AMCLIB User's Guide

ARM® Cortex® M33F

Document Number: CM33FAMCLIBUG
Rev. 4, 12/2020

h
V"

AMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors

Contents
Section number Title Page

Chapter 1

Library

L 51 13 (e Ta L Uo7 5 o | OO OO TP 5
1.2 Library integration into project (MCUXPIESSO IDE)ccceiviiriiiiriiiiiieeiieeeeeeetee et 8
1.3 Library integration into project (Keil IVISION)ccc.eiiiiiiiiiiiiiiieeie ettt ettt ettt st ettt e e s e 17
1.4 Library integration into project AR Embedded Workbench)ccccooieiiiiiiiiiiiiiee e 25

Chapter 2

Algorithms in detail

2.1 AMCLIB_ACIMOCHIMTPA. ..ottt ettt sttt ettt b et b et b et sttt et et et eb ettt eb e ebe e 35
2.2 AMCLIB_ACIMROFIUXODSIV......cctriiiiriiiiiieiiieiitentetent ettt sttt sttt sttt sttt et st be et a ettt st ene e b e ne 38
2.3 AMCLIB_ACIMSPEEAMRASoouiiiiieiieie ettt sttt 43
2.4 AMCLIB_ANZIETIACKODSIV. ...ttt ettt ettt et e bt et e s bt et e s bt e be e bt en b e es s e bt este bt eneeeseeneesneeneas 47
2.5 AMCLIB_CHIFIUXWKIZ. c.c.ocviiiiiiieiitciitctetet ettt ettt sttt ettt ettt s a et sn et ne e ne 54
2.6 AMCLIB_PMSMBEMIODSIVAB..........coiiiiiiiiiiieee ettt sttt 61
2.7 AMCLIB_PMSMBEMIODSIVDIQ......coueuiriiiiriiiiitiiiteteiesteiestet ettt sttt sttt ettt b et b et b ettt sttt ne 70
2.8 AMOCLIB _TTaCKODSTV. ...ttt ettt et e e e e e et et ate e et et eeeeeeeeeeessssssas s aaaaasasasaeeeeeaeeesessesesessssesnssasasnsanees 79

AMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 3

AMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors

Chapter 1
Library

1.1 Introduction

1.1.1 Overview

This user's guide describes the Advanced Motor Control Library (AMCLIB) for the
family of ARM Cortex M33F core-based microcontrollers. This library contains
optimized functions.

1.1.2 Data types

AMCLIB supports several data types: (un)signed integer, fractional, and accumulator,
and floating point. The integer data types are useful for general-purpose computation;
they are familiar to the MPU and MCU programmers. The fractional data types enable
powerful numeric and digital-signal-processing algorithms to be implemented. The
accumulator data type is a combination of both; that means it has the integer and
fractional portions.The floating-point data types are capable of storing real numbers in
wide dynamic ranges. The type is represented by binary digits and an exponent. The
exponent allows scaling the numbers from extremely small to extremely big numbers.
Because the exponent takes part of the type, the overall resolution of the number is
reduced when compared to the fixed-point type of the same size.

The following list shows the integer types defined in the libraries:

* Unsigned 16-bit integer —<0 ; 65535> with the minimum resolution of 1
 Signed 16-bit integer —<-32768 ; 32767> with the minimum resolution of 1
* Unsigned 32-bit integer —<O0 ; 4294967295> with the minimum resolution of 1

AMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 5

Introduction

* Signed 32-bit integer —<-2147483648 ; 2147483647> with the minimum resolution
of 1

* Unsigned 64-bit integer —<0 ; 18446744073709551615> with the minimum
resolution of 1

The following list shows the fractional types defined in the libraries:

* Fixed-point 16-bit fractional —<-1 ; 1 - 2-15> with the minimum resolution of 213
» Fixed-point 32-bit fractional —<-1; 1 - 2-315 with the minimum resolution of 2-3!

The following list shows the accumulator types defined in the libraries:

* Fixed-point 16-bit accumulator —<-256.0 ; 256.0 - 27> with the minimum
resolution of 27

» Fixed-point 32-bit accumulator —<-65536.0 ; 65536.0 - 2°15> with the minimum
resolution of 2°1°

The following list shows the floating-point types defined in the libraries:

« Floating point 32-bit single precision —<-3.40282 - 1038 ; 3.40282 - 108> with the
minimum resolution of 223

1.1.3 API definition

AMCLIB uses the types mentioned in the previous section. To enable simple usage of the
algorithms, their names use set prefixes and postfixes to distinguish the functions'
versions. See the following example:

f32Result = MLIB Mac_F32lss(f32Accum, flé6Multl, fleMult2);
where the function is compiled from four parts:

e MLIB—this is the library prefix

* Mac—the function name—Multiply-Accumulate

» F32—the function output type

* Iss—the types of the function inputs; if all the inputs have the same type as the
output, the inputs are not marked

The input and output types are described in the following table:
Table 1-1. Input/output types

Type Output Input
frac16_t F16 S

Table continues on the next page...

AMCLIB User's Guide, Rev. 4, 12/2020

6 NXP Semiconductors

Table 1-1. Input/output types (continued)

Type Output Input
frac32_t F32 I
acc32_t A32 a

float_t FLT f

Chapter 1 Library

1.1.4 Supported compilers

AMCLIB for the ARM Cortex M33F core is written in C language or assembly language
with C-callable interface depending on the specific function. The library is built and
tested using the following compilers:

* MCUXpresso IDE

* JAR Embedded Workbench

» Keil pVision

For the MCUXpresso IDE, the library is delivered in the amclib.a file.

For the Kinetis Design Studio, the library is delivered in the amclib.a file.

For the TAR Embedded Workbench, the library is delivered in the amclib.a file.
For the Keil puVision, the library is delivered in the amclib.lib file.

The interfaces to the algorithms included in this library are combined into a single public
interface include file, amclib.h. This is done to lower the number of files required to be
included in your application.

1.1.5 Library configuration

AMCLIB for the ARM Cortex M33F core is written in C language or assembly language
with C-callable interface depending on the specific function. Some functions from this
library are inline type, which are compiled together with project using this library. The
optimization level for inline function is usually defined by the specific compiler setting. It
can cause an issue especially when high optimization level is set. Therefore the
optimization level for all inline assembly written functions is defined by compiler
pragmas using macros. The configuration header file RTCESL_cfg.h is located in:

specific library folder\MLIB\Include. The optimization level can be changed by
modifying the macro value for specific compiler. In case of any change the library
functionality is not guaranteed.

AMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 7

A
Library integration into project (MCUXpresso IDE)

Similarly as optimization level the PowerQuad DSP Coprocessor and Accelerator support
can be disable or enable if it has not been done by defined symbol RTCESL_PQ_ON or
RTCESL_PQ_OFF in project setting described in the PowerQuad DSP Coprocessor and
Accelerator support cheaper for specific compiler.

1.1.6 Special issues

1. The equations describing the algorithms are symbolic. If there is positive 1, the
number is the closest number to 1 that the resolution of the used fractional type
allows. If there are maximum or minimum values mentioned, check the range
allowed by the type of the particular function version.

2. The library functions that round the result (the API contains Rnd) round to nearest
(half up).

3. This RTCESL requires the DSP extension for some saturation functions. If the core
does not support the DSP extension feature the assembler code of the RTCESL will
not be buildable. For example the corel of the LPC55s69 has no DSP extension.

1.2 Library integration into project (MCUXpresso IDE)

This section provides a step-by-step guide on how to quickly and easily include AMCLIB
into any MCUXpresso SDK example or demo application projects using MCUXpresso
IDE. This example uses the default installation path (C:\NXP\RTCESL
\CM33F_RTCESL_4.6_MCUX). If you have a different installation path, use that path
instead.

1.2.1 PowerQuad DSP Coprocessor and Accelerator support

Some LPC platforms (LPC55S6x) contain a hardware accelerator dedicated to common
calculations in DSP applications. This section shows how to turn the PowerQuad (PQ)
support for a function on and off.

1. In the MCUXpresso SDK project name node or in the left-hand part, click Properties
or select Project > Properties from the menu. A project properties dialog appears.

2. Expand the C/C++ Build node and select Settings. See .

3. On the right-hand side, under the MCU C Compiler node, click the Preprocessor
node. See .

AMCLIB User's Guide, Rev. 4, 12/2020

8 NXP Semiconductors

type filter text

|» Resource
Builders
4 C/C++ Build
Build Variables
Environment
Legging
MCU settings
Settings
Tool Chain Editor
o C/C++ General
Project References
Run/Debug Settings

Settings

r ™
W s e e

Chapter 1 Library

=

-

Configuration: ’ Debug [Active |

'] ’Manage Configurations...]

