FreeRTOS
Porting Guide

dWS

v?

FreeRTOS Porting Guide

FreeRTOS: Porting Guide
Copyright © 2020 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not
Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or
discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may
or may not be affiliated with, connected to, or sponsored by Amazon.

FreeRTOS Porting Guide

Table of Contents

=TT R N O SR eo T o] o [« [PP P TP PP 1
WHat iS FFEERTOS? .. eniiiiiiiii ettt ettt et e e et et e b e eae e eaeeneenaees 1
POrting FrE@RTOS ..ottt et ettt ettt et et et e s e e e et e e e en e enaenaaaen 1

SYSTEM FEQUITEIMENTS ...uiniiiin ittt ettt e ettt e e e e ea e e et enetaenaeneaaen 2
Porting older versions of FIE@ERTOSviiuiiiiiiiiiieiieeir ettt e et e e eee et e et e e eaaseensanneenns 2
POIEING FAQS ettt ettt ettt ettt ettt et e et eeaaes 6

Downloading FreeRTOS FOr POITINGcuuiiuniiieiiieiteie ettt et ete et e et e et e et e et e eaae et senae et eatneeneansennaaenns 8

Setting Up Your FreeRTOS Source Code fOr POIrtiNgc..veueiiiniiiniiineiieeie et et et ete et s eaeeaneeieaneeaneennnens 9
Configuring the FreeRTOS dOWNLOAdiiuniiiiiiiiiiii ettt ettt et e e et e et e aaneanseanaeans 9

Configuring directories for vendor-supplied, board-specific librariescccoeveviiiiiiniiniinninnn. 9
Configuring directories for Project filescveuiviiiiiiiii i 10
Configuring FreeRTOSCONELIG 1l ciiuuiiuiiiiiiiieiiiiiieiie et et e et s et e et e et eaneanetneerneetneerneanneanneenns 10
Setting up your FreeRTOS source code for teSINGviuiiiiiiiiiiiiiieeiir e e e 11
Creating an IDE PrOjJECE . ..ouininii et 11
Creating @ CMAaKe LSt fileiiuniie i et e e e et e e e e aanas 12

Porting the FreeRTOS LIDrariesoeuiiiiiiii ettt et st e e s ee e enes 25
POrting FLOWCRAIT . c.uienii et et e et e et e et e e e e e e e e e s eaneeans 25
CONELGPRINT_STRING() tevuueruennenntennttntnuerueunettnettettetneaneaneeneetnetaeesneeanetaaetaaetnernnernserneenes 27

=] = To [T =T PP PPN 27
[aaTo] =T 3 =] o1 - 1 4 o] o [P RPRN 27
B =Ty o o T PP PRSPPI 27
FrEERTOS KEIMEL ..cetiiiiiiii ettt ettt e e e e e e eaaens 28
=] = To [BT =T PP PPN 28
Configuring the FreeRTOS KEIMELuuiuuiiiiiiiiieie ettt e et e ee e e e e e s eaneenns 28
B =Ty o o T PP PRSPPI 29
L PO PP PTO PPN 29
= = To [BT =T PP PPN 29
Lo T] [« PP PO RPN 30
B =Ty o o T PP PRSPPI 30
Validation ...co..iiniii e 34
LS 2 PP PTRPOPPTPPPTP 35
POrting Fre@RTOSHTCP ...uvtiniiiiiii ettt et e et e e e e e e s et eae e en e enaaes 35
POMtING LWIP <ottt et ettt et et ettt e et e a e et e aaaas 38
SOCUNE SOCKEES ..ceuiiniiitiiiii ettt ettt et ettt et et e et e e ea et e e eanenns 39
= = To [BT =T P PPN 39
Lo T 1] [« PP P RPN 40
B =IO P PP PT PP 40
Validation ...coeeoiniiii e 43
Setting UP @N @CH0 SEIVET ...cuniiiiii ettt et et e et s e e e e e e e enns 43
[(O - 1 e LT PP PPPPPPPON 46
= = To [BT =L PP PPN 46
Lo T] [« PRSPPI 46
B =IO RPT PP 48
Validation ...co.eiiniii e 50
I P PP P PP POPPOPTOPPIN 50
= = To [T =T PP PPN 50
Lo T 1] [« TP P PR PTPTRN 51
Connecting your device t0 AWS 10Tiuiuiiiiiiie ettt et et e et et et e e e e e e eenas 51
Setting up certificates and keys for the TLS teStSc..viuiiiiiiiiiiiiiie e 53
Creating @ BYOC (ECDSA) ..uiuiiiiiiitiie i ete et et e et et et e te e te et e et e et e et eaaseanseansasnsannsaneannees 58
B =Ly o o T PP OTPRPPPR 66
Validation ...co.eiiniii e 68
(@ I PP PPPPPRPPI 68
= = To [LT =T PPN 68

FreeRTOS Porting Guide

Setting Up the IDE teSt ProjeCt «.uiuie it e e et e e e e e e e e e eeaa e 68
Configuring the CMakeLists . tXt file coiiiiiiii s 68
Setting up your local testing enVIFONMENTouiiniiiiiiii e e e 68
RUNNING ThE TSES .. euiiiiiiiii ittt e e e et et e et e ete et e et e et e et eaeaneaneanaannas 69
Validationceeieee ettt e it et e e e e e e eanaas 69

[I T T PP P TP T OPT PPN 69
PrEIEQUISITES «.neniiinii ittt et ettt et et st e e e e et e et et et et et e e b e e anees 69
Setting Up the IDE teSt ProjeCt ..uiuinii ittt e e e e e e s e e e e eeaa e 69
Configuring the CMakeLists . tXt file oo 70
Setting up your local testing enVIFONMENTouiiniiiiii e e e 70
RUNNING The TSES ..ttt et et e e et e e et et e et e ete et e et e et e eteateenaeneanaeanas 70
OVEr-the-Air (OTA) UPAAteScuiniiiiiiii ittt ettt et et e e e e et e ee e s ae e e aneansaneansaneansaneees 70
PrEIEQUISITES «.neniinitii ittt et et ettt et et et et e et e et e et et et et e e et e e aaeas 71
oY 413 [« I PP PP P PRSPPI 71

10T deVice DOOTLOAAEN ... cuniiiee ettt e ee e et e e eans 72

B L1 o oL R PP PP PP P PR PPPRPTRt 75
ValidAtioneeeeieee ettt et et et e e e e e eaaaas 77

=Y TUT] doTo o I oLV 1o =Y o Y PR 77
PrEIEQUISITES «.neniiiei ittt et et et ettt et et e et e et e e et et et et e e et e e e aaeas 77
o T 413 [« T TP PP P TR PTPTNN 78
L1 o L PP P PP OTPPPRPRt 80
Validationceeieee ettt e it et e e e e e e eanaas 81
(oY 210 2 0o Yt T V4@ T 81
PrEIEQUISITES «.neniiiei ittt et et et ettt et et e et e et e e et et et et e e et e e e aaeas 82
L1 o L PP P PP OTPPPRPRt 82
POrting the 12C LIDrary ..eue et e e e et e e et e e e et e et ete et ane et eneennees 84
Porting the UART LIDrary ...ttt e et et e e 87
POrting the SPI LIDrarycu it e e e et e e e e e ete et e ete et e eteeneaaaeaean 89
Migrating from Version 1.4.x to Version 207906.00 (@Nd NEWET) .. cuiiuiiniiiiiiiiiiiiiiiieii e eeeeeaeanas 91
[\ Te = 1A gL =] o] o] o= d o 5 L3RR PTPINt 91
[\ [Te Y g Tl o Lo] £ P PP TP PP PR PPPRPINS 91
FreeRTOS code direCtory SErUCLUIEcuueieniiei ettt et et e e e e e e e eaaeees 91
CMaKeE DUILA SYSEIM L.iniiiiiiii et e e e et et et et et et et et ea et aeasneneenasaaesnannns 91
Migrating the Wi-Fi LIDrary Porto.ooeiiiiiii e e e e e e e e e ans 92

FreeRTOS Porting Guide
What is FreeRTOS?

FreeRTOS Porting

What is FreeRTQOS?

Developed in partnership with the world's leading chip companies over a 15-year period, and now
downloaded every 175 seconds, FreeRTOS is a market-leading real-time operating system (RTOS)
for microcontrollers and small microprocessors. Distributed freely under the MIT open source license,
FreeRTOS includes a kernel and a growing set of libraries suitable for use across all industry sectors.
FreeRTOS is built with an emphasis on reliability and ease of use.

FreeRTOS includes libraries for connectivity, security, and over-the-air (OTA) updates. FreeRTOS also
includes demo applications that show FreeRTOS features on qualified boards.

FreeRTOS is an open-source project. You can download the source code, contribute changes or
enhancements, or report issues on the GitHub site at https://github.com/aws/amazon-freertos. We
release FreeRTOS code under the MIT open source license, so you can use it in commercial and personal
projects.

We also welcome contributions to the FreeRTOS documentation (FreeRTOS User Guide, FreeRTOS Porting
Guide, and FreeRTOS Qualification Guide). The markdown source for the documentation is available at
https://github.com/awsdocs/aws-freertos-docs. It is released under the Creative Commons (CC BY-ND)
license.

The FreeRTOS kernel and components are released individually and use semantic versioning. Integrated
FreeRTOS releases are made periodically. All releases use date-based versioning with the format
YYYYMM.NN, where:

Y represents the year.

« M represents the month.

« N represents the release order within the designated month (00 being the first release).

« A "major" denotation indicates the addition of new features or significant updates to multiple libraries.

For example, a second release in June 2021 would be 202106.01.

Previously, FreeRTOS releases used semantic versioning for major releases. Although it has moved to
date-based versioning (FreeRTOS 1.4.8 updated to FreeRTOS AWS Reference Integrations 201906.00),
the FreeRTOS kernel and each individual FreeRTOS library still retain semantic versioning. In semantic
versioning, the version number itself (X.Y.Z) indicates whether the release is a major, minor, or point
release. You can use the semantic version of a library to assess the scope and impact of a new release on
your application.

LTS releases are maintained differently than other release types. Major and minor releases are frequently
updated with new features in addition to defect resolutions. LTS releases are only updated with changes
to address critical defects and security vulnerabilities. No new features are introduced in a given LTS
release after launch. They are maintained for at least three calendar years after release, and provide
device manufacturers the option to use a stable baseline as opposed to a more dynamic baseline
represented by major and minor releases.

Porting FreeRTOS to your loT device

Before a microcontroller board can run FreeRTOS, some FreeRTOS code must be ported to the device's
hardware. Basic kernel ports should refer to the FreeRTOS porting guide on www.freertos.org. For ports

https://github.com/aws/amazon-freertos
https://github.com/awsdocs/aws-freertos-docs
https://www.freertos.org/FreeRTOS-porting-guide.html
https://www.freertos.org/

FreeRTOS Porting Guide
System requirements

intending to include the FreeRTOS libraries for security, connectivity, etc., the following instructions build
on the kernel port.

To port FreeRTOS to your device

1. Follow the instructions in Downloading FreeRTOS for Porting (p. 8) to download the latest
version of FreeRTOS for porting.

2. Follow the instructions in Setting Up Your FreeRTOS Source Code for Porting (p. 9) to configure
the files and folders in your FreeRTOS download for porting and testing.

3. Follow the instructions in Porting the FreeRTOS Libraries (p. 25) to port the FreeRTOS libraries to
your device. Each porting topic includes instructions on testing the ports.

System requirements

The device that you port to FreeRTOS must be a microcontroller board that meets the following
minimum requirements:

« 25MHz processing speed

« 64KB RAM

« 128KB program memory per executable image stored on the MCU

 (If Porting the OTA library (p. 70)) Two executable images stored on the MCU

Porting older versions of FreeRTOS

If you are porting an older version of FreeRTOS, go to the FreeRTOS AWS Reference Integrations
repository, and checkout the version of FreeRTOS that you are porting by its version tag. The
qualification and testing documentation will be in PDF format, in the tests folder. See the table below
for the qualification and testing documentation history.

Revision history of FreeRTOS porting and qualification documentation
Date Documentation version | Change history FreeRTOS version

for the Porting and
Qualification guides

July, 2020 202007.00 (Porting « Release 202007.00 202007.00
Guide)
202007.00
(Qualification Guide)

February 18, 2020 202002.00 (Porting e Release 202002.00 202002.00
Guide) « Amazon FreeRTOS is
202002.00 now FreeRTOS
(Qualification Guide)

December 17, 2019 201912.00 (Porting ¢ Release 201912.00 201912.00
Guide) « Added Porting

the common I/O

201912.00 | :
lib .81).
(Qualification Guide) ibraries (p. 81)
October 29, 2019 201910.00 (Porting . Release 201910.00 501910.00
Guide)

https://github.com/aws/amazon-freertos
https://github.com/aws/amazon-freertos
https://github.com/aws/amazon-freertos/tree/master/tests
https://github.com/aws/amazon-freertos/blob/202007.00/doc/freertos_port_qual/FreeRTOS_Porting_Guide.pdf
https://github.com/aws/amazon-freertos/blob/202007.00/doc/freertos_port_qual/FreeRTOS_Qualification_Guide.pdf
https://github.com/aws/amazon-freertos/tree/202007.00
https://github.com/aws/amazon-freertos/blob/202002.00/doc/freertos_port_qual/FreeRTOS_Porting_Guide.pdf
https://github.com/aws/amazon-freertos/blob/202002.00/doc/freertos_port_qual/FreeRTOS_Qualification_Guide.pdf
https://github.com/aws/amazon-freertos/tree/202002.00
https://github.com/aws/amazon-freertos/blob/201912.00/doc/freertos_port_qual/aFreeRTOS_Porting_Guide.pdf
https://github.com/aws/amazon-freertos/blob/201912.00/doc/freertos_port_qual/aFreeRTOS_Qualification_Guide.pdf
https://github.com/aws/amazon-freertos/tree/201912.00
https://github.com/aws/amazon-freertos/blob/201910.00/doc/freertos_port_qual/aFreeRTOS_Porting_Guide.pdf
https://github.com/aws/amazon-freertos/tree/201910.00

FreeRTOS Porting Guide
Porting older versions of FreeRTOS

Date

August 26, 2019

June 17, 2019

May 21, 2019

February 25, 2019

December 27, 2018

December 12, 2018

Documentation version
for the Porting and
Qualification guides

201910.00
(Qualification Guide)

201908.00 (Porting
Guide)

201908.00
(Qualification Guide)

201906.00 (Porting
Guide)

201906.00
(Qualification Guide)

1.4.8 (Porting Guide)

1.4.8 (Qualification
Guide)

Change history

« Updated random
number generator
porting information.

« Release 201908.00

« Added Configuring
the HTTPS
client library for
testing (p. 69)

Updated Porting
the PKCS #11
library (p. 46)

« Release 201906.00

« Directory structured
updated

« Porting
documentation
moved to the
FreeRTOS Porting
Guide

« Qualification
documentation
moved to the
FreeRTOS
Qualification Guide

« Removed download
and configuration
instructions from
Getting Started Guide
Template Appendix
(page 84)

« Updated Checklist
for Qualification
appendix with CMake
requirement (page
70)

« Added lwIP porting
instructions to TCP/
IP porting appendix
(page 31)

FreeRTOS version

201908.00

201906.00 Major

1.4.8

1.4.5
1.4.6

1.4.7

1.4.5

1.4.6

1.4.5

https://github.com/aws/amazon-freertos/blob/201910.00/doc/freertos_port_qual/aFreeRTOS_Qualification_Guide.pdf
https://github.com/aws/amazon-freertos/blob/201908.00/doc/freertos_port_qual/aFreeRTOS_Porting_Guide.pdf
https://github.com/aws/amazon-freertos/blob/201908.00/doc/freertos_port_qual/aFreeRTOS_Qualification_Guide.pdf
https://github.com/aws/amazon-freertos/tree/201908.00
https://github.com/aws/amazon-freertos/blob/201906.00_Major/doc/freertos_port_qual/aFreeRTOS_Porting_Guide.pdf
https://github.com/aws/amazon-freertos/blob/201906.00_Major/doc/freertos_port_qual/aFreeRTOS_Qualification_Guide.pdf
https://github.com/aws/amazon-freertos/tree/201906.00_Major
https://github.com/aws/amazon-freertos/blob/v1.4.8/tests/afreertos-pg.pdf
https://github.com/aws/amazon-freertos/blob/v1.4.8/tests/afreertos-qg.pdf
https://docs.aws.amazon.com/freertos/latest/portingguide/
https://docs.aws.amazon.com/freertos/latest/portingguide/
https://docs.aws.amazon.com/freertos/latest/qualificationguide/
https://docs.aws.amazon.com/freertos/latest/qualificationguide/
https://github.com/aws/amazon-freertos/tree/v1.4.8
https://github.com/aws/amazon-freertos/blob/v1.4.7/tests/Amazon%20FreeRTOS%20Qualification%20Developer%20Guide.pdf
https://github.com/aws/amazon-freertos/tree/v1.4.5
https://github.com/aws/amazon-freertos/tree/v1.4.6
https://github.com/aws/amazon-freertos/tree/v1.4.7
https://github.com/aws/amazon-freertos/blob/v1.4.6/tests/Amazon%20FreeRTOS%20Qualification%20Developer%20Guide.pdf
https://github.com/aws/amazon-freertos/tree/v1.4.5
https://github.com/aws/amazon-freertos/tree/v1.4.6
https://github.com/aws/amazon-freertos/blob/v1.4.5/tests/Amazon%20FreeRTOS%20Qualification%20Developer%20Guide.pdf
https://github.com/aws/amazon-freertos/tree/v1.4.5

FreeRTOS Porting Guide
Porting older versions of FreeRTOS

Date Documentation version A Change history FreeRTOS version
for the Porting and
Qualification guides

November 26, 2018 1.1.3 « Added Bluetooth 1.4.4
Low Energy porting
appendix (page 52)
« Added AWS loT
Device Tester
for FreeRTOS
testing information
throughout
document

« Added CMake link
to Information
for listing on the
FreeRTOS Console
appendix (page 85)

November 7, 2018 1.1.2 « Updated PKCS #11 1.4.3
PAL interface porting
instructions in PKCS
#11 porting appendix
(page 38)

« Updated path to
CertificateConfigurator.html
(page 76)

» Updated Getting
Started Guide
Template appendix
(page 80)

https://github.com/aws/amazon-freertos/blob/v1.4.4/tests/Amazon%20FreeRTOS%20Qualification%20Developer%20Guide.pdf
https://github.com/aws/amazon-freertos/tree/v1.4.4
https://github.com/aws/amazon-freertos/blob/v1.4.3/tests/Amazon%20FreeRTOS%20Qualification%20Program%20Developer%20Guide.pdf
https://github.com/aws/amazon-freertos/tree/v1.4.3

FreeRTOS Porting Guide
Porting older versions of FreeRTOS

Date Documentation version A Change history FreeRTOS version
for the Porting and
Qualification guides

October 8, 2018 1.1.1 « Added new "Required | 1.4.2
for AFQP" column to
aws_test_runner_ config.h
test configuration
table (page 16)

« Updated Unity
module directory
path in Create the
Test Project section
(page 14)

» Updated
"Recommended
Porting Order" chart
(page 22)

« Updated client
certificate and key
variable names in TLS
appendix, Test Setup
(page 40)

« File paths changed
in Secure Sockets
porting appendix,
Test Setup (page 34);
TLS porting appendix,
Test Setup (page 40);
and TLS Server Setup
appendix (page 57)

August 27, 2018 1.1.0 « Added OTA Updates | 1.4.0
porting appendix
(page 47) 1.4.1

« Added Bootloader
porting appendix
(page 51)

https://github.com/aws/amazon-freertos/blob/v1.4.2/tests/Amazon%20FreeRTOS%20Qualification%20Program%20Developer%20Guide.pdf
https://github.com/aws/amazon-freertos/tree/v1.4.2
https://github.com/aws/amazon-freertos/blob/v1.4.0/tests/Amazon%20FreeRTOS%20Qualification%20Program%20Developer%20Guide.pdf
https://github.com/aws/amazon-freertos/tree/v1.4.0
https://github.com/aws/amazon-freertos/tree/v1.4.1

FreeRTOS Porting Guide
Porting FAQs

Date Documentation version A Change history FreeRTOS version
for the Porting and
Qualification guides

August 9, 2018 1.0.1 » Updated 1.3.1
"Recommended
Porting Order" chart | 1.3.2
(page 22)

« Updated PKCS #11
porting appendix
(page 36)

« File paths changed in
TLS porting appendix,
Test Setup (page
40), and TLS Server
Setup appendix, step
9 (page 51)

« Fixed hyperlinks
in MQTT porting
appendix,
Prerequisites (page
45)

o Added AWS CLI
config instructions
to examples in
Instructions to Create
a BYOC appendix
(page 57)

July 31, 2018 1.0.0 Initial version of the 1.3.0
FreeRTOS Qualification
Program Guide

Porting FAQs

What is a FreeRTOS port?

A FreeRTOS port is a board-specific implementation of APIs for the required FreeRTOS libraries
and the FreeRTOS that your platform supports. The port enables the APIs to work on the board,
and implements the required integration with the device drivers and BSPs that are provided by the
platform vendor. Your port should also include any configuration adjustments (e.g. clock rate, stack
size, heap size) that are required by the board.

My device does not support Wi-Fi, Bluetooth Low Energy, or over-the-air (OTA) updates. Are all libraries
required to port FreeRTOS?

The primary requirement for porting FreeRTOS connectivity libraries is that your device can connect
to the cloud. If, for example, you can connect to the cloud across a secure ethernet connection,
FreeRTOS, the Wi-Fi library is not a required. Keep in mind that some test and demo applications will
not work without all of the libraries ported.

Can | reach an "echo server" from two different networks (for example, from two subnets across 2 different
access points)?

An echo server is required to pass the TCP/IP and TLS port tests. The echo server must be reachable
from the network that a board is connected to. Please consult your IT support to enable routing
across subnets if you need devices on different subnets to communicate with a single echo server.

https://github.com/aws/amazon-freertos/blob/v1.3.2/tests/Amazon%20FreeRTOS%20Qualification%20Program%20Developer%20Guide.pdf
https://github.com/aws/amazon-freertos/tree/v1.3.1
https://github.com/aws/amazon-freertos/tree/v1.3.2
https://github.com/aws/amazon-freertos/blob/v1.3.0/tests/Amazon%20FreeRTOS%20Qualification%20Program%20Developer%20Guide-V1.0.0.pdf
https://github.com/aws/amazon-freertos/tree/v1.3.0
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-echo-server.html

FreeRTOS Porting Guide
Porting FAQs

What network ports need to be open to run the FreeRTOS port tests?

The following network connections are required to run the FreeRTOS port tests:

Port Protocol
443, 8883 MQTT
8443 Greengrass Discovery

If you have questions about porting that are not answered on this page or in the rest of the FreeRTOS
Porting Guide, please contact the FreeRTOS engineering team.

https://freertos.org/RTOS-contact-and-support.html

FreeRTOS Porting Guide

Downloading FreeRTOS for Porting

Before you begin porting FreeRTOS to your platform, you need to download FreeRTOS or clone the
FreeRTOS repository from GitHub. See the README.md file for instructions.

Note
We recommend that you clone the repository. Cloning makes it easier for you to pick up updates
to the master branch as they are pushed to the repository.

After you download or clone FreeRTOS, you can start porting FreeRTOS code to your platform. For
instructions, see Setting Up Your FreeRTOS Source Code for Porting (p. 9), and then see Porting the
FreeRTOS Libraries (p. 25).

Note
Throughout FreeRTOS documentation, the FreeRTOS download is referred to as freertos.

https://github.com/aws/amazon-freertos
https://github.com/aws/amazon-freertos/blob/master/README.md

FreeRTOS Porting Guide
Configuring the FreeRTOS download

Setting Up Your FreeRTOS Source
Code for Porting

After you download FreeRTOS, you need to configure some of the files and folders in the FreeRTOS
download before you can begin porting.

To prepare your FreeRTOS download for porting, you need to follow the instructions in Configuring the
FreeRTOS download (p. 9) to configure the directory structure of your FreeRTOS download to fit
your device.

If you plan to test the ported libraries as you implement them for debugging purposes, you also need to
configure some files for testing before you begin porting. For instructions on test set up, see Setting up
your FreeRTOS source code for testing (p. 11).

Note

You must use the AWS loT Device Tester for FreeRTOS to officially validate your ports for

qualification. For more information about AWS loT Device Tester for FreeRTOS, see Using AWS

IoT Device Tester for FreeRTOS in the FreeRTOS User Guide.

