
1 Overview
The NXP MCUXpresso software and tools offer comprehensive development
solutions designed to optimize, ease and help accelerate embedded system
development of applications based on general purpose, crossover and
Bluetooth™-enabled MCUs from NXP. The MCUXpresso SDK includes
a flexible set of peripheral drivers designed to speed up and simplify
development of embedded applications. Along with the peripheral drivers, the
MCUXpresso SDK provides an extensive and rich set of example applications
covering everything from basic peripheral use case examples to full demo
applications. The MCUXpresso SDK contains optional RTOS integrations such
as FreeRTOS and Azure RTOS, a USB host and device stack, and various
other middleware to support rapid development.

For supported toolchain versions, see MCUXpresso SDK Release Notes
(document MCUXSDKRN).

For more details about MCUXpresso SDK, see MCUXpresso Software
Development Kit (SDK).

Application Code

Stacks and Middleware
(Connectivity, Security,
DMA, Filesystem, etc,)

Board Support

Peripheral DriversReal Time Kernel
(FreeRTOS)

CMSIS-CORE and CMSIS-DSP
(Device Header Files: Core Access Functions, Intrinsics, Peripheral & Interrupt Definitions, DSP Library)

Microcontroller Hardware

Figure 1. MCUXpresso SDK layers

2 MCUXpresso SDK board support package folders
MCUXpresso SDK board support package provides example applications for NXP development and evaluation boards for Arm®

Cortex®-M cores including Freedom, Tower System, and LPCXpresso boards. Board support packages are found inside the top

Contents

1 Overview... 1
2 MCUXpresso SDK board support

package folders...............................1
3 Run a demo using MCUXpresso IDE

.. 3
4 Run a demo application using IAR21
5 Run a demo using Keil® MDK/μVision

.. 26
6 Run a demo using Arm® GCC.......30
7 MCUXpresso Config Tools............42
8 MCUXpresso IDE New Project

Wizard... 42
9 How to determine com port........... 43
10 How to define IRQ handler in CPP

files..44
11 Default debug interfaces............... 45
12 Updating debugger firmware.........47
13 Revision history.............................48

MCUXSDKLPC551XGSUG
Getting Started with MCUXpresso SDK for LPCXpresso55S36
Rev. 0 — 31 August 2021 User Guide

http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK
http://www.nxp.com/products/software-and-tools/run-time-software/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK

level boards folder and each supported board has its own folder (an MCUXpresso SDK package can support multiple boards).
Within each <board_name> folder, there are various sub-folders to classify the type of examples it contain. These include (but are
not limited to):

• cmsis_driver_examples: Simple applications intended to show how to use CMSIS drivers.

• demo_apps: Full-featured applications that highlight key functionality and use cases of the target MCU. These applications
typically use multiple MCU peripherals and may leverage stacks and middleware.

• driver_examples: Simple applications that show how to use the MCUXpresso SDK’s peripheral drivers for a single use
case. These applications typically only use a single peripheral but there are cases where multiple peripherals are used (for
example, SPI conversion using DMA).

• emwin_examples: Applications that use the emWin GUI widgets.

• rtos_examples: Basic FreeRTOSTM OS examples that show the use of various RTOS objects (semaphores, queues, and
so on) and interfaces with the MCUXpresso SDK’s RTOS drivers

• usb_examples: Applications that use the USB host/device/OTG stack.

2.1 Example application structure

This section describes how the various types of example applications interact with the other components in the MCUXpresso SDK.
To get a comprehensive understanding of all MCUXpresso SDK components and folder structure, see MCUXpresso SDK API
Reference Manual.

Each <board_name> folder in the boards directory contains a comprehensive set of examples that are relevant to that specific
piece of hardware. Although we use the hello_world example (part of the demo_apps folder), the same general rules apply to any
type of example in the <board_name> folder.

In the hello_world application folder you see the following contents:

Figure 2. Application folder structure

All files in the application folder are specific to that example, so it is easy to copy and paste an existing example to start developing
a custom application based on a project provided in the MCUXpresso SDK.

NXP Semiconductors
MCUXpresso SDK board support package folders

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 2 / 49

2.2 Locating example application source files

When opening an example application in any of the supported IDEs, a variety of source files are referenced. The MCUXpresso
SDK devices folder is the central component to all example applications. It means the examples reference the same source files
and, if one of these files is modified, it could potentially impact the behavior of other examples.

The main areas of the MCUXpresso SDK tree used in all example applications are:

• devices/<device_name>: The device’s CMSIS header file, MCUXpresso SDK feature file and a few other files

• devices/<device_name>/cmsis_drivers: All the CMSIS drivers for your specific MCU

• devices/<device_name>/drivers: All of the peripheral drivers for your specific MCU

• devices/<device_name>/<tool_name>: Toolchain-specific startup code, including vector table definitions

• devices/<device_name>/utilities: Items such as the debug console that are used by many of the example
applications

• devices/<devices_name>/project: Project template used in CMSIS PACK new project creation

For examples containing middleware/stacks or an RTOS, there are references to the appropriate source code. Middleware source
files are located in the middleware folder and RTOSes are in the rtos folder. The core files of each of these are shared, so
modifying one could have potential impacts on other projects that depend on that file.

3 Run a demo using MCUXpresso IDE

Ensure that the MCUXpresso IDE toolchain is included when generating the MCUXpresso SDK package.
 NOTE

This section describes the steps required to configure MCUXpresso IDE to build, run, and debug example applications. The
hello_world demo application targeted for the LPCXpresso55S36 hardware platform is used as an example, though these steps
can be applied to any example application in the MCUXpresso SDK.

3.1 Select the workspace location
Every time MCUXpresso IDE launches, it prompts the user to select a workspace location. MCUXpresso IDE is built on top of
Eclipse which uses workspace to store information about its current configuration, and in some use cases, source files for the
projects are in the workspace. The location of the workspace can be anywhere, but it is recommended that the workspace be
located outside of the MCUXpresso SDK tree.

3.2 Build an example application

To build an example application, follow these steps.