& Tool Settings | # Build steps |

Build Artifactl Binary Parsersl @ Error Parsers|

a4 3 MCU C Compiler
@ Dialect
|(# Preprocessor|
@ Includes
(# Optimization
(2 Debugging
(# Warnings
@ Miscellanecus
@ Architecture
4 B MCU Assembler
@ General
@ Architecture & Headers
a4 B MCU Linker
@ General
@ Libraries
@ Miscellanecus
(2 Shared Library Settings
@ Architecture
(2 Managed Linker Script
@ Multicore

4

[] Do not search system directories (-nostdinc)

[} Preprocess only (-E)
Defined symbols (-0)

CR_INTEGER_PRINTF

DEBUG
PRINTF_FLOAT_EMNABLE=0
SCAMNF_FLOAT_EMABLE=0
PRINTF_ADVAMCED_ENABLE=0
SCAMNF_ADVANCED_EMNABLE=0
TWR_KV31F120M
TOWER
SDK_DEBUGCOMSOLE=0
_ MCUXPRESS0
__USE_CMSIS
CPU_MKV31F512VLL12
CPU_MEKV31F512VLL12 cmd
__REDUB_

8483 H

m

Undefined symbols (-U)

84 8% &

I

Figure 1-1. Defined symbols
4. In the right-hand part of the dialog, click the Add... icon located next to the Defined
symbols (-D) title.
5. In the dialog that appears (see), type the following:
* RTCESL_PQ_ON—to turn the PowerQuad support on
* RTCESL_PQ_OFF—to turn the PowerQuad support off
If neither of these two defines is defined, the hardware division and square root

support is turned off by default.

-

Defined symbols (-0

S

6. Click OK in the dialog.

RTCESL PQ ON

Figure 1-2. Symbol definition

7. Click OK in the main dialog.

8. Ensure the PowerQuad moduel to be clocked by calling function
RTCESL_PQ_Init(); prior to the first function using PQ module calling.

AMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors

A
Library integration into project (MCUXpresso IDE)

See the device reference manual to verify whether the device contains the PowerQuad
DSP Coprocessor and Accelerator support.

1.2.2 Library path variable

To make the library integration easier, create a variable that holds the information about
the library path.

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
Properties, or select Project > Properties from the menu. A project properties dialog
appears.

2. Expand the Resource node and click Linked Resources. See Figure 1-3.

' ™
. Properties for twrkv31f120m_demo_apps_hello_world - ['2- =l g
type filter test Linked Resources =l T

4 Resource -
e Path Variables | Linked Resources
Resource Filters Path variables specify locations in the file system, including other path variables with the syntax "S{VAR}".
Builders The locations of linked resources may be specified relative to these path variables.
> CfC++ Build Defined path variables for resource "twrlov31f120m_demo_apps_hello_world":
C/C++ G I
o _++ Eners Mame Value
Project References :
Run/Debug Settings (== ECLIPSE_ HOME CANXPAMCUXpressolDE_10.0.0_344\ide\ Edit...
(= PARENT_LOC Di\temp3
[=PROJECT_LOC Diternp3itwrio31f120m_demo_apps_hello_world Remove
(= WORKSPACE_LOC Divternp3

Figure 1-3. Project properties
3. Click the New... button in the right-hand side.

AMCLIB User's Guide, Rev. 4, 12/2020
10 NXP Semiconductors

10.

1.
12.

Chapter 1 Library

In the dialog that appears (see Figure 1-4), type this variable name into the Name
box: RTCESL_LOC.

Select the library parent folder by clicking Folder..., or just type the following path
into the Location box: C:\NXP\RTCESL\CM33F_RTCESL_4.6_MCUX. Click OK.

r . B e G !1
New Variabl - —
m ew Variable
Define a New Path Variable
Enter a new variable name and its associated location.
MName: RTCESL_LOC
Location: ICA\NXP\RTCESLAC File.. || Felder. |[ariable.
Resolved Location: CAMXPARTCESLACM33F_RTCESL_X.X_MCUX
@' [0K] ’ Cancel
L

Figure 1-4. New variable
Create such variable for the environment. Expand the C/C++ Build node and click
Environment.
Click the Add... button in the right-hand side.
In the dialog that appears (see Figure 1-5), type this variable name into the Name
box: RTCESL_LOC.
Type the library parent folder path into the Value box: C:\NXP\RTCESL
\CM33F_RTCESL_4.6_MCUX.
Tick the Add to all configurations box to use this variable in all configurations. See
Figure 1-5.
Click OK.
In the previous dialog, click OK.

AMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 11

A ————
Library integration into project (MCUXpresso IDE)

type filter text Environment a v v
Rescurce
Builders

w CfC++ Build Configuration: |Debug [Active] ~ | | Manage Configurations...

Build Variables

Environment

Legging

MCU settings

Settings

Tool Chain Editor
w CfC++ General Mame: | RTCESL_LOC Edit...

Code Analysis

Environment variables to set Add...
[. .. |
s MNew variable » Select... |

Value: | e\nxphRTCESLAVCM33F_RTCESL_X.X_MCUX | Variables Delete

Documentation

File Types

Undefine
Farmatter

Indexer Cancel
Language Mappings
Paths and Symbols
Preprocessor Include Pat
MCUXpresso Config Tools
Project Natures
Project References
Refactoring History
Run/Debug Settings (®) Append variables to native environment

Task Tags () Replace native environment with specified one
Validation

Restore Defaults Apply

@' Apply and Close Cancel

Figure 1-5. Environment variable

1.2.3 Library folder addition

To use the library, add it into the Project tree dialog.

1.

W

Right-click the MCUXpresso SDK project name node in the left-hand part and click
New > Folder, or select File > New > Folder from the menu. A dialog appears.
Click Advanced to show the advanced options.

To link the library source, select the Link to alternate location (Linked Folder)
option.

Click Variables..., select the RTCESL_LOC variable in the dialog, click OK, and/or
type the variable name into the box. See Figure 1-6.

Click Finish, and the library folder is linked in the project. See Figure 1-7.

AMCLIB User's Guide, Rev. 4, 12/2020

12

NXP Semiconductors

Chapter 1 Library

o

Folder —

Create a new folder resource. Ii .n_“

Enter or select the parent folder

twrkv31f120m_demo_apps_hello_world
[y
| =3 twrkw31f120m_demo_apps_hello_world

Folder name: RTCESL_LOC

() [= Use default location
) [Folder is not located in the file system (Virtual Folder)
@ (% Link to alternate location (Linked Folder)

RTCESL_LOC | Browse.. || Variables.. | I

Figure 1-6. Folder link

a5 twrkv31f120m_demo_apps_hello_world
s g’;ﬁ Binariez
> [t Includes
- 2 CMSIS

- 2 board
- 2 drivers

- 2 source
» [startup
- A2 utilities

> [= Debug
» = doc
> |y RTCESL_LOC

Figure 1-7. Projects libraries paths

1.2.4 Library path setup

AMCLIB requires MLIB and GDFLIB and GFLIB and GMCLIB to be included too.
These steps show how to include all dependent modules:

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
Properties, or select Project > Properties from the menu. The project properties
dialog appears.

2. Expand the C/C++ General node, and click Paths and Symbols.

In the right-hand dialog, select the Library Paths tab. See Figure 1-9.

4. Click the Add... button on the right, and a dialog appears.

(O8]

AMCLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 13

A
Library integration into project (MCUXpresso IDE)
5. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following (see Figure 1-8): ${RTCESL_LOC}\MLIB.
6. Click OK, and then click the Add... button.
Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following: ${RTCESL_LOC }\GFLIB.
Click OK, and then click the Add... button.
9. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following: ${RTCESL_LOC }\GDFLIB.
10. Click OK, and then click the Add... button.
11. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following: ${RTCESL_LOC}\GMCLIB.
12. Click OK, and then click the Add... button.
13. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following: ${RTCESL_LOC}\AMCLIB.
14. Click OK, you will see the paths added into the list. See Figure 1-9.

~

*®

- ™
" Add.. 5
. aa——
Directory:
S{RTCESL_LOCHAMLIE|
[7] Add te all configurations
[T Add to all languages
[= Is a workspace path
[oK] [Cancel]

Figure 1-8. Library path inclusion

AMCLIB User's Guide, Rev. 4, 12/2020
14 NXP Semiconductors

15.

