Arm® Platform Security Architecture
APIls Test Suite

Version 1.1

Validation Methodology

arm

Copyright © 2018-2020 Arm Limited or its affiliates. All rights reserved.
101447_0101_G_en

Arm® Platform Security Architecture APIs Test Suite

Arm® Platform Security Architecture APIs Test Suite

Validation Methodology
Copyright © 2018-2020 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue |Date Confidentiality | Change

A 28 September 2018 | Non-Confidential | Alpha release

B 30 October 2018 Non-Confidential | Minor edits

C 15 January 2019 Non-Confidential | Beta release. The document number has been changed.
D 04 June 2019 Non-Confidential | Beta quality with minor updates

E 30 September 2019 | Non-Confidential | Beta quality with minor updates

F 28 February 2020 Non-Confidential | EAC quality with minor updates

G 30 November 2020 | Non-Confidential | EAC quality with minor updates

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other

rights.
This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at

any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the

Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http:// www.arm.com/company/policies/

trademarks.

101447_0101_G_en Copyright © 2018-2020 Arm Limited or its affiliates. All rights 2
reserved.
Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

Arm® Platform Security Architecture APIs Test Suite

Copyright © 2018-2020 Arm Limited (or its affiliates). All rights reserved.
Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.
Web Address

developer.arm.com

Progressive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive. Arm strives to
lead the industry and create change.

This document includes terms that can be offensive. We will replace these terms in a future issue of this document.

If you find offensive terms in this document, please contact terms@arm.com.

101447_0101_G_en Copyright © 2018-2020 Arm Limited or its affiliates. All rights 3
reserved.
Non-Confidential

https://developer.arm.com
mailto:terms@arm.com

Contents

Arm® Platform Security Architecture APIs Test Suite
Validation Methodology

Preface
ADBDOUL RIS DOOK ...t et 6
Chapter 1 Introduction
1.1 Scope OF the AOCUMENLEeeeeeeeeeeeeeeeeeee ettt a e e e e 1-9
1.2 ADBDIEVIATIONS ... 1-10
1.3 Platform Security ArchiteCture APIScoooueeeeeeeeiiiee e 1-11
1.4 TESE SUIT ...t et 1-13
1.5 TeSt SUILE COMPONENLS ...ttt ettt e e e e e e e e s 1-14
1.6 DireCtOry SIUCKUIEeeeeieee e et 1-15
1.7 Feedback, contributions, @nd SUPPOITcccuueeiieiicciiiies e 1-16
Chapter 2 Validation methodology
2.1 TeSt 1ayering AELAIIScoooeeeeeeeeeee e e 2-18
2.2 TeSt SUItE OrQaNIZAtioNccoueeiieie e e 2-20
2.3 TESE @XECULION TIOW .ot et e e e 2-23
2.4 Integrating the test suite With the SUTc.coooiiiiiieees e 2-26
2.5 TESE AISPALCNEL ..ottt ettt ettt raaaaaaes 2-28
2.6 Analyzing teSt FUN FESUILS ... e 2-29
Appendix A Revisions
A1 REOVISIONS ...ttt et e e e e e e e e e e Appx-A-32
101447_0101_G_en Copyright © 2018-2020 Arm Limited or its affiliates. All rights 4

reserved.
Non-Confidential

Preface

This preface introduces the Arm® Platform Security Architecture APIs Test Suite Validation Methodology.

It contains the following:
* About this book on page 6.

101447_0101_G_en Copyright © 2018-2020 Arm Limited or its affiliates. All rights
reserved.
Non-Confidential

Preface
About this book

About this book

This book describes the test suite for Platform Security Architecture APIs.

Using this book
This book is organized into the following chapters:

Chapter 1 Introduction
This chapter introduces the features and components of the test suite for Arm Platform Security
Architecture APIs.

Chapter 2 Validation methodology
This chapter describes the validation methodology that is used for the test suite.

Appendix A Revisions
This appendix describes the technical changes between released issues of this book.

Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace

Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace 1italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, ©, <Rd>, <CRn>, <CRm>, <Opcode_2>
SMALL CAPITALS
Used in body text for a few terms that have specific technical meanings, that are defined in the

Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

Feedback

101447_0101_G_en Copyright © 2018-2020 Arm Limited or its affiliates. All rights 6
reserved.
Non-Confidential

https://developer.arm.com/support/arm-glossary

Preface
About this book

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

* The product name.

* The product revision or version.

* An explanation with as much information as you can provide. Include symptoms and diagnostic
procedures if appropriate.