1. Drag and drop the SDK zip file into the Installed SDKs view to install an SDK. In the window that appears, click OK and wait
until the import has finished.

Figure 3. Install an SDK

2. On the Quickstart Panel, click Import SDK example(s)….

NXP Semiconductors
Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 3 / 49

Figure 4. Import an SDK example

3. In the window that appears, expand the LPC55xx folder and select LPCX55S36 . Then, select lpcxpresso55s36 and
click Next.

NXP Semiconductors
Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 4 / 49

Figure 5. Select LPCXpresso55S36 board

4. Expand the demo_apps folder and select hello_world . Then, click Next .

NXP Semiconductors
Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 5 / 49

Figure 6. Select hello_world

5. Ensure Redlib: Use floating point version of printf is selected if the example prints floating point numbers on the terminal for
demo applications such as adc_basic, adc_burst, adc_dma, and adc_interrupt. Otherwise, it is not necessary to select
this option. Then, click Finish.

NXP Semiconductors
Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 6 / 49

Figure 7. Select Use floating point version of printf

3.3 Run an example application
For more information on debug probe support in the MCUXpresso IDE, see community.nxp.com.

To download and run the application, perform the following steps:

1. See the table in Default debug interfaces to determine the debug interface that comes loaded on your specific hardware
platform.

• For boards with a P&E Micro interface, see PE micro to download and install the P&E Micro Hardware Interface
Drivers package.

2. Connect the development platform to your PC via a USB cable.

NXP Semiconductors
Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 7 / 49

https://community.nxp.com/message/630901
http://www.pemicro.com/support/downloads_find.cfm

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port number (to
determine the COM port number, see How to determine com port.

. Configure the terminal with these settings:

a. 115200 or 9600 baud rate, depending on your board (reference BOARD_DEBUG_UART_BAUDRATE variable in
board.h file)

b. No parity

c. 8 data bits

d. 1 stop bit

Figure 8. Terminal (PuTTY) configurations

4. On the Quickstart Panel, click on Debug lpcxpresso55s36_hello_world [Debug] to launch the debug session.

NXP Semiconductors
Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 8 / 49

Figure 9. Debug hello_world case

5. The first time you debug a project, the Debug Emulator Selection dialog is displayed, showing all supported probes that are
attached to your computer. Select the probe through which you want to debug and click OK. (For any future debug sessions,
the stored probe selection is automatically used, unless the probe cannot be found.)

NXP Semiconductors
Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 9 / 49

Figure 10. Attached Probes: debug emulator selection

6. The application is downloaded to the target and automatically runs to main().

NXP Semiconductors
Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 10 / 49

Figure 11. Stop at main() when running debugging

7. Start the application by clicking Resume.

Figure 12. Resume button

The hello_world application is now running and a banner is displayed on the terminal. If this is not the case, check your terminal
settings and connections.

NXP Semiconductors
Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 11 / 49

Figure 13. Text display of the hello_world demo

3.4 Build a TrustZone example application

This section describes the steps required to configure MCUXpresso IDE to build, run, and debug TrustZone example applications.
The trustzone version of the hello_world example application targeted for the LPCXpresso55S36 hardware platform is used as
an example, though these steps can be applied to any TrustZone example application in the MCUXpresso SDK.

1. TrustZone examples are imported into the workspace in a similar way as single core applications. When the SDK zip
package for LPCXpresso55S36 is installed and available in the Installed SDKs view, click Import SDK example(s)…
on the Quickstart Panel. In the window that appears, expand the LPC55xx folder and select LPCXpresso55S36. Then,
select lpcxpresso55s36 and click Next.

NXP Semiconductors
Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 12 / 49

Figure 14. Select the LPCXpresso55S36 board

2. Expand the trustzone_examples/ folder and select hello_world_s. Because TrustZone examples are linked together,
the non-secure project is automatically imported with the secure project, and there is no need to select it explicitly. Then
select UART as SDK Debug Console. Then, click Finish.

NXP Semiconductors
Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 13 / 49

Figure 15. Select the hello_world TrustZone example

3. Now, two projects should be imported into the workspace. To start building the TrustZone application, highlight
the lpcxpresso55s36_hello_world_s project (TrustZone master project) in the Project Explorer. Then, choose the
appropriate build target, Debug or Release, by clicking the downward facing arrow next to the hammer icon, as shown
in Figure 16. For this example, select the Debug target.

NXP Semiconductors
Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 14 / 49

Figure 16. Selection of the build target in MCUXpresso IDE

The project starts building after the build target is selected. It is requested to build the application for the secure project
first, because the non-secure project needs to know the secure project since CMSE library when running the linker. It is not
possible to finish the non-secure project linker when the secure project since CMSE library is not ready.

When the Release build is requested, it is necessary to change the build configuration of both the secure and
non-secure application projects first. To do this, select both projects in the Project Explorer view by clicking to
select the first project, then using shift-click or control-click to select the second project. Right click in the Project
Explorer view to display the context-sensitive menu and select Build Configurations > Set Active >Release. This
is also possible by using the menu item of Project > Build Configuration >Set Active >Release. After switching to
the Release build configuration. Build the application for the secure project first.

 NOTE

NXP Semiconductors
Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 15 / 49

Figure 17. Switching TrustZone projects into the Release build configuration

3.5 Run a TrustZone example application

To download and run the application perform all steps as described in Section 3.3, "Run an example application". These steps
are common for single core, dual-core, and TrustZone applications, ensuring both sides of the TrustZone application are properly
loaded and started secure application. However, there is one additional dialogue that is specific to TrustZone examples. See the
following figures as reference.

NXP Semiconductors
Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 16 / 49

Figure 18. Load lpcxpresso55s36_hello_world_ns case

NXP Semiconductors
Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 17 / 49

Figure 19. Attached Probes: debug emulator selection

After loading the non-secure application, press RESET on board to release the device connect. Then, highlight the
lpcxpresso55s36_trustzone_examples_hello_world_s project (TrustZone master project) in the Project Explorer. In the
Quickstart Panel, click lpcxpresso55s36_trustzone_examples_hello_world_s [Debug] to launch the second debug session.