For information about qualifying your device for FreeRTOS, see the FreeRTOS Qualification
Guide.

After you configure your FreeRTOS download and set up your testing environment, you can beginning
porting FreeRTOS. For porting and testing instructions, see Porting the FreeRTOS Libraries (p. 25).

Configuring the FreeRTOS download

Follow the instructions below to configure the FreeRTOS download for porting FreeRTOS code to your
device.

Configuring directories for vendor-supplied, board-
specific libraries

Under the download's root directory (freertos), the vendors folder is structured as follows:

vendors
+ - vendor (Template, to be renamed to the name of the MCU vendor)
+ - boards
| + - board (Template, to be renamed to the name of the development board)
| + - aws_demos
| + - aws_tests
| + - CMakeLists.txt
| + - ports
+ - driver_library (Template, to be renamed to the library name)
+ - driver_library_version (Template, to be renamed to the library version)

The vendor and board folders are template folders that we provide to make it easier to create demo

and test projects. Their directory structure ensures that all demo and test projects have a consistent
organization.

https://docs.aws.amazon.com/freertos/latest/userguide/device-tester-for-freertos-ug.html
https://docs.aws.amazon.com/freertos/latest/userguide/device-tester-for-freertos-ug.html
https://docs.aws.amazon.com/freertos/latest/qualificationguide/
https://docs.aws.amazon.com/freertos/latest/qualificationguide/

FreeRTOS Porting Guide
Configuring directories for project files

The aws_tests folder has the following structure:

vendors/vendor /boards/board/aws_tests

+ - application_code (Contains main.c, which contains main())

| + - vendor_code (Contains vendor-supplied, board-specific files)
| + - main.c (Contains main())

+ - config_files (Contains FreeRTOS config files)

All test projects require vendor-supplied driver libraries. Some vendor-supplied files, such as a header file
that maps GPIO output to an LED light, are specific to a target development board. These files belong in
the vendor_code folder.

Other vendor-supplied files, such as a GPIO library, are common across a board's MCU family. These files
belong in the driver_ library folder.

To set up the directories for vendor-supplied libraries that are common across an MCU family

1. Save all required vendor-supplied libraries that are common across a target board's MCU family in
the driver library version folder.

2. Rename the vendor folder to the name of the vendor, and rename the driver_ library and
driver_library_version folders to the name of the driver library and its version.

Important
Do not save vendor-supplied libraries that are common across a target board's MCU family to
any subdirectories of freertos/test or freertos/demos.

Configuring directories for project files

Under freertos, the projects folder is structured as follows:

projects
+ - vendor (Template, to be renamed to the name of the MCU vendor)
+ - board (Template, to be renamed to the name of the development board)
+ - ide (Contains an IDE-specific project)
+ - visual_studio (contains project files for Visual Studio)

To set up the project directories

1. Rename the ide folder to the name of the IDE that you are using to build the test project.

2. Rename the vendor folder to the name of the vendor, and rename the board folder to the name of
the development board.

Configuring FreeRTOSConfig.h

After you have configured the directory structure of your FreeRTOS download, configure your board
name in the FreeRTOSConfig.h configuration header file.

To configure your board name in FreeRTOSConfig.h
1. Open freertos/vendors/vendor/boards/board/aws_tests/config files/
FreeRTOSConfig.h.

2. Intheline #define configPLATFORM NAME "Unknown", change Unknown to match the name of
your board.

10

FreeRTOS Porting Guide
Setting up your FreeRTOS source code for testing

Setting up your FreeRTOS source code for testing

FreeRTOS includes tests for each ported library. The aws_test_runner.c file defines a RunTests
function that runs each test that you have specified in the aws_test_runner config.h header file.
As you port each FreeRTOS library, you can test the ports by building the ported FreeRTOS source code,
flashing the compiled code to your board, and running it on the board.

To build the FreeRTOS source code for testing, you can use either of the following:
« A supported IDE.

If you are using an IDE to build FreeRTOS source code, you need to set up an IDE test project. Follow
the instructions in Creating an IDE project (p. 11) to create a test project in your IDE. Each library-
specific porting section under Porting the FreeRTOS Libraries (p. 25) includes additional instructions
for setting up a library's ported source files in the IDE test project.

« The CMake build system.

If you are using CMake, you need to create a CMakeLists.txt CMake list file. Follow the instructions
in Creating a CMake list file (p. 12) to create a CMakeLists.txt CMake list file.

Important
A CMakeLists.txt file is required for listing a qualified device on the FreeRTOS console,
regardless of the testing method that you use.

After you build the code, use your platform's flash utility to flash the compiled code to your device.

Note
You specify your build and flash tools in the userdata. json file for Device Tester, so if you are
validating your ports with Device Tester, you do not need to flash your code manually.

Creating an IDE project

After you configure your FreeRTOS download, you can create an IDE project and import the code into the
project.

Follow the instructions below to create an IDE project with the required IDE project structure for testing.

Important
If you are using an Eclipse-based IDE, do not configure the project to build all the files in any
given folder. Instead, add source files to a project by linking to each source file individually.

1. Open your IDE, and create a project named aws_tests in the freertos/
projects/vendor/board/ide directory.

2. Inthe IDE, create two virtual folders under the aws_tests project:

e application_code

e config_files

Under aws_tests, there should now be two virtual folders in the IDE project: application code
and config files.

Note
Eclipse generates an additional includes folder. This folder is not a part of the required
structure.

3. Import all of the files under freertos/vendors/vendor/boards/board/aws_tests/
application_code and its subdirectories into the aws_tests/application_code virtual folder
in your IDE.

11

https://cmake.org/

FreeRTOS Porting Guide
Creating a CMake list file

10.

11.

Import all of the files under freertos/tests and its subdirectories into the aws_tests/
application_code virtual directory in your IDE.

Import all of the header files in the freertos/vendors/vendor/boards/board/aws_tests/
config_files directory into the aws_tests/config_files virtual folder in your IDE.

Note

If you are not porting a specific library, you do not need to import the files for that library
into your project. For example, if you are not porting the OTA library, you can leave

out the aws_ota_agent_config.h and aws_test_ota_config.h files. If you are

not porting the Wi-Fi library, you can leave out the aws_test_wifi_config.h and
aws_wifi_config.h files.

Import the required libraries in freertos/libraries and its subdirectories into the aws_tests
IDE project, including any required third-party libraries. For information on the required libraries
please follow the FreeRTOS porting flowchart. Information about which FreeRTOS libraries depend
on third-party libraries that need to be included in addition to the test project is provided in the
specific library's porting section.

Finally, import the unity files from the following directories into your project.

e freertos/libraries/3rdparty/unity/src/

e freertos/libraries/3rdparty/unity/extras/fixture/src/

Note
If you are not porting a specific library, you do not need to import the files for that library
into your project.

Import all of the source files in the freertos/freertos_kernel and freertos/
freertos_kernel/include directories into the aws_tests IDE project.

Import the subdirectory of freertos/freertos_kernel/portable that corresponds to your
compiler and platform architecture into the aws_tests IDE project.

Import the FreeRTOS memory management implementation that you are using for your device into
the aws_tests IDE project.

The freertos/freertos_kernel/portable/MemMang directory contains FreeRTOS memory
management implementations. We highly recommend that you use heap_4.c or heap_5.c.

For more information about FreeRTOS memory management, see Memory Management.
Open your project's IDE properties, and add the following paths to your compiler's include path:

e freertos/vendors/vendor/boards/board/aws_tests/config files
e freertos/freertos_kernel/include

e freertos/freertos_kernel/portable/compiler/architecture

« Any paths required for vendor-supplied driver libraries

Define UNITY INCLUDE_CONFIG_H and AMAZON FREERTOS_ENABLE_UNIT TESTS as project-level
macros in the project properties.

After you finish setting up your IDE project, you are ready to port the FreeRTOS libraries to your device.
For instructions, see Porting the FreeRTOS Libraries (p. 25).

Creating a CMake list file

After you configure your FreeRTOS download for porting, you can set up a CMake list file for your project
and platform.

Topics

12

https://docs.aws.amazon.com/freertos/latest/portingguide/porting-chart.html
https://www.freertos.org/a00111.html

FreeRTOS Porting Guide
Creating a CMake list file

 Prerequisites (p. 13)
» Creating a list file for your platform from the CMakeLists.txt template (p. 13)
« Building FreeRTOS with CMake (p. 20)

Prerequisites

Make sure that your host machine meets the following prerequisites before you continue:

 Your device's compilation toolchain must support the machine's operating system. CMake supports all
versions of Windows, macOS, and Linux.

Windows subsystem for Linux (WSL) is not supported. Use native CMake on Windows machines.
« You must have CMake version 3.13 or later installed.

You can download the binary distribution of CMake from CMake.org.

Note
If you download the binary distribution of CMake, make sure that you add the CMake
executable to the PATH environment variable before you use CMake from command line.

You can also download and install CMake using a package manager, like homebrew on macOS, and
scoop or chocolatey on Windows.

Note

The CMake package versions in the package managers for many Linux distributions are out-of-
date. If your distribution's package manager does not include the latest version of CMake, you
can try linuxbrew or nix.

« You must have a compatible native build system.

CMake can target many native build systems, including GNU Make or Ninja. Both Make and Ninja
can be installed with package managers on Linux, macOS, and Windows. If you are using Make on
Windows, you can install a standalone version from Equation, or you can install MinGW, which
bundles Make.

Note
The Make executable in MinGW is called mingw32-make. exe, instead of make.exe.

We recommend that you use Ninja, because it is faster than Make and also provides native support to
all desktop operating systems.

Creating a list file for your platform from the CMakelLists.txt
template

A CMakeLists.txt template file is provided with FreeRTOS, under freertos/vendors/vendor/
boards/board/CMakeLists.txt

The CMakeLists.txt template file consists of four sections:

« FreeRTOS console metadata (p. 14)
o Compiler settings (p. 15)

« FreeRTOS portable layers (p. 16)

« FreeRTOS demos and tests (p. 19)

Follow the instructions to edit these four sections of the list file to match your platform. You can refer to
the cMakeLists. txt files for other qualified vendor boards under freertos/vendors as examples.

13

https://cmake.org/download/
https://brew.sh/
https://scoop.sh/
https://chocolatey.org/
https://www.gnu.org/software/make/
https://github.com/ninja-build/ninja/releases
http://www.equation.com/servlet/equation.cmd?fa=make
https://sourceforge.net/projects/mingw-w64/files/

FreeRTOS Porting Guide
Creating a CMake list file

Two primary functions are called throughout the file:

afr_set_board_metadata(name value)

This function defines metadata for the FreeRTOS console. The function is defined in freertos/
tools/cmake/afr metadata.cmake.

afr_mcu_port(module_name [<DEPENDS> [targets...]])

This function defines the portable-layer target associated with a FreeRTOS module (that
is, library). It creates a CMake GLOBAL INTERFACE IMPORTED target with a name of the
form AFR:module_name: :mcu_port. If DEPENDS is used, additional targets are linked
with target_1link_libraries. The function is defined in freertos/tools/cmake/
afr_module.cmake.

FreeRTOS console metadata

The first section of the template file defines the metadata that is used to display a board's information in
the FreeRTOS console. Use the function afr_set_board_metadata(name value) to define each field
listed in the template. This table provides descriptions of each field.

Field Name
ID

DISPLAY_ NAME

DESCRIPTION

VENDOR_NAME
FAMILY NAME

DATA_ RAM MEMORY

PROGRAM_MEMORY

CODE_SIGNER

SUPPORTED_IDE

IDE_ID_ NAME

IDE_ID_COMPILER

Value Description
A unique ID for the board.

The name of the board as you want it displayed
on the FreeRTOS console.

A short description of the board for the FreeRTOS
console.

The name of the vendor of the board.
The name of the board's MCU family.

The size of the board's RAM, followed by
abbreviated units. For example, use KB for
kilobytes.

The size of the board's program memory, followed
by abbreviated units. For example, use "MB" for
megabytes.

The code-signing platform used for OTA updates.
Use AmazonFreeRTOS-Default for SHA256 hash
algorithm and ECDSA encryption algorithm. If you
want to use a different code-signing platform,
contact us.

A semicolon-delimited list of IDs for the IDEs that
the board supports.

The name of the supported IDE. Replace 1D with
the ID listed for the IDE in the SUPPORTED_IDE
field.

A semicolon-delimited list of names of supported
compilers for the supported IDE. Replace 1D with
the ID listed for the IDE in the SUPPORTED_IDE
field.

14

https://freertos.org/RTOS-contact-and-support.html
https://freertos.org/RTOS-contact-and-support.html

FreeRTOS Porting Guide
Creating a CMake list file

Compiler settings

The second section of the template file defines the compiler settings for your board. To create a target
that holds the compiler settings, call the afr_mcu_port function with compiler in place of the
module_name to create an INTERFACE target with the name AFR: :compiler: :mcu_port. The kernel
publicly links to this INTERFACE target so that the compiler settings are transitively populated to all
modules.

Use the standard, built-in CMake functions to define the compiler settings in this section of the list file.
As you define the compiler settings, follow these best practices:

« Use target_compile_definitions to provide compile definitions and macros.
« Use target_compile_options to provide compiler flags.

« Use target_include_directories to provide include directories.

« Use target_link options to provide linker flags.

« Use target_link directories to provide linker-search directories.

o Use target_link libraries to provide libraries to link against.

Note

If you define the compiler settings somewhere else, you don't need to duplicate the information
in this section of the file. Instead, call afr_mcu_port with DEPENDS to bring in the target
definition from another location.

For example:

your_ target is defined somewhere else. It does not have to be in the same file.
afr_mcu_port(compiler DEPENDS your_ target)

When you call afr_mcu_port with DEPENDS, it calls
target_link libraries(AFR::module_name: :mcu_port INTERFACE your_ targets),
which populates the compiler settings for the required AFR: : compiler: :mcu_port target.

Using multiple compilers

If your board supports multiple compilers, you can use the AFR_TOOLCHAIN variable to dynamically
select the compiler settings. This variable is set to the name of the compiler you are using, which should
be same as the name of the toolchain file found under freertos/tools/cmake/toolchains.

For example:

if("${AFR_TOOLCHAIN}" STREQUAL "arm-gcc")

afr_mcu_port(compiler DEPENDS my_gcc_settings).
elseif("${AFR_TOOLCHAIN}" STREQUAL "arm-iar"

afr_mcu_port(compiler DEPENDS my_iar_ settings).
else()

message(FATAL_ERROR "Compiler ${AFR_TOOLCHAIN} not supported.")
endif()

Advanced compiler settings

If you want to set more advanced compiler settings, such as setting compiler flags based on
programming language, or changing settings for different release and debug configurations, you can use
CMake generator expressions.

For example:

set(common_flags "-foo")
set(c_flags "-foo-c")
set(asm_flags "-foo-asm")

15

FreeRTOS Porting Guide
Creating a CMake list file

target_compile_options(
my_compiler_ settings INTERFACE
$<$<COMPILE_LANGUAGE:C>:${common_flags} ${c_flags}> # This only have effect on C files.
$<$<COMPILE_LANGUAGE:ASM>:${common_flags} ${asm_flags}> # This only have effect on ASM
files.

)

CMake generator expressions are not evaluated at the configuration stage, when CMake reads list files.
They are evaluated at the generation stage, when CMake finishes reading list files and generates build
files for the target build system.

FreeRTOS portable layers

The third section of the template file defines all of the portable layer targets for FreeRTOS (that is,
libraries).

You must use the afr_mcu_port(module_name) function to define a portable layer target for each
FreeRTOS module that you plan to implement.

You can use any CMake functions you want, as long as the afr_mcu_port call creates a target with a
name that provides the information required to build the corresponding FreeRTOS module.

The afr_mcu_port function creates a GLOBAL INTERFACE IMPORTED library target with a name of
the form AFR: :module_name: :mcu_port. As a GLOBAL target, it can be referenced in CMake list
files. As an INTERFACE target, it is not built as a standalone target or library, but compiled into the
corresponding FreeRTOS module. As an IMPORTED target, its name includes a namespace (: :) in the
target name (for example, AFR: :kernel: :mcu_port).

Modules without corresponding portable layer targets are disabled by default. If you run CMake to
configure FreeRTOS, without defining any portable layer targets, you should see the following output:

FreeRTOS modules:
Modules to build:
Disabled by user:
Disabled by dependency: kernel, posix, pkcsll, secure_sockets, mgtt,

Available demos:
Available tests:

As you update the CMakeLists. txt file with porting layer targets, the corresponding FreeRTOS
modules are enabled. You should also be able to build any FreeRTOS module whose dependency
requirements are subsequently satisfied. For example, if the MQTT library is enabled, the Device Shadow
library is also enabled, because its only dependency is the MQTT library.

Note
The FreeRTOS kernel dependency is a minimum requirement. The CMake configuration fails if
the FreeRTOS kernel dependency is not satisfied.

Setting up the kernel porting target

To create the kernel porting target (AFR: :kernel: :mcu_port), call afr_mcu_port with the module
name kernel. When you call afr_mcu_port, specify the targets for the FreeRTOS portable layer and
driver code. After you create the target, you can provide the dependency information and the FreeRTOS
portable layer and driver code information for the target to use.

Follow these instructions to set up the kernel porting target.
To set up the kernel porting target
1. Create a target for the driver code.

For example, you can create a STATIC library target for the driver code:

16

https://cmake.org/cmake/help/latest/command/add_library.html?#interface-libraries

FreeRTOS Porting Guide
Creating a CMake list file

add_library(my_board_driver STATIC ${driver_sources})

Use your compiler settings
target_link libraries(
my_board_driver
PRIVATE AFR::compiler::mcu_port
Or use your own target if you already have it.
PRIVATE ${compiler_settings_target}
)

target_include_directories(
my_board_driver
PRIVATE "include_dirs_for private_usage"
PUBLIC "include_dirs_for_public_interface"

Or you can create an INTERFACE library target for the driver code:

No need to specify compiler settings since kernel target has them.
add_library(my_board_driver INTERFACE ${driver_sources})

Note
An INTERFACE library target does not have build output. If you use an INTERFACE library
target, the driver code is compiled into the kernel library.

2. Configure the FreeRTOS portable layer:

add_library(freertos_port INTERFACE)
target_sources(
freertos_port
INTERFACE
"${AFR_MODULES_DIR}/freertos_kernel/portable/GCC/ARM_CM4F/port.c"
"${AFR_MODULES_DIR}/freertos_kernel/portable/GCC/ARM_CM4F/portmacro.h"
"${AFR_MODULES_DIR}/freertos_kernel/portable/MemMang/heap_4.c"
)
target_include_directories(
freertos_port
INTERFACE
"${AFR_MODULES_DIR}/freertos_kernel/portable/GCC/ARM_CM4F"
"${include_path_to_FreeRTOSConfig_h}

Note
You can also configure the FreeRTOS portable layer by specifying these source files and
their include directories directly in the AFR: :kernel: :mcu_port target.

3. Create the kernel portable layer target:

Bring in driver code and freertos portable layer dependency.
afr_mcu_port(kernel DEPENDS my board_driver freertos_port)

If you need to specify additional configurations, use standard CMake functions with
AFR::kernel::mcu_port as the target name.
target_include_directories(

AFR: :kernel::mcu_port

INTERFACE

"${additional_includes}" # e.g. board configuration files

)
target_link_libraries(

AFR: :kernel: :mcu_port

INTERFACE

17

FreeRTOS Porting Guide
Creating a CMake list file

"${additional_dependencies}"

)

4. To test your list file and configuration, you can write a simple application that uses the FreeRTOS
kernel port. For more information about developing and building FreeRTOS applications with
CMake, see Building FreeRTOS with CMake (p. 20).

5. After you create the demo, add add_executable and target_link libraries calls to the list
file, and compile the kernel as a static library to verify that the kernel portable layer is correctly
configured.

add_executable(
my_demo
main.c
)
target_link_libraries(
my_demo
PRIVATE AFR::kernel

Setting up the porting targets for FreeRTOS modules

After you add the portable layer target for the kernel, you can add portable layer targets for other
FreeRTOS modules.

For example, to add the portable layer for the Wi-Fi module:

afr_mcu_port(wifi)
target_sources(
AFR::wifi::mcu_port
INTERFACE "${AFR_MODULES_DIR}/vendors/vendor/boards/board/ports/wifi/iot_wifi.c"

This example Wi-Fi module portable layer has only one implementation file, which is based on the driver
code.

If you want to add the portable layer for the FreeRTOS Secure Sockets module, the module depends
on TLS. This makes its portable layer target slightly more complicated than that of the Wi-Fi module.
FreeRTOS provides a default TLS implementation based on mbedTLS that you can link to:

afr mcu_port(secure_sockets)
target_sources(
AFR::secure_sockets: :mcu_port
INTERFACE ${portable_layer_sources}
)
target_link_libraries(
AFR: :secure_sockets: :mcu_port
AFR::tls

In this example code, the standard CMake function target_link_ libraries states that the Secure
Sockets portable layer depends on AFR: : t1s.

You can reference all FreeRTOS modules by using their target name AFR: :module_name. For example,
you can use the same syntax to also state a dependency on FreeRTOS-Plus-TCP:

target_link libraries(
AFR: :secure_sockets: ::mcu_port
AFR::freertos_plus_tcp
AFR::tls

18

FreeRTOS Porting Guide
Creating a CMake list file

)

Note

If your platform handles TLS by itself, you can use your driver code directly. If you use your
driver code directly for TLS, you don't need to call target_link_libraries, because all
FreeRTOS modules implicitly depend on the kernel that includes your driver code.

Because all non-kernel FreeRTOS modules implicitly depend on the kernel, their porting layers
don't require you to specify the kernel as a dependency. The POSIX module, however, is defined
as an optional kernel module. If you want to use POSIX, you must explicitly include it in your
kernel portable layer. For example:

By default, AFR::posix target does not expose standard POSIX headers in its
public
interface, i.e., You need to use "freertos_plus_posix/source/
FreeRTOS_POSIX pthread.c" instead of "pthread.h".
Link to AFR::use_posix instead if you need to use those headers directly.
target_link_libraries(

AFR: :kernel: :mcu_port

INTERFACE AFR::use_posix

FreeRTOS demos and tests

The final section of the template file defines the demo and test targets for FreeRTOS. CMake targets are
created automatically for each demo and test that satisfies the dependency requirements.

In this section, define an executable target with the add_executable function. Use aws_tests as
the target name if you're compiling tests, or aws_demos if you're compiling demos. You might need to
provide other project settings, such as linker scripts and post-build commands. For example:

if (AFR_IS_TESTING)
set(exe_target aws_tests)
else()
set(exe_target aws_demos)
endif()

set (CMAKE_EXECUTABLE_SUFFIX ".elf")
add_executable(${exe_target} "${board_dir}/application_code/main.c")

target_link libraries isthen called to link available CMake demo or test targets to your
executable target.

Note
You still need to modify aws_demos/config_files/aws_demo_config.h and aws_tests/
config files/aws_test_runner_config.h to enable demos and tests.

Running post-build commands

For information about running post-build commands, see add_custom_command. Use the second
signature. For example:

This should run an external command "command --argl --arg2".
add_custom_command(

TARGET ${exe_target} POST_BUILD COMMAND "command" "--argl" "--arg2"
)

Note

CMake supports many common, platform-independent operations for creating directories,
copying files, and so on. For more information about CMake command-line operations, see the

19

https://cmake.org/cmake/help/latest/command/add_custom_command.html

FreeRTOS Porting Guide
Creating a CMake list file

CMake command-Lline tool reference. You can reference the CMake command-Lline tool from a
CMake list file with the built-in variable $ { CMAKE_COMMAND }.

Building FreeRTOS with CMake

CMake targets your host operating system as the target system by default. To use CMake for cross
compiling, you must provide a toolchain file that specifies the compiler that you want to use. FreeRTOS
provides some default toolchain files in freertos/tools/cmake/toolchains. The instructions for
using the toolchain file differ depending on whether you are using the CMake command-line interface
or the GUI. Generating build files (CMake command-line tool) (p. 20) has more details. To learn more
about cross-compiling in CMake, visit the Cross Compiling on the official CMake Wiki.

To build a CMake-based project

1. Run CMake to generate the build files for a native build system, like Make or Ninja.

You can use either the CMake command-Lline tool or the CMake GUI to generate the build files for
your native build system.