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

Chapter 1 Library

8 e s smmptoers 0Lt

type filter text Paths and Symbols R AR
> Resource
Builders e
. C/C++ Build Configuration: ’Debus [Active] '] [Manage Configurations...]
a4 C/C++ General
> Code Analysis
Docurmentation | e Includesl # Symbols | =11 Libraries| (& Library Paths |[B' Source Location | 3| References| |
File Types
Formatter (B ${RTCESL_LOC)\MLIB Add... =
Indexer [P ${RTCESL_LOCNGFLIB
Language Mappings (B ${RTCESL_LOCNGMCLIB
Paths and Symbaols (B ${RTCESL_LOCNGDFLIB |
Preprocessor Include P: (B ${RTCESL_LOCMNAMCLIE |
Project References
Run/Debug Settings 1
. . . Mave Up
(D "Preprocessor Include Paths, Macras etc.” property page may define additional entries - |
< i > < [| * |
® [oK] l Cancel ||

Figure 1-9. Library paths
After adding the library paths, add the library files. Click the Libraries tab. See
Figure 1-11.
Click the Add... button on the right, and a dialog appears.
Type the following into the File text box (see Figure 1-10): :mlib.a
Click OK, and then click the Add... button.
Type the following into the File text box: :gflib.a
Click OK, and then click the Add... button.
Type the following into the File text box: :gdflib.a
Click OK, and then click the Add... button.
Type the following into the File text box: :gmclib.a
Click OK, and then click the Add... button.
Type the following into the File text box: :amclib.a

Click OK, and you will see the libraries added in the list. See Figure 1-11.
3 add.. *®
File:
[MLIB
[] Add to all configurations Variables...
(] Add to all languages
[= s a workspace path LI
File system...

Figure 1-10. Library file inclusion

AMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 15

A ————
Library integration into project (MCUXpresso IDE)

27.

28.
29.

30.
31.

32.
33.

34.
35.

36.
37.

38.

ncludes mbols i Libraries ibra aths o
(= Includes # Symbols =k Lib B Library Paths (2 S

T MLIB
T GFLIB
7% GDFLIB
T GMCLIB
75 AMCFLIB

Figure 1-11. Libraries

In the right-hand dialog, select the Includes tab, and click GNU C in the Languages

list. See Figure 1-13.

Click the Add... button on the right, and a dialog appears. See Figure 1-12.
Look for the RTCESL_LOC variable by clicking Variables..., and then finish the

path in the box to be: ${RTCESL_LOC }\MLIB\Include
Click OK, and then click the Add... button.

Look for the RTCESL_LOC variable by clicking Variables..., and then finish the

path in the box to be: ${RTCESL_LOC }\GFLIB\Include
Click OK, and then click the Add... button.

Look for the RTCESL_LOC variable by clicking Variables..., and then finish the

path in the box to be: ${RTCESL_LOC }\GDFLIB\Include
Click OK, and then click the Add... button.

Look for the RTCESL_LOC variable by clicking Variables..., and then finish the

path in the box to be: ${RTCESL_LOC }\GMCLIB\Include
Click OK, and then click the Add... button.

Look for the RTCESL_LOC variable by clicking Variables..., and then finish the

path in the box to be: ${RTCESL_LOC}NAMCLIB\Include

Click OK, and you will see the paths added in the list. See Figure 1-13. Click OK.

L& ™

B Add directory path ﬁ
Directory:

S{RTCESL_LOCHAMLIB\Include

[7] Add te all configurations

[T Add to all languages

[= Is a workspace path

[oK l ’ Cancel l

Figure 1-12. Library include path addition

AMCLIB User's Guide, Rev. 4, 12/2020

16

NXP Semiconductors

4
Chapter 1 Library

- -
n Properties for twrkv31f120m_demo_apps_hello_werd B . .' .'m fhlélg
type filter text Paths and Symbols =l A4

» Resource
Builders
. C/C++ Build Configuration: [Debug [Active] '] [Manage Configurations...]
4 C/C++ General
» Code Analysis
i Documentation @ Includes | # Symbols | =, Libraries I] Library Paths I 2 Source Location I @ Re‘Ferences|
File Types
: Formatter Languages Include directeries - Add...
| Indexer . Additional Assem || (£/${ProjName}/board
Fl;aﬂhg'-'agj 2‘1395'795 Assembly (= ${RTCESL_LOCAMLIB\Include
pat =an 3"'";‘ T‘d o GNU C ([${RTCESL_LOCAGFLIB\Include i
| rreprocessorinciude B (= ${RTCESL_LOCNGMCLIB\Include
Project References
I ; . (/= ${RTCESL_LOCAGDFLIB\Include
Run/Debug Settings o E
I (=L $IRTCESL LOCAAMCLIB\Include j
@-c:,a’nxp,."mcuxpressoide_lU.ﬂ.U_34-'1_a'idaa'toolsl.l'redlib_a'irlclude
@-c:,a‘nxp,a’mcuxpressoide_lU.U.U_de_a'ide.a'tools,a'features_a'include -
Move Down
@ "Preprocessor Include Paths, Macros etc.” property page may define additional entries
[¥] Show built-in values H
l E.E: Import Settings... l ’ ?‘@ Export Settings... I
| S
I i o ! . ’Restore Defaults] l Apply]
@' [oK l [Cancel]
E

Figure 1-13. Compiler setting

Type the #include syntax into the code where you want to call the library functions. In
the left-hand dialog, open the required .c file. After the file opens, include the following
lines into the #include section:

#include "mlib FP.h"

#include "gflib FP.h"

#include "gdflib FP.h"

#include "gmclib_ FP.h"
#include "amclib_FP.h"

When you click the Build icon (hammer), the project is compiled without errors.

1.3 Library integration into project (Keil pVision)

This section provides a step-by-step guide on how to quickly and easily include AMCLIB
into an empty project or any MCUXpresso SDK example or demo application projects
using Keil pVision. This example uses the default installation path (C:\NXP\RTCESL
\CM33F_RTCESL_4.6_KEIL). If you have a different installation path, use that path
instead. If any MCUXpresso SDK project is intended to use (for example hello_world
project) go to Linking the files into the project chapter otherwise read next chapter.

AMCLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 17

Library integration into project (Keil pVision)

1.3.1 NXP pack installation for new project (without MCUXpresso

SDK)

This example uses the NXP LPC55s69 part, and the default installation path (C:\NXP
\RTCESL\CM33F_RTCESL_4.6_KEIL) is supposed. If the compiler has never been
used to create any NXP MCU-based projects before, check whether the NXP MCU pack
for the particular device is installed. Follow these steps:

1.
2.
3.

AN

Launch Keil pVision.

In the main menu, go to Project > Manage > Pack Installer....
In the left-hand dialog (under the Devices tab), expand the All Devices > Freescale

(NXP) node.

Look for a line called "KVxx Series" and click it.
In the right-hand dialog (under the Packs tab), expand the Device Specific node.
Look for a node called "Keil::Kinetis_ KVxx_DFP." If there are the Install or Update
options, click the button to install/update the package. See Figure 1-14.

. When installed, the button has the "Up to date" title. Now close the Pack Installer.

5 Pack Installer - C:\Keil_vS\VARM\PACK. (=[] =
File Packs Window Help
i | Device: Freescale - KvVix Series
Devices Boards Packs Examples
4 [QK b
| Search: - X Pack Action Description
I Toieg /| Summary =1-Device Specific 1 Pack
5@ Atmel 257 Devices | +I-Keil:Kinetis_KVix DFP | _Install Freescale Kinetis K Series Device Support
% Freescale 234 Devices =l Generic 10 Packs
442 K Series T Device - ARM::CMSIS @ Up to date | CMSIS (Cortex Microcontroller Software Interface Standard)
w-%2 KOO Series 2 Devices +-Keil: ARM_Compiler @ Up to date | Keil ARM Compiler extensions
4 %2 K10 Series 23 Devices +I-KeilzJansson & _Install Jansson is a C library for encoding, decoding and manipula
2% K20 Series H1 Devices - Keil:MDK-Middleware | Update | Keil MDK-ARM Professional Middleware for ARM Cortex-M
4 %2 K30 Series & Devices +1- Keil:MDK-Network_DS Install Keil MDK-ARM Professional Middleware Dual-Stack IPvd/IP
w-%2 K40 Series 5 Devices - wIPz:IwIP @ Install IwlP is a light-weight implementation of the TCP/IP protocy
4 %2 K50 Series 1 Devices +I-Micrium:RTOS & _Install Micrium software components
w-%2 K50 Series 18 Devices +I-Oryx-Embedded:Midd... @ Install Middleware Package (CycloneTCP, CycloneS5sL and Cyclon
4 %2 K70 Series + Devices - wolfSSL:CyaSsL & _Install Light weight SSL/TLS and Crypt Library for Embedded Syste
2% KB Series 2 Devices | +I-YOGITECH:fRSTLAR... |y Install VOGITECH fRSTL Functional Safety EVAL Saftware Pack for
“5 KEAoc Series 6 Devices
#- KExx Series 11 Devices
7 Ko« Series 54 Devices
#-H Kbt Series 14 Devices
7 Kiboc Series 26 Devices
#-H Kihee Series 8 Devices
+ “1 WPR1516 Series |1 Device
& U i nmie d || K o
Output ax
Refresh Pack descriptions
Update available for Keil:: MDK-Middleware (installed: 6.4.0, available: 7.0.0-beta)
Ready ONLINE

Figure 1-14. Pack Installer

AMCLIB User's Guide, Rev. 4, 12/2020

18

NXP Semiconductors

Chapter 1 Library

1.3.2 New project (without MCUXpresso SDK)

To start working on an application, create a new project. If the project already exists and
is opened, skip to the next section. Follow these steps to create a new project:

1.
2.