NXP Semiconductors
Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 18 / 49

Figure 20. Debug lpcxpresso55s36_hello_world_s case

NXP Semiconductors
Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 19 / 49

Figure 21. Debug the hello_world_s project

Start the application by clicking Resume. The hello_world TrustZone application then starts running, and the secure application
starts the non-secure application during run time.

NXP Semiconductors
Run a demo using MCUXpresso IDE

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 20 / 49

Figure 22. Run Hello World trustzone example and get the message

4 Run a demo application using IAR
This section describes the steps required to build, run, and debug example applications provided in the MCUXpresso SDK.

IAR Embedded Workbench for Arm version 8.32.3 is used in the following example, and the IAR toolchain should
correspond to the latest supported version, as described in the MCUXpresso SDK Release Notes.

 NOTE

4.1 Build an example application

Do the following steps to build the hello_world example application.

1. Open the desired demo application workspace. Most example application workspace files can be located using the
following path:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/iar

Using the LPCXpresso55S36 Freedom hardware platform as an example, the hello_world workspace is located in:

<install_dir>/boards/LPCXpresso55S36/demo_apps/hello_world/iar/hello_world.eww

Other example applications may have additional folders in their path.

NXP Semiconductors
Run a demo application using IAR

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 21 / 49

2. Select the desired build target from the drop-down menu.

For this example, select hello_world – debug.

Figure 23. Demo build target selection

3. To build the demo application, click Make, highlighted in red in Figure 24.

Figure 24. Build the demo application

4. The build completes without errors.

4.2 Run an example application

To download and run the application, perform these steps:

1. See the table in Default debug interfaces to determine the debug interface that comes loaded on your specific hardware
platform.

• For boards with CMSIS-DAP/mbed/DAPLink interfaces, visit developer.mbed.org/handbook/Windows-serial-
configuration and follow the instructions to install the Windows® operating system serial driver. If running on Linux®

OS, this step is not required.

• For boards with P&E Micro interfaces, visit www.pemicro.com/support/downloads_find.cfm and download the P&E
Micro Hardware Interface Drivers package.

2. Connect the development platform to your PC via USB cable.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug COM port (to determine
the COM port number, see How to determine com port. Configure the terminal with the LPCXpresso55S36 settings:

a. 115200 or 9600 baud rate, depending on your board (reference BOARD_DEBUG_UART_BAUDRATE variable in the
board.h file)

NXP Semiconductors
Run a demo application using IAR

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 22 / 49

http://developer.mbed.org/handbook/Windows-serial-configuration
http://developer.mbed.org/handbook/Windows-serial-configuration
http://www.pemicro.com/support/downloads_find.cfm

b. No parity

c. 8 data bits

d. 1 stop bit

Figure 25. Terminal (PuTTY) configuration

4. In IAR, click the Download and Debug button to download the application to the target.

Figure 26. Download and Debug button

5. The application is then downloaded to the target and automatically runs to the main() function.

NXP Semiconductors
Run a demo application using IAR

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 23 / 49

Figure 27. Stop at main() when running debugging

6. Run the code by clicking the Go button.

Figure 28. Go button

7. The hello_world application is now running and a banner is displayed on the terminal. If it does not appear, check your
terminal settings and connections.

Figure 29. Text display of the hello_world demo

4.3 Build a TrustZone example application

This section describes the particular steps that need to be done in order to build and run a TrustZone application. The demo
applications workspace files are located in this folder:

<install_dir>/boards/<board_name>/trustzone_examples/<application_name>/<core_type>/iar/
<application_name>_ns/iar

<install_dir>/boards/<board_name>/trustzone_examples/<application_name>/<core_type>/iar/
<application_name>_s/iar

NXP Semiconductors
Run a demo application using IAR

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 24 / 49

Begin with a simple TrustZone version of the Hello World application. The TrustZone Hello World IAR workspaces are located in
this folder:

<install_dir>/boards/lpcxpresso55s36/trustzone_examples/hello_world/cm33_core0/hello_world_ns/iar/
hello_world_ns.eww

<install_dir>/boards/lpcxpresso55s36/trustzone_examples/hello_world/cm33_core0/hello_world_s/iar/
hello_world_s.eww

<install_dir>/boards/lpcxpresso55s36/trustzone_examples/hello_world/cm33_core0/hello_world_s/iar/
hello_world.eww

This project hello_world.eww contains both secure and non-secure projects in one workspace and it allows the user to easily
transition from one project to another. Build both applications separately by clicking Make. It is requested to build the application
for the secure project first, because the non-secure project needs to know the secure project, since the CMSE library is running
the linker. It is not possible to finish the non-secure project linker with the secure project since CMSE library is not ready.

4.4 Run a TrustZone example application

The secure project is configured to download both secure and non-secure output files, so debugging can be fully managed from
the secure project. To download and run the TrustZone application, switch to the secure application project and perform steps 1 – 4
as described in Section 4.2, Run an example application. These steps are common for both single core, dual-core, and TrustZone
applications in IAR. After clicking Download and Debug, both the secure and non-secure image are loaded into the device flash
memory, and the secure application is executed. It stops at the Rest_Hander function.

Figure 30. Stop at Rest_Hander when running debugging

Run the code by clicking Go to start the application.

NXP Semiconductors
Run a demo application using IAR

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 25 / 49

Figure 31. Go button

The TrustZone hello_world application is now running and a banner is displayed on the terminal. If this is not true, check your
terminal settings and connections.

Figure 32. Text display of the trustzone hello_world application

5 Run a demo using Keil® MDK/μVision
This section describes the steps required to build, run, and debug example applications provided in the MCUXpresso SDK. The
hello_world demo application targeted for the LPCXpresso55S36 hardware platform is used as an example, although these
steps can be applied to any demo or example application in the MCUXpresso SDK.

5.1 Install CMSIS device pack

After the MDK tools are installed, Cortex® Microcontroller Software Interface Standard (CMSIS) device packs must be installed
to fully support the device from a debug perspective. These packs include things such as memory map information, register
definitions, and flash programming algorithms. Follow these steps to install the appropriate CMSIS pack.