Feedback on content
If you have comments on content then send an e-mail to support-psa-arch-tests@arm.com. Give:

» The title Arm Platform Security Architecture APIs Test Suite Validation Methodology.
e The number 101447 0101 G en.

« Ifapplicable, the page number(s) to which your comments refer.

* A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

Other information

o Arm® Developer.

* Arm® Documentation.
o Technical Support.

o Arm® Glossary.

101447_0101_G_en Copyright © 2018-2020 Arm Limited or its affiliates. All rights 7
reserved.
Non-Confidential

mailto:support-psa-arch-tests@arm.com
https://developer.arm.com/
https://developer.arm.com/documentation
http://www.arm.com/support/technical-support
https://developer.arm.com/support/arm-glossary

Chapter 1
Introduction

This chapter introduces the features and components of the test suite for Arm Platform Security
Architecture APIs.

It contains the following sections:

» 1.1 Scope of the document on page 1-9.

» 1.2 Abbreviations on page 1-10.

* 1.3 Platform Security Architecture APIs on page 1-11.

» [.4 Test suite on page 1-13.

o 1.5 Test suite components on page 1-14.

* 1.6 Directory structure on page 1-15.

» 1.7 Feedback, contributions, and support on page 1-16.

101447_0101_G_en Copyright © 2018-2020 Arm Limited or its affiliates. All rights
reserved.
Non-Confidential

1-8

1 Introduction
1.1 Scope of the document

1.1 Scope of the document

The goal of this document is to describe the validation methodology for Platform Security Architecture
APIs test suites. It focuses on describing the framework and the methodology that is used to run the tests.

101447_0101_G_en Copyright © 2018-2020 Arm Limited or its affiliates. All rights 1-9
reserved.
Non-Confidential

1.2 Abbreviations

This section lists the abbreviations that are used in this document.

1 Introduction
1.2 Abbreviations

Table 1-1 Abbreviations and expansions
Abbreviation | Expansion
API Application Programming Interface
FF Firmware Framework
ITS Internal Trusted Storage
NSPE Non-Secure Processing Element
PAL Platform Abstraction Layer
PE Processing Element
PS Protected Storage
PSA Platform Security Architecture
RoT Root of Trust
SPE Secure Processing Element
SPM Secure Partition Manager
SUT System Under Test
VAL Validation Abstraction Layer

101447_0101_G_en

Copyright © 2018-2020 Arm Limited or its affiliates. All rights

reserved.
Non-Confidential

1 Introduction
1.3 Platform Security Architecture APls

1.3 Platform Security Architecture APIs

Arm Platform Security Architecture (PSA) is a holistic set of threat models, security analyses, hardware
and firmware architecture specifications, and an open-source firmware reference implementation.

PSA provides a recipe, based on industry best practice, that allows security to be consistently designed
in, at both a hardware and firmware level. One of the goals of PSA is to make IoT security easier and
quicker. This means having reliable, consistent APIs and useful built-in security functions for device
manufacturers and the developer community. These PSA APIs provide a consistent developer
experience, hiding the underlying complexity of the security system.

Arm PSA defines the following sets of API specifications:

» PSA Firmware Framework
* PSA Functional APIs

This section contains the following subsections:

» 1.3.1 PSA Firmware Framework on page 1-11.
e [.3.2 PSA Functional APIs on page 1-12.

1.3.1 PSA Firmware Framework

PSA Firmware Framework (PSA-FF) defines a standard programming environment and firmware
interfaces for implementing and accessing security services within a device’s Root of Trust (RoT).

PSA security model divides execution within the system into two domains:

* Non-Secure Processing Environment (NSPE)
» Secure Processing Environment (SPE)

NSPE contains application firmware, and OS kernel and libraries. It typically controls most I/O
peripherals. SPE contains security firmware and hardware resources that must be isolated from NSPE
firmware and hardware resources. The security model requires that no NSPE firmware or hardware can
inspect or modify any SPE hardware, code, or data.

Security functionality is exposed by PSA as a collection of RoT services. Each RoT service is a set of
related security functionality. For example, there might be an RoT service for cryptography operations,
and another for secure storage.

PSA subdivides the SPE into two subdomains:

« PSARoT

» Application RoT

PSA RoT provides the fundamental RoT Services to the system and also manages the isolated execution
environment for the Application RoT Services.

The main components of PSA RoT are described in the following table.

Table 1-2 PSA RoT components

Component Description

PSA security lifecycle Identifies the production phase of the device and controls the availability of device secrets and
sensitive capabilities such as Secure debug.

