output reached the limits. 1 - the limit is
reached; 0 - the output is within the limits. Controlled by the application.

2.25.3 GFLIB_CTRL_PI_P_AW_T_FLT

Variable name Input
type

Description

fltPGain float_t Proportional gain is set up according to Equation 62 on page 130 as KP.

The parameter is a 32-bit single precision floating-point type non-negative value. Set by
the user.

fltIGain float_t Integral gain is set up according to Equation 64 on page 130 as KITs.

The parameter is a 32-bit single precision floating-point type non-negative value. Set by
the user.

fltIAccK_1 float_t State variable of the internal accumulator (integrator). Controlled by the algorithm.

fltInErrK_1 float_t Input error at the step k - 1. Controlled by the algorithm.

fltUpperLim float_t Upper limit of the controller's output and the internal accumulator (integrator). This
parameter must be greater than fltLowerLim. Set by the user.

fltLowerLim float_t Lower limit of the controller's output and the internal accumulator (integrator). This
parameter must be lower than fltUpperLim. Set by the user.

bLimFlag bool_t Limitation flag, which identifies that the controller's output reached the limits. 1 - the limit is
reached; 0 - the output is within the limits. Controlled by the application.

2.25.4 Declaration

The available GFLIB_CtrlPIpAWInit functions have the following declarations:

void GFLIB_CtrlPIpAWInit_F16(frac16_t f16InitVal, GFLIB_CTRL_PI_P_AW_T_A32 *psParam)

void GFLIB_CtrlPIpAWInit_FLT(float_t fltInitVal, GFLIB_CTRL_PI_P_AW_T_FLT *psParam)

The available GFLIB_CtrlPIpAW functions have the following declarations:

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 133

frac16_t GFLIB_CtrlPIpAW_F16(frac16_t f16InErr, const bool_t *pbStopIntegFlag,
GFLIB_CTRL_PI_P_AW_T_A32 *psParam)

float_t GFLIB_CtrlPIpAW_FLT(float_t fltInErr, const bool_t *pbStopIntegFlag,
GFLIB_CTRL_PI_P_AW_T_FLT *psParam)

2.25.5 Function use

The use of the GFLIB_CtrlPIpAWInit and GFLIB_CtrlPIpAW functions is shown in the
following examples:

Fixed-point version:

#include "gflib.h"

static frac16_t f16Result, f16InitVal, f16InErr;
static bool_t bStopIntegFlag;
static GFLIB_CTRL_PI_P_AW_T_A32 sParam;

void Isr(void);

void main(void)
{
 f16InErr = FRAC16(-0.4);
 sParam.a32PGain = ACC32(0.1);
 sParam.a32IGain = ACC32(0.2);
 sParam.f16UpperLim = FRAC16(0.9);
 sParam.f16LowerLim = FRAC16(-0.9);
 bStopIntegFlag = FALSE;

 f16InitVal = FRAC16(0.0);

 GFLIB_CtrlPIpAWInit_F16(f16InitVal, &sParam);
}

/* periodically called function */
void Isr()
{
 f16Result = GFLIB_CtrlPIpAW_F16(f16InErr, &bStopIntegFlag, &sParam);
}

Floating-point version:

#include "gflib.h"

static float_t fltResult, fltInitVal, fltInErr;
static bool_t bStopIntegFlag;
static GFLIB_CTRL_PI_P_AW_T_FLT sParam;

void Isr(void);

void main(void)
{
 fltInErr = -0.4F;
 sParam.fltPGain = 0.1F;
 sParam.fltIGain = 0.2F;

GFLIB_CtrlPIpAW

GFLIB User's Guide, Rev. 3, 05/2020

134 NXP Semiconductors

 sParam.fltUpperLim = 0.9F;
 sParam.fltLowerLim = -0.9F;
 bStopIntegFlag = FALSE;

 fltInitVal = 0.0F;

 GFLIB_CtrlPIpAWInit_FLT(fltInitVal, &sParam);
}

/* periodically called function */
void Isr()
{
 fltResult = GFLIB_CtrlPIpAW_FLT(fltInErr, &bStopIntegFlag, &sParam);
}

2.26 GFLIB_CtrlPIDpAW

The GFLIB_CtrlPIDpAW function calculates the parallel form of the Proportional-
Integral-Derivative (PID) controller with implemented integral anti-windup functionality.

The PID controller attempts to correct the error between the measured process variable
and the desired set-point by calculating a corrective action that can adjust the process
accordingly. The GFLIB_CtrlPIDpAW function calculates the PID algorithm according
to the equations below. The PID algorithm is implemented in the parallel (non-
interacting) form, allowing the user to define the P, I, and D parameters independently
and without interaction. The controller output is limited, and the limit values (upper limit
and lower limit) are defined by the user.