1. Open the MDK IDE, which is called μVision. In the IDE, select the Pack Installer icon.

Figure 33. Launch the Pack Installer

2. After the installation finishes, close the Pack Installer window and return to the μVision IDE.

NXP Semiconductors
Run a demo using Keil® MDK/μVision

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 26 / 49

5.2 Build an example application

1. Open the desired example application workspace in:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/mdk

The workspace file is named as <demo_name>.uvmpw. For this specific example, the actual path is:

<install_dir>/boards/LPCXpresso55S36/demo_apps/hello_world/mdk/hello_world.uvmpw

2. To build the demo project, select Rebuild, highlighted in red.

Figure 34. Build the demo

3. The build completes without errors.

5.3 Run an example application

To download and run the application, perform these steps:

1. See the table in Default debug interfaces to determine the debug interface that comes loaded on your specific hardware
platform.

• For boards with CMSIS-DAP/mbed/DAPLink interfaces, visit developer.mbed.org/handbook/Windows-serial-
configuration and follow the instructions to install the Windows® operating system serial driver. If running on Linux®

OS, this step is not required.

• For boards with P&E Micro interfaces, visit www.pemicro.com/support/downloads_find.cfm and download the P&E
Micro Hardware Interface Drivers package.

• If using J-Link either a standalone debug pod or OpenSDA, install J-Link software (drivers and utilities) from https://
www.segger.com/downloads/jlink/.

• If using J-Link either a standalone debug pod or J-link firmware programmed into the on-board debug probe, install
the J-Link software (drivers and utilities) from https://www.segger.com/downloads/jlink/.

• For boards with the OSJTAG interface, install the driver from https://www.keil.com/download/.

2. Connect the development platform to your PC via USB cable.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug COM port (to determine
the COM port number, see How to determine com port. Configure the terminal with the LPCXpresso55S36 settings:

a. 115200 or 9600 baud rate, depending on your board (reference BOARD_DEBUG_UART_BAUDRATE variable in the
board.h file)

b. No parity

c. 8 data bits

d. 1 stop bit

NXP Semiconductors
Run a demo using Keil® MDK/μVision

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 27 / 49

http://developer.mbed.org/handbook/Windows-serial-configuration
http://developer.mbed.org/handbook/Windows-serial-configuration
http://www.pemicro.com/support/downloads_find.cfm
https://www.segger.com/downloads/jlink/
https://www.segger.com/downloads/jlink/
https://www.segger.com/downloads/jlink/
https://www.keil.com/download/

Figure 35. Terminal (PuTTY) configuration

4. In IAR, click the Download and Debug button to download the application to the target.

Figure 36. Download and Debug button

5. The application is then downloaded to the target and automatically runs to the main() function.

Figure 37. Stop at main() when running debugging

6. Run the code by clicking the Go button.

NXP Semiconductors
Run a demo using Keil® MDK/μVision

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 28 / 49

Figure 38. Go button

7. The hello_world application is now running and a banner is displayed on the terminal. If it does not appear, check your
terminal settings and connections.

Figure 39. Text display of the hello_world demo

5.4 Build a TrustZone example application

This section describes the particular steps that need to be done in order to build and run a TrustZone application. The demo
applications workspace files are located in this folder:

Begin with a simple TrustZone version of the Hello World application. The TrustZone Hello World Keil MSDK/μVision ®
workspaces are located in this folder:

<install_dir>/boards/lpcxpresso55s36/trustzone_examples/hello_world/
hello_world_ns/iar/hello_world_ns.eww

<install_dir>/boards/lpcxpresso55s36/trustzone_examples/hello_world/
hello_world_s/mdk/hello_world_s.uvmpw

<install_dir>/boards/lpcxpresso55s36/trustzone_examples/hello_world/hello_world_s/iar/hello_world.eww

This project hello_world.uvmpw contains both secure and non-secure projects in one workspace and it allows the user to easily
transition from one project to another.

Build both applications separately by clicking Rebuild. It is requested to build the application for the secure project first, because
the non-secure project needs to know the secure project since CMSE library is running the linker. It is not possible to finish the
non-secure project linker with the secure project because CMSE library is not ready.

5.5 Run a TrustZone example application

The secure project is configured to download both secure and non-secure output files so debugging can be fully managed from
the secure project.

To download and run the TrustZone application, switch to the secure application project and perform steps as described in Run a
TrustZone example application. These steps are common for single core, dual-core, and TrustZone applications in μVision. After
clicking Download and Debug, both the secure and non-secure image are loaded into the device flash memory, and the secure
application is executed. It stops at the function.

NXP Semiconductors
Run a demo using Keil® MDK/μVision

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 29 / 49

Figure 40. Stop at Rest_Hander when running debugging

Run the code by clicking Run to start the application.

The hello_world application is now running and a banner is displayed on the terminal. If this is not the case, check your terminal
settings and connections.

Figure 41. Text display of the trustzone hello_world application

6 Run a demo using Arm® GCC
This section describes the steps to configure the command line Arm® GCC tools to build, run, and debug demo applications
and necessary driver libraries provided in the MCUXpresso SDK. The hello_world demo application is targeted for the
LPCXpresso55S36 hardware platform which is used as an example.

Arm GCC version 7-2018-q2 is used as an example in this document. The latest GCC version for this package is as
described in the MCUXpresso SDK Release Notes for LPCXpresso55S36 (document MCUXSDKLPC553XRN).

 NOTE

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 30 / 49

6.1 Set up toolchain

This section contains the steps to install the necessary components required to build and run an MCUXpresso SDK demo
application with the Arm GCC toolchain, as supported by the MCUXpresso SDK. There are many ways to use Arm GCC tools,
but this example focuses on a Windows operating system environment.

6.1.1 Install GCC Arm Embedded tool chain

Download and run the installer from GNU Arm Embedded Toolchain. This is the actual toolset (in other words, compiler, linker, and
so on). The GCC toolchain should correspond to the latest supported version, as described in MCUXpresso SDK Release Notes.