For information about generating FreeRTOS build files, see Generating build files (CMake command-
line tool) (p. 20) and Generating build files (CMake GUI) (p. 21).

2. Invoke the native build system to make the project into an executable.

For information about making FreeRTOS build files, see Building FreeRTOS from generated build
files (p. 23).

Generating build files (CMake command-Lline tool)

You can use the CMake command-line tool (cmake) to generate build files for FreeRTOS from the
command line.

To generate the build files, you must specify the target board, compiler and the locations of your source
code and build directory. Specify the target board with the -DVENDOR option. Specify the compiler with
the -DCOMPILER option. Specify the location of your source code with the -s switch and the location of
the generated build files with the -B switch.

Note
The compiler must be in the system's PATH variable, otherwise you must specify the location of
the compiler.

For example, if the vendor is Texas Instruments, and the board is the CC3220 Launchpad, and the
compiler is GCC for ARM, you can issue the following command to build from the source files located in
the current directory to a directory named build-directory:

cmake -DVENDOR=ti -DBOARD=cc3220_launchpad -DCOMPILER=arm-ti -S . -B build-directory

Note
If you are using Windows, you must specify the native build system because CMake uses Visual
Studio by default. For example:

cmake -DVENDOR=ti -DBOARD=cc3220_launchpad -DCOMPILER=arm-ti -S . -B build-
directory -G Ninja

Or:

cmake -DVENDOR=ti -DBOARD=cc3220_launchpad -DCOMPILER=arm-ti -S . -B build-
directory -G "MinGW Makefiles"

20

https://cmake.org/cmake/help/latest/manual/cmake.1.html#command-line-tool-mode
https://gitlab.kitware.com/cmake/community/wikis/doc/cmake/CrossCompiling
https://cmake.org/cmake/help/latest/manual/cmake.1.html
https://cmake.org/cmake/help/latest/manual/cmake-gui.1.html

FreeRTOS Porting Guide
Creating a CMake list file

The regular expressions ${VENDOR} . * and ${BOARD}. * are used to search for a matching board, so
you don't have to use the full names of the vendor and board for the VENDOR and BOARD options. Partial
names work, provided there is a single match. For example, the following commands generate the same
build files from the same source:

cmake -DVENDOR=ti -DCOMPILER=arm-ti -S . -B build-directory
cmake -DBOARD=cc3220 -DCOMPILER=arm-ti -S . -B build-directory
cmake -DVENDOR=t -DBOARD=cc -DCOMPILER=arm-ti -S . -B build-directory

You can use the CMAKE_TOOLCHAIN_FILE option if you want to use a toolchain file that is not located in
the default directory cmake/toolchains. For example:

cmake -DBOARD=cc3220 -DCMAKE_TOOLCHAIN_FILE='/path/to/toolchain_file.cmake' -S . -B build-
directory

If the toolchain file does not use absolute paths for your compiler, and you didn't add your compiler
to the PATH environment variable, CMake might not be able to find it. To make sure that CMake finds
your toolchain file, you can use the AFR_TOOLCHAIN_ PATH option. This option searches the specified
toolchain directory path and the toolchain's subfolder under bin. For example:

cmake -DBOARD=cc3220 -DCMAKE_TOOLCHAIN_FILE='/path/to/toolchain_file.cmake' -
DAFR_TOOLCHAIN_PATH='/path/to/toolchain/' -S . -B build-directory

To enable debugging, set the CMAKE_BUILD_TYPE to debug. With this option enabled, CMake adds
debug flags to the compile options, and builds FreeRTOS with debug symbols.

Build with debug symbols
cmake -DBOARD=cc3220 -DCOMPILER=arm-ti -DCMAKE_BUILD_TYPE=debug -S . -B build-directory

You can also set the CMAKE_BUILD_ TYPE to release to add optimization flags to the compile options.
Generating build files (CMake GUI)

You can use the CMake GUI to generate FreeRTOS build files.

To generate build files with the CMake GUI

1. From the command line, issue cmake-gui to start the GUI.

2. Choose Browse Source and specify the source input, and then choose Browse Build and specify the
build output.

CMake 3.13.0 -

File Tools Options Help

Where is the source code: [| Browse Source... },

Where to build the binaries: v Browse Build... ;"'

", Vi

oy -

Search: [] Grouped | | Advanced | R Add Entry RSOV

21

FreeRTOS Porting Guide
Creating a CMake list file

3. Choose Configure, and under Specify the build generator for this project, find and choose the
build system that you want to use to build the generated build files.

CMakeSetup

Specify the generator for this project

Unix Makefiles

() Use default native compilers

() specify native compilers

(@) specify toolchain file for cross-compiling

() specify options for cross-compiling

Note

If you do not see the pop up window, you might be reusing an existing build directory. In

this case, delete the CMake cache first by clicking File->Delete Cache in the menu.
Choose Specify toolchain file for cross-compiling, and then choose Next.

Choose the toolchain file (for example, freertos/tools/cmake/toolchains/arm-ti.cmake),
and then choose Finish.

The default configuration for FreeRTOS is the template board, which does not provide any portable
layer targets. As a result, a window appears with the message Error in configuration process.

Note
If you see the following error message:

CMake Error at tools/cmake/toolchains/find_compiler.cmake:23 (message):
Compiler not found, you can specify search path with "AFR_TOOLCHAIN_PATH".

It means the compiler is not in your environment variable PATH. You can set the
AFR_TOOLCHAIN_PATH variable in the GUI to tell CMake where you installed your compiler.
If you do not see the AFR_TOOLCHAIN_PATH variable, click the Add Entry button in the
pop up window, enter AFR_TOOLCHAIN_PATH as the name, select PATH as the type, and
enter the compiler path in the value, for example, "C:/toolchains/arm-none-eabi-gcc".

6. The GUI should now look like this:

22

FreeRTOS Porting Guide
Creating a CMake list file

File Tools Options Help

Where is the source code: ftmp/amazon-freertos Browse Source...

Where to build the binaries: | /ftmp/amazon-freertos/build ~ Browse Build...

Search: [] Grouped [| Advanced | sk Add Entry #& Remove Entry
Name Valu

Press Configure to update and display new values in red, then press Generate to generate selected build files.

| Configure || Generate | Open Project Current Generator: Unix Makefiles —

====================Configuration for Amazon FreeRT0S====================
Version: wvl.4.4
Git wersion: vl.4.4-25-gfae2e0f3b

Target microcontroller:

vendor: Vendor

board: Board

description: Template Board for AmazonFreeRTOS
family: Family

data ram size: UNENOWN

program memory size: UNENCWH

Hmaat nlatfarm:

Choose AFR_BOARD, choose your board, and then choose Configure again.

7. Choose Generate. CMake generates the build system files (for example, makefiles or ninja files), and
these files appear in the build directory you specified in the first step. Follow the instructions in the
next section to generate the binary image.

Building FreeRTOS from generated build files

You can build FreeRTOS with a native build system by calling the build system command from the output
binaries directory. For example, if your build file output directory is build-directory, and you are
using Make as your native build system, run the following commands:

cd build-directory
make -j4

You can also use the CMake command-line tool to build FreeRTOS. CMake provides an abstraction layer
for calling native build systems. For example:

23

FreeRTOS Porting Guide
Creating a CMake list file

cmake --build build-directory

Here are some other common uses of the CMake command-line tool's build mode:

Take advantage of CPU cores.
cmake --build build-directory --parallel 8

Build specific targets.
cmake --build build-directory --target afr_kernel

Clean first, then build.
cmake --build build-directory --clean-first

For more information about the CMake build mode, see the CMake documentation.

24

https://cmake.org/cmake/help/latest/manual/cmake.1.html#build-tool-mode

FreeRTOS Porting Guide
Porting flowchart

Porting the FreeRTOS Libraries

Before you start porting, follow the instructions in Setting Up Your FreeRTOS Source Code for
Porting (p. 9).

To port FreeRTOS to your device, follow the instructions in the topics below.

1. Implementing the conf igPRINT_STRING() macro (p. 27)
2. Configuring a FreeRTOS kernel port (p. 28)
3. Porting the Wi-Fi library (p. 29)

Note

If your device does not support Wi-Fi, you can use an ethernet connection to connect to the
AWS Cloud instead. A port of the FreeRTOS Wi-Fi library is not necessarily required.

. Porting a TCP/IP stack (p. 35)
. Porting the Secure Sockets library (p. 39)
. Porting the PKCS #11 library (p. 46)
. Porting the TLS library (p. 50)
. Configuring the MQTT library for testing (p. 68)
. Configuring the HTTPS client library for testing (p. 69)
Note
Currently, a port of the FreeRTOS HTTPS library is not required for qualification.
10Porting the OTA library (p. 70)

Note
Currently, a port of the FreeRTOS OTA update library is not required for qualification.

O 00 N O 1 b

11Porting the Bluetooth Low Energy library (p. 77)

Note
Currently, a port of the FreeRTOS Bluetooth Low Energy library is not required for
qualification.

12Porting the common I/0O libraries (p. 81)

Note
Currently, a port of the FreeRTOS common I/0 library is not required for qualification.

After you port FreeRTOS to your board, you can officially validate the ports for FreeRTOS qualification
with AWS IoT Device Tester for FreeRTOS. For more information about AWS loT Device Tester for
FreeRTOS, see Using AWS loT Device Tester for FreeRTOS in the FreeRTOS User Guide.

Note

Before you validate your port of FreeRTOS using the AWS loT Device Tester for FreeRTOS you
must remove any logging messages that you might have inserted in your code for testing
purposes, otherwise the validation may fail.

For information about qualifying your device for FreeRTOS, see the FreeRTOS Qualification Guide.

FreeRTOS porting flowchart

Use the flowchart below for visual aid as you port FreeRTOS to your device.

25

https://docs.aws.amazon.com/freertos/latest/userguide/device-tester-for-freertos-ug.html
https://docs.aws.amazon.com/freertos/latest/qualificationguide/

FreeRTOS Porting Guide
Porting flowchart

Start

.

Implement

(

configPRINT_STRING()

)

¢

Configure
FreeRTOS Kernel

(

)

!

Wi-Fi support
required?

Part
TCP/IP Stack

Port
Wi-Fi Library

=)

Part
Secure Sockets Library

=)

Port
PKCS#11 Library

-

).7

v

Port
TLS Library

)

v

Configure
MQTT Library

(
(

v

HTTPS Support
Reguired?

No

Configure
HTTPS library

)

-

v

OTA Sugport
Reguired?

No

4
*

Port
OTA library

)

L4

Ele Support
Reguired?

| o
-

Port
BLE library

)

No

v
END

26

FreeRTOS Porting Guide
configPRINT STRING()

Implementing the configPRINT STRING()
macro

You must implement the configPRINT STRING() macro before you port the FreeRTOS libraries.
FreeRTOS uses configPRINT_STRING() to output test results as human-readable ASCII strings.

Prerequisites

To implement the configPRINT STRING() macro, you need the following:

« A development board that supports UART or virtual COM port output.
« A FreeRTOS project configured for your platform, and a porting-test IDE project.

For information, see Setting Up Your FreeRTOS Source Code for Porting (p. 9).

Implementation

To implement configPRINT_STRING()

Connect your device to a terminal emulator to output test results.

2. Open the file freertos/vendors/vendor/boards/board/aws_tests/application_code/
main.c, and locate the call to configPRINT_STRING("Test Message") in the
prvMiscInitialization() function

3. Immediately before the call to configPRINT_STRING("Test Message"), add code that uses the
vendor-supplied UART driver to initialize the UART baud rate level to 115200.

4. Open freertos/vendors/vendor/boards/board/aws_tests/config files/
FreeRTOSConfig.h, and locate the empty definition of configPRINT STRING(). The macro
takes a NULL-terminated ASCII C string as its only parameter.

5. Update the empty definition of configPRINT_STRING() so that it calls the vendor-supplied UART
output function.

For example, suppose the UART output function has the following prototype:

void MyUARTOutput(char *DataToOutput, size_t LengthToOutput);

You would implement configPRINT STRING() as:

#define configPRINT_STRING(X) MyUARTOutput((X), strlen((X)))

Testing

Build and execute the test demo project. If Test Message appears in the UART console, then the
console is connected and configured correctly, configPRINT STRING() is behaving properly, and
testing is complete. You can remove the call to configPRINT STRING("Test Message") from
prvMiscInitialization().

After you implement the configPRINT STRING() macro, you can start configuring a FreeRTOS kernel
port for your device. See Configuring a FreeRTOS kernel port (p. 28) for instructions.

27

FreeRTOS Porting Guide
FreeRTOS kernel

Configuring a FreeRTOS kernel port

This section provides instructions for integrating a port of the FreeRTOS kernel into a FreeRTOS port-
testing project. For a list of available kernel ports, see FreeRTOS Kernel Ports.

FreeRTOS uses the FreeRTOS kernel for multitasking and inter-task communications. For more
information, see the FreeRTOS Kernel Fundamentals in the FreeRTOS User Guide and FreeRTOS.org.

Note

Porting the FreeRTOS kernel to a new architecture is out of the scope of this documentation. If
you are interested in porting the FreeRTOS kernel to a new architecture, contact the FreeRTOS
engineering team.

For the FreeRTOS Qualification program, only existing ports are supported. Modifications to
these ports are not accepted within the Qualification program. Only the official ports that can
be downloaded from Github or Sourceforge are accepted.

Prerequisites

To set up the FreeRTOS kernel for porting, you need the following:

An official FreeRTOS kernel port for the target platform.

An IDE project or cMakeLists. txt list file that includes the correct FreeRTOS kernel port files for the
target platform and compiler.

For information about setting up a test project, see Setting Up Your FreeRTOS Source Code for
Porting (p. 9).
An implementation of the configPRINT_STRING() macro for your device.

For information about implementing configPRINT STRING(), see Implementing the
configPRINT STRING() macro (p. 27).

Configuring the FreeRTOS kernel

The header file freertos/vendors/vendor/boards/board/aws_tests/config files/
FreeRTOSConfig.h specifies application-specific configuration settings for the FreeRTOS kernel. For a
description of each configuration option, see Customisation on FreeRTOS.org.

To configure the FreeRTOS kernel to work with your device, open FreeRTOSConfig.h, and verify that
the configuration options in the following table are correctly specified for your platform.

Configuration option Description

configCPU_CLOCK_HZ Specifies the frequency of the clock used to
generate the tick interrupt.

configMINIMAL STACK SIZE Specifies the minimum stack size. As a starting
point, this can be set to the value used in the
official FreeRTOS demo for the FreeRTOS kernel
port in use. Official FreeRTOS demos are those
distributed from the FreeRTOS.org website. Make
sure that stack overflow checking is set to 2,
and increase configMINIMAL_ STACK_SIZE if
overflows occur. To save RAM, set stack sizes to
the minimum value that does not result in a stack
overflow.

28

https://freertos.org/RTOS_ports.html
https://docs.aws.amazon.com/freertos/latest/userguide/dev-guide-freertos-kernel.html
https://freertos.org/index.html
https://freertos.org/RTOS-contact-and-support.html
https://freertos.org/RTOS-contact-and-support.html
https://github.com/aws/amazon-freertos
https://sourceforge.net/projects/freertos/
https://freertos.org/a00110.html
https://www.freertos.org/Stacks-and-stack-overflow-checking.html

FreeRTOS Porting Guide
Testing

Configuration option Description

configTOTAL_HEAP_SIZE Sets the size of the FreeRTOS heap. Like task stack
sizes, the heap size can be tuned to ensure unused
heap space does not consume RAM.

Note
If you are porting ARM Cortex-M3, M4, or M7 devices, you must also specify configPRIO_BITS
and configMAX SYSCALL_INTERRUPT_PRIORITY correctly.

Testing

1.

Open /libraries/freertos_plus/standard/utils/src/iot_system init.c, and
comment out the line that calls SOCKETS_Init() from within function SYSTEM_Init(). This
initialization function belongs to a library that you haven't ported yet. The porting section for this
library includes instructions to uncomment this function.

Build the test project, and then flash it to your device for execution.

If "." appears in the UART console every 5 seconds, then the FreeRTOS kernel is configured correctly,
and testing is complete.

Open freertos/vendors/vendor/boards/board/aws_tests/config files/
FreeRTOSConfig.h, and set configUSE_IDLE_HOOK to O to stop the kernel from executing
vApplicationIdleHook() and outputting".".

If "." appears at any frequency other than 5 seconds, open FreeRTOSConfig.h and verify that
configCPU_CLOCK_HZ is set to the correct value for your board.

After you have configured the FreeRTOS kernel port for your device, you can start porting the Wi-Fi
library. See Porting the Wi-Fi library (p. 29) for instructions.

Porting the Wi-Fi library

The FreeRTOS Wi-Fi library interfaces with vendor-supplied Wi-Fi drivers. For more information about
the FreeRTOS Wi-Fi library, see FreeRTOS Wi-Fi Library in the FreeRTOS User Guide.

If your device does not support Wi-Fi networking, you can skip porting the FreeRTOS Wi-Fi library and
start Porting a TCP/IP stack (p. 35).

Note

For qualification, your device must connect to the AWS Cloud. If your device does not support
Wi-Fi, you can use an ethernet connection instead. A port of the FreeRTOS Wi-Fi library is not
necessarily required.

Prerequisites

To port the Wi-Fi library, you need the following:

An IDE project or CMakeLists. txt list file that includes the vendor-supplied Wi-Fi drivers.

For information about setting up a test project, see Setting Up Your FreeRTOS Source Code for
Porting (p. 9).

A validated configuration of the FreeRTOS kernel.

29

https://www.freertos.org/a00111.html
https://www.freertos.org/RTOS-Cortex-M3-M4.html
https://www.freertos.org/RTOS-Cortex-M3-M4.html
https://docs.aws.amazon.com/freertos/latest/userguide/freertos-wifi.html

FreeRTOS Porting Guide
Porting

For information about configuring the FreeRTOS kernel for your platform, see Configuring a FreeRTOS
kernel port (p. 28).

« Two wireless access points.

Porting

freertos/vendors/vendor/boards/board/ports/wifi/iot_wifi.c contains empty definitions
of a set of Wi-Fi management functions. Use the vendor-supplied Wi-Fi driver library to implement at
least the set of functions listed in the following table.

Function Description

WIFI_On Turns on Wi-Fi module and initializes the drivers.

WIFI_ConnectAP Connects to a Wi-Fi access point (AP).

WIFI_Disconnect Disconnects from an AP.

WIFI_Scan Performs a Wi-Fi network scan.

WIFI_GetIP Retrieves the Wi-Fi interface’s IP address.

WIFI_GetMAC Retrieves the Wi-Fi interface’'s MAC address.

WIFI_GetHostIP Retrieves the host IP address from a hostname
using DNS.

freertos/libraries/abstractions/wifi/include/iot_wifi.h provides the information
required to implement these functions.

Testing

If you are using an IDE to build test projects, you need to set up your library port in the IDE project.

Setting up the IDE test project

If you are using an IDE for porting and testing, you need to add some source files to the IDE test project
before you can test your ported code.

Important
In the following steps, make sure that you add the source files to your IDE project from their on-
disk location. Do not create duplicate copies of source files.

To set up the Wi-Fi library in the IDE project

1. Add the source file freertos/vendors/vendor/boards/board/ports/wifi/iot_wifi.cto
your aws_tests IDE project.

2. Add the source file aws_test_wifi.c tothe aws_tests IDE project.

Configuring the cMakeLists. txt file

If you are using CMake to build your test project, you need to define a portable layer target for the
library in your CMake list file.

30

FreeRTOS Porting Guide
Testing

To define a library's portable layer target in CMakeLists. txt, follow the instructions in FreeRTOS
portable layers (p. 16).

The CMakeLists.txt template list file under freertos/vendors/vendor/boards/board/
CMakeLists.txt includes example portable layer target definitions. You can uncomment the definition
for the library that you are porting, and modify it to fit your platform.

See below for an example portable layer target definition for the Wi-Fi library.

WiFi
afr_mcu_port(wifi)
target_sources(
AFR::wifi::mcu_port
INTERFACE "freertos/vendors/vendor/boards/board/ports/wifi/iot_wifi.c"

Setting up your local testing environment

After you set up the library in the IDE project, you need to configure some other files for testing.

To configure the source and header files for the Wi-Fi tests

1. Open freertos/vendors/vendor/boards/board/aws_tests/application_code/
main.c, and delete the #if 0 and #endif compiler directives in the function definitions of
vApplicationDaemonTaskStartupHook(void) and prvWifiConnect(void).

2. If you have not ported the Secure Sockets library, open freertos/libraries/freertos_plus/
standard/utils/src/iot_system init.c, and comment out the line that calls
SOCKETS_Init().When you reach the Porting the Secure Sockets library (p. 39) section, you will
be instructed to uncomment this initialization function call.

3. Open freertos/tests/include/aws_clientcredential.h, and set the macros in the
following table for the first AP.

Macro Value

clientcredentialWIFI_SSID The Wi-Fi SSID as a C string (in quotation
marks).

clientcredentialWIFI_PASSWORD The Wi-Fi password as a C string (in quotation
marks).

clientcredentialWIFI_SECURITY One of the following:

¢ eWiFiSecurityOpen
e eWiFiSecurityWEP
¢ eWiFiSecurityWPA
e eWiFiSecurityWPA2

eWiFiSecurityWPA2 is recommended.

4. Open freertos/libraries/abstractions/wifi/test/aws_test_wifi.h, and set the
macros in the following table for the second AP.

31

FreeRTOS Porting Guide

Testing
Macro Value
testWIFI_SSID The Wi-Fi SSID as a C string (in quotation
marks).
testWIFI_PASSWORD The Wi-Fi password as a C string (in quotation
marks).
testWIFI_SECURITY One of the following:

e eWiFiSecurityOpen
e eWiFiSecurityWEP
e eWiFiSecurityWPA
e eWiFiSecurityWPA2

eWiFiSecurityWPA2 is recommended.

5. To enable the Wi-Fi tests, open freertos/vendors/vendor/boards/board/aws_tests/
config_files/aws_test_runner_ config.h, and set the testrunnerFULL_WIFI_ENABLED to
1.

Important

The following tests require a port of the Secure Sockets library and a running echo server:
e WiFiConnectionLoop

e WiFiIsConnected

e WiFiConnectMultipleAP

You won't be able to pass these tests until you port the Secure Sockets library and start an
echo server. After you port the Secure Sockets library and start an echo server, rerun the
Wi-Fi tests to be sure that all tests pass. For information about porting the Secure Sockets
library, see Porting the Secure Sockets library (p. 39). For information about setting up

an echo server, see Setting up an echo server (p. 43).

Running the tests

To execute the Wi-Fi tests

1. Build the test project, and then flash it to your device for execution.
2. Check the test results in the UART console.