PSA immutable RoT Hardware, and non-modifiable firmware and data installed during manufacturing.

Trusted Boot and Firmware
Update

Ensures the integrity and authenticity of the device firmware.

Secure Partition Manager

Manages isolation of the RoT services, the IPC mechanism that allows software in one domain to
make requests of another, and scheduling logic to ensure that requests are eventually serviced.

PSA RoT services

Provide essential cryptographic functionality and manage accesses to the immutable RoTs for
Application RoT services.

101447_0101_G_en

Copyright © 2018-2020 Arm Limited or its affiliates. All rights 1-1
reserved.
Non-Confidential

1 Introduction
1.3 Platform Security Architecture APls

The Firmware Framework specification:

* Provides requirements for the SPM.

* Defines a standard runtime environment for developing protected RoT Services, including the
programming interfaces provided by the SPM for implementing and using RoT Services.

* Defines the standard interfaces for the PSA RoT Services.

For details on SPM and PSA RoT, refer to the specification documents mentioned in the Additional
reading section of this document.

1.3.2 PSA Functional APIs

PSA Functional APIs are the top-level APIs used by application developers and RTOS vendors. These
APIs have been designed for software developers who want to implement hardware security features
without necessarily being security experts themselves.

These APIs provide the top-level essential services related to Crypto, Secure storage, and attestation
tokens. For details, see the Functional APIs specification.

101447_0101_G_en Copyright © 2018-2020 Arm Limited or its affiliates. All rights 1-12
reserved.
Non-Confidential

https://github.com/ARM-software/psa-arch-tests/blob/master/api-specs

1 Introduction
1.4 Test suite

1.4 Test suite
Architecture tests are a set of examples of the invariant behaviors that are specified by the PSA APIs
specifications. Use these tests to check that these behaviors are interpreted correctly in your system.
These tests cover checks for the following categories of features, each covering a different area of
architecture.
Table 1-3 Test categories and their descriptions
API type Test category Sub category Description
PSA Firmware IPC Level of isolation Tests verifying the expected behavior of SPM
Framework involved in different levels of isolation, as defined by
the specification.
Client APIs Tests verifying the correctness of client APIs.
Secure partition APIs Tests verifying the correctness of Secure partition
APIs.
Manifest input Tests verifying manifest input parameters.
PSA RoT lifecycle API Tests verifying the correctness of the PSA RoT
lifecycle API.
Functional APIs Crypto PSA Crypto APIs Tests verifying the correctness of PSA Crypto APIs.
Internal Trusted PSA ITS APIs Tests verifying the correctness of PSA ITS APIs.
Storage (ITS)
Protected Storage PSA PS APIs Tests verifying the correctness of PSA PS APIs.
(PS)
Initial Attestation PSA Initial Attestation Tests verifying the correctness of the PSA Initial
API Attestation API.

The test suite contains tests that have checks embedded within the test code. To view the list of test suites
and how these different categories of features are checked for compliance, see test-list documents in the

doc/ directory.

101447_0101_G_en

reserved.

Non-Confidential

Copyright © 2018-2020 Arm Limited or its affiliates. All rights

1.5 Test suite components

1 Introduction
1.5 Test suite components

The components of the test suite are described in the following table:

Table 1-4 Test suite components

Component | Description
Test suites Contain self-checking tests that are written in C.
Substructure Test supporting layers consist of a framework and libraries setup as:
* Tools to build the compliance tests
* Validation Abstraction Layer (VAL) library
* Platform Abstraction Layer (PAL) library
Documentation | Suite-specific documents such as test lists, porting guide, and API specification.
101447_0101_G_en Copyright © 2018-2020 Arm Limited or its affiliates. All rights 1-14

reserved.
Non-Confidential

1 Introduction
1.6 Directory structure

1.6 Directory structure

The test components must be in a specific hierarchy for the test suite. When the release package is
downloaded from GitHub, the top-level directory contains the files that are shown in the following

figure.

api-tests/
—dev_apis
—docs
—ff
—platform
—tools
—val

—CMakeLists.txt

—README . md

Figure 1-1 Test suite directory structure

dev_apis

docs

ff

has subsuites containing architecture tests for the Functional APIs specification. This test suite is
a set of C-based directed tests, each of which verifies the implementation against a test scenario
that is described by the PSA Functional APIs specification. These tests are abstracted from the
underlying hardware platform by the VAL.

contains the test suite documentation.

has subsuites containing architecture tests for PSA-FF specification. This test suite is a set of C-
based directed tests, each of which verifies the implementation against a test scenario that is
described by the PSA-FF specifications. These tests are abstracted from the underlying
hardware platform by the VAL.

platform

tools

val

contains files to form the PAL. PAL is the closest to hardware and is aware of the underlying
hardware details. Since this layer interacts with hardware, it must be ported or tailored to
specific hardware required for system components present in a platform. This layer is also
responsible for presenting a consistent interface to the VAL required for the tests.

contains makefiles and scripts that are used to generate test binaries.

contains subdirectories for the VAL libraries. This layer provides a uniform and consistent view
of the available test infrastructure to the tests in the test suite. The VAL makes appropriate calls
to the PAL to achieve this functionality. This layer is not required to be ported when the
underlying hardware changes.