The algorithm has two error inputs: one for the P and I calculation, and the other for the
D calculation. This allows the user to apply different filters on both inputs.

The PID controller algorithm also returns a limitation flag, which indicates that the
controller's output is at the limit. If the PID controller output reaches the upper or lower
limit, then the limit flag is set to 1, otherwise it is 0 (integer values).

An anti-windup strategy is implemented by limiting the integral portion. The integral
state is limited by the controller limits in the same way as the controller output. The
integration can be stopped by a flag, which is pointed to by the function's API.

The PID algorithm in the continuous time domain can be expressed as follows:

Equation 67.

where

• u(t) is the controller output in the continuous time domain

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 135

• e(t) is the input error for the proportional and integral calculation in the continuous
time domain

• eD(t) is the input error for the derivative calculation in the continuous time domain
• KP is the proportional gain
• KI is the integral gain
• KD is the derivative gain

Equation 67 on page 135 can be expressed using the Laplace transformation as follows:

Equation 68.

The proportional part (uP) of Equation 68 on page 136 is transformed into the discrete
time domain as follows:

Equation 69.

where:

• uP(k) is the proportional action in the actual step
• e(k) is the error in the actual step
• KP is the proportional gain coefficient

Equation 69 on page 136 can be used in the fractional arithmetic as follows:

Equation 70.

where:

• umax is the action output scale
• uPsc(k) is the scaled proportional action in the actual step
• emax is the error input scale
• esc(k) is the scale error in the actual step

Transforming the integral part (uI) of Equation 68 on page 136 into a discrete time
domain using the bi-linear method, also known as the trapezoidal approximation, is as
follows:

Equation 71.

where:

GFLIB_CtrlPIDpAW

GFLIB User's Guide, Rev. 3, 05/2020

136 NXP Semiconductors

• uI(k) is the integral action in the actual step
• uI(k - 1) is the integral action from the previous step
• e(k) is the error in the actual step
• e(k - 1) is the error in the previous step
• Ts is the sampling period of the system
• KI is the integral gain coefficient

Equation 71 on page 136 can be used in the fractional arithmetic as follows:

Equation 72.

where:

• umax is the action output scale
• uIsc(k) is the scaled integral action in the actual step
• uIsc(k - 1) is the scaled integral action from the previous step
• emax is the error input scale
• esc(k) is the scaled error in the actual step
• esc(k - 1) is the scaled error in the previous step

The derivative part (uD) of Equation 67 on page 135 is transformed into the discrete time
domain as follows:

Equation 73.

where:

• uD(k) is the proportional action in the actual step
• eD(k) is the error used for the derivative input in the actual step
• eD(k - 1) is the error used for the derivative input in the previous step
• KD is the proportional gain coefficient

Equation 69 on page 136 can be used in the fractional arithmetic as follows:

Equation 74.

where:

• umax is the action output scale
• uDsc(k) is the scaled derivative action in the actual step
• emax is the error input scale

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 137

• eDsc(k) is the scaled error for the derivative input in the actual step
• eDsc(k - 1) is the scaled error for the derivative input in the previous step

The output signal limitation is implemented in this controller. The actual output u(k) is
bounded to not exceed the given limit values - UpperLimit and LowerLimit. This is due
to either the bounded power of the actuator, or due to the physical constraints of the plant.

Equation 75.

The bounds are described by a limitation element, as shown in Equation 75 on page 138.
When the bounds are exceeded, the non-linear saturation characteristic will take effect,
and influence the dynamic behavior. The described limitation is implemented in the
integral part accumulator (limitation during the calculation) and in the overall controller
output. Therefore, if the limitation occurs, the controller output is clipped to its bounds,
and the wind-up occurrence of the accumulator portion is avoided by saturating the actual
sum.

For a proper use of this function, it is recommended to initialize the function data by the
GFLIB_CtrlPIDpAWInit functions, before using the GFLIB_CtrlPIDpAW function. You
must call this function, when you want the PID controller to be initialized.

2.26.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The parameters use the accumulator types.

• Floating-point output - the output is the floating-point result within the type's full
range.

The available versions of the GFLIB_CtrlPIDpAWInit function are shown in the
following table:

Table 2-40. Init function versions

Function name Input
type

Parameters Result
type

Description

GFLIB_CtrlPIDpAWInit_F16 frac16_t GFLIB_CTRL_PID_P_AW_T_A32 * void The inputs are a 16-bit
fractional initial value and a
pointer to the controller's
parameters structure.

Table continues on the next page...