32

FreeRTOS Porting Guide
Testing

STARTING TESTS

_uuid_d4644216f3:

4759bbfbefc662960

[TE:tRUF'InF'r] WiFI Networks and 1’[r'='I'Igth

[TeafF'unner]

89 [TestRunner]

7 29894 [TestRunner]

[TestRunner]

9 29903 [TestRunner]
10 29907 [TestRunner]
11 29911 [TestRunner]
12 29915 [TestRunner]
13 29919 [TestRunner]
14 29922 [TestRunner]

MikroTik-11AASY: -51
afrlab-test-ubi_loT: -41
afrlab-test-ubi-mtk_loT: -55
afrlab-guest-mtk: -55
afrlab-guest: -41
afrlab-test: -41
ConfigureMe: -52
afrlab-test-mtk: -57
:-39

wpaZz: -78

15 29926 [TestRunner] End of WiFi Networks
TEST{Full_WiFi, AFQP_WIiFiOnOff) PASS
.16 34778 [TestRunner| WiFi Networks and strength:

7 34782 [TestRunner]
8 34786 [TestRunner]

9 34791 [TestRunner]
4796 |TestRunner]
4800 [TestRunner]
4805 [TestRunner]
4809 [TestRunner]
3 [TestRunner]
1 7 [TestRunner]
34821 [TestRunner]

(%] |:_,._'|

J
3
|:_,._'|

(I

J |:_,._'|

B
":j f'sj

(o T
|‘,._|

i O % T % Y % Y S B
[y]
|,_,._| |_,._|

l'-J

ConfigureMe: -51
afrlab-test-ubi-mtk_loT: -52
afrlab-guest-mtk: -52
afrlab-test-ubi_|oT: -40
afrlab-test-mtk: -51
afrlab-guest: -40
afrlab-test: -40
MikroTik-11AAS7: -51
WifiSensorL16: -84

-4

34824 [TestRunner] End of WiFi Networks

.TEbTﬂ_FU”_"NIFI, AFQP_WiFiMode) PASS

33

FreeRTOS Porting Guide
Validation

2 [TestRunner] End of WiFi Networks
ull_WiFi, AFQP_WIFI_NetworkAdd_AddManyNetworks) PASS
3 [TestRunner] WiFi Networks and strength:

®

N

(6 T ST o T e T o T e

[=Y
|j' |j'

TeJtFilunrlF-r] ConfigureMe: -49
Te:tFlunnﬂr] afrlab-test-ubi-mtk_loT: -49
estRunner] afrlab-test-mtk: -49
1 [T stRunner] afrlab-guest-mtk: -49
46 [TestRunner] afrlab-guest: -40
0 [TestRunner] afrlab-test-ubi_loT: -40
[TestRunner] afrlab-test: -40
[TestRunner] :-41
[Te
7 [Te
3 [T

[[N o N o R o [o 3 (O
I:I'

n

5
5
S
62

5
9

[T G R
o

(#5]
l:l'

stRunner] loTDeviceServicesLab: -46
estRunner] loTDeviceServicesLab100: -45
estRunner| End of WiFi Networks
.TE'::TI'FLI” _WiFi, AFQP_WIFI_NetworkDelete_DeleteManyNetworks) PASS
..526 613134 [TestRunner] WiFi Networks and strength:
3139 [TestRunner] ConfigureMe: -49
141 [TestRunner] afrlab-test-ubi_loT: -40
48 [TestRunner] afrlab-test-mtk: -49
52 [TestRunner] afrlab-guest: -40
':E-[T stRunner] afrlab-test: -40
.;1 [TestRunner] WifiSensorL16: -85
5 [TestRunner] afrlab-test-ubi-mtk_loT: -51
:I[T stRunner] afrlab-guest-mtk: -49
5 [TestRunner] ;-39
8 [TestRunner] wpa2:-68
2 [TestRunner] End of WiFi Networks
... TEST(Full_WiFi, AFQP_WIFI_ConnectAP_ConnectAllChannels) PASS
6067 [TestRunner] Wi-Fi reconnected following tests finished.

on
l:l'
|"!j |"‘!:'.| |"‘!:1 |"!j |"!j |"!:'.| |"‘!:1 |"!j |"!j oo 0o

[T I"\J [T L T L I"\J I'\-.'J [I

] Cl"

(%]

N

[I 5 |
[ea) "-J
l:l'

n
L =]
=]

=]
—_ a4 4 a4 4 4 4 4 %

[SO I A
[T L I T

L 2 = 2

s o o

O Cad Ll Qe

cn
Cad

= O L B
o

o

on
Cad
L =]

[I
[£%] J
(=]

a3 a3 Cad ru [O TR e T T |

£
e

43 Tests 0 Failures 0 Ignored

Validation

To officially qualify a device for FreeRTOS, you need to validate the device's ported source code with AWS
loT Device Tester. Follow the instructions in Using AWS loT Device Tester for FreeRTOS in the FreeRTOS
User Guide to set up Device Tester for port validation. To test a specific library's port, the correct test
group must be enabled in the device. json file in the Device Tester configs folder.

34

https://docs.aws.amazon.com/freertos/latest/userguide/device-tester-for-freertos-ug.html

FreeRTOS Porting Guide
TCP/IP

After you finish porting the FreeRTOS Wi-Fi library to your device, you can start porting a TCP/IP stack.
See Porting a TCP/IP stack (p. 35) for instructions.

Porting a TCP/IP stack

FreeRTOS provides a TCP/IP stack for boards that do not have on-chip TCP/IP functionality. If your
platform offloads TCP/IP functionality to a separate network processor or module, you can skip this
porting section and start Porting the Secure Sockets library (p. 39).

FreeRTOS+TCP is a native TCP/IP stack for the FreeRTOS kernel. FreeRTOS+TCP is maintained by the
FreeRTOS engineering team and is the recommended TCP/IP stack to use with FreeRTOS. For more
information, see Porting FreeRTOS+TCP (p. 35).

The lightweight IP (lwIP) TCP/IP stack is an open source third-party TCP/IP stack, ported to the FreeRTOS
kernel. The lwIP port layer currently supports lwIP version 2.03. For more information, see Porting
lwlP (p. 38).

Note

These porting sections only provide instructions for porting to a platform's Ethernet or Wi-

Fi driver. The tests only ensure that the Ethernet or Wi-Fi driver can connect to a network.
You cannot test sending and receiving data across a network until you have ported the Secure
Sockets library.

Porting FreeRTOS+TCP

FreeRTOS+TCP is a native TCP/IP stack for the FreeRTOS kernel. For more information, see FreeRTOS.org.

Prerequisites
To port the FreeRTOS+TCP library, you need the following:

« An IDE project or CMakeLists. txt list file that includes the vendor-supplied Ethernet or Wi-Fi
drivers.

For information about setting up a test project, see Setting Up Your FreeRTOS Source Code for
Porting (p. 9).

« A validated configuration of the FreeRTOS kernel.

For information about configuring the FreeRTOS kernel for your platform, see Configuring a FreeRTOS
kernel port (p. 28).

Porting

Before you start porting the FreeRTOS-TCP library, check the freertos/libraries/freertos_plus/
standard/freertos_plus_tcp/source/portable/NetworkInterface directory to see if a port
to your device already exists.

If a port does not exist, do the following:

1. Follow the Porting FreeRTOS+TCP to a Different Microcontroller instructions on FreeRTOS.org to
port FreeRTOS+TCP to your device.

2. If necessary, follow the Porting FreeRTOS+TCP to a New Embedded C Compiler instructions on
FreeRTOS.org to port FreeRTOS+TCP to a new compiler.

3. Implement a new port that uses the vendor-supplied Ethernet or Wi-Fi drivers in a file called

NetworkInterface.c, and save the file to freertos/libraries/freertos_plus/standard/
freertos_plus_tcp/source/portable/NetworkInterface/board family.

35

https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/
https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/Embedded_Ethernet_Porting.html
https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/Embedded_Compiler_Porting.html

FreeRTOS Porting Guide
Porting FreeRTOS+TCP

Note

The files in the freertos/libraries/freertos_plus/standard/
freertos_plus_tcp/source/portable/BufferManagement directory are used by
multiple ports. Do not edit the files in this directory.

After you create a port, or if a port already exists, open freertos/vendors/vendor/boards/board/
aws_tests/config files/FreeRTOSIPConfig.h, and edit the configuration options so they are
correct for your platform. For more information about the configuration options, see FreeRTOS+TCP
Configuration on FreeRTOS.org.

Testing

If you are using an IDE to build test projects, you need to set up your library port in the IDE project.
Setting up the IDE test project

If you are using an IDE for porting and testing, you need to add some source files to the IDE test project
before you can test your ported code.

Important
In the following steps, make sure that you add the source files to your IDE project from their on-
disk location. Do not create duplicate copies of source files.

To set up the FreeRTOS+TCP library in the IDE project

1. Add all of the source and header files in freertos/libraries/freertos_plus/standard/
freertos_plus_tcp and its subdirectories to the aws_tests IDE project.

Note
FreeRTOS includes five example heap management implementations under freertos/
freertos_kernel/portable/MemMang. FreeRTOS+TCP and BufferAllocation_2.c
require the heap_4.c or heap_5.c implementations. You must use heap_4.c or
heap_5.c to ensure that the FreeRTOS demo applications run properly. Do not use a
custom heap implementation.

2. Add freertos/libraries/freertos_plus/standard/freertos_plus_tcp/include to

your compiler's include path.

Configuring the CMakeLists. txt file

If you are using CMake to build your test project, you need to define a portable layer target for the
library in your CMake list file.

To define a library's portable layer target in CMakeLists. txt, follow the instructions in FreeRTOS
portable layers (p. 16).

The CMakeLists.txt template list file under freertos/vendors/vendor/boards/board/
CMakeLists.txt includes example portable layer target definitions. You can uncomment the definition
for the library that you are porting, and modify it to fit your platform.

Setting up your local testing environment

After you set up the library in the IDE project, you need to configure some other files for testing.

To configure the source and header files for the TCP tests

1. If you have not ported the Secure Sockets library, open freertos/libraries/freertos_plus/
standard/utils/src/iot_system init.c, and in the function SYSTEM Init(), comment

36

https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/TCP_IP_Configuration.html
https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/TCP_IP_Configuration.html

FreeRTOS Porting Guide
Porting FreeRTOS+TCP

out the line that calls SOCKETS_Init(). When you reach the Porting the Secure Sockets
library (p. 39) section, you will be instructed to uncomment this initialization function call.

2. Open freertos/vendors/vendor/boards/board/aws_tests/application_code/main.c,
and uncomment the call to FreeRTOS_IPInit().

3. Fill the following arrays with valid values for your network:

Variable Description

uint8_t ucMACAddress[6] Default MAC address configuration.

uint8_t ucIPAddress[4] Default IP address configuration.
Note

By default, the IP address is acquired
by DHCP. If DCHP fails or if you do not
want to use DHCP, the static IP address
that is defined here is used.

To disable DCHP, open freertos/
vendors/vendor /boards/board/
aws_tests/config files/
FreeRTOSIPConfig.h, and set
ipconfigUSE_DHCP to 0.

uint8_t ucNetMask[4] Default net mask configuration.
uint8_t ucGatewayAddress[4] Default gateway address configuration.
uint8_t ucDNSServerAddress[4] Default DNS server address configuration.

4. Open freertos/vendors/vendor/boards/board/aws_tests/config files/
FreeRTOSIPConfig.h, and set the ipconfigUSE_NETWORK_EVENT HOOK macro to 1.

5. Open freertos/vendors/vendor/boards/board/aws_tests/application_code/
main.c, and add the following code to the beginning of the function definition for
vApplicationIPNetworkEventHook():

if (eNetworkEvent == eNetworkUp)
{

configPRINT("Network connection successful. \n\r");

¥

Running the tests

To execute the FreeRTOS+TCP tests

1. Build the test project, and then flash it to your device for execution.

2. Check the test results in the UART console. If Network connection successful appears, the
Ethernet or Wi-Fi driver successfully connected to the network, and the test is complete.

Validation

To officially qualify a device for FreeRTOS, you need to validate the device's ported source code with AWS
loT Device Tester. Follow the instructions in Using AWS loT Device Tester for FreeRTOS in the FreeRTOS
User Guide to set up Device Tester for port validation. To test a specific library's port, the correct test
group must be enabled in the device. json file in the Device Tester configs folder.

37

https://docs.aws.amazon.com/freertos/latest/userguide/device-tester-for-freertos-ug.html

FreeRTOS Porting Guide
Porting lwIP

Porting lwlIP

lwlIP is an alternative, open source TCP/IP stack. For more information, see [wIP - A Lightweight TCP/IP
Stack - Summary. FreeRTOS currently supports version 2.1.2.

Prerequisites

To port the lwlIP stack, you need the following:

« An IDE project or CMakeLists. txt list file that includes vendor-supplied network drivers.
« A validated configuration of the FreeRTOS kernel.

For information about configuring the FreeRTOS kernel for your platform, see Configuring a FreeRTOS
kernel port (p. 28).

Porting

Before you port the lwIP TCP/IP stack to your device, check the freertos/libraries/3rdparty/
lwip/src/portable directory to see if a port to your platform already exists.

1. If a port does not exist, do the following:

Under freertos/libraries/3rdparty/lwip/src/portable, create a directory named
vendor/board/netif, where the vendor and board directories match your platform.

2. Portthe freertos/libraries/3rdparty/lwip/src/netif/ethernetif.c stub file according
to the comments in the stub file.

3. After you have created a port, or if a port already exists, in the test project's main. c file, add a call
to tepip_init().

4. In freertos/vendors/vendor/boards/board/aws_tests/config_files, createa
configuration file named 1lwipopts.h. This file must contain the following line:

#include "arch/lwipopts_freertos.h"

The file should also contain any platform-specific configuration options.

Testing

If you are using an IDE to build test projects, you need to set up your library port in the IDE project.

Note
There are no TCP/IP porting tests specific to lwlIP.

Setting up the IDE test project
If you are using an IDE for porting and testing, you need to add some source files to the IDE test project
before you can test your ported code.

Important
In the following steps, make sure that you add the source files to your IDE project from their on-
disk location. Do not create duplicate copies of source files.

To set up the lwlIP source files in the IDE project

1. Add all of the source and header files in 1wip/src and its subdirectories to the aws_tests IDE
project.

38

https://savannah.nongnu.org/projects/lwip/
https://savannah.nongnu.org/projects/lwip/

FreeRTOS Porting Guide
Secure Sockets

Note
If you added a . c file to the IDE project, and then edited that . ¢ file for a port, you must
replace the original . ¢ file with the edited one in the IDE project.

2. Add the following paths to your compiler's include path:

e freertos/libraries/3rdparty/lwip/src/include
e freertos/libraries/3rdparty/lwip/src/portable
e freertos/libraries/3rdparty/lwip/src/portable/vendor/board/include

Configuring the CMakeLists. txt file

If you are using CMake to build your test project, you need to define a portable layer target for the
library in your CMake list file.

To define a library's portable layer target in CMakeLists. txt, follow the instructions in FreeRTOS
portable layers (p. 16).

The CMakeLists.txt template list file under freertos/vendors/vendor/boards/board/
CMakeLists.txt includes example portable layer target definitions. You can uncomment the definition
for the library that you are porting, and modify it to fit your platform.

A Secure Sockets library implementation already exists for the FreeRTOS+TCP TCP/IP stack and the
lwlP stack. If you are using FreeRTOS+TCP or lwIP, you do not need to port the Secure Sockets library.
After you finish porting the FreeRTOS+TCP stack or the lwlIP stack to your device, you can start Porting
the PKCS #11 library (p. 46). Even if you do not need to create a port for the Secure Sockets library,
your platform still needs to pass the AWS IoT Device Tester tests for the Secure Sockets library for
qualification.

Porting the Secure Sockets library

You can use the FreeRTOS Secure Sockets library to create and configure a TCP socket, connect to
an MQTT broker, and send and receive TCP data. The Secure Sockets library also encapsulates TLS
functionality. Only a standard TCP socket is required to create a TLS-protected socket. For more
information, see FreeRTOS Secure Sockets Library in the FreeRTOS User Guide.

FreeRTOS includes a Secure Sockets implementation for the FreeRTOS+TCP and lightweight IP (lwIP)
TCP/IP stacks, which are used in conjunction with mbedTLS. If you are using either the FreeRTOS+TCP or
the lwIP TCP/IP stack, you do not need to port the Secure Sockets library.

Note

Even if you do not need to create a port of the Secure Sockets library, your platform must still
pass the qualification tests for the Secure Sockets library. Qualification is based on results from
AWS loT Device Tester.

Also, your TLS implementation should support the TLS cipher suites that are supported by AWS
loT.

If your platform offloads TCP/IP functionality to a separate network chip, you need to port the FreeRTOS
Secure Sockets library to your device.

Prerequisites

To port the Secure Sockets library, you need the following:
« A port of the Wi-Fi library (required only if you are using Wi-Fi for network connectivity).

For information about porting the Wi-Fi library, see Porting the Wi-Fi library (p. 29).

39

https://docs.aws.amazon.com/freertos/latest/userguide/secure-sockets.html
https://freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/index.html
https://savannah.nongnu.org/projects/lwip/
https://tls.mbed.org/
https://docs.aws.amazon.com/iot/latest/developerguide/transport-security.html#tls-cipher-suite-support
https://docs.aws.amazon.com/iot/latest/developerguide/transport-security.html#tls-cipher-suite-support

FreeRTOS Porting Guide
Porting

« A port of a TCP/IP stack.

For information about porting a TCP/IP stack, see Porting a TCP/IP stack (p. 35).
« An echo server.

FreeRTOS includes an echo server, written in Go, in the freertos/tools/echo_server directory.
For more information, see Setting up an echo server (p. 43).

Porting

If your platform offloads TCP/IP functionality to a separate network chip, you need to implement
all the functions for which stubs exist in freertos/vendors/vendor/boards/board/ports/
secure_sockets/iot_secure_sockets.c.

Testing

If you are using an IDE to build test projects, you need to set up your library port in the IDE project.

Setting up the IDE test project

If you are using an IDE for porting and testing, you need to add some source files to the IDE test project
before you can test your ported code.

Important
In the following steps, make sure that you add the source files to your IDE project from their on-
disk location. Do not create duplicate copies of source files.

To set up the Secure Sockets library in the IDE project

1. If you are using the FreeRTOS+TCP TCP/IP stack, add freertos/libraries/abstractions/
secure_sockets/freertos_plus_tcp/iot_secure_sockets.c tothe aws_tests IDE
project.

If you are using the lwIP TCP/IP stack, add freertos/libraries/abstractions/
secure_sockets/lwip/iot_secure_sockets.c to the aws_tests IDE project.

If you are using your own TCP/IP port, add freertos/vendors/vendor/boards/board/ports/
secure_sockets/iot_secure_sockets.c to the aws_tests IDE project.

2. Add secure_sockets/test/aws_test_tcp.c to the aws_tests IDE project.

Configuring the cMakeLists. txt file

If you are using CMake to build your test project, you need to define a portable layer target for the
library in your CMake list file.

To define a library's portable layer target in CMakeLists. txt, follow the instructions in FreeRTOS
portable layers (p. 16).

The CMakeLists.txt template list file under freertos/vendors/vendor/boards/board/
CMakeLists.txt includes example portable layer target definitions. You can uncomment the definition
for the library that you are porting, and modify it to fit your platform.

See below for an example portable layer target definition for the Secure Sockets library.

Secure sockets

40

FreeRTOS Porting Guide
Testing

afr_mcu_port(secure_sockets)

Link to AFR::secure_sockets_freertos_tcp if you want use default implementation based on
FreeRTOS-Plus-TCP.
target_link_libraries(
AFR::pkecsll::mcu_port

INTERFACE AFR::secure_sockets_freertos_tcp
)

Or provide your own implementation.
target_sources(

AFR: :secure_sockets: :mcu_port

INTERFACE "s$path/iot_secure_sockets.c"

)

Setting up your local testing environment

After you set up the library in the IDE project, you need to configure some other files for testing.

To configure the source and header files for the Secure Sockets tests

1. Open freertos/libraries/freertos_plus/standard/utils/src/iot_system_init.c,
and in the function SYSTEM_Init(), make sure that the line that calls SOCKETS_Init() is not
commented out.

2. Start an echo server.

If you have not ported the TLS library to your platform, you can only test your Secure Sockets
port using an unsecured echo server (freertos/tools/echo_server/echo_server.go).
For instructions on setting up and running an unsecured echo server, see Setting up an echo
server (p. 43).

3. Inaws_test_tcp.h, set the IP address to the correct values for your server. For example, if your
server's IP address is 192.168.2.6, set the following values in aws_test_tcp.h:

Macro Value
tcptestECHO_SERVER_ADDRO 192
tcptestECHO_SERVER_ADDR1 168
tcptestECHO_SERVER_ADDR2 2
tcptestECHO_SERVER_ADDR3 6

4. Openaws_test_tcp.h, and set the tcptestSECURE_SERVER macro to 0 to run the Secure
Sockets tests without TLS.

5. Open freertos/vendors/vendor/boards/board/aws_tests/config files/
aws_test_runner.config.h, and set the testrunnerFULL_TCP_ENABLED macro to 1 to enable
the sockets tests.

6. Open freertos/vendors/vendor/boards/board/aws_tests/application_code/
main.c, and and delete the #if 0 and #endif compiler directives in the
vApplicationIPNetworkEventHook (void) definition to enable the testing task.

Note
This change is required to port the remaining libraries.

Important

For qualification, you must pass the Secure Sockets tests with TLS. After you port the TLS
library, rerun the Secure Sockets tests with TLS tests enabled, using a TLS-capable echo server.
To port the TLS library, see Porting the TLS library (p. 50).

41

FreeRTOS Porting Guide
Testing

To set up testing for Secure Sockets after porting the TLS library

1.

10.

11.

Start a secure echo server.

For information, see Setting up an echo server (p. 43).
Set the IP address and port in freertos/tests/include/aws_test_tcp.h to correct values for

your server. For example, if your server's IP address is 192.168. 2. 6, and the server is listening on
9000, set the following values in freertos/tests/include/aws_test_tcp.h:

Macro Value
tcptestECHO_SERVER_TLS_ADDRO 192
tcptestECHO_SERVER_TLS_ADDR1 168
tcptestECHO_SERVER_TLS_ADDR2 2
tcptestECHO_SERVER_TLS_ADDR3 6
tcptestECHO_PORT_TLS 9000

Open freertos/tests/include/aws_test_tcp.h, and set the tcptestSECURE_SERVER
macro to 1 to enable TLS tests.

Download a trusted root certificate. For information about accepted root certificates and download
links, see Server Authentication in the AWS loT Developer Guide. We recommend that you use
Amazon Trust Services certificates.

In a browser window, open freertos/tools/certificate_configuration/
PEMfileToCString.html.

Under PEM Certificate or Key, choose the root CA file that you downloaded.

Choose Display formatted PEM string to be copied into aws_clientcredential_keys.h, and then
copy the certificate string.

Open aws_test_tcp.h, and paste the formatted certificate string into the definition for
tcptestECHO_HOST_ ROOT_CA.

Use the second set of OpenSSL commands in freertos/tools/echo_server/readme-
gencert.txt to generate a client certificate and private key that is signed by the certificate
authority. The certificate and key allow the custom echo server to trust the client certificate that
your device presents during TLS authentication.

Format the certificate and key with the freertos/tools/certificate_configuration/
PEMfileToCString.html formatting tool.

Before you build and run the test project on your device, open aws_clientcredential keys.h,
and copy the client certificate and private key, in PEM format, into the definitions for
keyCLIENT CERTIFICATE_PEM and keyCLIENT PRIVATE_KEY PEM.

Running the tests

To execute the Secure Sockets tests

1.
2.

Build the test project, and then flash it to your device for execution.
Check the test results in the UART console.

Starting Tests...

TEST(Full_TCP, SOCKETS_CloseInvalidParams) PASS

42

https://docs.aws.amazon.com/iot/latest/developerguide/managing-device-certs.html#server-authentication

FreeRTOS Porting Guide
Validation

TEST(Full_TCP, SECURE_SOCKETS_NonBlockingConnect) PASS

TEST(Full_TCP, SCCURC_SOCKLCTS_TwoSecureConnections) PASS

TEST(Full_TCP, SECURE_SOCKETS_SetSecureOptionsAfterConnect) PASS

47 Tests 3 Failures 8 Ignored

FAIL

----All tests finished----

If all tests pass, then testing is complete.

Validation

To officially qualify a device for FreeRTOS, you need to validate the device's ported source code with AWS
loT Device Tester. Follow the instructions in Using AWS loT Device Tester for FreeRTOS in the FreeRTOS
User Guide to set up Device Tester for port validation. To test a specific library's port, the correct test
group must be enabled in the device. json file in the Device Tester configs folder.

After you finish porting the FreeRTOS Secure Sockets library to your device, you can start porting the
PKCS #11 library. See Porting the PKCS #11 library (p. 46) for instructions.

Setting up an echo server

The freertos/tools/echo_server/ directory has the source code for a Go-based echo server

that you can use to test TCP on FreeRTOS. You can find the TCP tests in the freertos/libraries/
abstractions/secure_sockets/test/iot_test_tcp.c file. Follow the instructions in this section
to set up and run the echo server.

Prerequisites

To run the TLS echo server, you must install the following:

« Go - You can download the latest version from golang.org.

« OpenSSL - For a Linux source code download, see OpenSSL.org. You can also use a package manager
to install OpenSSL for Linux and macOS.

Create credentials

After you finish the prerequisites, you must enter the following commands to create your credentials.

43

https://docs.aws.amazon.com/freertos/latest/userguide/device-tester-for-freertos-ug.html
https://golang.org/dl/
https://www.openssl.org/source/

FreeRTOS Porting Guide
Setting up an echo server

Server

The following openss1 command generates a self-signed server certificate.

openssl req -newkey rsa:2048 -nodes -x509 -sha256 -out certs/server.pem -keyout certs/
server.key -days 365 -subj "/C=US/ST=WA/L=Place/O=YourCompany/OU=IT/CN=www.your-
company-website.com/emailAddress=yourEmail@your-company-website.com"

Client

The following openssl commands generate a client certificate.

openssl genrsa -out certs/client.key 2048

openssl req -new -key certs/client.key -out certs/client.csr -subj "/
C=US/ST=WA/L=Place/O=YourCompany/OU=IT/CN=www.your-company-website.com/
emailAddress=yourEmail@your-company-website.com"

openssl x509 -req -in certs/client.csr -CA certs/server.pem -CAkey certs/server.key -
CAcreateserial -out certs/client.pem -days 365 -sha256

Directory structure

By default, certificates and keys are stored in a directory named certs that is located on a relative path
specified in the configuration file, config. json. If you want to move your credentials to a different
directory, you can update this directory location in the configuration file.