CMakelLists.txt

contains information about CMake build support.

README.md

README file for PSA test suite.

101447_0101_G_en

Copyright © 2018-2020 Arm Limited or its affiliates. All rights 1-15
reserved.
Non-Confidential

1 Introduction
1.7 Feedback, contributions, and support

1.7 Feedback, contributions, and support
For feedback, use the GitHub Issue Tracker that is associated with this repository.
For support, send an email to support-psa-arch-tests@arm.com with the details.
Arm licensees can contact Arm directly through their partner managers.

Arm welcomes code contributions through GitHub pull requests. See GitHub documentation on how to
raise pull requests.

101447_0101_G_en Copyright © 2018-2020 Arm Limited or its affiliates. All rights 1-16
reserved.
Non-Confidential

mailto:support-psa-arch-tests@arm.com

Chapter 2
Validation methodology

This chapter describes the validation methodology that is used for the test suite.

It contains the following sections:

o 2.1 Test layering details on page 2-18.

o 2.2 lest suite organization on page 2-20.

o 2.3 Test execution flow on page 2-23.

o 2.4 Integrating the test suite with the SUT on page 2-26.
o 2.5 Test dispatcher on page 2-28.

* 2.6 Analyzing test run results on page 2-29.

101447_0101_G_en Copyright © 2018-2020 Arm Limited or its affiliates. All rights
reserved.
Non-Confidential

2 Validation methodology
2.1 Test layering details

21 Test layering details

PSA tests are self-checking and portable C-based tests with directed stimulus. These tests use the layered
software stack approach to enable porting across different test platforms.

The constituents of the layered stack are:

* Tests
* Secure partitions
« VAL
« PAL

The layered software stack approach is illustrated in the following figure.

Test suite boundary

Tests
(Crypto/Storage/Attestation/IPC) Tests
Partitions
(For IPC tests
NS Validation Abstraction Layer only)
(VAL_NS)

VAL S

NS Platform Abstraction Layer
(PAL_NS) PAL S

System on Chip (SoC)

. . From Arm

. Defined by Arm and to be ported by the partner
. Platform-specific Software
. Hardware

Figure 2-1 Layered software stack

The following table describes the constituents of the layered stack.

101447_0101_G_en Copyright © 2018-2020 Arm Limited or its affiliates. All rights 2-18
reserved.
Non-Confidential

2 Validation methodology
2.1 Test layering details

Table 2-1 Layered software stack components

Layer Description
Tests A set of C-based directed tests, each of which verifies the implementation against a test scenario that is described by the
PSA specification.

These tests include checks related to PSA-FF and Functional APIs, and are expected to be run in Non-secure. PSA-FF
tests may further use IPC calls to communicate test suite-defined Secure partition to cover the appropriate test scenario.

These tests are abstracted from the underlying hardware platform by the VAL. This implies that porting a test for a
specific target platform is not required.

Secure PSA-FF test suite defines three Secure partitions:

partitions * Driver partition provides driver-related services such as print API to the PSA test suite Non-secure code and to the
other partitions.

* Client partition drives the Secure client test functions for the IPC tests.

» Server partition drives the Secure server test functions for the IPC tests.

These Secure partitions must be integrated into your Secure software containing SPM. They are valid only for IPC tests.
Functional APIs tests are not required to use these partitions.

Secure partition-related manifest files are available in the platform/manifests/ directory.

VAL This layer provides a uniform and consistent view of the available test infrastructure to the tests in the test pool, by
making appropriate calls to the PAL. It is designed such that it can be used both from Secure and Non-secure sides.

This layer does not require porting when the underlying hardware changes.

PAL This layer is the closest to the hardware and is aware of the platform details. It is responsible for presenting the hardware
through a consistent interface to VAL. This layer must be ported to the specific hardware present in the platform. The
PAL is designed such that it can be used from both Secure and Non-secure sides.