6.1.2 Install MinGW (only required on Windows OS)

The Minimalist GNU for Windows (MinGW) development tools provide a set of tools that are not dependent on third-party
C-Runtime DLLs (such as Cygwin). The build environment used by the MCUXpresso SDK does not use the MinGW build tools,
but does leverage the base install of both MinGW and MSYS. MSYS provides a basic shell with a Unix-like interface and tools.

1. Download the latest MinGW mingw-get-setup installer from MinGW.

2. Run the installer. The recommended installation path is C:\MinGW, however, you may install to any location.

The installation path cannot contain any spaces.

 NOTE

3. Ensure that the mingw32-base and msys-base are selected under Basic Setup.

Figure 42. Set up MinGW and MSYS

4. In the Installation menu, click Apply Changes and follow the remaining instructions to complete the installation.

Figure 43. Complete MinGW and MSYS installation

5. Add the appropriate item to the Windows operating system path environment variable. It can be found under Control
Panel->System and Security->System->Advanced System Settings in the Environment Variables... section. The path is:

<mingw_install_dir>\bin

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 31 / 49

http://sourceforge.net/projects/mingw/files/Installer/

Assuming the default installation path, C:\MinGW, an example is shown below. If the path is not set correctly, the toolchain
will not work.

If you have C:\MinGW\msys\x.x\bin in your PATH variable (as required by Kinetis SDK 1.0.0), remove it to
ensure that the new GCC build system works correctly.

 NOTE

Figure 44. Add Path to systems environment

6.1.3 Add a new system environment variable for ARMGCC_DIR

Create a new system environment variable and name it as ARMGCC_DIR. The value of this variable should point to the Arm GCC
Embedded tool chain installation path. For this example, the path is:

C:\Program Files (x86)\GNU Tools Arm Embedded\8 2018-q4-major

See the installation folder of the GNU Arm GCC Embedded tools for the exact path name of your installation.

Short path should be used for path setting, you could convert the path to short path by running command for %I in (.) do echo
%~sI in above path.

Figure 45. Convert path to short path

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 32 / 49

Figure 46. Add ARMGCC_DIR system variable

6.1.4 Install CMake

1. Download CMake 3.0.x from www.cmake.org/cmake/resources/software.html.

2. Install CMake, ensuring that the option Add CMake to system PATH is selected when installing. The user chooses to select
whether it is installed into the PATH for all users or just the current user. In this example, it is installed for all users.

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 33 / 49

http://www.cmake.org/cmake/resources/software.html

Figure 47. Install CMake

3. Follow the remaining instructions of the installer.

4. You may need to reboot your system for the PATH changes to take effect.

5. Make sure sh.exe is not in the Environment Variable PATH. This is a limitation of mingw32-make.

6.2 Build an example application

To build an example application, follow these steps.

1. Open a GCC Arm Embedded tool chain command window. To launch the window, from the Windows operating system
Start menu, go to Programs >GNU Tools Arm Embedded <version> and select GCC Command Prompt.

Figure 48. Launch command prompt

2. Change the directory to the example application project directory which has a path similar to the following:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc

For this example, the exact path is:

<install_dir>/examples/lpcxpresso55s36/demo_apps/hello_world/armgcc

To change directories, use the cd command.

 NOTE

3. Type build_debug.bat on the command line or double click on build_debug.bat file in Windows Explorer to build it. The
output is as shown in Figure 49.

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 34 / 49

Figure 49. hello_world demo build successful

6.3 Run an example application

This section describes steps to run a demo application using J-Link GDB Server application.

To complete the set-up check if your board supports OpenSDA in , see Default debug interfaces.

If your board supports OpenSDA

• The OpenSDA interface on your board is pre-programmed with the J-Link OpenSDA firmware.

• For instructions on reprogramming the OpenSDA interface.

If your board does not support OpenSDA

• A standalone J-Link pod is required which should be connected to the debug interface of your board.

Some hardware platforms require hardware modification in order to function correctly with an external
debug interface.

 NOTE

J-Link GDB Server application is not supported for TFM examples. Use CMSIS DAP instead of J-Link for flashing
and debugging TFM examples.

 NOTE

After the J-Link interface is configured and connected, follow these steps to download and run the demo applications:

1. Connect the development platform to your PC via USB cable between the LPC-Link2 USB connector (may be named
OSJTAG for some boards) and the PC USB connector. If using a standalone J-Link debug pod, connect it to the
SWD/JTAG connector of the board.

2. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port number (to
determine the COM port number, see How to determine com port.

3. Configure the terminal with these settings:

a. 115200 or 9600 baud rate, depending on your board (reference BOARD_DEBUG_UART_BAUDRATE variable in
board.h file)

b. No parity

c. 8 data bits

d. 1 stop bit

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 35 / 49

Figure 50. Terminal (PuTTY) configurations

Make sure the board is set to FlexSPI flash boot mode (ISP2: ISP1: ISP0 = ON, OFF, ON) before use GDB debug.

 NOTE

4. Open the J-Link GDB Server application. Assuming the J-Link software is installed, the application can be launched
by going to the Windows operating system Start menu and selecting Programs -> SEGGER -> J-Link <version> J-Link
GDB Server.

5. Modify the settings as shown below. The target device selection chosen for this example is LPC55S36

6. After it is connected, the screen should look like this figure:

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 36 / 49

Figure 51. SEGGER J-Link GDB Server screen after successful connection

7. If not already running, open a GCC Arm Embedded tool chain command window. To launch the window, from the Windows
operating system Start menu, go to Programs -> GNU Tools Arm Embedded <version> and select GCC Command Prompt.

Figure 52. Launch command prompt

8. Change to the directory that contains the example application output. The output can be found in using one of these paths,
depending on the build target selected:

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/debug

<install_dir>/boards/<board_name>/<example_type>/<application_name>/armgcc/release

For this example, the path is:

<install_dir>/boards/lpcxpresso55s36/demo_apps/hello_world/cm4/armgcc/debug

9. Run the arm-none-eabi-gdb.exe <application_name>.elf command. For this example, it is arm-none-eabi-
gdb.exe hello_world.elf.