You can find the source code for the echo server in the echo_server.go file.

Server configuration

The echo server reads a JSON based configuration file. The default location for this JSON file is . /
config. json. To override this, specify the location of the JSON with the -config flag.

The JSON file contains the following options:
server-port

Specify the port on which to open a socket.
server-certificate-location

The relative or absolute path to the server certificate generated in Create credentials (p. 43).
secure-connection

Enable this option to have the echo server use TLS. You must first Create credentials (p. 43).
logging

Enable this option to output all log messages received to a file.
verbose

Enable this option to output the contents of the message sent to the echo server.
server-key-location

The relative or absolute path to the server key generated in Create credentials (p. 43).

44

FreeRTOS Porting Guide
Setting up an echo server

Example configuration

{
"verbose": false,
"logging": false,
"secure-connection": false,
"server-port": "9000",
"server-certificate-location": "./certs/server.pem",
"server-key-location": "./certs/server.pem"

}

Run the echo server from the command line

Enter the following commands to run the echo server.

go run echo_server.go

Enter the following command to run with a custom config location.

go run echo_server.go -config=config file_path

If you want to run the unsecure and secure TCP tests at the same time, you must start both a secure and
an unsecure echo server. To do this, create a second, secure configuration file, and pass its location to the
second instance of the echo server using the -config flag. Remember to also specify a different TCP
port in the second configuration file.

Client device configuration

Before you run the TCP tests on your device, we recommend that you read Getting Started with
FreeRTOS in the FreeRTOS User Guide.

After you complete the steps in Create credentials (p. 43), you should have the following files:

e certs/server.pem
* certs/server.key
e certs/client.pem
e« certs/client.key
e certs/client.csr

e certs/server.srl

Make the following changes to these files:

freertos/tests/include/aws_clientcredential.h

« Define the broker endpoint.

« Define the thing name.

» Define access to Wi-Fi (if not on Ethernet).
freertos/tests/include/aws_clientcredential_keys.h

o Set keyCLIENT CERTIFICATE_PEM to the contents of certs/client.pem.

o Leave keyJITR _DEVICE_CERTIFICATE_AUTHORITY PEM as NULL

o Set keyCLIENT PRIVATE_KEY_ PEM to the contents of certs/client.key.

« For more information, see Configuring the FreeRTOS demos.
freertos/tests/include/aws_test_tcp.h

o Set tcptestECHO_HOST ROOT_CA to the contents of certs/server.pem.

45

https://docs.aws.amazon.com/freertos/latest/userguide/freertos-getting-started.html
https://docs.aws.amazon.com/freertos/latest/userguide/freertos-getting-started.html
https://docs.aws.amazon.com/freertos/latest/userguide/freertos-configure.html

FreeRTOS Porting Guide
PKCS #11

« Set the IP address and the port of the echo server:
e tcptestECHO_SERVER_ADDR[0-3]
¢ tcptestECHO_PORT
« Set the IP address and the port of the secure echo server:
e tcptestECHO _SERVER_TLS_ADDRO[0-3]
e tcptestECHO_PORT_TLS

Porting the PKCS #11 library

FreeRTOS uses the open standard PKCS #11 “CryptoKi"” API as the abstraction layer for cryptographic
operations, including:

« Signing and verifying.

« Storage and enumeration of X.509 certificates.

« Storage and management of cryptographic keys.

For more information, see PKCS #11 Cryptographic Token Interface Base Specification.

Storing private keys in general-purpose flash memory can be convenient in evaluation and rapid
prototyping scenarios. In production scenarios, to reduce the threats of data theft and device duplication,
we recommend that you use dedicated cryptographic hardware. Cryptographic hardware includes
components with features that prevent cryptographic secret keys from being exported. To use dedicated
cryptographic hardware with FreeRTOS, you need to port the PKCS #11 API to the hardware. For
information about the FreeRTOS PKCS #11 library, see FreeRTOS PKCS #11 Library in the FreeRTOS User
Guide.

Prerequisites

To port the PKCS #11 library, you need the following:

« An IDE project or cMakeLists. txt list file that includes vendor-supplied drivers that are suitable for
sensitive data.

For information about setting up a test project, see Setting Up Your FreeRTOS Source Code for
Porting (p. 9).

 Avalidated configuration of the FreeRTOS kernel.

For information about configuring the FreeRTOS kernel for your platform, see Configuring a FreeRTOS
kernel port (p. 28).

Porting

To port the PKCS #11 library
1. Port the PKCS #11 API functions.

The PKCS #11 API is dependent on the implementation of cryptographic primitives, such as SHA256
hashing and Elliptic Curve Digital Signature Algorithm (ECDSA) signing.

The FreeRTOS implementation of PKCS #11 uses the cryptographic primitives implemented in the
mbedTLS library. FreeRTOS includes a port for mbedTLS. If your target hardware offloads crypto to

46

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
https://docs.aws.amazon.com/freertos/latest/userguide/security-pkcs.html

FreeRTOS Porting Guide
Porting

a separate module, or if you want to use a software implementation of the cryptographic primitives
other than mbedTLS, you need to modify the existing PKCS #11 port.

2. Port the PKCS # 11 Platform Abstraction Layer (PAL) for device-specific certificate and key storage.

If you decide to use the FreeRTOS implementation of PKCS #11, little customization is required to
read and write cryptographic objects to non-volatile memory (NVM), such as onboard flash memory.

Cryptographic objects should be stored in a section of NVM that is not initialized and is not erased
on device reprogramming. Users of the PKCS #11 library should be able to provision devices with
credentials, and then reprogram the device with a new application that accesses these credentials
through the PKCS #11 interface.

PKCS #11 PAL ports must provide a location to store:

« The device client certificate.

« The device client private key.
« The device client public key.

o Atrusted root CA.

« A code-verification public key (or a certificate that contains the code-verification public key) for
secure bootloader and over-the-air (OTA) updates.

« A Just-In-Time provisioning certificate.

freertos/vendors/vendor/boards/board/ports/pkecsll/iot_pkesll pal.c contains
empty definitions for the PAL functions. You must provide ports for, at minimum, the functions
listed in this table:

Function Description

PKCS11_PAL_Initialize Initializes the PAL layer. Called by the PKCS #11
library at the start of it's initialization sequence.

PKCS11_PAL_SaveObject Writes data to non-volatile storage.

PKCS11_ PAL_FindObject Uses a PKCS #11 CKA_LABEL to search for a

corresponding PKCS #11 object in non-volatile
storage, and returns that object’s handle, if it

exists.

PKCS11_PAL_ GetObjectValue Retrieves the value of an object, given the
handle.

PKCS11_PAL GetObjectValueCleanup Cleanup for the

PKCS11_PAL_ GetObjectValue call. Can
be used to free memory allocated in a
PKCS11_PAL_ GetObjectValue call.

3. Add support for a cryptographically random entropy source to your port:

« If your ports use the mbedTLS library for underlying cryptographic and TLS support, and your
device has a true random number generator (TRNG):

1. Implement the mbedtls hardware poll() function to seed the deterministic random
bit generator (DRBG) that mbedTLS uses to produce a cryptographically random bit stream.
The mbedtls_hardware poll() function is located in freertos/vendors/vendor/
boards/board/ports/pkesll/iot_pkesll pal.c.

« If your ports use the mbedTLS library for underlying cryptographic and TLS support, but your
device does not have a TRNG:

47

https://github.com/ARMmbed/mbedtls/blob/master/include/mbedtls/entropy_poll.h#L92

FreeRTOS Porting Guide
Testing

1. Make a copy of freertos/libraries/3rdparty/mbedtls/include/mbedtls/
config.h, and in that copy, uncomment MBEDTLS_ENTROPY_ NV_SEED, and comment out
MBEDTLS_ENTROPY_ HARDWARE_ALT.

Save the modified version of config.h to freertos/vendors/vendor/boards/board/
aws_tests/config files/config.h. Do not overwrite the original file.

2. Implement the functions mbedtls_nv_seed_poll(), nv_seed_read_func(), and
nv_seed_write_func().

For information about implementing these functions, see the comments in the mbedtls/
include/mbedtls/entropy_poll.h and mbedtls/include/mbedtls/config.h mbedTLS header
files.

Important
A seed file with an NIST-approved entropy source must be supplied to the device at
manufacturing time.

Note
If you are interested in the FreeRTOS Qualification Program, please read our requirements
for RNG.

For more information about NIST-approved DRBGs and entropy sources, see the following NIST
publications:

« Recommendation for Random Number Generation Using Deterministic Random Bit Generators
« Recommendation for Random Bit Generator (RBG) Constructions

Testing

If you are using an IDE to build test projects, you need to set up your library port in the IDE project.

Setting up the IDE test project

If you are using an IDE for porting and testing, you need to add some source files to the IDE test project
before you can test your ported code.

Important
In the following steps, make sure that you add the source files to your IDE project from their on-
disk location. Do not create duplicate copies of source files.

To set up the PKCS #11 library in the IDE project

1. Add the source file freertos/vendors/vendor/boards/board/ports/pkcsil/
iot_pkesll_pal.c tothe aws_tests IDE project.

2. Add all of the files in the freertos/libraries/abstractions/pkes11 directory and its
subdirectories to the aws_tests IDE project.

3. Addall of the files in the freertos/libraries/freertos_plus/standard/pkcsll directory
and its subdirectories to the aws_tests IDE project. These files implement wrappers for commonly
grouped PKCS #11 function sets.

4. Add the source file freertos/libraries/freertos_plus/standard/crypto/src/
aws_crypto.c to the aws_tests IDE project. This file implements the CRYPTO abstraction
wrapper for mbedTLS.

5. Add all of the source and header files from freertos/libraries/3rdparty/mbedtls and its
subdirectories to the aws_tests IDE project.

48

https://github.com/ARMmbed/mbedtls/blob/master/include/mbedtls/entropy_poll.h#L102
https://github.com/ARMmbed/mbedtls/blob/master/include/mbedtls/entropy_poll.h#L102
https://github.com/ARMmbed/mbedtls/blob/master/include/mbedtls/config.h#L1121
https://docs.aws.amazon.com/freertos/latest/qualificationguide/afq-checklist.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://csrc.nist.gov/csrc/media/publications/sp/800-90c/draft/documents/draft-sp800-90c.pdf

FreeRTOS Porting Guide
Testing

6. Add freertos/libraries/3rdparty/mbedtls/include and freertos/libraries/
abstractions/pkes11l to the compiler's include path.

Configuring the cMakeLists. txt file

If you are using CMake to build your test project, you need to define a portable layer target for the
library in your CMake list file.

To define a library's portable layer target in CMakeLists. txt, follow the instructions in FreeRTOS
portable layers (p. 16).

The CMakeLists.txt template list file under freertos/vendors/vendor/boards/board/
CMakeLists.txt includes example portable layer target definitions. You can uncomment the definition
for the library that you are porting, and modify it to fit your platform.

See below for an example portable layer target definition for the PKCS #11 library that uses the
mbedTLS-based software implementation of PKCS #11 and supplies a port-specific PKCS #11 PAL file.

PKCS11
afr mcu_port(pkcsll_implementation DEPENDS AFR: :pkcsll_mbedtls)
target_sources(

AFR::pkcsll_implementation::mcu_port

INTERFACE

"${afr_ports_dir}/pkcsll/iot_pkcsll_pal.c"

Setting up your local testing environment

After you set up the library in the IDE project, you need to configure some other files for testing.
To configure the source and header files for the PKCS #11 tests

1. If you have ported the Secure Sockets library, open freertos/libraries/freertos_plus/
standard/utils/src/iot_system init.c, and in the function SYSTEM_Init(), uncomment
calls to SOCKETS_Init().

2. Open freertos/vendors/vendor/boards/board/aws_tests/config files/
aws_test_runner_config.h, and set the testrunnerFULL_PKCS11_ ENABLED macro to 1 to
enable the PKCS #11 test.

Running the tests

To execute the PKCS #11 tests

1. Build the test project, and then flash it to your device for execution.

49

FreeRTOS Porting Guide
Validation

for just in time provision

Testing is complete when all tests pass.

Validation

To officially qualify a device for FreeRTOS, you need to validate the device's ported source code with AWS
loT Device Tester. Follow the instructions in Using AWS loT Device Tester for FreeRTOS in the FreeRTOS
User Guide to set up Device Tester for port validation. To test a specific library's port, the correct test
group must be enabled in the device. json file in the Device Tester configs folder.

After you finish porting the FreeRTOS PKCS #11 library to your device, you can start porting the TLS
library. See Porting the TLS library (p. 50) for instructions.

For Transport Layer Security (TLS) authentication, FreeRTOS uses either mbedTLS or an off-chip
TLS implementation, such as those found on some network co-processors. FreeRTOS includes a
port of mbedTLS. If you use mbedTLS for TLS, TLS porting is not required. To allow different TLS
implementations, third-party TLS libraries are accessed through a TLS abstraction layer.

Note

No matter which TLS implementation is used by your device's port of FreeRTOS, the port must
pass the qualification tests for TLS. Qualification is based on results from AWS IoT Device Tester.
Also, your TLS implementation should support the TLS cipher suites that are supported by AWS
loT.

To prepare your platform for testing TLS, you need to configure your device in the AWS Cloud, and you
need certificate and key provisioning on the device.

Prerequisites

To port the FreeRTOS TLS library, you need the following:

« A port of the FreeRTOS Secure Sockets library.

For information about porting the Secure Sockets library to your platform, see Porting the Secure
Sockets library (p. 39).

« A port of the FreeRTOS PKCS #11 library.

For information about porting the PKCS #11 library to your platform, see Porting the PKCS #11
library (p. 46).

« An AWS account.

For information about setting up an AWS account, see How do | create and activate a new Amazon
Web Services account? on the AWS Knowledge Center.

50

https://docs.aws.amazon.com/freertos/latest/userguide/device-tester-for-freertos-ug.html
https://docs.aws.amazon.com/iot/latest/developerguide/transport-security.html#tls-cipher-suite-support
https://docs.aws.amazon.com/iot/latest/developerguide/transport-security.html#tls-cipher-suite-support
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/

FreeRTOS Porting Guide
Porting

o OpenSSL.

You can download a version of OpenSSL for Windows from Shining Light. For a Linux source code
download, see OpenSSL.org. You can also use a package manager to install OpenSSL for Linux and
macOS.

Porting

If your target hardware offloads TLS functionality to a separate network chip, you need to implement
the TLS abstraction layer functions in the following table.

Function Description

TLS_Init Initialize the TLS context.

TLS_Connect Negotiate TLS and connect to the server.

TLS_Recv Read the requested number of bytes from the TLS
connection.

TLS_Send Write the requested number of bytes to the TLS
connection.

TLS_Cleanup Free resources consumed by the TLS context.

iot_tls.h contains the information required to implement these functions. Save the file in which you
implement the functions as iot_tls.c.

Connecting your device to AWS loT

Your device must be registered with AWS loT to communicate with the AWS Cloud. To register your
board with AWS loT, you need the following:

An AWS loT policy

The AWS loT policy grants your device permissions to access AWS loT resources. It is stored in the
AWS Cloud.

An AWS IoT thing

An AWS IoT thing allows you to manage your devices in AWS IoT. It is stored in the AWS Cloud.
A private key and X.509 certificate

The private key and certificate allow your device to authenticate with AWS loT.

Follow these procedures to create a policy, thing, and key and certificate.
To create an AWS loT policy

Browse to the AWS IoT console.
In the navigation pane, choose Secure, choose Policies, and then choose Create.
Enter a name to identify your policy.

pUunN =

In the Add statements section, choose Advanced mode. Copy and paste the following JSON into the
policy editor window:

{

51

https://slproweb.com/products/Win32OpenSSL.html
https://www.openssl.org/source/
https://console.aws.amazon.com/iotv2/

FreeRTOS Porting Guide
Connecting your device to AWS loT

5.

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": "iot:*",
"Resource": "*x"
}
]
}

Important

This policy grants all AWS loT resources access to all AWS IoT actions. This policy is
convenient for development and testing purposes, but it is not recommended for
production.

Choose Create.

To create an loT thing, private key, and certificate for your device

Browse to the AWS loT console.
In the navigation pane, choose Manage, and then choose Things.

If you do not have any things registered in your account, the You don't have any things yet page is
displayed. If you see this page, choose Register a thing. Otherwise, choose Create.

On the Creating AWS loT things page, choose Create a single thing.

On the Add your device to the thing registry page, enter a name for your thing, and then choose
Next.

On the Add a certificate for your thing page, under One-click certificate creation, choose Create
certificate.

Download your private key and certificate by choosing the Download links for each.
Choose Activate to activate your certificate. Certificates must be activated prior to use.

Choose Attach a policy to attach a policy to your certificate that grants your device access to AWS
loT operations.

10. Choose the policy you just created, and then choose Register thing.

After you obtain your certificates and keys from the AWS loT console, you need to configure the
freertos/tests/include/aws_clientcredential.h header file so your device can connect to
AWS loT.

To configure freertos/tests/include/aws_clientcredential.h

1.
2.

Browse to the AWS IoT console.
In the navigation pane, choose Settings.

Your AWS IoT endpoint is displayed in Endpoint. It should look like 123456789012-ats.iot.us-
east-1.amazonaws.com. Make a note of this endpoint

In the navigation pane, choose Manage, and then choose Things.

Your device should have an AWS loT thing name. Make a note of this name.

On the computer where you build the FreeRTOS source code, open the freertos/test/include/
aws_clientcredential.h file in your IDE and specify values for the following constants:

e static const char clientcredentialMQTT BROKER_ENDPOINT[] = "Your AWS IoT
endpoint";

e #define clientcredentialIOT THING_NAME "The AWS IoT thing name of your
board"

52

https://console.aws.amazon.com/iotv2/
https://console.aws.amazon.com/iotv2/

FreeRTOS Porting Guide
Setting up certificates and keys for the TLS tests

Setting up certificates and keys for the TLS tests

TLS_ConnectRSA()

This section provides instructions on setting up certificates and keys for testing your TLS port.

For RSA device authentication, you can use the private key and the certificate that you downloaded from
the AWS IoT console when you registered your device.

Note
After you have registered your device as an AWS loT thing, you can retrieve device certificates
from the AWS loT console, but you cannot retrieve private keys.

FreeRTOS is a C language project. You must format certificates and keys before you add them to the
freertos/tests/include/aws_clientcredential_keys.h header file.

To format the certificate and key for freertos/tests/include/
aws_clientcredential_keys.h

1. Inabrowser window, open freertos/tools/certificate_configuration/
CertificateConfigurator.html.

2. Under Certificate PEM file, choose the ID-certificate.pem.crt file that you downloaded from
the AWS IoT console.

3. Under Private Key PEM file, choose the ID-private.pem.key file that you downloaded from the
AWS IoT console.

4. Choose Generate and save aws_clientcredential_keys.h, and then save the file in freertos/
tests/include. This overwrites the existing file in the directory.

Note
The certificate and private key are hard-coded for demonstration purposes only.
Production-level applications should store these files in a secure location.

TLS _ConnectEC()

For Elliptic Curve Digital Signature Algorithm (ECDSA) authentication, you need to generate a private key,
a certificate signing request (CSR), and a certificate. You can use OpenSSL to generate the private key
and CSR, and you can use the CSR to generate the certificate in the AWS loT console.

To generate a private key and a CSR

1. Use the following command to create a private key file named p256_privatekey.pemin the
current working directory:

openssl ecparam -name prime256vl -genkey -noout -out p256_privatekey.pem

2. Use the following command to create a CSR file named csr.csr in the current working directory.

openssl req -new -key p256_privatekey.pem -out csr.csr

To create a certificate in the AWS loT console with a CSR

1. Open the AWS loT console.
2. In the navigation pane, choose Secure, choose Certificates, and then choose Create.

53

https://console.aws.amazon.com/iotv2/

FreeRTOS Porting Guide
Setting up certificates and keys for the TLS tests

3. Choose Create with CSR, and then find and upload the csr.csr file that you created with
OpenSSL.

4. Choose Activate to activate the certificate, and then choose Download to download the certificate
asa .cert.pemfile.

5. Choose Attach a policy, and then find and select the AWS IoT policy that you created and attached
to your RSA certificate in the Connecting your device to AWS loT (p. 51) instructions, and choose
Done.

Attach the certificate to the AWS loT thing that you created when you registered your device.

From the Certificates page, find and select the certificate that you just created. From the upper right
of the page, choose Actions, and then choose Attach thing.

8. Find and select the thing that you created for your device, and then choose Attach.

You must format the certificate and private key for your device before you add them to the freertos/
libraries/freertos_plus/standard/tls/test/iot_test_tls.h header file.

To format the certificate and key for freertos/libraries/freertos_plus/standard/
tls/test/iot_test_tls.h

1. Ina browser window, open freertos/tools/certificate_configuration/
PEMfileToCString.html.

2. Under PEM Certificate or Key, choose the ID-certificate.pem.crt that you downloaded from
the AWS IoT console.

3. Choose Display formatted PEM string to be copied into aws_clientcredential_keys.h, and then
copy the certificate string.

4. Open freertos/libraries/freertos_plus/standard/tls/test/
iot_test_tls.h, and paste the formatted certificate string into the definition for
tlstestCLIENT_ CERTIFICATE_PEM EC.

Note
The certificate and private key are hard-coded for demonstration purposes only.
Production-level applications should store these files in a secure location.

5. Follow the same steps to get the formatted string for the private key file that you created
using OpenSSL (p256_privatekey.pem). Copy and paste the formatted private key string
into the definition for t1stestCLIENT PRIVATE KEY PEM ECin freertos/libraries/
freertos_plus/standard/tls/test/iot_test_tls.h.

In freertos/libraries/freertos plus/standard/tls/test/iot_test_tls.h, define the
tlstestMQTT BROKER ENDPOINT EC with the same AWS IoT MQTT broker endpoint address that you
used in Connecting your device to AWS loT (p. 51).

TLS_ConnectMalformedCert()

This test verifies that you can use a malformed certificate to authenticate with the server. Random
modification of a certificate is likely to be rejected by X.509 certificate verification before the connection
request is sent out. To set up a malformed certificate, we suggest that you modify the issuer of the
certificate.

To modify the issuer of a certificate
1. Take the valid client certificate that you have been using, ID-certificate.pem.crt.

In the Windows Certificate Manager, the certificate properties appear as follows:

54

FreeRTOS Porting Guide
Setting up certificates and keys for the TLS tests

o Certificate b X

General petails Certification Path

1§} Certificate Information

Windows does not have enough information to verify
this certificate.

Issued to: AWS IoT Certificate

Issued by: Amazon Web Services O=Amazon.com Inc.
L=Seatte ST=Washington C=US

Valid from 1/4/2018 to 12/31/204%

Install Certificate. .. Issuer Statement

Using the following command, convert the certificate from PEM to DER:

openssl x509 -outform der -in ID-certificate.pem.crt -out ID-certificate.der.crt

Open the DER certificate, and search for the following hexadecimal sequence:

41 6d 61 7a 6f 6e 20 57 65 62 20 53 65 72 76 69 63 65 73

This sequence, translated to plain text, reads "Amazon Web Services."

Change the 53 to 43, so that the sequence becomes "Amazon Web Cervices" in plain text, and save
the file.

In the Windows Certificate Manager, the certificate properties now appear as follows:

55

FreeRTOS Porting Guide
Setting up certificates and keys for the TLS tests

+f Certificate >

Gereral Detsils Certification Path

i E'. Certificate Information

Windows does not have enough information to verify
this certificate. L\}

Issued to: AWS IoT Certificate

Issued by: Amazon Web Cervices Q=Amazon.com Inc.
L=Seatte ST=Washington C=US

Valid from 1/4/2013 to 12/31/2049

Install Certificate... | | Issuer Statement

5. Use the following command to convert the certificate back to PEM:

openssl x509 -inform der -in ID-certificate.der.crt -out ID-cert-modified.pem.crt

You must format the malformed certificate for your device before you add it to the freertos/
libraries/freertos_plus/standard/tls/test/iot_test_tls.h header file.