101447_0101_G_en Copyright © 2018-2020 Arm Limited or its affiliates. All rights 2-19
reserved.
Non-Confidential

2 Validation methodology
2.2 Test suite organization

2.2 Test suite organization

The directory structures of PSA-FF and Functional APIs test suites are described in this section.

PSA-FF test suite

The following figure shows the contents of the directories, subdirectories, and files in the PSA-FF test

suite.
ff
——1ipc
| test_i[x]
test.cmake
test_entry_i[x].c
test_i[x].c
test_i[x].h
test_supp_i[x].c
—test_1[x]
test.cmake
test_entry_1[x].c
test_T[x].c
test_1[x].h
test_supp_1[x].c
—testsuite.db
——partition
——common
L driver_partition.c
L__ipc
client_partition.c
client_partition.h
server_partition.c
server_partition.h
L— README .md
Figure 2-2 PSA-FF test suite directory structure
Table 2-2 Directory content
Directory Content
ipc Holds IPC tests.
test_[y][x] Test directory containing IPC test related files. Here, y is:
i for IPC tests.
1 for lifecycle tests.
test.cmake Helps to identify the test files that must be compiled to generate the test binaries.
test_entry_i[x].c Holds the test entry point in NSPE and executes test functions from NSPE. For IPC tests, it can
execute the same test functions from SPE, based on the test requirement.
test_[y][x].cand test_[y] |Hold client test functions.
[x].h
test_supp_[y][x].c Holds server test functions.
101447_0101_G_en Copyright © 2018-2020 Arm Limited or its affiliates. All rights 2-20

reserved.
Non-Confidential

2 Validation methodology
2.2 Test suite organization

Table 2-2 Directory content (continued)

Directory Content

testsuite.db A database file representing tests to be compiled and run as part of specific suite. This provides

flexibility to run specific tests individually by commenting out the other tests.

partition Contains partition files that provide different driver services to the tests and the dispatcher logic
to dispatch specific client or server test functions.

README . md This file contains information for building the PSA-FF test suite.

Functional APIs test suite

The following table shows the contents of the directories, subdirectories, and files in the Functional APIs

test suite.

dev_apis

—crypto

—test_c[x]

test.cmake

test_c[x].c

test_c[x].h
test_entry_c[x].c

L —testsuite.db

—initial_attestation
—internal_trusted_storage
——protected_storage
—README . md

Figure 2-3 Functional APlIs test suite directory structure

Table 2-3 Functional APls directory contents

Directory or file

Content

crypto

Holds Crypto tests.

test_[x][y]

Test directory containing test-related files.
[x] can be:

» ¢ for Crypto tests

* a for Initial Attestation

* p for Protected Storage

» s for Internal Trusted Storage

[y] is the test number.

test.cmake

Helps to identify the test files that must be compiled to generate the test binaries.

test_[x][y].cand test_[x][y].h

Hold the actual test functions.

test_entry_c[x].c

Holds the test entry point in NSPE and executes test functions from NSPE.

testsuite.db

A database file representing tests to be compiled and run as part of specific suite. This
provides flexibility to run specific tests individually by commenting out the other tests.

initial_attestation

Holds Initial Attestation tests.

internal_trusted_storage

Holds Internal Trusted Storage tests.

101447_0101_G_en Copyright © 2018-2020 Arm Limited or its affiliates. All rights 2-21

reserved.
Non-Confidential

2 Validation methodology
2.2 Test suite organization

Table 2-3 Functional APlIs directory contents (continued)

Directory or file Content
protected_storage Holds Protected Storage tests.
README . md This file contains information for building the Functional APIs test suite.
101447_0101_G_en Copyright © 2018-2020 Arm Limited or its affiliates. All rights 2-22

reserved.
Non-Confidential

2 Validation methodology
2.3 Test execution flow

2.3 Test execution flow

This section provides details of the test execution flows for PSA-FF tests and Functional APIs tests.

PSA-FF tests

The test compilation tool generates the NPSE and SPE archives for IPC tests. For details about IPC test
archives, see 2.4 Integrating the test suite with the SUT on page 2-26. You must integrate test suite SPE
archives with your Secure software stack containing the SPM, such that it gets access to PSA-defined
client APIs and Secure partition APIs. The NSPE libraries generated by the test suite must be integrated
with the NSPE OS such that test suite NSPE code gets access to the PSA-defined client APIs.

Then the System Under Test (SUT) boots to an environment that enables the test functionality. This
implies that the SPM is initialized, and PSA-FF partitions are ready to accept requests.