Nouns

8.

9.

Launch Keil pVision.
In the main menu, select Project > New uVision Project..., and the Create New
Project dialog appears.

. Navigate to the folder where you want to create the project, for example C:

\KeilProjects\MyProjectO1. Type the name of the project, for example MyProjectO1.
Click Save. See Figure 1-15.

E Create New Project

-'g_“' .. » Computer » System (C:) » KeilProjects » MyProject0l

File name: MyProject01

Save as type: [Project Files (".uvpraj; *.uvprojx)

¥ Browse Folders

Figure 1-15. Create New Project dialog
In the next dialog, select the Software Packs in the very first box.
Type " into the Search box, so that the device list is reduced to the devices.
Expand the node.
Click the LPC55s69 node, and then click OK. See Figure 1-16.

, ,

Device | Target | Output | Listing | User | C/Co+ | Asm | Linker | Debug | Utiiies |

ISoﬁ'.\‘are Packs ;I
Wendor: NXP Software Pack
Device: LPC55563JBD100:em33_core Pack: |N><P LPCE5563_DFP.12.1.1
Toolset: ARM URL: hitp://meunpresse.rp com/cmeis_pack./fepc

Search:

¥ ARM | |The LPC5%e/LPC558xx is an ARM Cortex M33 based micro-
@ NP controller for embedded applications. These devices include up to
=] 1320 KB of on-chip SRAM. up to 640 KB on-chip flash. high-speed

42 K32L2A41A and full-speed USB host and device interface with crystaldess

operation for fullspeed, five general-purpose timers, one

A2 KBox Series SCTimer/PWM, one RTC/alam timer, one 24-bit Multi-Rate Timer
=4 LPC55560 (MRT). a Windowed Watchdog Timer (WWDT). eight flexible serial
‘communication peripherals (each of which can be a USART, SPI,
=% LPC35569 12C, or 125 interface), one 16bit 1.0 Msamples/sec ADC, temperature

£ LPC35S60/BD100 sensor.

@ LPC55569)BD100

@ LPC55569)BD100

A) DIv
Crea_|

Figure 1-16. Select Device dialog
In the next dialog, expand the Device node, and tick the box next to the Startup node.
See Figure 1-17.
Expand the CMSIS node, and tick the box next to the CORE node.

Figure 1-17. Manage Run-Time Environment dialog

AMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 19

A ————
Library integration into project (Keil pVision)

10. Click OK, and a new project is created. The new project is now visible in the left-
hand part of Keil uVision. See Figure 1-18.

-
kA CiKeilProjects\MyProject01\MyProject01.uvprojx - pVision

File Edit Wiew Project Flash Debug Peripherals Tool

| | |

| %Q| Target1 |Z| £\|
Project a B
=T device j

_1 fsl_device_registers.h

_] LPC53569_cm33_corel.h

_1 LPC55569_cm33_corel_features.h

_1 system_LPC35569_cm33_corel.c

] system_LPC55569_cm33_corel.h
=T startup

] startup_LPC55569_cm33_core0.5 |

Figure 1-18. Project
11. In the main menu, go to Project > Options for Target '"Targetl'..., and a dialog
appears.
12. Select the Target tab.
13. Select Use Single Precision in the Floating Point Hardware option. See Figure 1-18.

Code Generation
ARM Compiler: |Use default compiler version ﬂ

[~ Use Cross-Module Optimization
[Use MicroLIB o
Floating Poirt Hardware: lUse Single Precision [Kd

Figure 1-19. FPU

1.3.3 PowerQuad DSP Coprocessor and Accelerator support

Some LPC platforms (LPC55S6x) contain a hardware accelerator dedicated to common
calculations in DSP applications. This section shows how to turn the PowerQuad (PQ)
support for a function on and off.

1. In the main menu, go to Project > Options for Target "Targetl'..., and a dialog
appears.
2. Select the C/C++ tab. See Figure 1-20.
3. In the Include Preprocessor Symbols text box, type the following:
 RTCESL_PQ_ON—to turn the hardware division and square root support on.
 RTCESL_PQ_OFF—to turn the hardware division and square root support off.

If neither of these two defines is defined, the hardware division and square root
support is turned off by default.

AMCLIB User's Guide, Rev. 4, 12/2020
20 NXP Semiconductors

Chapter 1 Library

,
k] Options for Target 'Target 1' . E

Device] Target] Output] Listing] User C/Ce+]Asm] Linker] Debug] Utilities]

Preprocessor Symbols
Define: [RTCESL_PQ_ON
Undefine: |
Language / Code Generation
[~ Executs-only Cods [~ Stict ANSIC Wamings:
Optimization: [Level 0 (00} [~ Enum Cortainer always it Al Wamings -
[Optimize for Time I Plain Char is Signed I
[~ Split Load and Store Muttiple ™ Read-Only Position Independent [Mo Auto Includes
[~ One ELF Section per Function I Bead-Write Position Independent [C99 Mode
Include
Paths | J
Misc |
Controls
Compiler |-c —cpu Cortex-M4fp -D__EVAL -g -00 -apcs=interwork -
contral |- C:\KeilProjects \MyProject 01"RTE
string -
oK | cancel | Defouts | Help

Figure 1-20. Preprocessor symbols
4. Click OK in the main dialog.
5. Ensure the PowerQuad moduel to be clocked by calling function
RTCESL_PQ_Init(); prior to the first function using PQ module calling.

See the device reference manual to verify whether the device contains the PowerQuad
DSP Coprocessor and Accelerator support.

1.3.4 Linking the files into the project

AMCLIB requires MLIB and GDFLIB and GFLIB and GMCLIB to be included too. The
following steps show how to include all dependent modules.

To include the library files in the project, create groups and add them.

1. Right-click the Target 1 node in the left-hand part of the Project tree, and select Add
Group... from the menu. A new group with the name New Group is added.

2. Click the newly created group, and press F2 to rename it to RTCESL.

3. Right-click the RTCESL node, and select Add Existing Files to Group 'RTCESL'...
from the menu.

AMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 21

A ————
Library integration into project (Keil pVision)

4. Navigate into the library installation folder C:\NXP\RTCESL
\CM33F_RTCESL_4.6_KEIL\MLIB\Include, and select the mlib_FP.h file. If the
file does not appear, set the Files of type filter to Text file. Click Add. See Figure
1-21.

Look in: |) Include

Mame

(& MUB_DiniQ_F32

[mlib_FP

(2 MLIB_Log2_U16

[MLIB_Mac_a32

o MUIB_Mac_F16_Asmi
[MLIB_Mac_F32

[cif MLIB_Mac_F32_Asmi
(& MLIB_Mac_FLT

[MLIB_Macd_F32

(2 MLIB_Mact_F32_Asmi

[a1 1D Kdacd C1 T

j & £ EEv
Date modified
6/20/2016 9:49 AM

7/22/2016 1:15 PM
6/20/2016 9:49 AM

.

6/20/2016 943 AM

7/25/2016 8:27 AM
6,/20/2016 9:49 AM
7/25/2016 8:27 AM
6/20/2016 9:49 AM
6,/20/2016 9:49 AM
7/25/2016 8:27 AM

EIWNAE LA ARA

-

i mn 3

j Close

Figure 1-21. Adding .h files dialog
5. Navigate to the parent folder C:\NXP\RTCESILA\CM33F_RTCESL_4.6_KEIL\MLIB,
and select the mlib.lib file. If the file does not appear, set the Files of type filter to
Library file. Click Add. See Figure 1-22.