GFLIB_CtrlPIDpAW

GFLIB User's Guide, Rev. 3, 05/2020

138 NXP Semiconductors

Table 2-40. Init function versions (continued)

Function name Input
type

Parameters Result
type

Description

GFLIB_CtrlPIDpAWInit_FLT float_t GFLIB_CTRL_PID_P_AW_T_FLT * void The inputs are a 32-bit single
precision floating-point initial
value and a pointer to the
controller's parameters
structure.

The available versions of the GFLIB_CtrlPIDpAW function are shown in the following
table:

Table 2-41. Function versions

Function name Input type Parameters Result
typePI error D error Stop flag

GFLIB_CtrlPIDpAW_F16 frac16_t frac16_t bool_t * GFLIB_CTRL_PID_P_AW_T_A32 * frac16_t

The error inputs are 16-bit fractional values within the range <-1 ; 1). The integration of the
PID controller is suspended if the stop flag is set. When it is cleared, the integration continues.
The parameters are pointed to by an input pointer. The function returns a 16-bit fractional
value in the range <f16LowerLim ; f16UpperLim>.

GFLIB_CtrlPIDpAW_FLT float_t float_t bool_t * GFLIB_CTRL_PID_P_AW_T_FLT * float_t

The error inputs are 32-bit single precision floating-point values within the full type's range.
The integration of the PID controller is suspended if the stop flag is set. When it is cleared, the
integration continues. The parameters are pointed to by an input pointer. The function returns
a 32-bit single precision floating-point value in the range <fltLowerLim ; fltUpperLim>.

2.26.2 GFLIB_CTRL_PID_P_AW_T_A32

Variable name Input
type

Description

a32PGain acc32_t Proportional gain is set up according to Equation 70 on page 136 as follows:

The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.

a32IGain acc32_t Integral gain is set up according to Equation 72 on page 137 as follows:

The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.

a32DGain acc32_t Derivative gain is set up according to Equation 74 on page 137 as follows:

The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.

Table continues on the next page...

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 139

Variable name Input
type

Description

f32IAccK_1 frac32_t State variable of the internal accumulator (integrator). Controlled by the algorithm.

f16InErrK_1 frac16_t Input error in the step k - 1. Controlled by the algorithm.

f16UpperLim frac16_t Upper limit of the controller's output and the internal accumulator (integrator). This
parameter must be greater than f16LowerLim. Set by the user.

f16LowerLim frac16_t Lower limit of the controller's output and the internal accumulator (integrator). This
parameter must be lower than f16UpperLim. Set by the user.

f16InErrDK_1 frac16_t Input error for the derivative calculation in the step k - 1. Controlled by the algorithm.

bLimFlag bool_t Limitation flag, which identifies that the controller's output reached the limits. 1 - the limit is
reached; 0 - the output is within the limits. Controlled by the application.

2.26.3 GFLIB_CTRL_PID_P_AW_T_FLT

Variable name Input
type

Description

fltPGain float_t Proportional gain is set up according to Equation 69 on page 136 as KP.

The parameter is a 32-bit single precision floating-point type non-negative value. Set by the
user.

fltIGain float_t Integral gain is set up according to Equation 71 on page 136 as KITs.

The parameter is a 32-bit single precision floating-point type non-negative value. Set by the
user.

fltDGain float_t Derivative gain is set up according to Equation 73 on page 137 as KD / Ts.

The parameter is a 32-bit single precision floating-point type non-negative value. Set by the
user.

fltIAccK_1 float_t State variable of the internal accumulator (integrator). Controlled by the algorithm.

fltInErrK_1 float_t Input error in the step k - 1. Controlled by the algorithm.

fltUpperLim float_t Upper limit of the controller's output and the internal accumulator (integrator). This
parameter must be greater than fltLowerLim. Set by the user.

fltLowerLim float_t Lower limit of the controller's output and the internal accumulator (integrator). This
parameter must be lower than fltUpperLim. Set by the user.

fltInErrDK_1 float_t Input error for the derivative calculation in the step k - 1. Controlled by the algorithm.

bLimFlag bool_t Limitation flag, which identifies that the controller's output reached the limits. 1 - the limit is
reached; 0 - the output is within the limits. Controlled by the application.