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 37 / 49

Figure 53. Run arm-none-eabi-gdb

10. Run these commands:

a. target remote localhost:2331

b. monitor reset

c. monitor halt

d. load

e. monitor reset

11. The application is now downloaded and halted at the watch point. Execute the monitor go command to start the
demo application.

The hello_world application is now running and a banner is displayed on the terminal. If this does not appear, check your
terminal settings and connections.

Figure 54. Text display of the hello_world demo

6.4 Build a TrustZone example application

This section describes the steps to build and run a TrustZone application. The demo application build scripts are located in
this folder:

<install_dir>/boards/<board_name>/trustzone_examples/<application_name>/<core_type>/iar/
<application_name>_ns/armgcc

<install_dir>/boards/<board_name>/trustzone_examples/<application_name>/<core_type>/iar/
<application_name>_s/armgcc

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 38 / 49

Begin with a simple TrustZone version of the Hello World application. The TrustZone Hello World GCC build scripts are located
in this folder:

<install_dir>/boards/lpcxpresso55s36/trustzone_examples/hello_world/hello_world_ns/iar/
hello_world_ns.eww

<install_dir>/boards/lpcxpresso55s36/trustzone_examples/hello_world/hello_world_s/iar/
hello_world_s.eww

<install_dir>/boards/lpcxpresso55s36/trustzone_examples/hello_world/hello_world_s/iar/hello_world.eww

Build both applications separately, following steps for single core examples as described in Section 6.2, "Build an example
application”. It is requested to build the application for the secure project first, because the non-secure project needs to know the
secure project, since CMSE library is running the linker. It is not possible to finish the non-secure project linker with the secure
project because the CMSE library is not ready.

Figure 55. hello_world_s example build successful

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 39 / 49

Figure 56. hello_world_ns example build successful

6.5 Run a TrustZone example application

When running a TrustZone application, the same prerequisites for J-Link/J-Link OpenSDA firmware, and the serial console as for
the single core application, apply, as described in Section 6.3, "Run an example application”.

To download and run the TrustZone application, perform steps 1 to 10, as described in Section 5.3, "Run an example application".
These steps are common for both single core and trustzone applications in Arm GCC.

Then, run these commands:

1. arm-none-eabi-gdb.exe

2. target remote localhost:2331

3. monitor reset

4. monitor halt

5. load <install_dir>/boards/lpcxpresso55s36/trustzone_examples/hello_world/cm33_core0/hello_world_ns/
armgcc/debug/hello_world_ns.elf

6. load <install_dir>/boards/lpcxpresso55s36/trustzone_examples/hello_world/cm33_core0/hello_world_s/
armgcc/debug/hello_world_s.elf

7. The application is now downloaded and halted at the watch point. Execute the monitor go command to start the demo
application.

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 40 / 49

Figure 57. Loading and running the trustzone example

Figure 58. Text display of the trustzone hello_world application

NXP Semiconductors
Run a demo using Arm® GCC

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 41 / 49

7 MCUXpresso Config Tools
MCUXpresso Config Tools can help configure the processor and generate initialization code for the on chip peripherals. The tools
are able to modify any existing example project, or create a new configuration for the selected board or processor. The generated
code is designed to be used with MCUXpresso SDK version 2.x.

Table 1 describes the tools included in the MCUXpresso Config Tools.

Table 1. MCUXpresso Config Tools

Config Tool Description Image

Pins tool For configuration of pin routing and pin
electrical properties.

Clock tool For system clock configuration

Peripherals tools For configuration of other peripherals

TEE tool Configures access policies for memory
area and peripherals helping to protect
and isolate sensitive parts of the
application.

Device Configuration tool Configures Device Configuration Data
(DCD) contained in the program image
that the Boot ROM code interprets to
setup various on-chip peripherals prior
the program launch.

MCUXpresso Config Tools can be accessed in the following products:

• Integrated in the MCUXpresso IDE. Config tools are integrated with both compiler and debugger which makes it the easiest
way to begin the development.

• Standalone version available for download from www.nxp.com/mcuxpresso. Recommended for customers using IAR
Embedded Workbench, Keil MDK µVision, or Arm GCC.

• Online version available on mcuxpresso.nxp.com. Recommended to do a quick evaluation of the processor or use the tool
without installation.

Each version of the product contains a specific Quick Start Guide document MCUXpresso IDE Config Tools installation folder that
can help start your work.

8 MCUXpresso IDE New Project Wizard
MCUXpresso IDE features a new project wizard. The wizard provides functionality for the user to create new projects from the
installed SDKs (and from pre-installed part support). It offers user the flexibility to select and change multiple builds. The wizard
also includes a library and provides source code options. The source code is organized as software components, categorized as
drivers, utilities, and middleware.

To use the wizard, start the MCUXpresso IDE. This is located in the QuickStart Panel at the bottom left of the MCUXpresso IDE
window. Select New project, as shown in Figure 59.

NXP Semiconductors
MCUXpresso Config Tools

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 42 / 49

http://www.nxp.com/mcuxpresso
http://mcuxpresso.nxp.com

Figure 59. MCUXpresso IDE Quickstart Panel

For more details and usage of new project wizard, see the MCUXpresso_IDE_User_Guide.pdf in the MCUXpresso IDE
installation folder.

9 How to determine com port
This section describes the steps necessary to determine the debug COM port number of your NXP hardware development
platform. All NXP boards ship with a factory programmed, on-board debug interface, whether it’s based on OpenSDA or the legacy
P&E Micro OSJTAG interface. To determine what your specific board ships with, see Default debug interfaces.

1. Linux: The serial port can be determined by running the following command after the USB Serial is connected to the host:

$ dmesg | grep "ttyUSB"
 [503175.307873] usb 3-12: cp210x converter now attached to ttyUSB0
 [503175.309372] usb 3-12: cp210x converter now attached to ttyUSB1

There are two ports, one is Cortex-A core debug console and the other is for Cortex M4.

2. Windows: To determine the COM port open Device Manager in the Windows operating system. Click on the Start menu
and type Device Manager in the search bar.