File name: |m|ib_FP

Files of type: |Te:d file (“bd; “h; *inc)

Lookin: | J. MLIB ~| & & B

MName Date modified Ty

J Include 2010.2014 15:37 Fi
|| MLIB.lib 16.10.2014 9:19 LI
4| n F

File: name: |MLIB.Iib

j Close

Figure 1-22. Adding .lib files dialog
6. Navigate into the library installation folder C:\NXP\RTCESL
\CM33F_RTCESL_4.6_KEIL\GFLIB\Include, and select the gflib_FP.h file. If the
file does not appear, set the Files of type filter to Text file. Click Add.

Files of type: | Library file {*ib)

AMCLIB User's Guide, Rev. 4, 12/2020
22 NXP Semiconductors

7.

10.

1.

12.

13.

14.

Chapter 1 Library

Navigate to the parent folder C:\NXP\RTCESL\CM33F_RTCESL_4.6_KEIL
\GFLIB, and select the gflib.lib file. If the file does not appear, set the Files of type
filter to Library file. Click Add.

Navigate into the library installation folder C:\NXP\RTCESL
\CM33F_RTCESL_4.6_KEIL\GDFLIB\Include, and select the gdflib_FP.h file. If
the file does not appear, set the Files of type filter to Text file. Click Add.
Navigate to the parent folder C:\NXP\RTCESL\CM33F_RTCESL_4.6_KEIL
\GDFLIB, and select the gdflib.lib file. If the file does not appear, set the Files of
type filter to Library file. Click Add.

Navigate into the library installation folder C:\NXP\RTCESL
\CM33F_RTCESL_4.6_KEIL\GMCLIB\Include, and select the gmclib_FP.h file. If
the file does not appear, set the Files of type filter to Text file. Click Add.
Navigate to the parent folder C:\NXP\RTCESL\CM33F_RTCESL_4.6_KEIL
\GMCLIB, and select the gmclib.lib file. If the file does not appear, set the Files of
type filter to Library file. Click Add.

Navigate into the library installation folder C:\NXP\RTCESL

\CM33F _RTCESL_4.6_KEIL\AMCLIB\Include, and select the amclib_FP.h file. If
the file does not appear, set the Files of type filter to Text file. Click Add.
Navigate to the parent folder C:\NXP\RTCESL\CM33F_RTCESL_4.6_KEIL
\AMCLIB, and select the amclib.lib file. If the file does not appear, set the Files of
type filter to Library file. Click Add.

Now, all necessary files are in the project tree; see Figure 1-23. Click Close.

Il Project n @
="t Project: MyProject01
—l-5e Targetl
{d Source Group1
=% RTCESL
L1 mlib_FP.h
L] MLUB.ib
_] gflib_FP.h
] GFLIB.ib
_] gmclib_FP.h
] GMCLIB.lib
1 gdflib_FP.h
] GDFLUEB.ib
L] amclib_FP.h
] AMCLIB.lib
& cmsis

= @ Device
Figure 1-23. Project workspace

AMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 23

Library integration into project (Keil pVision)
1.3.5 Library path setup
The following steps show the inclusion of all dependent modules.

1. In the main menu, go to Project > Options for Target "Targetl'..., and a dialog
appears.
2. Select the C/C++ tab. See Figure 1-24.
3. In the Include Paths text box, type the following paths (if there are more paths, they
must be separated by ;") or add them by clicking the ... button next to the text box:
o "C:\NXP\RTCESL\CM33F_RTCESL_4.6_KEIL\MLIB\Include"
o "C:\NXP\RTCESL\CM33F_RTCESL_4.6_KEIL\GFLIB\Include"
e "C:\NXP\RTCESL\CM33F_RTCESL_4.6_KEIL\GDFLIB\Include"
e "C:\NXP\RTCESL\CM33F_RTCESL_4.6_KEIL\GMCLIB\Include"
e "C:\NXP\RTCESL\CM33F_RTCESL_4.6_KEIL\AMCLIB\Include"
4. Click OK.

5. Click OK in the main dialog.
r
Device I Target] Output] IJsting] User C/Ces lﬁsm I Unker] Debug] |Kilities I
Preprocessor Symbols
Diefine: |
Undefine: |
Language / Code Generation
[Strict ANSIC Wamings:
Optimization: |Level 0 {(00) ~ [Enum Container always int Al Warmings =
[~ Optimize for Time [~ Plain Charis Signed I
[~ Split Load and Store Multiple [Read-Only Position Independent I No Auto Includes
[~ One ELF Section per Function [~ Read-Write Position Independert ™ C%9 Mode
Include
Paths || J
l Mizc |
Controls
I Compiler |-¢ —cpu Cortex-M0+ -D__EVAL g 00 —apcs=intenwork -~
control |- C:\KeilProjects \MyProject01\RTE
string o
I
ok | cancel | Defauts | Help |

Figure 1-24. Library path addition

Type the #include syntax into the code. Include the library into a source file. In the new
project, it is necessary to create a source file:

1. Right-click the Source Group 1 node, and Add New Item to Group 'Source Group
I'... from the menu.

AMCLIB User's Guide, Rev. 4, 12/2020
24 NXP Semiconductors

Chapter 1 Library

2. Select the C File (.c) option, and type a name of the file into the Name box, for
example 'main.c'. See Figure 1-25.

-

Add MNew Item to Group "Source Group 1°

Create a new C source file and add it to the projed
C | CFie ()

@ C++ File (cpp)
\ﬂ Asm File (.5)

\ﬂ Header File (h)
EgaTaiHemm
@ Image File (%)
7‘@ User Code Template

Type:
Marme: | i, &
Location: | C:\KeilProjects\MyProjectd1
Add Close |
S —

Figure 1-25. Adding new source file dialog

3. Click Add, and a new source file is created and opened up.
4. In the opened source file, include the following lines into the #include section, and
create a main function:

#include
#include
#include
#include
#include

"mlib FP.h"

"gflib FP.h"
"gdflib FP.h
"gmclib FP.h
"amclib FP.h

int main(void)

while (1) ;

n

When you click the Build (F7) icon, the project will be compiled without errors.

1.4 Library integration into project (IAR Embedded
Workbench)

This section provides a step-by-step guide on how to quickly and easily include the
AMCLIB into an empty project or any MCUXpresso SDK example or demo application
projects using IAR Embedded Workbench. This example uses the default installation
path (C:\NXP\RTCESL\CM33F_RTCESL_4.6_IAR). If you have a different installation

AMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors

25

Library integration into project (IAR Embedded Workbench)

path, use that path instead. If any MCUXpresso SDK project is intended to use (for
example hello_world project) go to Linking the files into the project chapter otherwise

read next chapter.

1.4.1 New project (without MCUXpresso SDK)

This example uses the NXP LPC55S69 part, and the default installation path (C:\NXP
\RTCESL\CM33F_RTCESL_4.6_IAR) is supposed. To start working on an application,
create a new project. If the project already exists and is opened, skip to the next section.

Perform these steps to create a new project:
1. Launch TAR Embedded Workbench.
2. In the main menu, select Project > Create New Project... so that the "Create New

Project" dialog appears. See Figure 1-26.

Create New Project __ ﬁ

Taol chain: [&RM -

Project templates:

- asm -
- C++

Il |55
DLIE [C, C++ with exceptions and RTTI] 3
DLIB [C. Extended Embedded C++] i

R e |

m

Dezcription:
C project uzing default tool gettings inchuding an empty main.c file.

[oK] [Cancel]

Figure 1-26. Create New Project dialog

Expand the C node in the tree, and select the "main" node. Click OK.

4. Navigate to the folder where you want to create the project, for example, C:
\[ARProjects\MyProjectO1. Type the name of the project, for example, MyProjectO1.
Click Save, and a new project is created. The new project is now visible in the left-
hand part of IAR Embedded Workbench. See Figure 1-27.

W

AMCLIB User's Guide, Rev. 4, 12/2020
26 NXP Semiconductors

4
Chapter 1 Library

& IAR Embedded Workbench IDE

Eile Edit View Project Simulator JTools Window Help
DI &S| i 2R o ~ 4
Workspace x main.cl
lDebug v]
|| Files £ B P
E}& JMyProjectd] -Deb__ | v | | return 0;
FrIEin.c *]
L@ 3 Output

Figure 1-27. New project

5. In the main menu, go to Project > Options..., and a dialog appears.

6. In the Target tab, select the Device option, and click the button next to the dialog to
select the MCU. In this example, select NXP > LPC55S69 > NXP LPC55S69_core0.
Select VFPV5 single precision in the FPU option.The DSP instructions group is
required please check the DSP Extensions checkbox if not checked. Click OK. See
Figure 1-28.