2.26.4 Declaration

The available GFLIB_CtrlPIDpAWInit functions have the following declarations:

void GFLIB_CtrlPIDpAWInit_F16(frac16_t f16InitVal, GFLIB_CTRL_PID_P_AW_T_A32 *psParam)
void GFLIB_CtrlPIDpAWInit_FLT(float_t fltInitVal, GFLIB_CTRL_PID_P_AW_T_FLT *psParam)

GFLIB_CtrlPIDpAW

GFLIB User's Guide, Rev. 3, 05/2020

140 NXP Semiconductors

The available GFLIB_CtrlPIDpAW functions have the following declarations:

frac16_t GFLIB_CtrlPIDpAW_F16(frac16_t f16InErr, frac16_t f16InErrD, const bool_t
*pbStopIntegFlag, GFLIB_CTRL_PID_P_AW_T_A32 *psParam)

float_t GFLIB_CtrlPIDpAW_FLT(float_t fltInErr, float_t fltInErrD, const bool_t
*pbStopIntegFlag, GFLIB_CTRL_PID_P_AW_T_FLT *psParam)

2.26.5 Function use

The use of the GFLIB_CtrlPIDpAWInit and GFLIB_CtrlPIDpAW functions is shown in
the following examples:

Fixed-point version:

#include "gflib.h"

static frac16_t f16Result, f16InitVal, f16InErr, f16InErrD;
static bool_t bStopIntegFlag;
static GFLIB_CTRL_PID_P_AW_T_A32 sParam;

void Isr(void);

void main(void)
{
 f16InErr = FRAC16(-0.4);
 f16InErr = f16InErrD;
 sParam.a32PGain = ACC32(0.1);
 sParam.a32IGain = ACC32(0.2);
 sParam.a32DGain = ACC32(0.001);
 sParam.f16UpperLim = FRAC16(0.9);
 sParam.f16LowerLim = FRAC16(-0.9);
 bStopIntegFlag = FALSE;

 f16InitVal = FRAC16(0.0);

 GFLIB_CtrlPIDpAWInit_F16(f16InitVal, &sParam);
}

/* periodically called function */
void Isr()
{
 f16Result = GFLIB_CtrlPIDpAW_F16(f16InErr, f16InErrD, &bStopIntegFlag, &sParam);
}

Floating-point version:

#include "gflib.h"

static float_t fltResult, fltInitVal, fltInErr, fltInErrD;
static bool_t bStopIntegFlag;
static GFLIB_CTRL_PID_P_AW_T_FLT sParam;

void Isr(void);

Chapter 2 Algorithms in detail

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 141

void main(void)
{
 fltInErr = -0.4F;
 fltInErr = fltInErrD;
 sParam.fltPGain = 0.1F;
 sParam.fltIGain = 0.2F;
 sParam.fltDGain = 0.001F;
 sParam.fltUpperLim = 0.9F;
 sParam.fltLowerLim = -0.9F;
 bStopIntegFlag = FALSE;

 fltInitVal = 0.0F;

 GFLIB_CtrlPIDpAWInit_FLT(fltInitVal, &sParam);
}

/* periodically called function */
void Isr()
{
 fltResult = GFLIB_CtrlPIDpAW_FLT(fltInErr, fltInErrD, &bStopIntegFlag, &sParam);
}

GFLIB_CtrlPIDpAW

GFLIB User's Guide, Rev. 3, 05/2020

142 NXP Semiconductors

Appendix A
Library types

A.1 bool_t

The bool_t type is a logical 16-bit type. It is able to store the boolean variables with two
states: TRUE (1) or FALSE (0). Its definition is as follows:

typedef unsigned short bool_t;

The following figure shows the way in which the data is stored by this type:

Table A-1. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Unused
Logi
cal

TRUE
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 1

FALSE
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

To store a logical value as bool_t, use the FALSE or TRUE macros.

A.2 uint8_t

The uint8_t type is an unsigned 8-bit integer type. It is able to store the variables within
the range <0 ; 255>. Its definition is as follows:

typedef unsigned char uint8_t;

The following figure shows the way in which the data is stored by this type:

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 143

Table A-2. Data storage

7 6 5 4 3 2 1 0

Value Integer

255
1 1 1 1 1 1 1 1

F F

11
0 0 0 0 1 0 1 1

0 B

124
0 1 1 1 1 1 0 0

7 C

159
1 0 0 1 1 1 1 1

9 F

A.3 uint16_t

The uint16_t type is an unsigned 16-bit integer type. It is able to store the variables
within the range <0 ; 65535>. Its definition is as follows:

typedef unsigned short uint16_t;

The following figure shows the way in which the data is stored by this type:

Table A-3. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Integer

65535
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

F F F F

5
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 5

15518
0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0

3 C 9 E

40768
1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0

9 F 4 0

A.4 uint32_t

uint16_t

GFLIB User's Guide, Rev. 3, 05/2020

144 NXP Semiconductors

The uint32_t type is an unsigned 32-bit integer type. It is able to store the variables
within the range <0 ; 4294967295>. Its definition is as follows:

typedef unsigned long uint32_t;

The following figure shows the way in which the data is stored by this type:

Table A-4. Data storage

31 24 23 16 15 8 7 0

Value Integer

4294967295 F F F F F F F F

2147483648 8 0 0 0 0 0 0 0

55977296 0 3 5 6 2 5 5 0

3451051828 C D B 2 D F 3 4

A.5 int8_t

The int8_t type is a signed 8-bit integer type. It is able to store the variables within the
range <-128 ; 127>. Its definition is as follows:

typedef char int8_t;

The following figure shows the way in which the data is stored by this type:

Table A-5. Data storage

7 6 5 4 3 2 1 0

Value Sign Integer

127
0 1 1 1 1 1 1 1

7 F

-128
1 0 0 0 0 0 0 0

8 0

60
0 0 1 1 1 1 0 0

3 C

-97
1 0 0 1 1 1 1 1

9 F

Appendix A Library types

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 145

A.6 int16_t

The int16_t type is a signed 16-bit integer type. It is able to store the variables within the
range <-32768 ; 32767>. Its definition is as follows:

typedef short int16_t;

The following figure shows the way in which the data is stored by this type:

Table A-6. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer

32767
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 F F F

-32768
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0

15518
0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0

3 C 9 E

-24768
1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0

9 F 4 0

A.7 int32_t

The int32_t type is a signed 32-bit integer type. It is able to store the variables within the
range <-2147483648 ; 2147483647>. Its definition is as follows:

typedef long int32_t;

The following figure shows the way in which the data is stored by this type:

Table A-7. Data storage

31 24 23 16 15 8 7 0

Value S Integer

2147483647 7 F F F F F F F

-2147483648 8 0 0 0 0 0 0 0

55977296 0 3 5 6 2 5 5 0

-843915468 C D B 2 D F 3 4

int16_t

GFLIB User's Guide, Rev. 3, 05/2020

146 NXP Semiconductors

A.8 frac8_t

The frac8_t type is a signed 8-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef char frac8_t;

The following figure shows the way in which the data is stored by this type:

Table A-8. Data storage

7 6 5 4 3 2 1 0

Value Sign Fractional

0.99219
0 1 1 1 1 1 1 1

7 F

-1.0
1 0 0 0 0 0 0 0

8 0

0.46875
0 0 1 1 1 1 0 0

3 C

-0.75781
1 0 0 1 1 1 1 1

9 F

To store a real number as frac8_t, use the FRAC8 macro.

A.9 frac16_t

The frac16_t type is a signed 16-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef short frac16_t;

The following figure shows the way in which the data is stored by this type:

Table A-9. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Fractional

0.99997
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 F F F

-1.0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table continues on the next page...

Appendix A Library types

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 147

Table A-9. Data storage (continued)

8 0 0 0

0.47357
0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0

3 C 9 E

-0.75586
1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0

9 F 4 0

To store a real number as frac16_t, use the FRAC16 macro.

A.10 frac32_t

The frac32_t type is a signed 32-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef long frac32_t;

The following figure shows the way in which the data is stored by this type:

Table A-10. Data storage

31 24 23 16 15 8 7 0

Value S Fractional

0.9999999995 7 F F F F F F F

-1.0 8 0 0 0 0 0 0 0

0.02606645970 0 3 5 6 2 5 5 0

-0.3929787632 C D B 2 D F 3 4

To store a real number as frac32_t, use the FRAC32 macro.

A.11 acc16_t

The acc16_t type is a signed 16-bit fractional type. It is able to store the variables within
the range <-256 ; 256). Its definition is as follows:

typedef short acc16_t;

The following figure shows the way in which the data is stored by this type:

frac32_t

GFLIB User's Guide, Rev. 3, 05/2020

148 NXP Semiconductors

Table A-11. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer Fractional

255.9921875
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 F F F

-256.0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0

1.0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 8 0

-1.0
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

F F 8 0

13.7890625
0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 1

0 6 E 5

-89.71875
1 1 0 1 0 0 1 1 0 0 1 0 0 1 0 0

D 3 2 4

To store a real number as acc16_t, use the ACC16 macro.

A.12 acc32_t

The acc32_t type is a signed 32-bit accumulator type. It is able to store the variables
within the range <-65536 ; 65536). Its definition is as follows:

typedef long acc32_t;

The following figure shows the way in which the data is stored by this type:

Table A-12. Data storage

31 24 23 16 15 8 7 0

Value S Integer Fractional

65535.999969 7 F F F F F F F

-65536.0 8 0 0 0 0 0 0 0

1.0 0 0 0 0 8 0 0 0

-1.0 F F F F 8 0 0 0

23.789734 0 0 0 B E 5 1 6

-1171.306793 F D B 6 5 8 B C

To store a real number as acc32_t, use the ACC32 macro.