3. In the Device Manager, expand the Ports (COM & LPT) section to view the available ports. The COM port names will be
different for all the NXP boards.

a. OpenSDA – CMSIS-DAP/mbed/DAPLink interface:

Figure 60. OpenSDA – CMSIS-DAP/mbed/DAPLink interface

b. OpenSDA – P&E Micro:

NXP Semiconductors
How to determine com port

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 43 / 49

Figure 61. OpenSDA – P&E Micro

c. OpenSDA – J-Link:

Figure 62. OpenSDA – J-Link

d. P&E Micro OSJTAG:

Figure 63. P&E Micro OSJTAG

e. MRB-KW01:

Figure 64. MRB-KW01

10 How to define IRQ handler in CPP files
With MCUXpresso SDK, users could define their own IRQ handler in application level to

override the default IRQ handler. For example, to override the default PIT_IRQHandler define in startup_DEVICE.s, application
code like app.c can be implement like:

c
void PIT_IRQHandler(void)
{
 // Your code
}

When application file is CPP file, like app.cpp, then extern "C" should be used to ensure the function prototype alignment.

cpp
extern "C" {
 void PIT_IRQHandler(void);
}
void PIT_IRQHandler(void)
{
 // Your code
}

NXP Semiconductors
How to define IRQ handler in CPP files

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 44 / 49

11 Default debug interfaces
The MCUXpresso SDK supports various hardware platforms that come loaded with a variety of factory programmed debug
interface configurations. Table 2 lists the hardware platforms supported by the MCUXpresso SDK, their default debug interface,
and any version information that helps differentiate a specific interface configuration.

The OpenSDA details column in Table 2 is not applicable to LPC.

 NOTE

Table 2. Hardware platforms supported by MCUXpresso SDK

Hardware platform Default interface OpenSDA details

EVK-MC56F83000 P&E Micro OSJTAG N/A

EVK-MIMXRT595 CMSIS-DAP N/A

EVK-MIMXRT685 CMSIS-DAP N/A

FRDM-K22F CMSIS-DAP/mbed/DAPLink OpenSDA v2.1

FRDM-K28F DAPLink OpenSDA v2.1

FRDM-K32L2A4S CMSIS-DAP OpenSDA v2.1

FRDM-K32L2B CMSIS-DAP OpenSDA v2.1

FRDM-K32W042 CMSIS-DAP N/A

FRDM-K64F CMSIS-DAP/mbed/DAPLink OpenSDA v2.0

FRDM-K66F J-Link OpenSDA OpenSDA v2.1

FRDM-K82F CMSIS-DAP OpenSDA v2.1

FRDM-KE15Z DAPLink OpenSDA v2.1

FRDM-KE16Z CMSIS-DAP/mbed/DAPLink OpenSDA v2.2

FRDM-KL02Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL03Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL25Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL26Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL27Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL28Z P&E Micro OpenSDA OpenSDA v2.1

FRDM-KL43Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL46Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KL81Z CMSIS-DAP OpenSDA v2.0

FRDM-KL82Z CMSIS-DAP OpenSDA v2.0

FRDM-KV10Z CMSIS-DAP OpenSDA v2.1

FRDM-KV11Z P&E Micro OpenSDA OpenSDA v1.0

FRDM-KV31F P&E Micro OpenSDA OpenSDA v1.0

FRDM-KW24 CMSIS-DAP/mbed/DAPLink OpenSDA v2.1

Table continues on the next page...

NXP Semiconductors
Default debug interfaces

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 45 / 49

Table 2. Hardware platforms supported by MCUXpresso SDK (continued)

Hardware platform Default interface OpenSDA details

FRDM-KW36 DAPLink OpenSDA v2.2

FRDM-KW41Z CMSIS-DAP/DAPLink OpenSDA v2.1 or greater

Hexiwear CMSIS-DAP/mbed/DAPLink OpenSDA v2.0

HVP-KE18F DAPLink OpenSDA v2.2

HVP-KV46F150M P&E Micro OpenSDA OpenSDA v1

HVP-KV11Z75M CMSIS-DAP OpenSDA v2.1

HVP-KV58F CMSIS-DAP OpenSDA v2.1

HVP-KV31F120M P&E Micro OpenSDA OpenSDA v1

JN5189DK6 CMSIS-DAP N/A

LPC54018 IoT Module N/A N/A

LPCXpresso54018 CMSIS-DAP N/A

LPCXpresso54102 CMSIS-DAP N/A

LPCXpresso54114 CMSIS-DAP N/A

LPCXpresso51U68 CMSIS-DAP N/A

LPCXpresso54608 CMSIS-DAP N/A

LPCXpresso54618 CMSIS-DAP N/A

LPCXpresso54628 CMSIS-DAP N/A

LPCXpresso54S018M CMSIS-DAP N/A

LPCXpresso55s16 CMSIS-DAP N/A

LPCXpresso55s28 CMSIS-DAP N/A

LPCXpresso55s36 CMSIS-DAP N/A

LPCXpresso55s69 CMSIS-DAP N/A

MAPS-KS22 J-Link OpenSDA OpenSDA v2.0

MIMXRT1170-EVK CMSIS-DAP N/A

TWR-K21D50M P&E Micro OSJTAG N/AOpenSDA v2.0

TWR-K21F120M P&E Micro OSJTAG N/A

TWR-K22F120M P&E Micro OpenSDA OpenSDA v1.0

TWR-K24F120M CMSIS-DAP/mbed OpenSDA v2.1

TWR-K60D100M P&E Micro OSJTAG N/A

TWR-K64D120M P&E Micro OpenSDA OpenSDA v1.0

TWR-K64F120M P&E Micro OpenSDA OpenSDA v1.0

TWR-K65D180M P&E Micro OpenSDA OpenSDA v1.0

Table continues on the next page...