To format the certificate for freertos/libraries/freertos_plus/standard/tls/
test/iot_test_tls.h

1. Ina browser window, open freertos/tools/certificate_configuration/
PEMfileToCString.html.

2. Under PEM Certificate or Key, choose the ID-certificate.pem.crt that you created and then
modified.

3. Choose Display formatted PEM string to be copied into aws_clientcredential_keys.h, and then
copy the certificate string.

4. Open freertos/libraries/freertos_plus/standard/tls/test/
iot_test_tls.h, and paste the formatted certificate string into the definition for
tlstestCLIENT_CERTIFICATE_PEM_ MALFORMED

56

FreeRTOS Porting Guide
Setting up certificates and keys for the TLS tests

Note
The certificate is hard-coded for demonstration purposes only. Production-level
applications should store these files in a secure location.

TLS ConnectBYOCCredentials()

You can use your own certificate for authentication. To create and register a certificate with a valid
rootCA/CA chain, follow the instructions in Creating a BYOC (ECDSA) (p. 58). After you create the
certificate, you need to attach some policies to your device certificate, and then you need to attach your
device's thing to the certificate.

To attach a policy to your device certificate

Open the AWS loT console.

2. Inthe navigation pane, choose Secure, choose Certificates, and then choose the device certificate
that you created and registered in Creating a BYOC (ECDSA) (p. 58).

3. Choose Actions, and then choose Attach policy.

4. Find and choose the AWS IoT policy that you created and attached to your RSA certificate in the
Connecting your device to AWS loT (p. 51) instructions, and then choose Attach.

To attach a thing to your device certificate

1. From the Certificates page, find and choose the same device certificate, choose Actions, and then
choose Attach thing.

2. Find and choose the thing that you created for your device, and then choose Attach.

To format the certificate for freertos/libraries/freertos_plus/standard/tls/
test/iot_test_tls.h

1. Ina browser window, open freertos/tools/certificate_configuration/
PEMfileToCString.html.

2. Under PEM Certificate or Key, choose the ID-certificate.pem.crt that you created and then
modified.

3. Choose Display formatted PEM string to be copied into aws_clientcredential_keys.h, and then
copy the certificate string.

4. Open freertos/libraries/freertos_plus/standard/tls/test/
iot_test_tls.h, and paste the formatted certificate string into the definition for
tlstestCLIENT_BYOC_CERTIFICATE_PEM.

Note
The certificate is hard-coded for demonstration purposes only. Production-level
applications should store these files in a secure location.

5. Follow the same steps to get the formatted string for the private key file that you
created. Copy and paste the formatted private key string into the definition for
tlstestCLIENT BYOC_PRIVATE _KEY PEMin freertos/libraries/freertos_plus/
standard/tls/test/iot_test_tls.h.

TLS _ConnectUntrustedCert()

You can use your own certificate for authentication, without registering your certificate with AWS
loT. To create a certificate with a valid rootCA/CA chain, follow the instructions in Creating a BYOC
(ECDSA) (p. 58), but skip the final instructions for registering your device with AWS loT.

57

https://console.aws.amazon.com/iotv2/

FreeRTOS Porting Guide
Creating a BYOC (ECDSA)

To format the certificate for freertos/libraries/freertos_plus/standard/tls/
test/iot_test_tls.h

1. Inabrowser window, open freertos/tools/certificate_configuration/
PEMfileToCString.html.

2. Under PEM Certificate or Key, choose the ID-certificate.pem.crt that you created and then
modified.

3. Choose Display formatted PEM string to be copied into aws_clientcredential_keys.h, and then
copy the certificate string.

4. Open freertos/libraries/freertos_plus/standard/tls/test/
iot_test_tls.h, and paste the formatted certificate string into the definition for
tlstestCLIENT_UNTRUSTED_CERTIFICATE_PEM.

Note
The certificate is hard-coded for demonstration purposes only. Production-level
applications should store these files in a secure location.

5. Follow the same steps to get the formatted string for the private key file that you
created. Copy and paste the formatted private key string into the definition for
tlstestCLIENT_UNTRUSTED_ PRIVATE_KEY PEMin freertos/libraries/freertos_plus/
standard/tls/test/iot_test_tls.h.

Creating a BYOC (ECDSA)

In these procedures, you use the AWS IoT console, the AWS Command Line Interface, and OpenSSL to
create and register certificates and keys for a device on the AWS Cloud. Make sure that you have installed
and configured the AWS CLI on your machine before you run the AWS CLI commands.

Note

When you create CA certificates, use valid, consistent values for the Distinguished Name (DN)
fields, when prompted. For the Common Name field, you can use any value, unless otherwise
instructed.

To generate a root CA

1. Use the following command to generate a root CA private key:

openssl ecparam -name prime256vl -genkey -noout -out rootCA.key

2. Use the following command to generate a root CA certificate:

openssl req -x509 -new -nodes -key rootCA.key -sha256 -days 1024 -out rootCA.crt

To generate an intermediate CA

1. Create required files:

touch index.txt

echo 1000 > serial

Save the ca.config (p. 60) file in the current working directory.

3. Use the following command to generate the intermediate CA's private key:

58

FreeRTOS Porting Guide
Creating a BYOC (ECDSA)

openssl ecparam -name prime256vl -genkey -noout -out intermediateCA.key

Use the following command to generate the intermediate CA's CSR:

openssl req -new -sha256 -key intermediateCA.key -out intermediateCA.csr

Use the following command to sign the intermediate CA's CSR with the root CA:

openssl ca -config ca.config -notext -cert rootCA.crt -keyfile rootCA.key -days 500 -in
intermediateCA.csr -out intermediateCA.crt

To generate a device certificate

Note
An ECDSA certificate is used here as an example.

Use the following command to generate a private key:

openssl ecparam -name prime256vl -genkey -noout -out deviceCert.key

Use the following command to generate a CSR for a device certificate:

openssl req -new -key deviceCert.key -out deviceCert.csr

Use the following command to sign the device certificate with the intermediate CA:

openssl x509 -req -in deviceCert.csr -CA intermediateCA.crt -CAkey intermediateCA.key -
CAcreateserial -out deviceCert.crt -days 500 -sha256

To register both CA certificates

1.

Use the following AWS CLI command to get the registration code:

aws iot get-registration-code

Use the following command to generate a private key for verification certificates:

openssl ecparam -name prime256vl -genkey -noout -out verificationCert.key

Use the following command to create CSR for verification certificates:

openssl req -new -key verificationCert.key -out verificationCert.csr

When prompted, for Common Name, enter the registration code that you obtained in the first step.

Use the following command to sign a verification certificate using the root CA:

openssl x509 -req -in verificationCert.csr -CA rootCA.crt -CAkey rootCA.key -
CAcreateserial -out rootCAverificationCert.crt -days 500 -sha256

Use the following command to sign a verification certificate using the intermediate CA:

59

FreeRTOS Porting Guide
Creating a BYOC (ECDSA)

openssl x509 -req -in verificationCert.csr -CA intermediateCA.crt -CAkey
intermediateCA.key -CAcreateserial -out intermediateCAverificationCert.crt -days 500 -
sha256

6. Use the following AWS CLI commands to register both CA certificates with AWS loT:

aws iot register-ca-certificate --ca-certificate file://rootCA.crt --verification-cert
file://rootCAverificationCert.crt

aws iot register-ca-certificate --ca-certificate file://intermediateCA.crt --
verification-cert file://intermediateCAverificationCert.crt

7. Use the following AWS CLI command to activate both CA certificates:

aws ilot update-ca-certificate --certificate-id ID --new-status ACTIVE

Where ID is the certificate ID of one of the certificates.

To register the device certificate

1. Use the following AWS CLI command to register the device certificate with AWS loT:

aws iot register-certificate --certificate-pem file://deviceCert.crt --ca-certificate-
pem file://intermediateCA.crt

2. Use the following AWS CLI command to activate the device certificate:

aws iot update-certificate --certificate-id ID --new-status ACTIVE

Where ID is the certificate ID of the certificate.

ca.config

Save the following text to a file named ca.config in your current working directory.

This file is a modified version of the openss1.cnf OpenSSL example configuration file.

#

OpenSSL example configuration file.

This is mostly being used for generation of certificate requests.
#

This definition stops the following lines choking if HOME isn't
defined.

HOME = .

RANDFILE = $ENV::HOME/.rnd

Extra OBJECT IDENTIFIER info:
#o0id_file = $ENV::HOME/.oid
oid_section = new_oids

To use this configuration file with the "-extfile" option of the
"openssl x509" utility, name here the section containing the
X.509v3 extensions to use:

60

https://github.com/openssl/openssl/blob/master/apps/openssl.cnf

FreeRTOS Porting Guide
Creating a BYOC (ECDSA)

extensions =
(Alternatively, use a configuration file that has only
X.509v3 extensions in its main [= default] section.)

#*

[new_oids]

We can add new OIDs in here for use by 'ca', 'req' and 'ts'.
Add a simple OID like this:

testoidl=1.2.3.4

Or use config file substitution like this:
testoid2=${testoidl}.5.6

o ¥ R H

Policies used by the TSA examples.

tsa_policyl = 1.2.3.4.1
tsa_policy2 = 1.2.3.4.5.6
tsa_policy3 = 1.2.3.4.5.7
[ca]
default_ca = CA_default # The default ca section
[cA_default]
dir = . # Where everything is kept
certs = $dir # Where the issued certs are kept
crl_dir = $dir # Where the issued crl are kept
database = $dir/index.txt # database index file.
#unique_subject = no # Set to 'mo' to allow creation of
several ctificates with same subject.
new_certs_dir = $dir # default place for new certs.
certificate = $dir/cacert.pem # The CA certificate
serial = $dir/serial # The current serial number
crlnumber = $dir/crlnumber # the current crl number
must be commented out to leave a V1 CRL
crl = $dir/crl.pem # The current CRL
private_key = $dir/private/cakey.pem# The private key
RANDFILE = $dir/private/.rand # private random number file
X509_extensions = usr_cert # The extentions to add to the cert

Comment out the following two lines for the "traditional"
(and highly broken) format.

name_opt = ca_default # Subject Name options
cert_opt = ca_default # Certificate field options

Extension copying option: use with caution.
copy_extensions = copy

Extensions to add to a CRL. Note: Netscape communicator chokes on V2 CRLs
so this is commented out by default to leave a V1 CRL.

crlnumber must also be commented out to leave a V1 CRL.

crl_extensions = crl_ext

default_days = 365 # how long to certify for
default_crl_days= 30 # how long before next CRL

default_md = default # use public key default MD

preserve = no # keep passed DN ordering

A few difference way of specifying how similar the request should look
For type CA, the listed attributes must be the same, and the optional
and supplied fields are just that :-)

policy = policy_match

61

FreeRTOS Porting Guide
Creating a BYOC (ECDSA)

For the CA policy
[policy_match]

countryName = match
stateOrProvinceName = match
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

For the 'anything' policy
At this point in time, you must list all acceptable 'object'

types.

[policy_anything]

countryName = optional
stateOrProvinceName = optional
localityName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

[req]

default_bits
default_keyfile

2048
privkey.pem

distinguished_name = req distinguished_name
attributes = req attributes
X509_extensions = v3_ca # The extentions to add to the self signed cert

Passwords for private keys if not present they will be prompted for
input_password = secret
output_password = secret

#*

This sets a mask for permitted string types. There are several options.
default: PrintableString, T61String, BMPString.

pkix : PrintableString, BMPString (PKIX recommendation before 2004)
utf8only: only UTF8Strings (PKIX recommendation after 2004).

nombstr : PrintableString, T61String (no BMPStrings or UTF8Strings).
MASK:XXXX a literal mask value.

WARNING: ancient versions of Netscape crash on BMPStrings or UTF8Strings.
string mask = utf8only

#H W H W R W

req extensions = v3_req # The extensions to add to a certificate request

[req distinguished_name]

countryName = Country Name (2 letter code)
countryName_default = AU

countryName_min = 2

countryName_max =2

stateOrProvinceName State or Province Name (full name)

stateOrProvinceName_default = Some-State

localityName = Locality Name (eg, city)
0.organizationName = Organization Name (eg, company)
0.organizationName_default = Internet Widgits Pty Ltd

we can do this but it is not needed normally :-)

#1.organizationName = Second Organization Name (eg, company)
#1.organizationName_default = World wWide Web Pty Ltd
organizationalUnitName = Organizational Unit Name (eg, section)

#organizationalUnitName_default =

commonName = Common Name (e.g. server FODN or YOUR name)

62

FreeRTOS Porting Guide
Creating a BYOC (ECDSA)

commonName_max

emailAddress
emailAddress_max

SET-ex3

[req attributes]
challengePassword
challengePassword_min
challengePassword_max
unstructuredName

[usr_cert]

These extensions are a

This goes against PKIX
requires this to avoid

basicConstraints=CA:TRUE

Here are some examples
the certificate can be

64

Email Address
64

SET extension number 3

= A challenge password
= 4
= 20
= An optional company name
dded when 'ca' signs a request.

guidelines but some CAs do it and some software
interpreting an end user certificate as a CA.

of the usage of nsCertType. If it is omitted
used for anything *except* object signing.

#
#

This is OK for an SSL server.
nsCertType server

For an object signing certificate this would be used.
nsCertType objsign

For normal client use this is typical
nsCertType client, email

and for everything including object signing:
nsCertType client, email, objsign

This is typical in keyUsage for a client certificate.
keyUsage nonRepudiation, digitalSignature, keyEncipherment

This will be displayed in Netscape's comment listbox.
nsComment "OpenSSL Generated Certificate"

PKIX recommendations harmless if included in all certificates.
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid, issuer

This stuff is for subjectAltName and issuerAltname.
Import the email address.

subjectAltName=email:copy

An alternative to produce certificates that aren't
deprecated according to PKIX.
subjectAltName=email :move

#H W R R W

#*

Copy subject details
issuerAltName=issuer:copy

#*

#nsCaRevocationUrl
#nsBaseUrl
#nsRevocationUrl
#nsRenewalUrl
#nsCaPolicyUrl

#nsSslServerName

http://www.domain.dom/ca-crl.pem

This is required for TSA certificates.

63

FreeRTOS Porting Guide
Creating a BYOC (ECDSA)

extendedKeyUsage = critical,timeStamping
[v3_req]
Extensions to add to a certificate request

basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment

[v3_ca]

Extensions for a typical CA

PKIX recommendation.
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid:always, issuer

This is what PKIX recommends but some broken software chokes on critical
extensions.

#basicConstraints = critical,CA:true
So we do this instead.
basicConstraints = CA:true

Key usage: this is typical for a CA certificate. However since it will
prevent it being used as a test self-signed certificate it is best
left out by default.

keyUsage = cRLSign, keyCertSign

H* ¥ H

#*

Some might want this also
nsCertType = ss1lCA, emailCA

#*

Include email address in subject alt name: another PKIX recommendation
subjectAltName=email:copy

Copy issuer details

issuerAltName=issuer:copy

H* ¥ H

DER hex encoding of an extension: beware experts only!
obj=DER:02:03

Where 'obj' is a standard or added object

You can even override a supported extension:
basicConstraints= critical, DER:30:03:01:01:FF

o W W

[crl_ext]

#*

CRL extensions.
Only issuerAltName and authorityKeyIdentifier make any sense in a CRL.

issuerAltName=issuer:copy
authorityKeyIdentifier=keyid:always

[proxy_cert_ext]
These extensions should be added when creating a proxy certificate

This goes against PKIX guidelines but some CAs do it and some software
requires this to avoid interpreting an end user certificate as a CA.

basicConstraints=CA:FALSE

64

FreeRTOS Porting Guide
Creating a BYOC (ECDSA)

Here are some examples of the usage of nsCertType. If it is omitted
the certificate can be used for anything *except* object signing.

This is OK for an SSL server.
nsCertType = server

For an object signing certificate this would be used.
nsCertType = objsign

For normal client use this is typical
nsCertType = client, email

and for everything including object signing:
nsCertType = client, email, objsign

This is typical in keyUsage for a client certificate.
keyUsage = nonRepudiation, digitalSignature, keyEncipherment

This will be displayed in Netscape's comment listbox.
nsComment = "OpenSSL Generated Certificate"

PKIX recommendations harmless if included in all certificates.
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid, issuer

This stuff is for subjectAltName and issuerAltname.
Import the email address.

subjectAltName=email:copy

An alternative to produce certificates that aren't
deprecated according to PKIX.
subjectAltName=email :move

#H W R R W

#*

Copy subject details
issuerAltName=issuer:copy

#*

#nsCaRevocationUrl = http://www.domain.dom/ca-crl.pem
#nsBaseUrl

#nsRevocationUrl

#nsRenewalUrl

#nsCaPolicyUrl

#nsSslServerName

This really needs to be in place for it to be a proxy certificate.
proxyCertInfo=critical, language:id-ppl-anyLanguage,pathlen:3,policy:foo

[tsa]
default_tsa = tsa_configl # the default TSA section
[tsa_configl]

These are used by the TSA reply generation only.

dir = ./demoCA # TSA root directory
serial = $dir/tsaserial # The current serial number (mandatory)
crypto_device = builtin # OpenSSL engine to use for signing
signer_cert = $dir/tsacert.pem # The TSA signing certificate

(optional)
certs = $dir/cacert.pem # Certificate chain to include in reply

(optional)
signer_key = $dir/private/tsakey.pem # The TSA private key (optional)
default_policy = tsa_policyl # Policy if request did not specify it

(optional)

65

FreeRTOS Porting Guide

Testing

other_policies = tsa_policy2, tsa_policy3 # acceptable policies (optional)
digests = md5, shal # Acceptable message digests (mandatory)
accuracy = secs:1l, millisecs:500, microsecs:100 # (optional)
clock_precision_digits = 0 # number of digits after dot. (optional)
ordering = yes # Is ordering defined for timestamps?

(optional, default: no)
tsa_name = yes # Must the TSA name be included in the reply?

(optional, default: no)
ess_cert_id_chain = no # Must the ESS cert id chain be included?

(optional, default: no)

Testing

If you are using an IDE to build test projects, you need to set up your library port in the IDE project.

Setting up the IDE test project

If you are using an IDE for porting and testing, you need to add some source files to the IDE test project
before you can test your ported code.

Important
In the following steps, make sure that you add the source files to your IDE project from their on-
disk location. Do not create duplicate copies of source files.

To set up the TLS library in the IDE project

1. Addiot_tls.c tothe aws_tests IDE project.

2. Add the source file iot_test_tls.c to the virtual folder aws_tests/application_code/
common_tests/tls. This file includes the TLS tests.

Configuring the cMakeLists. txt file

If you are using CMake to build your test project, you need to define a portable layer target for the
library in your CMake list file.

To define a library's portable layer target in CMakeLists. txt, follow the instructions in FreeRTOS
portable layers (p. 16).

The CMakeLists.txt template list file under freertos/vendors/vendor/boards/board/
CMakeLists.txt includes example portable layer target definitions. You can uncomment the definition
for the library that you are porting, and modify it to fit your platform.

Setting up your local testing environment

There are five separate tests for the TLS port, one for each type of authentication supported by the
FreeRTOS TLS library:

e TLS_ConnectRSA()

e TLS_ConnectEC()

e TLS_ConnectMalformedCert()

e TLS_ConnectBYOCCredentials()
e TLS_ConnectUntrustedCert()

To run these tests, your board must use the MQTT protocol to communicate with the AWS Cloud. AWS
loT hosts an MQTT broker that sends and receives messages to and from connected devices at the edge.
The AWS IoT MQTT broker accepts mutually authenticated TLS connections only.

66

FreeRTOS Porting Guide
Testing

Follow the instructions in Connecting your device to AWS loT (p. 51) to connect your device to AWS
loT.

Each TLS test requires a different certificate/key combination, formatted and defined in either
freertos/tests/include/aws_clientcredential_keys.hor freertos/libraries/
freertos_plus/standard/tls/test/iot_test_tls.h

Follow the instructions in Setting up certificates and keys for the TLS tests (p. 53) to obtain the
certificates and keys that you need for testing.

After you set up the library in the IDE project, you need to configure some other files for testing.

To configure the source and header files for the TLS tests
1. To enable the TLS tests, open freertos/vendors/vendor/boards/board/aws_tests/

config_files/aws_test_runner config.h, and set the testrunnerFULL_TLS_ENABLED
macro to 1.

2. Open freertos/libraries/freertos_plus/standard/utils/src/iot_system init.c,
and in the function SYSTEM_Init(), make sure that the line that calls SOCKETS_Init() is
uncommented.

Running the tests

To execute the TLS tests

1. Build the test project, and then flash it to your device for execution.
2. Check the test results in the UART console.

Starting Tests...

TEST(Full_TLS, AFQP_TLS_ConnectEC) PASS
TEST(Full_TLS, TLS_ConnectRSA) PASS

TEST(Full TLS, TLS ConnectMalformedCert) PASS

TEST(Full_TLS, TLS_ConnectUntrustedCert) PASS

TEST(Full_TLS, AFQP_TLS_ConnectBYOCCredentials) PASS

If all tests pass, then testing is complete.

Important

After you have ported the TLS library and tested your ports, you must run the Secure Socket
tests that depend on TLS functionality. For more information, see Testing (p. 40) in the
Secure Sockets porting documentation.

67

FreeRTOS Porting Guide
Validation

Validation

To officially qualify a device for FreeRTOS, you need to validate the device's ported source code with AWS
loT Device Tester. Follow the instructions in Using AWS IoT Device Tester for FreeRTOS in the FreeRTOS
User Guide to set up Device Tester for port validation. To test a specific library's port, the correct test
group must be enabled in the device. json file in the Device Tester configs folder.

After you finish porting the FreeRTOS TLS library to your device, you can start setting up the MQTT
library for testing. See Configuring the MQTT library for testing (p. 68) for instructions.

Configuring the MQTT library for testing

Devices on the edge can use the MQTT protocol to communicate with the AWS Cloud. AWS IloT hosts an
MQTT broker that sends and receives messages to and from connected devices at the edge.

The MQTT library implements the MQTT protocol for devices running FreeRTOS. The MQTT library does
not need to be ported, but your device's test project must pass all MQTT tests for qualification. For more
information, see FreeRTOS MQTT Library in the FreeRTOS User Guide.

Prerequisites

To set up the FreeRTOS MQTT library tests, you need the following:
« A port of the TLS library.

For information about porting the TLS library to your platform, see Porting the TLS library (p. 50).

If you are using an IDE to build test projects, you need to set up your library port in the IDE project.

Setting up the IDE test project

To set up the MQTT library in the IDE project

o Add all of the test source files in freertos/libraries/c_sdk/standard/mqtt and its
subdirectories to the aws_tests IDE project.

Configuring the CMakeLists. txt file

If you are using CMake to build your test project, you need to define a portable layer target for the
library in your CMake list file.

To define a library's portable layer target in CMakeLists. txt, follow the instructions in FreeRTOS
portable layers (p. 16).

The CcMakeLists.txt template list file under freertos/vendors/vendor/boards/board/
CMakeLists.txt includes example portable layer target definitions. You can uncomment the definition
for the library that you are porting, and modify it to fit your platform.

Setting up your local testing environment

After you set up the library in the IDE project, you need to configure some other files for testing.

68

https://docs.aws.amazon.com/freertos/latest/userguide/device-tester-for-freertos-ug.html
https://docs.aws.amazon.com/freertos/latest/userguide/freertos-lib-cloud-mqtt.html.html

FreeRTOS Porting Guide
Running the tests

To configure the source and header files for the MQTT tests
« Toenable the MQTT tests, open freertos/vendors/vendor/boards/board/aws_tests/

config_files/aws_test_runner config.h, and set the testrunnerFULL_MQTTv4_ ENABLED
macro to 1.

Running the tests

To execute the MQTT tests

1. Build the test project, and then flash it to your device for execution.
2. Check the test results in the UART console. If all tests pass, then testing is complete.

Validation

To officially qualify a device for FreeRTOS, you need to validate the device's ported source code with AWS
loT Device Tester. Follow the instructions in Using AWS loT Device Tester for FreeRTOS in the FreeRTOS
User Guide to set up Device Tester for port validation. To test a specific library's port, the correct test
group must be enabled in the device. json file in the Device Tester configs folder.

After you finish setting up the FreeRTOS MQTT library for your device, you can start porting the OTA
agent library. See Porting the OTA library (p. 70) for instructions.