Appendix A Library types

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 149

A.13 float_t

The float_t type is a signed 32-bit single precision floating-point type, defined by IEEE
754. It is able to store the full precision (normalized) finite variables within the range
<-3.40282 · 1038 ; 3.40282 · 1038) with the minimum resolution of 2-23. The smallest
normalized number is ±1.17549 · 10-38. Nevertheless, the denormalized numbers (with
reduced precision) reach yet lower values, from ±1.40130 · 10-45 to ±1.17549 · 10-38. The
standard also defines the additional values:

• Negative zero
• Infinity
• Negative infinity
• Not a number

The 32-bit type is composed of:

• Sign (bit 31)
• Exponent (bits 23 to 30)
• Mantissa (bits 0 to 22)

The conversion of the number is straighforward. The sign of the number is stored in bit
31. The binary exponent is decoded as an integer from bits 23 to 30 by subtracting 127.
The mantissa (fraction) is stored in bits 0 to 22. An invisible leading bit (it is not actually
stored) with value 1.0 is placed in front; therefore, bit 23 has a value of 0.5, bit 22 has a
value 0.25, and so on. As a result, the mantissa has a value between 1.0 and 2. If the
exponent reaches -127 (binary 00000000), the leading 1.0 is no longer used to enable the
gradual underflow.

The float_t type definition is as follows:

typedef float float_t;

The following figure shows the way in which the data is stored by this type:

Table A-13. Data storage - normalized values

31 24 23 16 15 8 7 0

Value S Exponent Mantissa

(2.0 - 2-23) · 2127 0 1 1 1 1 1 1 1 0 1

≈ 3.40282 · 1038 7 F 7 F F F F F

-(2.0 - 2-23) · 2127 1 1 1 1 1 1 1 1 0 1

≈ -3.40282 · 1038 F F 7 F F F F F

Table continues on the next page...

float_t

GFLIB User's Guide, Rev. 3, 05/2020

150 NXP Semiconductors

Table A-13. Data storage - normalized values (continued)

2-126 0 0 0 0 0 0 0 0 1 0

≈ 1.17549 · 10-38 0 0 8 0 0 0 0 0

-2-126 1 0 0 0 0 0 0 0 1 0

≈ -1.17549 · 10-38 8 0 8 0 0 0 0 0

1.0 0 0 1 1 1 1 1 1 1 0

3 F 8 0 0 0 0 0

-1.0 1 0 1 1 1 1 1 1 1 0

B F 8 0 0 0 0 0

π 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 1 0 1 1

≈ 3.1415927 4 0 4 9 0 F D B

-20810.086 1 1 0 0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 1 1 0 0

C 6 A 2 9 4 2 C

Table A-14. Data storage - denormalized values

31 24 23 16 15 8 7 0

Value S Exponent Mantissa

0.0 0

0 0 0 0 0 0 0 0

-0.0 1 0

8 0 0 0 0 0 0 0

(1.0 - 2-23) · 2-126 0 0 0 0 0 0 0 0 0 1

≈ 1.17549 · 10-38 0 0 7 F F F F F

-(1.0 - 2-23) · 2-126 1 0 0 0 0 0 0 0 0 1

≈ -1.17549 · 10-38 8 0 7 F F F F F

2-1 · 2-126 0 0 0 0 0 0 0 0 0 1 0

≈ 5.87747 · 10-39 0 0 4 0 0 0 0 0

-2-1 · 2-126 1 0 0 0 0 0 0 0 0 1 0

≈ -5.87747 · 10-39 8 0 4 0 0 0 0 0

2-23 · 2-126 0 1

≈ 1.40130 · 10-45 0 0 0 0 0 0 0 1

-2-23 · 2-126 1 0 1

≈ -1.40130 · 10-45 8 0 0 0 0 0 0 1

Appendix A Library types

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 151

Table A-15. Data storage - special values

31 24 23 16 15 8 7 0

Value S Exponent Mantissa

∞ 0 1 1 1 1 1 1 1 1 0

7 F 8 0 0 0 0 0

-∞ 1 1 1 1 1 1 1 1 1 0

F F 8 0 0 0 0 0

Not a number * 1 1 1 1 1 1 1 1 non zero

7/F F 800001 to FFFFFF

A.14 FALSE

The FALSE macro serves to write a correct value standing for the logical FALSE value
of the bool_t type. Its definition is as follows:

#define FALSE ((bool_t)0)

#include "mlib.h"

static bool_t bVal;

void main(void)
{
 bVal = FALSE; /* bVal = FALSE */
}

A.15 TRUE

The TRUE macro serves to write a correct value standing for the logical TRUE value of
the bool_t type. Its definition is as follows:

#define TRUE ((bool_t)1)

#include "mlib.h"

static bool_t bVal;

void main(void)
{
 bVal = TRUE; /* bVal = TRUE */
}

FALSE

GFLIB User's Guide, Rev. 3, 05/2020

152 NXP Semiconductors

A.16 FRAC8

The FRAC8 macro serves to convert a real number to the frac8_t type. Its definition is as
follows:

#define FRAC8(x) ((frac8_t)((x) < 0.9921875 ? ((x) >= -1 ? (x)*0x80 : 0x80) : 0x7F))

The input is multiplied by 128 (=27). The output is limited to the range <0x80 ; 0x7F>,
which corresponds to <-1.0 ; 1.0-2-7>.

#include "mlib.h"

static frac8_t f8Val;

void main(void)
{
 f8Val = FRAC8(0.187); /* f8Val = 0.187 */
}

A.17 FRAC16

The FRAC16 macro serves to convert a real number to the frac16_t type. Its definition is
as follows:

#define FRAC16(x) ((frac16_t)((x) < 0.999969482421875 ? ((x) >= -1 ? (x)*0x8000 : 0x8000) :
0x7FFF))

The input is multiplied by 32768 (=215). The output is limited to the range <0x8000 ;
0x7FFF>, which corresponds to <-1.0 ; 1.0-2-15>.

#include "mlib.h"

static frac16_t f16Val;

void main(void)
{
 f16Val = FRAC16(0.736); /* f16Val = 0.736 */
}

A.18 FRAC32

The FRAC32 macro serves to convert a real number to the frac32_t type. Its definition is
as follows:

Appendix A Library types

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 153

#define FRAC32(x) ((frac32_t)((x) < 1 ? ((x) >= -1 ? (x)*0x80000000 : 0x80000000) :
0x7FFFFFFF))

The input is multiplied by 2147483648 (=231). The output is limited to the range
<0x80000000 ; 0x7FFFFFFF>, which corresponds to <-1.0 ; 1.0-2-31>.

#include "mlib.h"

static frac32_t f32Val;

void main(void)
{
 f32Val = FRAC32(-0.1735667); /* f32Val = -0.1735667 */
}

A.19 ACC16

The ACC16 macro serves to convert a real number to the acc16_t type. Its definition is as
follows:

#define ACC16(x) ((acc16_t)((x) < 255.9921875 ? ((x) >= -256 ? (x)*0x80 : 0x8000) : 0x7FFF))

The input is multiplied by 128 (=27). The output is limited to the range <0x8000 ;
0x7FFF> that corresponds to <-256.0 ; 255.9921875>.

#include "mlib.h"

static acc16_t a16Val;

void main(void)
{
 a16Val = ACC16(19.45627); /* a16Val = 19.45627 */
}

A.20 ACC32

The ACC32 macro serves to convert a real number to the acc32_t type. Its definition is as
follows:

#define ACC32(x) ((acc32_t)((x) < 65535.999969482421875 ? ((x) >= -65536 ? (x)*0x8000 :
0x80000000) : 0x7FFFFFFF))

The input is multiplied by 32768 (=215). The output is limited to the range
<0x80000000 ; 0x7FFFFFFF>, which corresponds to <-65536.0 ; 65536.0-2-15>.

ACC16

GFLIB User's Guide, Rev. 3, 05/2020

154 NXP Semiconductors

#include "mlib.h"

static acc32_t a32Val;

void main(void)
{
 a32Val = ACC32(-13.654437); /* a32Val = -13.654437 */
}

GFLIB User's Guide, Rev. 3, 05/2020

NXP Semiconductors 155

GFLIB User's Guide, Rev. 3, 05/2020

156 NXP Semiconductors

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software implementers to use
Freescale products. There are no express or implied copyright licenses granted hereunder to design
or fabricate any integrated circuits based on the information in this document. Freescale reserves the
right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in Freescale data
sheets and/or specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for each customer
application by customer's technical experts. Freescale does not convey any license under its patent
rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of
sale, which can be found at the following address: www.freescale.com/salestermsandconditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc. ARM and Cortex
are the registered trademarks of ARM Limited, in EU and/or elsewhere. ARM logo is the trademark of
ARM Limited. All rights reserved. All other product or service names are the property of their
respective owners.

© 2020 NXP B.V.