On the Non-secure side, the SUT boot software gives control to the tests entry point (val_entry symbol)
as an application entry point in Non-secure privileged mode.

The PSA tests query the VAL layer to get the necessary information to run the tests. This information can
include memory maps, interrupt maps, and hardware controller maps.

Based on the test scenario, the test and partition communicate with each other using IPC APIs that are
defined in the specification, and report the test results using VAL print API (in turn PAL API ported to
the specific platform). Each IPC test scenario is driven using dedicated client-server tests functions. The
client functions are available in test_ix.c and are suffixed with client_test_ label. Based on test
needs, client functions are executed either in NSPE or SPE or both. Server functions are available in
test_supp_ix.c and are suffixed with server_test label. They are always executed in SPE.

All the tests are executed sequentially. The dispatcher in the VAL queries the next test on the completion
of the present test. The dispatcher also makes VAL (and in turn PAL) calls to save and reports each of the
test results. For details about the dispatcher, see 2.5 Test dispatcher on page 2-28.

101447_0101_G_en Copyright © 2018-2020 Arm Limited or its affiliates. All rights 2-23
reserved.
Non-Confidential

2 Validation methodology
2.3 Test execution flow

Non-secure domain

Secure domain Application SW/OS boot

(" secureswios \1 |
(SPM) boat)

Launch Compliance tests
as an Application

Init Compliance tests
partitiong

Launch client test function

Test check

Report Server status to test [ra— Collect status

and jump to

next check if
passed

Lasttest 7 —

Report log

Figure 2-4 Test execution flow for PSA-FF IPC tests

Functional APlIs tests

The test compilation tool generates the NPSE archives for Functional tests as described in the
2.4 Integrating the test suite with the SUT on page 2-26 section.

You must integrate the test suite NSPE archives with your Non-secure software stack such that it gets
access to PSA defined Functional APIs. The SUT then boots to an environment that enables the test
functionality. The SUT boot software gives control to the test entry point (val_entry symbol) as an
application entry point in the Non-secure privileged mode.

The tests query the VAL to get necessary information to run the tests. This information can include
memory maps, interrupt maps, and hardware controller maps. Based on the test scenario, the test calls
Functional APIs and reports the test results using the VAL print API (in turn PAL API ported to the
specific platform).

All the tests are executed sequentially. The dispatcher in the VAL queries the next test on the completion
of the present test. For information about the dispatcher, see 2.5 Test dispatcher on page 2-28.

101447_0101_G_en Copyright © 2018-2020 Arm Limited or its affiliates. All rights 2-24
reserved.
Non-Confidential

2 Validation methodology
2.3 Test execution flow

Secure domain Non-secure domain
o~

™

I/ Secure SWI0S Application SW/0S boot
\ (SPM) boot

oy

Start test #ox

Test check

Last check ?

Report log

Figure 2-5 Test execution flow for Functional APIs tests

101447_0101_G_en Copyright © 2018-2020 Arm Limited or its affiliates. All rights 2-25
reserved.
Non-Confidential

2 Validation methodology
2.4 Integrating the test suite with the SUT

24 Integrating the test suite with the SUT

The test compilation flow creates the following libraries that you must integrate with your SUT software.

Test framework
The test compilation flow creates two archive files that contain code for the test framework
(VAL and PAL APIs), and the test dispatcher logic that must be available in the main
memory and executed as an application in NSPE. Link these archives with the NS OS library
to generate an NSPE binary.
— <BUILD_PATH>/BUILD/val/val_nspe.a
— <BUILD_PATH>/BUILD/platform/pal_nspe.a

Combined tests archive
The test compilation flow generates a combined test archive by combining all the Non-
secure test objects for Non-secure tests. The generated archive is placed at <BUILD_PATH>/
<top_level_suite>/<suite>/test_combine.a. Integrate this archive library with the test
framework libraries and NS OS library to generate an NSPE binary. The dispatcher function
within the VAL calls each test entry function one after another, to run the Non-secure tests.

Test suite Secure partitions
Along with test framework and combined tests libraries, the IPC tests require the SPE
binaries. The test suite compilation flow generates the following Secure partition archives
for IPC tests. You must integrate these test suite partition archives with your SPE code such
that it follows the level of isolation rules defined in the PSA-FF specification. Load the
resultant SPE binary into the Secure main memory.

Table 2-4 Libraries and protection domains

Test suite partition libraries Protection domain

<build_dir>/BUILD/partition/driver_partition.a|PSA-RoT

<build_dir>/BUILD/partition/client_partition.a | Application-RoT

<build_dir>/BUILD/partition/server_partition.a | Application-RoT

Note

The client and server test functions of all the tests are compiled as part of client_partition and
server_partition respectively. All these functions are loaded into the Secure main memory and are
available at same time.