If your device does not support OTA functionality, you can start porting the Bluetooth Low Energy
library. See Porting the Bluetooth Low Energy library (p. 77) for instructions.

If your device does not support OTA and Bluetooth Low Energy functionality, then you are finished
porting and can start the FreeRTOS qualification process. See the FreeRTOS Qualification Guide for more
information.

Configuring the HTTPS client library for testing

The HTTPS Client library implements the HTTPS/1.1 protocol over TLS for devices running FreeRTOS.

Prerequisites

To set up the FreeRTOS HTTPS Client library tests, you need the following:
o A port of the TLS library.

For information about porting the TLS library to your platform, see Porting the TLS library (p. 50).

If you are using an IDE to build test projects, you need to set up your library port in the IDE project.

Setting up the IDE test project

To set up the HTTPS client library in the IDE project

o Add all of the test source files in freertos/libraries/c_sdk/standard/https and its
subdirectories to the aws_tests IDE project.

69

https://docs.aws.amazon.com/freertos/latest/userguide/device-tester-for-freertos-ug.html
https://docs.aws.amazon.com/freertos/latest/qualificationguide/

FreeRTOS Porting Guide
Configuring the CMakeLists. txt file

Configuring the CMakeLists. txt file

If you are using CMake to build your test project, you need to define a portable layer target for the
library in your CMake list file.

To define a library's portable layer target in CMakelLists.txt, follow the instructions in FreeRTOS portable
layers (p. 16).

The CMakelists.txt template list file under freertos/vendors/vendor/boards/board/
CMakeLists.txt includes example portable layer target definitions. You can uncomment the definition
for the library that you are porting, and modify it to fit your platform.

Setting up your local testing environment

After you set up the library in the IDE project, you need to configure some other files for testing.

To configure the source and header files for the HTTPS client tests

o To enable the HTTPS Client tests, open freertos/vendors/vendor/boards/board/
aws_tests/config files/aws_test_runner_ config.h, and set the
testrunnerFULL_HTTPS_CLIENT ENABLED macro to 1.

Running the tests

To execute the HTTPS client tests

1. Build the test project, and then flash it to your device for execution.
2. Check the test results in the UART console. If all tests pass, then testing is complete.

Porting the OTA library

With FreeRTOS over-the-air (OTA) updates, you can do the following:

« Deploy new firmware images to a single device, a group of devices, or your entire fleet.

» Deploy firmware to devices as they are added to groups, are reset, or are reprovisioned.

« Verify the authenticity and integrity of new firmware after it has been deployed to devices.
« Monitor the progress of a deployment.

« Debug a failed deployment.

« Digitally sign firmware using Code Signing for AWS IoT.

For more information, see FreeRTOS Over-the-Air Updates in the FreeRTOS User Guide.

You can use the OTA agent library to integrate OTA functionality into your FreeRTOS applications. For
more information, see FreeRTOS OTA Agent Library in the FreeRTOS User Guide.

FreeRTOS devices must enforce cryptographic code-signing verification on the OTA firmware images that
they receive. We recommend the following algorithms:

o Elliptic-Curve Digital Signature Algorithm (ECDSA)
« NIST P256 curve
« SHA-256 hash

70

https://docs.aws.amazon.com/freertos/latest/userguide/freertos-ota-dev.html
https://docs.aws.amazon.com/freertos/latest/userguide/ota-agent-library.html

FreeRTOS Porting Guide
Prerequisites

Note
A port of the FreeRTOS OTA update library is currently not required for qualification.

Prerequisites

To port the OTA agent library, you need the following:
« A port of the TLS library.

For information, see Porting the TLS library (p. 50).
« A bootloader that can support OTA updates.

For more information about porting a bootloader demo application, see Porting the bootloader
demo (p. 72).

Porting

freertos/vendors/vendor/boards/board/ports/ota/aws_ota_pal.c contains empty
definitions of a set of platform abstraction layer (PAL) functions. Implement at least the set of functions
listed in this table.

Function Description

prvPAL_Abort Aborts an OTA update.

prvPAL_CreateFileForRx Creates a file to store the data chunks as they are
received.

prvPAL_CloseFile Closes the specified file. This might authenticate

the file if storage that implements cryptographic
protection is being used.

prvPAL_WriteBlock Writes a block of data to the specified file at the
given offset. On success, returns the number of
bytes written. Otherwise, a negative error code.

prvPAL_ActivateNewImage Activates or launches the new firmware image. For
some ports, if the device is programmatically reset
synchronously, this function might not return.

prvPAL_SetPlatformImageState Does what is required by the platform to accept
or reject the most recent OTA firmware image
(or bundle). To determine how to implement this
function, consult the documentation for your
board (platform) details and architecture. .

prvPAL_GetPlatformImageState Gets the state of the OTA update image.

Implement the functions in this table if your device has built-in support for them.

Function Description

prvPAL_CheckFileSignature Verifies the signature of the specified file.

71

FreeRTOS Porting Guide
loT device bootloader

Function Description

prvPAL_ReadAndAssumeCertificate Reads the specified signer certificate from the file
system and returns it to the caller.

Make sure that you have a bootloader that can support OTA updates. For instructions on porting the
bootloader demo application provided with FreeRTOS or creating your loT device bootloader, see loT
device bootloader (p. 72).

loT device bootloader

Porting the bootloader demo

FreeRTOS includes a demo bootloader application for the Microchip Curiosity PIC32MZEF platform. For
more information, see Demo Bootloader for the Microchip Curiosity PIC32MZEF in the FreeRTOS User
Guide. You can port this demo to other platforms.

If you choose not to port the demo to your platform, you can use your own bootloader application.
Threat modeling for the 10T device bootloader (p. 72) discusses threat modeling to help you write
your own secure bootloader application.

Threat modeling for the loT device bootloader

Background

As a working definition, the embedded IoT devices referenced by this threat model are microcontroller-
based products that interact with cloud services. They may be deployed in consumer, commercial, or
industrial settings. loT devices may gather data about a user, a patient, a machine, or an environment,
and may control anything from light bulbs and door locks to factory machinery.

Threat modeling is an approach to security from the point of view of a hypothetical adversary. By
considering the adversary's goals and methods, a list of threats is created. Threats are attacks against

a resource or asset performed by an adversary. The list is prioritized and used to identify or create
mitigations. When choosing mitigations, the cost of implementing and maintaining them should be
balanced with the real security value they provide. There are multiple threat model methodologies. Each
is capable of supporting the development of a secure and successful loT product.

FreeRTOS offers OTA ("over-the-air") software updates to loT devices. The update facility combines cloud
services with on-device software libraries and a partner-supplied bootloader. This threat model focuses
specifically on threats against the bootloader.

Bootloader use cases

« Digitally sign and encrypt firmware before deployment.

« Deploy new firmware images to a single device, a group of devices, or an entire fleet.
« Verify the authenticity and integrity of new firmware after it's deployed to devices.

« Devices only run unmodified software from a trusted source.

« Devices are resilient to faulty software received through OTA.

Data Flow Diagram

72

https://docs.aws.amazon.com/freertos/latest/userguide/microchip-bootloader.html
https://en.wikipedia.org/wiki/Threat_model

FreeRTOS Porting Guide
loT device bootloader

Embedded Device!

Bootloader

FIashTaB
Local Attagger ' | AttackerToFlash Flash Memory ~

Interriet Boundary

BoofloaderToFlash

Physical Access E

Operator

FlashTeApp E

AppToklash

OperatorToloT

FlashToAttacker

Embedded App

CloudToDevice

Threats

Some attacks will have multiple mitigations; for example, a network man-in-the-middle intended to
deliver a malicious firmware image is mitigated by verifying trust in both the certificate offered by the
TLS server and the code-signer certificate of the new firmware image. To maximize the security of the
bootloader, any non-bootloader mitigations are considered unreliable. The bootloader should have
intrinsic mitigations for each attack. Having layered mitigations is known as defense-in-depth.

Threats:

« An attacker hijacks the device's connection to the server to deliver a malicious firmware image.

Mitigation example

« Upon boot, the bootloader verifies the cryptographic signature of the image using a known
certificate. If the verification fails, the bootloader rolls back to the previous image.

« An attacker exploits a buffer overflow to introduce malicious behavior to the existing firmware image
stored in flash.

Mitigation examples

« Upon boot, the bootloader verifies, as previously described. When verification fails with no previous
image available, the bootloader halts.

» Upon boot, the bootloader verifies, as previously described. When verification fails with no previous
image available, the bootloader enters a failsafe OTA-only mode.

« An attacker boots the device to a previously stored image, which is exploitable.
Mitigation examples

« Flash sectors storing the last image are erased upon successful installation and test of a new image.

« A fuse is burned with each successful upgrade, and each image refuses to run unless the correct
number of fuses have been burned.

« An OTA update delivers a faulty or malicious image that bricks the device.

Mitigation example

« The bootloader starts a hardware watchdog timer that triggers rollback to the previous image.

73

FreeRTOS Porting Guide
loT device bootloader

« An attacker patches the bootloader to bypass image verification so the device will accept unsigned
images.

Mitigation examples

« The bootloader is in ROM (read-only memory), and cannot be modified.
o The bootloader is in OTP (one-time-programmable memory), and cannot be modified.
o The bootloader is in the secure zone of ARM TrustZone, and cannot be modified.

« An attacker replaces the verification certificate so the device will accept malicious images.

Mitigation examples

« The certificate is in a cryptographic co-processor, and cannot be modified.
« The certificate is in ROM (or OTP, or secure zone), and cannot be modified.

Further threat modeling

This threat model considers only the bootloader. Further threat modeling could improve overall security.
A recommended method is to list the adversary's goals, the assets targeted by those goals, and points
of entry to the assets. A list of threats can be made by considering attacks on the points of entry to gain
control of the assets. The following are lists of examples of goals, assets, and entry points for an loT
device. These lists are not exhaustive, and are intended to spur further thought.

Adversary's goals

» Extort money

« Ruin reputations

« Falsify data

« Divert resources

« Remotely spy on a target

« Gain physical access to a site
« Wreak havoc

« Instill terror

Key assets

« Private keys

« Client certificate

« CAroot certificates

 Security credentials and tokens

« Customer's personally identifiable information
« Implementations of trade secrets

« Sensor data

« Cloud analytics data store

« Cloud infrastructure

Entry points

o DHCP response
« DNS response
« MQTT over TLS

74

FreeRTOS Porting Guide
Testing

o HTTPS response

« OTA software image

« Other, as dictated by application, for example, USB
« Physical access to bus

» Decapped IC

Testing

If you are using an IDE to build test projects, you need to set up your library port in the IDE project.

Setting up the IDE test project

If you are using an IDE for porting and testing, you need to add some source files to the IDE test project
before you can test your ported code.

Important
In the following steps, make sure that you add the source files to your IDE project from their on-
disk location. Do not create duplicate copies of source files.

To set up the OTA library in the IDE project

1. Add the source file freertos/vendors/vendor/boards/board/ports/ota/aws_ota_pal.c
to the aws_tests IDE project.

2. Add the following test source files to the aws_tests IDE project:

e freertos/libraries/freertos_plus/aws/ota/test/aws_test_ota_cbor.c
e freertos/libraries/freertos_plus/aws/ota/test/aws_test_ota_agent.c
e freertos/libraries/freertos_plus/aws/ota/test/aws_test_ota_pal.c

¢ /demos/ota/aws_iot_ota_update_demo.c

Configuring the CMakeLists. txt file

If you are using CMake to build your test project, you need to define a portable layer target for the
library in your CMake list file.

To define a library's portable layer target in CMakeLists.txt, follow the instructions in FreeRTOS
portable layers (p. 16).

The CMakeLists.txt template list file under freertos/vendors/vendor/boards/board/
CMakeLists.txt includes example portable layer target definitions. You can uncomment the definition
for the library that you are porting, and modify it to fit your platform.

The following is an example of a portable layer target definition for the OTA library.

OTA

afr mcu_port(ota)

target_sources(
AFR::ota::mcu_port
INTERFACE "path/aws_ota_pal.c"

There are two sets of tests for the OTA library port: OTA agent and OTA PAL tests (p. 76) and OTA
end-to-end tests (p. 77).

75

FreeRTOS Porting Guide
Testing

OTA agent and OTA PAL tests

Setting up your local testing environment

To configure the source and header files for the OTA agent and OTA PAL tests

1. Open freertos/vendors/vendor/boards/board/aws_tests/config files/
aws_test_runner_config.h, and set the testrunnerFULL_OTA AGENT_ENABLED and
testrunnerFULL_OTA_ PAL_ENABLED macros to 1 to enable the agent and PAL tests.

2. Choose a signing certificate for your device from ota/test. The certificate are used in OTA tests for
verification.

Three types of signing certificates are available in the test code:

« RSA/SHA1
« RSA/SHA256
« ECDSA/SHA256

RSA/SHA1 and RSA/SHA256 are available for existing platforms only. ECDSA/SHA256 is
recommended for OTA updates. If you have a different scheme, contact the FreeRTOS engineering
team.

Running the tests

To execute the OTA agent and OTA PAL tests

1. Build the test project, and then flash it to your device for execution.
2. Check the test results in the UART console.

TEST(Full_OTA_PAL, prvPAL_CloseFile_ValidSignature) PASS
TEST(Full_OTA_PAL, prvPAL_CloseFile_InvalidSignatureBlockWritten) PASS
TEST(Full_OTA_PAL, prvPAL_CloseFile_InvalidSignatureNoBlockWritten) PASS

TEST(Full_OTA_PAL, prvPAL_CloseFile_NonexistingCodeSignerCertificate) PASS

TEST(Full_OTA_PAL, prvPAL_CreateFileForRx_CreateAnyFile) PASS

76

https://freertos.org/RTOS-contact-and-support.html
https://freertos.org/RTOS-contact-and-support.html

FreeRTOS Porting Guide
Validation

TEST(Full_OTA_PAL, prvPAL_CheckFileSignature_ValidSignature) PASS

TEST(Full_OTA_PAL, prvPAL_CheckFileSignature_InvalidSignatureBlockWritten) PASS

TEST(Full_OTA_PAL, prvPAL_CheckFileSignature_InvalidSignatureNoBlockWritten) PASS

TEST(Full_OTA_PAL, prvPAL_CheckFileSignature_NonexistingCodeSignerCertificate) PASS

23 Tests 8 Failures 8 Ignored

ALL TESTS FINISHED

OTA end-to-end tests

To set up and run the end-to-end OTA tests

1. Follow the setup instructions in the README file (freertos/tools/ota_e2e_test/README.md).

2. Make sure that running the agent and PAL tests do not modify the aws_clientcredential.h,
aws_clientcredential_keys.h, aws_application_version.h, or
aws_ota_codesigner_certificate.h header files.

3. To run the OTA end-to-end test script, follow the example in the README file (freertos/tools/
ota_e2e_test/README.md).

Validation

To officially qualify a device for FreeRTOS, you need to validate the device's ported source code with AWS
loT Device Tester. Follow the instructions in Using AWS loT Device Tester for FreeRTOS in the FreeRTOS
User Guide to set up Device Tester for port validation. To test a specific library's port, the correct test
group must be enabled in the device. json file in the Device Tester configs folder.

After you have ported the FreeRTOS OTA library and the bootloader demo, you can start porting the
Bluetooth Low Energy library. For instructions, see Porting the Bluetooth Low Energy library (p. 77).

If your device does not support Bluetooth Low Energy functionality, then you are finished and can start
the FreeRTOS qualification process. For more information, see the FreeRTOS Qualification Guide.

Porting the Bluetooth Low Energy library

You can use the FreeRTOS Bluetooth Low Energy library to provision Wi-Fi and send MQTT messages
over Bluetooth Low Energy. The Bluetooth Low Energy library also includes higher-level APIs that
you can use to communicate directly with the Bluetooth Low Energy stack. For more information, see
FreeRTOS Bluetooth Low Energy Library in the FreeRTOS User Guide.

Note
A port of the FreeRTOS Bluetooth Low Energy library is currently not required for qualification.

Prerequisites

To port the Bluetooth Low Energy library, you need the following:

77

https://docs.aws.amazon.com/freertos/latest/userguide/device-tester-for-freertos-ug.html
https://docs.aws.amazon.com/freertos/latest/qualificationguide/
https://docs.aws.amazon.com/freertos/latest/userguide/freertos-ble-library.html

FreeRTOS Porting Guide
Porting

« An IDE project or CMakeLists. txt list file that includes the vendor-supplied Bluetooth Low Energy
drivers.

For information about setting up a test project, see Setting Up Your FreeRTOS Source Code for
Porting (p. 9).

« A validated configuration of the FreeRTOS kernel.

For information about configuring the FreeRTOS kernel for your platform, see Configuring a FreeRTOS
kernel port (p. 28).

« A Raspberry Pi 3 Model B+, with a memory card.

Porting

Three files in the freertos/libraries/abstractions/ble_hal/include folder define the
FreeRTOS Bluetooth Low Energy APIs:

e bt_hal_manager.h

* bt_hal manager_adapter_ble.h

e bt _hal gatt_server.h

Each file includes comments that describe the APIs. You must implement the following APIs:

bt_hal_manager.h

e pxBtManagerInit

e pxEnable

e« pxDisable

e pxGetDeviceProperty

« pxSetDeviceProperty (All options are mandatory except eBTpropertyRemoteRssi and
eBTpropertyRemoteVersionInfo)

e pxPair

* pxRemoveBond

* pxGetConnectionState

e pxPinReply

* pxSspReply

¢ pxGetTxpower

e pxGetLeAdapter

e pxDeviceStateChangedCb
» pxAdapterPropertiesCb
¢ pxSspRequestCb
 pxPairingStateChangedCb
¢ pxTxPowerCb

bt_hal_manager_adapter_ble.h

» pxRegisterBleApp
* pxUnregisterBleApp

78

https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/

FreeRTOS Porting Guide
Porting

e pxBleAdapterInit

e pxStartAdv

* pxStopAdv

e pxSetAdvData

« pxConnParameterUpdateRequest

» pxRegisterBleAdapterCb

* pxAdvStartCb

* pxSetAdvDataCb

» pxConnParameterUpdateRequestCb

* pxCongestionCb

bt_hal_gatt_server.h

» pxRegisterServer

e pxUnregisterServer

e pxGattServerInit

» pxAddService

e pxAddIncludedService
e pxAddCharacteristic
« pxSetVal

* pxAddDescriptor

e pxStartService

e pxStopService

» pxDeleteService

e pxSendIndication

» pxSendResponse

¢ pxMtuChangedCb

» pxCongestionCb

e pxIndicationSentCb

* pxRequestExecWriteCb
* pxRequestWriteCb

¢ pxRequestReadCb

e pxServiceDeletedCb

e pxServiceStoppedCb

* pxServiceStartedCb

e pxDescriptorAddedCb
*« pxSetValCallbackCb

* pxCharacteristicAddedCb
e pxIncludedServiceAddedCb
e pxServiceAddedCb

» pxConnectionCb

e pxUnregisterServerCb

 pxRegisterServerCb

79

FreeRTOS Porting Guide
Testing

Testing

This diagram shows the Bluetooth Low Energy testing framework.

To test your Bluetooth Low Energy ports, your computer communicates with an external, Bluetooth-
enabled device (a Raspberry Pi 3 Model B+) over SSH, and with your device over Bluetooth Low Energy.

The Bluetooth Low Energy porting and qualification tests target the low-level wrapper layer that lies just
above the manufacturer's hardware stack in the FreeRTOS Bluetooth Low Energy architecture:
User Application

Services

Middleware

Low-level Wrappers

Manufacturer BLE Stack

If you are using an IDE to build test projects, you need to set up your library port in the IDE project.

Setting up the IDE test project

If you are using an IDE for porting and testing, you need to add some source files to the IDE test project
before you can test your ported code.
Important
In the following steps, make sure that you add the source files to your IDE project from their on-
disk location. Do not create duplicate copies of source files.

To set up the Bluetooth Low Energy library in the IDE project

1. Add all of the files in freertos/vendors/vendor/boards/board/ports/ble to your
aws_tests IDE project.

2. Add all of the files in freertos/libraries/abstractions/ble_hal/include to your
aws_tests IDE project.

3. Add all of thefilesin freertos/libraries/c_sdk/standard/ble to your aws_tests IDE
project.

4. Open freertos/vendors/vendor/boards/board/aws_tests/application_code/main.c,
and enable the required Bluetooth Low Energy drivers.

Configuring the cMakeLists. txt file

If you are using CMake to build your test project, you need to define a portable layer target for the
library in your CMake list file.

To define a library's portable layer target in CMakeLists. txt, follow the instructions in FreeRTOS
portable layers (p. 16).

The CMakeLists.txt template list file under freertos/vendors/vendor/boards/board/
CMakeLists.txt includes example portable layer target definitions. You can uncomment the definition
for the library that you are porting, and modify it to fit your platform.

80

FreeRTOS Porting Guide
Validation

Setting up your local testing environment

To set up the Raspberry Pi for testing

1. Follow the instructions in Setting up your Raspberry Pi to set up your Raspberry Pi with Raspbian
0s.

2. Download bluez 5.50 from the kernel.org repository.

3. Follow the instructions in the README on the kernel.org repository to install bluez 5.50 on the
Raspberry Pi.

4. Enable SSH on the Raspberry Pi. For instructions, see the Raspberry Pi documentation.

5. On your computer, open the freertos/tests/bleTestsScripts/runPI. sh script, and change
the IP addresses in the first two lines to the IP address of your Raspberry Pi:

#!/bin/sh

scp * root@l192.168.1.4:

ssh -t -t 192.168.1.4 -1 root << 'ENDSSH'
rm -rf "/var/lib/bluetooth/*"

hciconfig hciO reset

python testl.py

sleep 1

ENDSSH

Running the tests

To execute the Bluetooth Low Energy tests

1. Execute the runPI.sh script.
2. Build the test project, and then flash it to your device for execution.
3. Check the test results in the UART console.

Validation

To officially qualify a device for FreeRTOS, you need to validate the device's ported source code with AWS
loT Device Tester. Follow the instructions in Using AWS loT Device Tester for FreeRTOS in the FreeRTOS
User Guide to set up Device Tester for port validation. To test a specific library's port, the correct test
group must be enabled in the device. json file in the Device Tester configs folder.

After you have ported the Bluetooth Low Energy library, you can start the FreeRTOS qualification
process. For more information, see the FreeRTOS Qualification Guide.

Porting the common I/0O libraries

In general, device drivers are independent of the underlying operating system and are specific to a
given hardware configuration. A hardware abstraction layer (HAL) is a wrapper that provides common
interfaces between drivers and higher-level application code. The HAL abstracts away the details of how
a specific driver works and provides a uniform API to control similar devices. In this way, you can use the
same APIs to control various devices across multiple microcontroller (MCU) based reference boards.

FreeRTOS common 1/0 acts as a hardware abstraction layer. It provides a set of standard APIs for
accessing common serial devices across supported reference boards. These APIs communicate and

81

https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up
https://git.kernel.org/pub/scm/bluetooth/bluez.git
https://git.kernel.org/pub/scm/bluetooth/bluez.git/about/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://docs.aws.amazon.com/freertos/latest/userguide/device-tester-for-freertos-ug.html
https://docs.aws.amazon.com/freertos/latest/qualificationguide/

FreeRTOS Porting Guide
Prerequisites

interact with some common peripherals and enable your application code to function across platforms.
Without common 1/0, the code that is required to work with low-level devices is silicon vendor specific.

Supported peripherals

« UART
« SPI
« 12C

Supported features

« Synchronous read/write — The function doesn't return until the requested amount of data has been
transferred.

« Asynchronous read/write — The function returns immediately and the data transfer happens
asynchronously. When function execution completes, a registered user callback is invoked.
Peripheral specific

« 12C - Combine multiple operations into one transaction, typically to do write then read operations in
one transaction.

« SPI - Transfer data between primary and secondary, which means the write and read operations
happen simultaneously.

Porting

See the FreeRTOS Porting Guide.

Topics
« Prerequisites (p. 82)
« Testing (p. 82)
» Porting the I2C library (p. 84)
« Porting the UART library (p. 87)
« Porting the SPI library (p. 89)

Prerequisites

To port the common I/0 Libraries, you need the following:

« An IDE project or CMakeLists. txt list file that includes the vendor-supplied 1/O drivers.
« A validated configuration of the FreeRTOS kernel.

Testing

First, either set up an IDE project or configure CMake.
Set Up Your Local Testing Environment

No changes are required in the test file freertos/libraries/abstractions/common_io/test/
test_iot_peripheral.c.