Document Number CM4FGFLIBUG
Revision 3, 05/2020

http://www.nxp.com
http://www.nxp.com/support
http://www.freescale.com/salestermsandconditions

	Chapter 1​: Library
	Introduction
	Overview
	Data types
	API definition
	Supported compilers
	Library configuration
	Special issues

	Library integration into project (MCUXpresso IDE)
	Library path variable
	Library folder addition
	Library path setup

	Library integration into project (Kinetis Design Studio)
	Library path variable
	Library folder addition
	Library path setup

	Library integration into project (Keil µVision)
	NXP pack installation for new project (without MCUXpresso SDK)
	New project (without MCUXpresso SDK)
	Linking the files into the project
	Library path setup

	Library integration into project (IAR Embedded Workbench)
	New project (without MCUXpresso SDK)
	Library path variable
	Linking the files into the project
	Library path setup

	Chapter 2​: Algorithms in detail
	GFLIB_Sin
	Available versions
	Declaration
	Function use

	GFLIB_Cos
	Available versions
	Declaration
	Function use

	GFLIB_Tan
	Available versions
	Declaration
	Function use

	GFLIB_Asin
	Available versions
	Declaration
	Function use

	GFLIB_Acos
	Available versions
	Declaration
	Function use

	GFLIB_Atan
	Available versions
	Declaration
	Function use

	GFLIB_AtanYX
	Available versions
	Declaration
	Function use

	GFLIB_Sqrt
	Available versions
	Declaration
	Function use

	GFLIB_Limit
	Available versions
	Declaration
	Function use

	GFLIB_LowerLimit
	Available versions
	Declaration
	Function use

	GFLIB_UpperLimit
	Available versions
	Declaration
	Function use

	GFLIB_VectorLimit
	Available versions
	GFLIB_VECTORLIMIT_T_F16 type description
	GFLIB_VECTORLIMIT_T_FLT type description
	Declaration
	Function use

	GFLIB_VectorLimit1
	Available versions
	GFLIB_VECTORLIMIT_T_F16 type description
	GFLIB_VECTORLIMIT_T_FLT type description
	Declaration
	Function use

	GFLIB_Hyst
	Available versions
	GFLIB_HYST_T_F16
	GFLIB_HYST_T_FLT
	Declaration
	Function use

	GFLIB_Lut1D
	Available versions
	GFLIB_LUT1D_T_FLT type description
	Declaration
	Function use

	GFLIB_LutPer1D
	Available versions
	GFLIB_LUTPER1D_T_FLT type description
	Declaration
	Function use

	GFLIB_Ramp
	Available versions
	GFLIB_RAMP_T_F16
	GFLIB_RAMP_T_F32
	GFLIB_RAMP_T_FLT
	Declaration
	Function use

	GFLIB_DRamp
	Available versions
	GFLIB_DRAMP_T_F16
	GFLIB_DRAMP_T_F32
	GFLIB_DRAMP_T_FLT
	Declaration
	Function use

	GFLIB_FlexRamp
	Available versions
	GFLIB_FLEXRAMP_T_F32
	GFLIB_FLEXRAMP_T_FLT
	Declaration
	Function use

	GFLIB_DFlexRamp
	Available versions
	GFLIB_DFLEXRAMP_T_F32
	GFLIB_DFLEXRAMP_T_FLT
	Declaration
	Function use

	GFLIB_FlexSRamp
	Available versions
	GFLIB_FLEXSRAMP_T_F32
	GFLIB_FLEXSRAMP_T_FLT
	Declaration
	Function use

	GFLIB_Integrator
	Available versions
	GFLIB_INTEGRATOR_T_A32
	GFLIB_INTEGRATOR_T_FLT
	Declaration
	Function use

	GFLIB_CtrlBetaIPpAW
	Available versions
	GFLIB_CTRL_BETA_IP_P_AW_T_A32
	GFLIB_CTRL_BETA_IP_P_AW_T_FLT
	Declaration
	Function use

	GFLIB_CtrlBetaIPDpAW
	Available versions
	GFLIB_CTRL_BETA_IPD_P_AW_T_A32
	GFLIB_CTRL_BETA_IPD_P_AW_T_FLT
	Declaration
	Function use

	GFLIB_CtrlPIpAW
	Available versions
	GFLIB_CTRL_PI_P_AW_T_A32
	GFLIB_CTRL_PI_P_AW_T_FLT
	Declaration
	Function use

	GFLIB_CtrlPIDpAW
	Available versions
	GFLIB_CTRL_PID_P_AW_T_A32
	GFLIB_CTRL_PID_P_AW_T_FLT
	Declaration
	Function use

	Appendix A: Library types
	bool_t
	uint8_t
	uint16_t
	uint32_t
	int8_t
	int16_t
	int32_t
	frac8_t
	frac16_t
	frac32_t
	acc16_t
	acc32_t
	float_t
	FALSE
	TRUE
	FRAC8
	FRAC16
	FRAC32
	ACC16
	ACC32

	
	