If an SUT has main memory size constraints, you can compile and run the tests in a bulk of test sets,
for example, 10 tests at time. To do this, remove the test references other than the ones required from
the respective suite specific testsuite.db file. Repeat this process for all the test sets.

101447_0101_G_en

Copyright © 2018-2020 Arm Limited or its affiliates. All rights 2-26
reserved.
Non-Confidential

2 Validation methodology
2.4 Integrating the test suite with the SUT

Non-secure SRAM Secure SRAM

|

|

|

|

:

|

Test framework Combined test :

(Non-secure :

SRAM) |

|

|

VAL :
: Partition #1

| 1

|

Test #1 |

PAL |

|

|

|

|

|

|

|

|

|

|

Figure 2-6 Loading test binaries

101447_0101_G_en Copyright © 2018-2020 Arm Limited or its affiliates. All rights 2-27
reserved.
Non-Confidential

2 Validation methodology
2.5 Test dispatcher

2.5 Test dispatcher

The dispatcher has certain responsibilities.

Each test must present the test_entry function address to the dispatcher. To this function, the dispatcher
passes a pointer to a structure containing the function pointers to all the available VAL functions. These
functions make the appropriate VAL function call.

The flow of the dispatcher is as follows:

Query the test_entry function address.

Call the test_entry function of the test and execute the tests.
Wait for completion of the test.

Print and save the result of the test.

Repeat steps 1-4 until the end of the last test.

Report the test suite result summary.

SNk W=

To facilitate test reporting and management of observing aspects, the PSA-FF system contains UART for
printing the status of tests. If a display console is not available, the PAL can be updated to make the test
results available to the external world through other means.

Information about the environment in which a host test harness is running, is beyond the scope of this
document. However, it is presumed that the SUT is communicating with the host using Serial port,
JTAG, Wi-Fi, USB, or any other means that allow for access to the external world.

101447_0101_G_en Copyright © 2018-2020 Arm Limited or its affiliates. All rights 2-28
reserved.
Non-Confidential

2 Validation methodology
2.6 Analyzing test run results

2.6 Analyzing test run results
Each test follows a uniform test structure that is defined by VAL.

Performing any test initializations.
Dispatching the test functions.
Waiting for test completion.
Performing the test exit.

bl ol e

The test may pass, fail, skip, or be in an error state. For example, if test times out or the system hangs, it
means that something went wrong and the test framework was unable to determine what happened. In
this case, you may have to check the logs. If a test fails or skips, you may see extra print messages to
determine the cause.

The test suite summary is displayed at the end. An example snapshot of the test suite summary is shown
in the following figure.

k. POO Architecture Test Suite - Version 0,7 ks

Running,, Crypto Suite

TEST: 201 | DESCRIPTION: Testing psa_crypto_init API: Basic
TEST RESULT: PASSED

TEST: 202 | DESCRIPTIOMN: Testing crypto key management APIs
Failed at Checkpoint: 3
Actuals 1
Expected: 0

TEST RESULT: FAILED (Error Code=0x1)

seedededog

HkERRRRRRERE Chynto Suite Report ks
TOTAL TESTS
TOTAL PASSED
TOTAL SIM ERROR
TOTAL FARILED
TOTAL SKIPPED

B4 BE AE BE FE
O D D

Eﬂtering standby, .

Figure 2-7 Test suite summary

101447_0101_G_en Copyright © 2018-2020 Arm Limited or its affiliates. All rights 2-29
reserved.
Non-Confidential

2 Validation methodology
2.6 Analyzing test run results

Debugging of a failing test

Since each test is organized with a logical set of self-checking code, if a failure occurs,
searching for the relevant self-checking point is a useful point to start debugging.

Consider the above snippet of a failing test on the display console.

Here are some debugging points to consider.

If the default prints do not give enough information, you can recompile and rerun the test
binaries with high print verbosity level. See the PSA test suite build README to understand
how test verbosity can be changed.

In the above example, test 2 is failing. This test is located at dev_apis/crypto/test_cee2/

Since the failure message is shown as checkpoint 3, go to this print point in the test source

code and debug the failing cause. The checkpoints are reserved in the test suite as shown

below:

— Checkpoints 1-100 are reserved for Functional APIs tests. Checkpoints print messages
with numbers which can come from test_[x][y].c file. Here, [x] is reserved for
Functional API tests and [y] is the test number.