NXP Semiconductors
Default debug interfaces

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 46 / 49

Table 2. Hardware platforms supported by MCUXpresso SDK (continued)

Hardware platform Default interface OpenSDA details

TWR-K65D180M P&E Micro OpenSDA OpenSDA v1.0

TWR-KV10Z32 P&E Micro OpenSDA OpenSDA v1.0

TWR-K80F150M CMSIS-DAP OpenSDA v2.1

TWR-K81F150M CMSIS-DAP OpenSDA v2.1

TWR-KE18F DAPLink OpenSDA v2.1

TWR-KL28Z72M P&E Micro OpenSDA OpenSDA v2.1

TWR-KL43Z48M P&E Micro OpenSDA OpenSDA v1.0

TWR-KL81Z72M CMSIS-DAP OpenSDA v2.0

TWR-KL82Z72M CMSIS-DAP OpenSDA v2.0

TWR-KM34Z75M P&E Micro OpenSDA OpenSDA v1.0

TWR-KM35Z75M DAPLink OpenSDA v2.2

TWR-KV10Z32 P&E Micro OpenSDA OpenSDA v1.0

TWR-KV11Z75M P&E Micro OpenSDA OpenSDA v1.0

TWR-KV31F120M P&E Micro OpenSDA OpenSDA v1.0

TWR-KV46F150M P&E Micro OpenSDA OpenSDA v1.0

TWR-KV58F220M CMSIS-DAP OpenSDA v2.1

TWR-KW24D512 P&E Micro OpenSDA OpenSDA v1.0

USB-KW24D512 N/A External probe N/A

USB-KW41Z CMSIS-DAP\DAPLink OpenSDA v2.1 or greater

12 Updating debugger firmware

12.1 Updating LPCXpresso board firmware

The LPCXpresso hardware platform comes with a CMSIS-DAP-compatible debug interface (known as LPC-Link2). This firmware
in this debug interface may be updated using the host computer utility called LPCScrypt. This typically used when switching
between the default debugger protocol (CMSIS-DAP) to SEGGER J-Link, or for updating this firmware with new releases of these.
This section contains the steps to re-program the debug probe firmware.

If MCUXpresso IDE is used and the jumper making DFUlink is installed on the board (JP5 on some boards, but
consult the board user manual or schematic for specific jumper number), LPC-Link2 debug probe boots to DFU
mode, and MCUXpresso IDE automatically downloads the CMSIS-DAP firmware to the probe before flash memory
programming (after clicking Debug). Using DFU mode ensures most up-to-date/compatible firmware is used with
MCUXpresso IDE.

 NOTE

NXP provides the LPCScrypt utility, which is the recommended tool for programming the latest versions of CMSIS-DAP and J-Link
firmware onto LPC-Link2 or LPCXpresso boards. The utility can be downloaded from www.nxp.com/lpcutilities.

These steps show how to update the debugger firmware on your board for Windows operating system. For Linux OS, follow the
instructions described in LPCScrypt user guide (www.nxp.com/lpcutilities, select LPCScrypt, and then the documentation tab).

NXP Semiconductors
Updating debugger firmware

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 47 / 49

http://www.nxp.com/lpcutilities
http://www.nxp.com/lpcutilities

1. Install the LPCScript utility.

2. Unplug the board's USB cable.

3. Make the DFU link (install the jumper labelled DFUlink).

4. Connect the probe to the host via USB (use Link USB connector).

5. Open a command shell and call the appropriate script located in the LPCScrypt installation directory (<LPCScrypt
install dir>).

a. To program CMSIS-DAP debug firmware: <LPCScrypt install dir>/scripts/program_CMSIS

b. To program J-Link debug firmware: <LPCScrypt install dir>/scripts/program_JLINK

6. Remove DFU link (remove the jumper installed in Step 3).

7. Re-power the board by removing the USB cable and plugging it in again.

13 Revision history
Table 3 summarizes revisions to this document.

Table 3. Revision history

Revision number Date Substantive changes

0 31 August 2021 Initial Release

NXP Semiconductors
Revision history

Getting Started with MCUXpresso SDK for LPCXpresso55S36, Rev. 0, 31 August 2021
User Guide 48 / 49

How To Reach
Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Limited warranty and liability — Information in this document is provided solely to enable system and software implementers to use NXP
products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on
the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does
NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or
specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including
“typicals,” must be validated for each customer application by customer's technical experts. NXP does not convey any license under its
patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the
following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including
without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all
information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer
is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these
vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open and/or proprietary
technologies supported by NXP products for use in customer’s applications. NXP accepts no liability for any vulnerability. Customer
should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that
best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products
and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless
of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP, HITAG,
ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE
ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS,
UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis,
Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower,
TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight,
Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power
Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org. M, M Mobileye and other Mobileye trademarks or logos appearing herein are trademarks of Mobileye Vision
Technologies Ltd. in the United States, the EU and/or other jurisdictions.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 31 August 2021
Document identifier: MCUXSDKLPC551XGSUG

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Overview
	2 MCUXpresso SDK board support package folders
	2.1 Example application structure
	2.2 Locating example application source files

	3 Run a demo using MCUXpresso IDE
	3.1 Select the workspace location
	3.2 Build an example application
	3.3 Run an example application
	3.4 Build a TrustZone example application
	3.5 Run a TrustZone example application

	4 Run a demo application using IAR
	4.1 Build an example application
	4.2 Run an example application
	4.3 Build a TrustZone example application
	4.4 Run a TrustZone example application

	5 Run a demo using Keil® MDK/μVision
	5.1 Install CMSIS device pack
	5.2 Build an example application
	5.3 Run an example application
	5.4 Build a TrustZone example application
	5.5 Run a TrustZone example application

	6 Run a demo using Arm® GCC
	6.1 Set up toolchain
	6.1.1 Install GCC Arm Embedded tool chain
	6.1.2 Install MinGW (only required on Windows OS)
	6.1.3 Add a new system environment variable for ARMGCC_DIR
	6.1.4 Install CMake

	6.2 Build an example application
	6.3 Run an example application
	6.4 Build a TrustZone example application
	6.5 Run a TrustZone example application

	7 MCUXpresso Config Tools
	8 MCUXpresso IDE New Project Wizard
	9 How to determine com port
	10 How to define IRQ handler in CPP files
	11 Default debug interfaces
	12 Updating debugger firmware
	12.1 Updating LPCXpresso board firmware

	13 Revision history