Category:

Static Analysis
Runtime Checking
C/C++ Compiler
Assembler Processor variant
Qutput Converter O Core Cortex-M33
Custom Build
Build Actions (® Device NXP LPC55569_coreD
Linker
Debugger O CMSIS-Pack "None
Simulator
Angel Endian mode Floating point settings
o oA Litle FPU VFPv5 single precision
GDE Server Big V3 single precision
IAR. ROM-monitor
et/ TTAGIEt BE32
Jink/1-Trace BE2
TI Stellaris
Macraigor DSP Extension
PE micro Advanced SIMD (NEON) Modo |Nonseowe
RDI
STALINK
Third-Party Driver
TIXDS [

Library Options 2 MISRALC:2004 MISRALC:1358
Target Qutput Library Configuration Library Options 1

[reqgisters 16

TrustZone

(0] 3] [Cancel

Figure 1-28. Options dialog

AMCLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 27

Library integration into project (IAR Embedded Workbench)

1.4.2 PowerQuad DSP Coprocessor and Accelerator support

Some LPC platforms (LPC55S6x) contain a hardware accelerator dedicated to common
calculations in DSP applications. Only functions runing faster through the PowerQuad
module than the core itself are supported and targeted to be calculated by the PowerQuad
module. This section shows how to turn the PowerQuad (PQ) support for a function on

and off.

1. In the main menu, go to Project > Options..., and a dialog appears.
2. In the left-hand column, select C/C++ Compiler.
3. In the right-hand part of the dialog, click the Preprocessor tab (it can be hidden in the

right-hand side; use the arrow icons for navigation).
4. In the text box (at the Defined symbols: (one per line)), type the following (See

Figure 1-29):

 RTCESL_PQ_ON—to turn the PowerQuad support on.
* RTCESL_PQ_OFF—to turn the PowerQuad support off.

If neither of these two defines is defined, the hardware division and square root

support is turned off by default.

Runtime Checking

[Language 2 | Code | Optimizations | Output | List | Preprocsssor [[«]

Assembler

Build Actions

Linker

Debuager
Simulator
Angel
CMSIS DAP Preinclude file:
GDE Server
TAR. ROM-monitor _
I-jet/TTAGIet Defined symbols: (one per line)
I-Link/)-Trace RTCESL_FQ_ON
TI Stellaris
Macraigor
PE micro
RDI
ST-LIMK

Output Converter [lgnore standard include directories

-~

Custom Build Additional include directories: (one per line)

[] Preprocessor output ta file

Preserve comments

Generate Hine directives

-

Options for node "MyProject01” P
ElEn Factomy Settingz
General Options [Multifile Compilation
Static Analysis Discard Unused Publics

(-]

Third-Party Driver

TI XDS

l

Ok, l [Cancel

Figure 1-29. Defined symbols

5. Click OK in the main dialog.

AMCLIB User's Guide, Rev. 4, 12/2020

28

NXP Semiconductors

6.

Chapter 1 Library

Ensure the PowerQuad moduel to be clocked by calling function
RTCESL_PQ_Init(); prior to the first function using PQ module calling.

See the device reference manual to verify whether the device contains the PowerQuad
DSP Coprocessor and Accelerator support.

1.4.3 Library path variable

To make the library integration easier, create a variable that will hold the information
about the library path.

1.

2.

i

In the main menu, go to Tools > Configure Custom Argument Variables..., and a
dialog appears.

Click the New Group button, and another dialog appears. In this dialog, type the
name of the group PATH, and click OK. See Figure 1-30.

B ' Configure Custom Argument Variables %

Workspace | Global

~ahle Grour
Enable Group

MNew Group m

Mame: PATH

lable...

OK] l Cancel =

prt...

|'\
‘ Flanie. ..
.

Expand/Collapse Al

[Hide disabled groups

[OK] [Cancel

Figure 1-30. New Group

. Click on the newly created group, and click the Add Variable button. A dialog

appears.

Type this name: RTCESL_LOC

To set up the value, look for the library by clicking the '..." button, or just type the
installation path into the box: C:\NXP\RTCESL\CM33F_RTCESL_4.6_IAR. Click
OK.

In the main dialog, click OK. See Figure 1-31.

AMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 29

Library integration into project (IAR Embedded Workbench)

' Configure Custom Argument Variables =
Workspace | Global
[PATH Disable Group
———

E -
Add Variable =5
Name: |RTCESL_LOC |
Value: |C:\,NXP\,RTCESL_CM33F_RTCESL_X.X_IAR | 0.

[OK.] [Cancel]
—

Figure 1-31. New variable

1.4.4 Linking the files into the project

AMCLIB requires MLIB and GDFLIB and GFLIB and GMCLIB to be included too. The
following steps show the inclusion of all dependent modules.

To include the library files into the project, create groups and add them.

1.
2.
3.

Go to the main menu Project > Add Group...

Type RTCESL, and click OK.

Click on the newly created node RTCESL, go to Project > Add Group..., and create
a MLIB subgroup.

Click on the newly created node MLIB, and go to the main menu Project > Add
Files... See Figure 1-33.

Navigate into the library installation folder C:\NXP\RTCESL
\CM33F_RTCESL_4.6_IAR\MLIB\Include, and select the mlib.h file. (If the file
does not appear, set the file-type filter to Source Files.) Click Open. See Figure 1-32.
Navigate into the library installation folder C:\NXP\RTCESL

\CM33F _RTCESL_ 4.6 IAR\MLIB, and select the mlib.a file. If the file does not
appear, set the file-type filter to Library / Object files. Click Open.

» System (C:) » NXP » RTCESL » CM33RTCESLXXIAR » MLUE » Include

i MName Date modified Type

| mlib.h 16.10.2015 9:38 H File
|| MLB_Abs_F16.h 16.10.2015 9:38 H File

Figure 1-32. Add Files dialog
Click on the RTCESL node, go to Project > Add Group..., and create a GFLIB
subgroup.
Click on the newly created node GFLIB, and go to the main menu Project > Add
Files....

AMCLIB User's Guide, Rev. 4, 12/2020

30

NXP Semiconductors

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Chapter 1 Library

Navigate into the library installation folder C:\NXP\RTCESL
\CM33F_RTCESL_4.6_IAR\GFLIB\Include, and select the gflib.h file. (If the file
does not appear, set the file-type filter to Source Files.) Click Open.

Navigate into the library installation folder C:\NXP\RTCESL
\CM33F_RTCESL_4.6_IAR\GFLIB, and select the gflib.a file. If the file does not
appear, set the file-type filter to Library / Object files. Click Open.

Click on the RTCESL node, go to Project > Add Group..., and create a GDFLIB
subgroup.

Click on the newly created node GDFLIB, and go to the main menu Project > Add
Files....

Navigate into the library installation folder C:\NXP\RTCESL
\CM33F_RTCESL_4.6_IAR\GDFLIB\Include, and select the gdflib.h file. (If the file
does not appear, set the file-type filter to Source Files.) Click Open.

Navigate into the library installation folder C:\NXP\RTCESL
\CM33F_RTCESL_4.6_IAR\GDFLIB, and select the gdflib.a file. If the file does not
appear, set the file-type filter to Library / Object files. Click Open.

Click on the RTCESL node, go to Project > Add Group..., and create a GMCLIB
subgroup.

Click on the newly created node GMCLIB, and go to the main menu Project > Add
Files....

Navigate into the library installation folder C:\NXP\RTCESL
\CM33F_RTCESL_4.6_IAR\GMCLIB\Include, and select the gmclib.h file. If the
file does not appear, set the file-type filter to Source Files. Click Open.

Navigate into the library installation folder C:\NXP\RTCESL
\CM33F_RTCESL_4.6_IAR\GMCLIB, and select the gmclib.a file. If the file does
not appear, set the file-type filter to Library / Object files. Click Open.

Click on the RTCESL node, go to Project > Add Group..., and create an AMCLIB
subgroup.

Click on the newly created node AMCLIB, and go to the main menu Project > Add
Files....

Navigate into the library installation folder C:\NXP\RTCESL

\CM33F _RTCESL_4.6_TAR\AMCLIB\Include, and select the amclib.h file. If the
file does not appear, set the file-type filter to Source Files. Click Open.

Navigate into the library installation folder C:\NXP\RTCESL
\CM33F_RTCESL_4.6_TAR\AMCLIB, and select the amclib.a file. If the file does
not appear, set the file-type filter to Library / Object files. Click Open.

Now you will see the files added in the workspace. See Figure 1-33.

AMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 31

A ————
Library integration into project (IAR Embedded Workbench)

Workspace x
[Debug -
Files ooy
B [MyProjectd1 - Debug * v

Hz CORTCESL

— [AMCLIE &
L— 1) amclib_FPh
HE (1 GOFLIB

— [GDFLIB.a
— |u] gdflib_FF.h
=1 (1 GFLIE

— [GFLIE.a
—] gflib_FF.h
HE (O GRCLIB

— [GMCLIB.2
L— [gmclib_FFh
La LB

— [WLIB A

—] rmlib_FF.h
main.c

= (] Output

Figure 1-33. Project workspace

1.4.5 Library path setup
The following steps show the inclusion of all dependent modules:

1. In the main menu, go to Project > Options..., and a dialog appears.
2. In the left-hand column, select C/C++ Compiler.
3. In the right-hand part of the dialog, click on the Preprocessor tab (it can be hidden in
the right; use the arrow icons for navigation).
4. In the text box (at the Additional include directories title), type the following folder
(using the created variable):
e SRTCESL_LOC$\MLIB\Include
e SRTCESL_LOCS$\GFLIB\Include
* SRTCESL_LOCS$\GDFLIB\Include
e SRTCESL_LOC$\GMCLIB\Include
e SRTCESL_LOC$\AMCLIB\Include
5. Click OK in the main dialog. See Figure 1-34.

AMCLIB User's Guide, Rev. 4, 12/2020
32 NXP Semiconductors

Cateqary:

,

[E=x)

General Options
Static Analysis
Runtime Checking
Assembler
QOutput Converter
Custom Build
Build Actions
Linker
Debuager
Simulator
Angel
CMSIS DAP
GDE Server
TAR. ROM-monitor
T4et/TTAG]et
J-Link/1-Trace
TI Stellaris
Macraigor
PE micro
RDI
ST-LIMK
Third-Party Driver
TI XDS

[tuiti-file Compilation

Digcard Unuged Publics

Factony Settingz

| Language 1 I Language 2 I Code IOptirnizations IDutput I List

|[1 3

[lgnore standard include directories

Additional include directories: jone per ling)

SRTCESL_LOCS\MLIB\include

Preinclude file:

Defined symbols: (one per line)

SRTCESL_LOCS\GFLIBYinclude

SRTCESL LOCEMGMCLIBNnclude
SRTCESL_LOCS\GDFLIBNnclude
SRTCESL_LOCS\AMCLIBNinclude

Fy

|| Preprocessor outpit to file
Preserve comments
Generate Hine directives

[ok

] l Cancel

Figure 1-34. Library path adition

Chapter 1 Library

Type the #include syntax into the code. Include the library included into the main.c file.
In the workspace tree, double-click the main.c file. After the main.c file opens up, include
the following lines into the #include section:

#include
#include
#include
#include
#include

When you click the Make icon, the project will be compiled without errors.

"mlib_FP.h"

"gflib FP.h"
"gdflib_ FP.h"
"gmclib FP.h"
"amclib_ FP.h"

AMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors

33

A ————
Library integration into project (IAR Embedded Workbench)

AMCLIB User's Guide, Rev. 4, 12/2020
34 NXP Semiconductors

Chapter 2
Algorithms in detail

2.1 AMCLIB_ACIMCtrIMTPA

The AMCLIB_ACIMCtrIMTPA function enables to minimize the ACIM losses by
applying the Max Toque per Ampere (MTPA) strategy. The principle is derived from the
ACIM torque equation:

3 L2 . . 3 L . .
T(0) =5 Ppr ia(Oy) "isg(Op) =7 - Ppr T " |isag| -5in(2-6y)

Equation 1

where:

* iy is the D component of the stator current vector
* igq 1s the Q component of the stator current vector
* igqq 18 the stator current vector

* O is the angle of stator the current vector

L, is the rotor equivalent inductance

* L, is the mutual equivalent inductance

* Pp is the motor pole pair number constant

* T is the motor mechanic torque

Motor torque depends on the angle of the stator current vector. Maximum eficency
(minimum stator joule losses) can be calculated when motor torque differential is equal
Zero:

ar(e,) _3 23

a0, =3 Pr T lisag| -cos(2-0y) =0=>0,=%

Equation 2

It is clear that the stator current components must be the same values to achieve theB; =
n/4 angle. The MTPA stator current vector trajectory in consideration of the igq limits
given by the minimal field excitation and current limitations is shown in Figure 2-1).

AMCLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 35

AMCLIB_ACIMCtrIMTPA

_m
4

> isq

i 1 -
Lsd min Lsd max

Figure 2-1. Minimal losses stator current vector trajectory with limits

2.1.1 Available versions

The available versions of the AMCLIB_ACIMCtrIMTPA function are shown in the
following table:

Table 2-1. Init function versions

Function name Input type Parameters Result
IdMin | IdMax type
AMCLIB_ACIMCtrIMTPAInit_FLT |float_t float_t AMCLIB_ACIM_CTRL_MTPA_T_FLT * void

The input arguments are the 32-bit single precision floating-point values that contain the
limits for isq. They both are positive values (the minimum must be lower than the
maximum) and the pointers to a structure that contains the parameters defined in
AMCLIB_ACIM_CTRL_MTPA_T_FLT type description.

Table 2-2. Function version

Function name Input Parameters Result
type type
AMCLIB_ACIMCtrIMTPA_FLT |float_t AMCLIB_ACIM_CTRL_MTPA_T_FLT * float_t

The input arguments are the 32-bit single precision floating-point values that contain the
limits for isq. They both are positive values (the minimum must be lower than the maximum)
and the pointers to a structure that contains the parameters defined in
AMCLIB_ACIM_CTRL_MTPA_T_FLT type description.

AMCLIB User's Guide, Rev. 4, 12/2020
36 NXP Semiconductors

4
Chapter 2 Algorithms in detail

2.1.2 AMCLIB_ACIM_CTRL_MTPA_T_FLT type description

Variable Data type Description
name

fltidExpParam |GDFLIB_FILTER_EXP_T_FLT |The exponential filter structure for the igq current filtration. Set by the user.

fltLowerLim float_t The minimal output limit of igy. Usually determined from the minimum
ACIM rotor flux excitation, as shown in Figure 2-1. Set by the user, must
be a positive value lower than the upper limit.

fltUpperLim float_t The maximal output limit of isg. Usually determined from the maximum
(typically nominal) ACIM current, as shown in Figure 2-1. Set by the user,
must be a positive value higher than the lower limit.

2.1.3 Declaration
The available AMCLIB_ACIMCtrIMTPAInit functions have the following declarations:

void AMCLIB_ACIMCtrlMTPAInit FLT(float t £1ltMin,float t £ltMax,AMCLIB ACIM CTRL MTPA T FLT
*psCtrl)

The available AMCLIB_ACIMCtrIMTPA functions have the following declarations:

float t AMCLIB ACIMCtrlMTPA FLT (float t fltIg,AMCLIB ACIM CTRL MTPA T FLT *psCtrl)

2.1.4 Function use
The use of the AMCLIB_ACIMCtrIMTPA function is shown in the following examples:

Floating-point version:

#include "amclib.h"

static AMCLIB ACIM CTRL MTPA T FLT sMTPAParam;
static float t fltIsd;

static float t fltIsqg;

static float t f1tIDMin;

static float t fltIDMax;

void Isr (void) ;
void main (void)

{

/* Structure parameter setting */
sMTPAParam.sCtrl.fltIdExpParam.f1tA = 0.05F;

AMCLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 37

A
AMCLIB_ACIMRotFluxObsrv

f1tIDMin
fl1tIDMax

0.1F;
2.2F;

/* Initialization of the ACIMCtrlMTPA's structure */
AMCLIB_ACIMCtrlMTPAInit_FLT (£1tIDMin, fltIDMax, &sMTPAParam) ;

/* Assign Isqg value */
fltIsg = -0.6F;

}

/* Periodical function or interrupt */
void Isr (void)

{

/* Calculating required Isd by MTPA algorithm */
fltIsd = AMCLIB ACIMCtrlMTPA FLT(fltIsqg, &sMTPAParam) ;

2.2 AMCLIB_ACIMRotFluxObsrv

The AMCLIB_ACIMRotFluxObsrv function calculates the ACIM flux estimate and its
position (angle) from the available measured signals (currents and voltages). In the case
of ACIM FOC, the rotor flux position (angle) is needed to perform the Park
transformation.

The closed-loop flux observer is formed from the two most desirable open-loop
estimators, which are referred to as the voltage model and the current model (as shown in
Figure 2-2). The current model is used for low-speed operation and the voltage model is
used for high-speed operation. A smooth transition between these two models is ensured
by the PI controller.