Device-specific code is in the following files

82

https://docs.aws.amazon.com/freertos/latest/portingguide/

FreeRTOS Porting Guide
Testing

e freertos/vendors/vendor/boards/board/aws_tests/config_files/test_iot_config.h

e freertos/vendors/vendor/boards/board/ports/common_io/test_iot_internal.c

To set up your local testing environment

1. Create a test configuration header file named freertos/vendors/vendor/boards/board/
aws_tests/config files/test_iot_config.h. Forits content, refer to the "Test Setup"
section for each peripheral.

2. Create a test setup file named freertos/vendors/vendor/boards/board/ports/common_io/
test_iot_internal.c. For its content, refer to the "Test Setup" section for each peripheral.

3. To enable the common I/O tests, open the file freertos/vendors/vendor/boards/board/
aws_tests/config_files/aws_test_runner_ config.h.

4. Set testrunnerFULL_COMMON_IO_ENABLED to 1

Set Up the IDE Test Project

If you're using an IDE for porting and testing, you must add the source files to the IDE test project before
you can test your ported code.

Important
In the following steps, make sure that you add the source files to your IDE project from their
current on-disk location. Don't create duplicate copies of the source files.

To set up the common 1/0 libraries in IDE project

1. Add all implementation source files freertos/vendors/vendor/boards/board/ports/
common_io/iot_peripheral.c to your aws_tests IDE project (one file per peripheral).

2. Add all test source files freertos/libraries/abstractions/common_io/test/
test_iot_peripheral.c to your aws_tests IDE project (one file per peripheral).

3. Add the test configuration file freertos/vendors/vendor/boards/board/aws_tests/
config files/test_iot_config.h to your aws_tests IDE project (just this one file for all
peripherals).

4. Add the test setup file freertos/vendors/vendor/boards/board/ports/common_io/
test_iot_internal.c to your aws_tests IDE project (just this one file for all peripherals).
Configure the CMakelLists.txt File

If you're using CMake to build your test project, you must define a portable layer target for the library in
your CMake list file.

The CMakeLists.txt template list file at freertos/vendors/vendor/boards/board/
CMakeLists.txt includes examples of portable layer target definitions. Uncomment the definition of
each library that you're porting, and modify it to fit your platform.

Example

The following is portable layer target definition for the common I/0O library.

Common I/O
afr_mcu_port(common_io)
target_sources(
AFR: :common_io: :mcu_port
INTERFACE
peripheral implementations
freertos/vendors/vendor/boards/board/ports/common_io/iot_peripheral_1.c
freertos/vendors/vendor/boards/board/ports/common_io/iot_peripheral_2.c

83

FreeRTOS Porting Guide
Porting the 12C library

freertos/vendors/vendor/boards/board/ports/common_io/iot_peripheral_3.c

test configuration and pre-steps
freertos/vendors/vendor/boards/board/ports/common_io/test_iot_internal.c

if (AFR_IS_TESTING)
set(exe_target aws_tests)
else()
set(exe_target aws_demos)
endif()

link common io library along with others
target_link libraries(
${exe_target}
PRIVATE
AFR::wifi
AFR::utils
AFR: :common_io

Run the Tests
To execute the common 1/0 tests

1. Build the test project, and then flash it to your device for execution.
2. Check the test results in the UART console.

Porting the 12C library

12C library interfaces with vendor-supplied 12C drivers. If the device doesn't have an 12C peripheral, you
can skip porting 12C interfaces. The 12C library can only use the 12C peripheral that is on the device as the
primary.

Prerequisites
To port the 12C library, you need an 12C secondary device. It can be one of the following:

« An onboard 12C sensor.
« An external device, such as a Raspberry PI.

Porting

Use the vendor-supplied 12C driver library to implement all the functions in freertos/libraries/
abstractions/common_io/include/iot_i2c.h. The header file provides the required API
behavior information. An implementation source file should be created and named freertos/
vendors/vendor /boards/board/ports/common_io/iot_i2c.c.

If any of the 12C features are not supported on a target device, make the corresponding
functions return IOT_I2C_FUNCTION_NOT_SUPPORTED. For the list of functions that can return

84

FreeRTOS Porting Guide
Porting the 12C library

IOT I2C_FUNCTION_NOT_SUPPORTED, see the APl as documented in freertos/libraries/
abstractions/common_io/include/iot_i2c.h.

Anonymous Handle "struct lotI2CDescriptor"

This usually encapsulates the driver's handle and variety of states. See the following example.

/* Suppose the data type of driver handle for I2C is Driver_I2C_Handle */
struct IotI2CDescriptor

{
Driver_ I2C_Handle xHandle; /* Driver Handle. */
IotI2CConfig_t xConfig; /* Bus Configuration. */
IotI2CCallback_t xCallback; /* Callback function. */
void * pvUserContext; /* User context passed in callback. */
uintl6_t usSlaveAddr; /* Slave Address. */
uintl6_t usTransmittedTxBytes; /* Number of Transmitted Bytes */
uintl6_t usReceivedRxBytes; /* Number of Received Bytes */
SemaphoreHandle_t xSemphr; /* Optional, useful when there is a synchronization

situation. */
/* State: if already opened. */
/* State: if send no stop. */

}i

Test setup

Hardware Setup
If you're using an onboard sensor as a slave device, you can skip this step.

If you use an external device, you need to wire the SDA (data) lines and SCL (clock) lines of the two
devices.

You can find the I12C test file in the following directory: freertos/libraries/abstractions/
common_io/test/test_iot_i2c.c

To test the set up configurations

1. Add the I12C configurations to freertos/vendors/vendor/boards/board/aws_tests/
config files/test_iot_config.h.

IOT_TEST_COMMON_IO_I2C_SUPPORTED

If this device has 12C peripheral, set to 1. Otherwise, set it to 0.
IOT_TEST_COMMON_IO_I2C_SUPPORTED_SEND_ NO_STOP

If the 12C doesn't explicitly support sending stop condition, set to 1. Otherwise, set to 0.
IOT TEST_COMMON_IO_I2C_SUPPORTED_ CANCEL

If the 12C supports cancelling the asynchronous transaction with interrupt or DMA, set to 1.
Otherwise, set to 0.

I2C_TEST SET

Specify the number of 12C instances to test.

2. Define test data in the freertos/vendors/vendor/boards/board/aws_tests/
config_files/test_iot_config.h file.

i2cTestInstanceldx

The 12C instance IDs.

85

FreeRTOS Porting Guide
Porting the 12C library

i2cTestInstanceNum

The total number of 12C instances.

i2cTestSlaveAddr

Device address.

i2cTestDeviceRegister

Register address on the test device.
i2cTestWriteval

A byte value to be written to the test device.
gIotI2cHandle

Not used. Define it as an array of null to compile.

Example

/* I2C includes */
#include "iot_i2c.h"

#define IOT_TEST_COMMON_IO_I2C_SUPPORTED 1
#if (IOT_TEST_COMMON_IO I2C_SUPPORTED == 1)
#define IOT_TEST_ COMMON_IO_ I2C_SUPPORTED_ SEND_NO_STOP 1
#define IOT_TEST_COMMON_IO I2C_SUPPORTED_ CANCEL 1
#endif
#define I2C_TEST SET 1

/* Slave address. */

const uint8_t i2cTestSlaveAddr[I2C_TEST SET] = { 0xD4 };

/* Register address. */

const uint8_t i2cTestDeviceRegister[I2C_TEST_SET] = { 0x73 };
/* A value that is written to slave device during test. */
const uint8_t i2cTestWritevVal[I2C_TEST_SET] = { 0b01101010 };
/* I2C instance ID. */

const uint8_t i2cTestInstanceIdx[I2C_TEST_SET] = { 1 };

/* Total number of I2C instances. */

const uint8_t i2cTestInstanceNum[I2C_TEST_SET] = { 3 };

/* Unused, but this needs to be defined. */
IotI2CHandle_t gIotI2cHandle[4] = { NULL, NULL, NULL, NULL };

Add 12C test setup code to the freertos/vendors/vendor/boards/board/ports/
common_io/test_iot_internal.c file.

#include "test_iot_internal.h"

/* These global variables are defined in test_iot_i2c.c. */
extern uint8_t uctestIotI2CSlaveAddr;

extern uint8_t xtestIotI2CDeviceRegister;

extern uint8_t uctestIotI2CWritevVal;

extern uint8_t uctestIotI2CInstanceldx;

extern uint8_t uctestIotI2CInstanceNum;

void SET TEST_IOT I2C_CONFIG(int testSet)

{
uctestIotI2CSlaveAddr = i2cTestSlaveAddr[testSet];
xtestIotI2CDeviceRegister = i2cTestDeviceRegister[testSet];

86

FreeRTOS Porting Guide
Porting the UART library

uctestIotI2CWritevVal = i2cTestWritevVal[testSet];
uctestIotI2CInstanceldx = i2cTestInstanceIdx[testSet];
uctestIotI2CInstanceNum = i2cTestInstanceNum[testSet];

Porting the UART library

The UART library interfaces with vendor-supplied UART drivers. If the device doesn't have any UART
peripherals, you can skip porting the UART interface.

Prerequisites

« Use a jump wire to connect the RX and TX of the UART for loopback testing.

Porting

Use the vendor-supplied UART driver library to implement all the functions in freertos/libraries/
abstractions/common_io/include/iot_uart.h. The header file provides information about

the required API behavior. An implementation source file should be created and named freertos/
vendors/vendor/boards/board/ports/common_io/iot_uart.c

If the target device doesn't support any UART features, make the corresponding functions

return IOT_UART_FUNCTION_NOT_SUPPORTED. For the list of functions that can return
IOT_UART_FUNCTION_NOT_ SUPPORTED, refer to the APl as documented in freertos/libraries/
abstractions/common_io/include/iot_uart.h.

Anonymous Handle "struct lotUARTDescriptor"

This usually encapsulates driver's handle and variety of states. See the following example.

/* Suppose the data type of the driver handle for UART is UART_Handle */
struct IotUARTDescriptor

{
IotUARTCallback_t xUartCallback; /* Application Specified callback. */
UART_Handle * pxUartContext; /* UART handle to be passed to driver functions. */
void * pvUserCallbackContext; /
uint8_t sOpened;
}i
Test setup

Hardware Setup
On the UART port to test, connect the TX and RX for loopback by using a jump wire.

You can find the UART test file in the following directory: freertos/libraries/abstractions/
common_io/test/test_iot_uart.c

To test the setup configurations

1. Add the UART configuration to the freertos/vendors/vendor/boards/board/aws_tests/
config files/test_iot_config.h file.

IOT_TEST_COMMON_IO_UART_SUPPORTED

If this device has UART peripheral, set to 1. Otherwise, set 0.

87

FreeRTOS Porting Guide
Porting the UART library

UART_TEST_ SET

The number of UART instances to test.

Define test data in the freertos/vendors/vendor/boards/board/aws_tests/
config files/test_iot_config.h file.

uvuartTestPort

The UART instance IDs.
uartIotUartFlowControl

The UART flow control configuration.
uartIotUartParity

The UART parity bit configuration.
uartIotUartWordLength

The UART word length configuration.
uartIotUartStopBits

The UART stop bit configuration.

Example

/* UART */

#define UART_TEST_SET 1

const uint8_t uartTestPort[UART_TEST SET] = { 1 };

const uint32_t uartIotUartFlowControl[UART_TEST_SET] = { UART_FLOW_CONTROL };
const uint32_t uartIotUartParity[UART_TEST SET] = { UART_PARITY };

const uint32_t uartIotUartWordLength[UART_TEST_SET] = { UART_WORD_LENGTH };
const uint32_t uartIotUartStopBits[UART_TEST_SET] = { UART_STOP_BITS };

Add the UART test setup code to the freertos/vendors/vendor/boards/board/ports/
common_io/test_iot_internal.c file.

#include "test_iot_internal.h"

/* UART */

extern uint8_t ustestIotUartPort;

extern uint32_t ultestIotUartFlowControl;
extern uint32_t ultestIotUartParity;
extern uint32_t ultestIotUartWordLength;
extern uint32_t ultestIotUartStopBits;

void SET TEST_ IOT UART_CONFIG(int testSet)

{
ustestIotUartPort = uartTestPort[testSet];
ultestIotUartFlowControl = uartIotUartFlowControl[testSet];
ultestIotUartParity = uartIotUartParity[testSet];
ultestIotUartWordLength = uartIotUartWordLength[testSet];
ultestIotUartStopBits = uartIotUartStopBits[testSet];

}

88

FreeRTOS Porting Guide
Porting the SPI library

Porting the SPI library

The SPI library interfaces with vendor-supplied SPI drivers. If the device doesn't have an SPI peripheral,
you can skip porting the SPI interfaces. The SPI library can only use the SPI peripheral on the device as
master.

Porting

Use the vendor-supplied SPI driver library to implement all the functions in freertos/libraries/
abstractions/common_io/include/iot_spi.h. The header file provides the required API behavior
information. The implementation source file should be created as freertos/vendors/vendor/
boards/board/ports/common_io/iot_spi.c

It's possible that a target device doesn't support some SPI features. In that case, make the corresponding
functions return IOT_SPI_FUNCTION_NOT_ SUPPORTED. For the list of functions that can return
IOT_SPI_FUNCTION_NOT_ SUPPORTED, refer to the APl as documented in freertos/libraries/
abstractions/common_io/include/iot_spi.h.

Anonymous Handle "struct lotSPIDescriptor"

This usually encapsulates the driver's handle and variety of states. See the following example.

/* Suppose the data type of driver handle for SPI is Driver_ SPI_Handle */
struct IotSPIDescriptor

{
Driver_ SPI_Handle xHandle; /* Driver Handle. */
IotSPIConfig_t xConfig; /* Bus Configuration. */
IotSPICallback_t xCallback; /* Callback function. */
void * pvUserContext; /* User context passed in callback. */
/* State: if already opened. */

}i

Test setup

You can find the SPI test file in the following directory: freertos/libraries/abstractions/
common_io/test/test_iot_spi.c

To test the setup configurations

1. Add the SPI configurations to the freertos/vendors/vendor/boards/board/aws_tests/
config files/test_iot_config.h file.

IOT_TEST_COMMON_IO_SPI_SUPPORTED

If the device has an SPI peripheral, set this to 1. Otherwise, set to 0.
SPI_TEST_SET

The number of SPI instances to test.

2. Define test data in the freertos/vendors/vendor/boards/board/aws_tests/
config files/test_iot_config.h file.

spiTestPort

The SPI instance IDs.
spilotMode

The SPI mode.

89

FreeRTOS Porting Guide
Porting the SPI library

spilotSpitBitOrder

The SPI bit order.

spilotFrequency

The SPI frequency.
spilotDummyValue

The dummy value.

Example

/* SPI includes */
#include "iot_spi.h"

#define IOT_TEST_COMMON_IO_SPI_SUPPORTED 1
#define I2C_TEST_SET 1

const uint8_t spiTestPort[SPI_TEST_SET] = { 1 };

const uint32_t spilotMode[SPI_TEST_SET] = { eSPIModeO };

const uint32_t spilotSpitBitOrder[SPI_TEST_SET] = { eSPIMSBFirst };
const uint32_t spilotFrequency[SPI_TEST SET] = { 500000U };

const uint32_t spilotDummyValue[SPI_TEST_SET] = { 0 };

Add SPI test setup code in the freertos/vendors/vendor/boards/board/ports/common_io/
test_iot_internal.c file.

#include "test_iot_internal.h"

/* SPI *x/

extern uint8_t ultestIotSpiInstance;

extern IotSPIMode_t xtestIotSPIDefaultConfigMode;

extern IotSPIBitOrder_t xtestIotSPIDefaultconfigBitOrder;
extern uint32_t ultestIotSPIFrequency;

extern uint32_t ultestIotSPIDummyValue;

void SET_TEST_IOT SPI_CONFIG(int testSet)

{
ultestIotSpiInstance = spiTestPort[testSet] ;
xtestIotSPIDefaultConfigMode = spiIotMode[testSet];
xtestIotSPIDefaultconfigBitOrder = spiIlotSpitBitOrder[testSet];
ultestIotSPIFrequency = spilotFrequency[testSet];
ultestIotSPIDummyValue = spilotDummyValue[testSet];

}

90

FreeRTOS Porting Guide
Migrating applications

Migrating from Version 1.4.x to
Version 201906.00 (and newer)

For a list of FreeRTOS releases, see https://github.com/aws/amazon-freertos/releases.

Migrating applications

FreeRTOS version 201906.00 introduced some changes to the FreeRTOS directory structure that break
project files built on previous versions of FreeRTOS. In order for applications built on previous versions
of FreeRTOS to work with FreeRTOS version 201906.00 or newer, you must move the application code to
new projects and include the 201906.00 header files in the application.

Version 201906.00 introduced new APIs for the MQTT, Device Shadow, and Device Defender libraries.
The APIs for previous versions of these libraries are accessible through header files of the 201906.00
implementations of these libraries, making FreeRTOS version 201906.00 backward-compatible.

Note

If you are migrating from previous versions to version 201906.00 or newer, you might need
to reconfigure your iot_config.h and FreeRTOSConfig.h files to accommodate the new
library implementations. For information about global configuration settings, see the Global
Configuration File Reference.

Migrating ports

If you have ported a version of FreeRTOS released prior to the 201906.00 release, you need to migrate
your ported code to be compatible with versions 201906.00 and later. For information about porting, see
the FreeRTOS Porting Guide.

FreeRTOS code directory structure

In versions released prior to 201906.00, the freertos/lib/third_party/mcu_vendor/vendor
folder held the vendor-ported code. One or more project files under the same vendor folder

compiled the code. In versions 201906.00 and later, vendor code is located under the freertos/
vendors/vendor folder, and project files are located under the freertos/projects/vendor folder.

Note
The code for ports did not change with version 201906.00. Only the location of the code
changed. Move any existing ports to the new folder structure.

CMake build system

Version 201906.00 introduced support for using CMake to generate project files. For information about
using CMake with FreeRTOS, see Building FreeRTOS with CMake (p. 20).

A CMake list file is required for qualification. For information about creating a CMake list file, see
Creating a CMake list file (p. 12).

91

https://github.com/aws/amazon-freertos/releases
https://www.freertos.org/a00110.html
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/main/global_library_config.html#IOT_CONFIG_FILE
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/main/global_library_config.html#IOT_CONFIG_FILE
https://docs.aws.amazon.com/freertos/latest/portingguide/

FreeRTOS Porting Guide
Migrating the Wi-Fi library port

Migrating the Wi-Fi library port

The FreeRTOS Wi-Fi library features four new APIs to add, remove, and retrieve a Wi-Fi network, and
to receive notifications for Wi-Fi network state changes. All of these new APIs are optional, and are
intended to support Wi-Fi credentials provisioning over Bluetooth Low Energy. If your device does not
support Bluetooth Low Energy, you do not need to implement these APIs.

e WIFI_NetworkAdd

WIFIReturnCode_t WIFI_NetworkAdd(
const WIFINetworkProfile_t * const pxNetworkProfile,
uintlé6_t * pusIndex);

e WIFI_NetworkGet

WIFIReturnCode_t WIFI_NetworkGet(
WIFINetworkProfile_t * pxNetworkProfile,
uintlé6_t usIndex);

e WIFI_NetworkDelete

WIFIReturnCode_t WIFI_NetworkDelete(uintlé6_t usIndex);

e WIFI_RegisterNetworkStateChangeEventCallback

WIFIReturnCode_t WIFI_RegisterNetworkStateChangeEventCallback(
JotNetworkStateChangeEventCallback t xCallback);

With the following typedef statements:

typedef void (*IotNetworkStateChangeEventCallback t) (
uint32_t ulNetworkType,
AwsIotNetworkState_t xState);

typedef enum AwsIotNetworkState

{
eNetworkStateUnknown = 0,
eNetworkStateDisabled,
eNetworkStateEnabled

} AwsIotNetworkState_ t;

For information about porting the Wi-Fi library, see Porting the Wi-Fi Library in the FreeRTOS Porting
Guide.

92

https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-wifi.html

	FreeRTOS
	Table of Contents
	FreeRTOS Porting
	What is FreeRTOS?
	Porting FreeRTOS to your IoT device
	System requirements
	Porting older versions of FreeRTOS
	Porting FAQs

	Downloading FreeRTOS for Porting
	Setting Up Your FreeRTOS Source Code for Porting
	Configuring the FreeRTOS download
	Configuring directories for vendor-supplied, board-specific libraries
	Configuring directories for project files
	Configuring FreeRTOSConfig.h

	Setting up your FreeRTOS source code for testing
	Creating an IDE project
	Creating a CMake list file
	Prerequisites
	Creating a list file for your platform from the CMakeLists.txt template
	FreeRTOS console metadata
	Compiler settings
	Using multiple compilers
	Advanced compiler settings

	FreeRTOS portable layers
	Setting up the kernel porting target
	Setting up the porting targets for FreeRTOS modules

	FreeRTOS demos and tests
	Running post-build commands

	Building FreeRTOS with CMake
	Generating build files (CMake command-line tool)
	Generating build files (CMake GUI)
	Building FreeRTOS from generated build files

	Porting the FreeRTOS Libraries
	FreeRTOS porting flowchart
	Implementing the configPRINT_STRING() macro
	Prerequisites
	Implementation
	Testing

	Configuring a FreeRTOS kernel port
	Prerequisites
	Configuring the FreeRTOS kernel
	Testing

	Porting the Wi-Fi library
	Prerequisites
	Porting
	Testing
	Setting up the IDE test project
	Configuring the CMakeLists.txt file
	Setting up your local testing environment
	Running the tests

	Validation

	Porting a TCP/IP stack
	Porting FreeRTOS+TCP
	Prerequisites
	Porting
	Testing
	Setting up the IDE test project
	Configuring the CMakeLists.txt file
	Setting up your local testing environment
	Running the tests

	Validation

	Porting lwIP
	Prerequisites
	Porting
	Testing
	Setting up the IDE test project
	Configuring the CMakeLists.txt file

	Porting the Secure Sockets library
	Prerequisites
	Porting
	Testing
	Setting up the IDE test project
	Configuring the CMakeLists.txt file
	Setting up your local testing environment
	Running the tests

	Validation
	Setting up an echo server
	Prerequisites
	Create credentials
	Directory structure
	Server configuration
	Run the echo server from the command line
	Client device configuration

	Porting the PKCS #11 library
	Prerequisites
	Porting
	Testing
	Setting up the IDE test project
	Configuring the CMakeLists.txt file
	Setting up your local testing environment
	Running the tests

	Validation

	Porting the TLS library
	Prerequisites
	Porting
	Connecting your device to AWS IoT
	Setting up certificates and keys for the TLS tests
	TLS_ConnectRSA()
	TLS_ConnectEC()
	TLS_ConnectMalformedCert()
	TLS_ConnectBYOCCredentials()
	TLS_ConnectUntrustedCert()

	Creating a BYOC (ECDSA)
	ca.config

	Testing
	Setting up the IDE test project
	Configuring the CMakeLists.txt file
	Setting up your local testing environment
	Running the tests

	Validation

	Configuring the MQTT library for testing
	Prerequisites
	Setting up the IDE test project
	Configuring the CMakeLists.txt file
	Setting up your local testing environment
	Running the tests
	Validation

	Configuring the HTTPS client library for testing
	Prerequisites
	Setting up the IDE test project
	Configuring the CMakeLists.txt file
	Setting up your local testing environment
	Running the tests

	Porting the OTA library
	Prerequisites
	Porting
	IoT device bootloader
	Porting the bootloader demo
	Threat modeling for the IoT device bootloader
	Background
	Threats
	Further threat modeling

	Testing
	Setting up the IDE test project
	Configuring the CMakeLists.txt file
	OTA agent and OTA PAL tests
	Setting up your local testing environment
	Running the tests

	OTA end-to-end tests

	Validation

	Porting the Bluetooth Low Energy library
	Prerequisites
	Porting
	Testing
	Setting up the IDE test project
	Configuring the CMakeLists.txt file
	Setting up your local testing environment
	Running the tests

	Validation

	Porting the common I/O libraries
	Prerequisites
	Testing
	Porting the I2C library
	Test setup

	Porting the UART library
	Test setup

	Porting the SPI library
	Test setup

	Migrating from Version 1.4.x to Version 201906.00 (and newer)
	Migrating applications
	Migrating ports
	FreeRTOS code directory structure
	CMake build system
	Migrating the Wi-Fi library port