— Checkpoints 101-200 are reserved for client test functions of IPC tests and prints related
to these numbers can come from test_i[y].c

— Checkpoints 201-300 are reserved for server test functions of IPC tests and prints related
to these numbers can come from test_supp_i[y].c

Status of the failure code (0x1 in this example) is mapped with a structure val_status_t

that is available at val/common/val.h. Look for enum that is dedicated to this number to see

the status in verbatim form.

101447_0101_G_en

Copyright © 2018-2020 Arm Limited or its affiliates. All rights 2-30
reserved.
Non-Confidential

Appendix A
Revisions

This appendix describes the technical changes between released issues of this book.

It contains the following section:
* A.l Revisions on page Appx-A-32.

101447_0101_G_en Copyright © 2018-2020 Arm Limited or its affiliates. All rights Appx-A-31
reserved.
Non-Confidential

A1 Revisions

A Revisions
A.1 Revisions

Table A-1 Issue A

Change Location

This is the first revision of the document. | -

Table A-2 Differences between Issue A and Issue B

Change

Location

Updated the path to secure manifest files.

See 2.1 Test layering details on page 2-18

Updated the test execution flow and SPE binary information.

See the following sections:

o 2.3 Test execution flow on page 2-23
o 2.4 Integrating the test suite with the SUT on page 2-26

Table A-3 Differences between Issue B and Issue C

Change

Location

Added information about Functional APIs.

See the following sections:

* 1.3 Platform Security Architecture APIs on page 1-11
* 1.4 Test suite on page 1-13

* 1.6 Directory structure on page 1-15

o 2.2 Test suite organization on page 2-20

o 2.3 Test execution flow on page 2-23

Added ITS and PS information.

See the following sections:
e 1.2 Abbreviations on page 1-10
e].4 Test suite on page 1-13

Moved information about the test dispatcher to a new section.

See 2.5 Test dispatcher on page 2-28

Updated the test suite summary and debugging details.

See 2.6 Analyzing test run results on page 2-29

Table A-4 Differences between Issue C and Issue D

Change

Location

Added PSA RoT sub category.

See 1.4 Test suite on page 1-13.

Updated details about the compliance sign-off process.

See Compliance sign-off process.

Added lifecycle test directory in the PSA-FF directory structure.

See 2.2 Test suite organization on page 2-20.

Updated the section with details about integrating the test suite with the
SUT.

See 2.4 Integrating the test suite with the SUT on page 2-26.

Table A-5 Differences between Issue D and Issue E

Change

Location

Added CMakeLists.txt to the directory structure.

See 1.6 Directory structure on page 1-15.

Updated source.mk and test_entry.c to test.cmake and
test_entry_i[x].c respectively.

See 2.2 Test suite organization on page 2-20.

Updated the information about PSA-FF and Functional APIs test
execution.

See 2.3 Test execution flow on page 2-23.

101447_0101_G_en
reserved.

Copyright © 2018-2020 Arm Limited or its affiliates. All rights

Appx-A-32

Non-Confidential

A Revisions
A.1 Revisions

Table A-5 Differences between Issue D and Issue E (continued)

Change Location

» Updated the combined test archive section. See 2.4 Integrating the test suite with the SUT on page 2-26.
» Updated the image for loading test binaries.

Updated the dispatcher flow. See 2.5 Test dispatcher on page 2-28.

Table A-6 Differences between Issue E and Issue F

Change Location

Removed the compliance sign-off process section from Introduction. | See Chapter 1 Introduction on page 1-8.

Updated the description for Secure partitions. See 2.1 Test layering details on page 2-18.

Table A-7 Differences between Issue F and Issue G

Change Location

No changes. | -

101447_0101_G_en Copyright © 2018-2020 Arm Limited or its affiliates. All rights Appx-A-33
reserved.
Non-Confidential

	Arm® Platform Security Architecture APIs Test Suite Validation Methodology
	Table of Contents
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	1 : Introduction
	1.1 : Scope of the document
	1.2 : Abbreviations
	1.3 : Platform Security Architecture APIs
	1.3.1 : PSA Firmware Framework
	1.3.2 : PSA Functional APIs

	1.4 : Test suite
	1.5 : Test suite components
	1.6 : Directory structure
	1.7 : Feedback, contributions, and support

	2 : Validation methodology
	2.1 : Test layering details
	2.2 : Test suite organization
	2.3 : Test execution flow
	2.4 : Integrating the test suite with the SUT
	2.5 : Test dispatcher
	2.6 : Analyzing test run results

	A : Revisions
	A.1 : Revisions