Voltage model

Current model i ‘ Rs ‘ ‘ oLs ‘
- -]
I 7 | \ atan (wni) _;Pr
= = - PI 1 e
i,—» 1Oy, — LS A 7 — | U © Z 0
¢ ’ 1+s.7, e Controller comp s ¥,

Figure 2-2. ACIM rotor flux observer block diagram

The voltage model (stator model) is used to estimate the stator flux-linkage vector or the
rotor flux-linkage vector without a speed signal. The voltage model is derived by
integrating the stator voltage equation in the stator stationary coordinates as:

AMCLIB User's Guide, Rev. 4, 12/2020
38 NXP Semiconductors

Chapter 2 Algorithms in detail

E;=Rs'is+7
7[R R)ar
V=@~ Lo 7))

Equation 3
Expressed in discrete form as:

W, 0 = 27w (b = D T) = Ry)]
o 0)= v o= 1+ T (k) — Ro 0
v, (K) ==y (0) — Ly~ i K))
0 == v (0~ Lo i)

Equation 4

where:

* u, is the stator voltage vector

* i, is the stator current vector

o W is the stator flux-linkage vector

o W, is the rotor flux-linkage vector

* W, is the rotor electrical angular speed
* Wy is the electrical angular slip speed
* R, is the stator resistance

* R, is the rotor equivalent resistance

* L, is the stator equivalent inductance
* L, is the rotor equivalent inductance

* L, is the mutual equivalent inductance
* T, is the motor electrical time constant
* T, is the sample time

* O is the motor leakage coefficient

These equations show that the rotor flux linkage is basically the difference between the
stator flux-linkage and the leakage flux. The rotor flux equation is used to estimate the

respective flux-linkage vector, corresponding angle. The argument W, of the rotor flux-
linkage vector is the rotor field angle Oy, calculated as:

v,
Oy, = atan(Wj)

Equation 5

AMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 39

A
AMCLIB_ACIMROotFluxObsrv

The voltage model (stator model) is sufficiently robust and accurate at higher stator
frequencies. Two basic deficiencies can degrade this model as the speed reduces: the
integration problem, and model’s sensitivity to stator resistance mismatch.

The current model (rotor model) is derived from the differential equation of the rotor
winding. The stator coordinate implementation is:

l//r Lm—’ — . —
T, T TV, T JWslipt Y,

—=
Equation 6

When applying field-oriented control assumptions (such as W, = 0), then the rotor flux
estimated by the current model in the synchronous rotating frame is:

d‘//rd _ _l*)_i_ﬁ_)
di TV Tl
Equation 7

In discrete form:

v, 0= v,k D+ 7224)]
Equation 8

The accuracy of the rotor model depends on correct model parameters. It is the rotor time
constant in particular that determines the accuracy of the estimated field angle (the most
critical variable in a vector-controlled drive).

2.2.1 Available versions

The available versions of the AMCLIB _ACIMRotFluxObsrv function are shown in the
following table:

Table 2-3. Init version

Function name Parameters Result type
AMCLIB_ACIMRotFluxObsrvinit_FLT AMCLIB_ACIM_ROT_FLUX_OBSRV_T_FLT * void
The initialization does not have any input.

Table 2-4. Function version

Function name Input/output type Result type
AMCLIB_ACIMRotFluxObsrv_FLT Input GMCLIB_2COOR_ALBE_T_FLT * void
GMCLIB_2COOR_ALBE_T_FLT *

Table continues on the next page...

AMCLIB User's Guide, Rev. 4, 12/2020
40 NXP Semiconductors

Chapter 2 Algorithms in detail

Table 2-4. Function version (continued)

Function name

Input/output type Result type

Parameters

AMCLIB_ACIM_ROT_FLUX_OBSRV_T_FLT *

Rotor flux observer with a 32-bit single precision floating-point inputs: stator current

and voltage in alpha-beta coordinates. All are within the full range. The function does
not return anything.
AMCLIB_ACIM_ROT_FLUX_OBSRV_T_FLT structure.

All calculated variables are stored in the

2.2.2 AMCLIB_ACIM_ROT_FLUX_OBSRV_T_FLT type
description

Variable name

Data type

Description

sPsiRotRDQ GMCLIB_2COOR_DQ_T_F |[The output rotor flux estimated structure calculated from the
LT current model. The structure consists of the D and Q rotor flux
components stored for the next steps. The quadrature
component is forced to zero value - required by FOC.
sPsiRotSAIBe GMCLIB_2COOR_ALBE_T_ | The output rotor flux estimated structure calculated from the
FLT voltage model. The structure consists of the alpha and beta rotor
flux components stored for the next steps.
sPsiStatSAIBe GMCLIB_2COOR_ALBE_T_ | The output stator flux estimated structure calculated from the
FLT voltage model. The structure consists of the alpha and beta
stator flux components stored for the next steps.
fliTorque float_t The output estimated motor torque calculated as:
3'PP'Lm' (wra'IsB_ "UrB'Isa)
r= 21
max
The variable is a 32-bit single precision floating-point type value.
a32RotFluxPos acc32_t The output rotor flux estimated electric position (angle) - a 32-bit
accumulator is normalized to the range <-1 ; 1) that represents
an angle (in radians) within the range <-m ;).
sCitrl fltCompAlphalnteg |float_t The state variable in the alpha part of the controller; integral part
1 at step k-1.
fliCompBetalnteg_ |float_t The state variable in the beta part of the controller; integral part
1 at step k-1.
fltCompAlphaErr_ |float_t The state variable in the alpha part of the controller; error part at
1 step k-1.
fliCompBetaErr_1 |float_t The state variable in the beta part of the controller; error part at
step k-1.
fltPGain float_t The proportional gain Kp for the stator model Pl correction. Set
by the user.
fltIGain float_t The integration gain Ki for the stator model PI correction. Set by
the user.
fltPsiRA1Gain float_t The gain is defined as:

Ty
T+ T

L
where: 7, = Fr
3

Table continues on the next page...

AMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors

41

A
AMCLIB_ACIMRotFluxObsrv

Variable name Data type Description

The parameter is a 32-bit single precision floating-point type non-
negative value. Set by the user.

fltPsiRB1Gain float_t The coefficient gain is defined as:

L,-T L
F—where: Tr=R—:

The parameter is a 32-bit single precision floating-point type non-
negative value. Set by the user.

fltPsiSA1Gain float_t The gain is defined as:
-1
1+Ts-2n- f

integ

The fineg is @ cut-off frequency of a low-pass filter approximation
of a pure integrator. The parameter is a 32-bit single precision
floating-point type non-negative value. Set by the user.

fltPsiSA2Gain float_t The coefficient gain is defined as:

T
1+ T 21T f,

integ

The fineg is @ cut-off frequency of a low-pass filter approximation
of a pure integrator. The parameter is a 32-bit single precision
floating-point type non-negative value. Set by the user.

fltKrInvGain float_t The gain is defined as:
L

L

The parameter is a 32-bit single precision floating-point type non-
negative value. Set by the user.

fltKrLsTotLeakGain float_t The coefficient gain is defined as:

Ly-L.-12
Ly,

The parameter is a 32-bit single precision floating-point type non-
negative value. Set by the user.

fliRsEst float_t The stator resistance parameter is a 32-bit single precision
floating-point type non-negative value. Set by the user.
fltTorqueGain float_t The torque constant coefficient gain is defined as:
2-L,

The Pp is a number of motor pole-pairs. The parameter is a 32-
bit single precision floating-point type non-negative value. Set by
the user.

2.2.3 Declaration
The available AMCLIB_ACIMRotFluxObsrvInit function has the following declarations:

AMCLIB User's Guide, Rev. 4, 12/2020
42 NXP Semiconductors

4
Chapter 2 Algorithms in detail

void AMCLIB ACIMRotFluxObsrvInit FLT (AMCLIB_ACIM ROT FLUX OBSRV T FLT *psCtrl)

The available AMCLIB_ACIMRotFluxObsrv function has the following declarations:

void AMCLIB_ACIMRotFluxObsrv_FLT (const GMCLIB_2COOR_ALBE T FLT *psISAlBe, const
GMCLIB_2COOR_ALBE_T_FLT *psUSAlBe, AMCLIB_ACIM ROT FLUX_OBSRV_T FLT *psCtrl)

2.2.4 Function use

The use of the AMCLIB_ACIMRotFluxObsrv function is shown in the following
examples:

Floating-point version:

#include "amclib.h"

static GMCLIB_2COOR_ALBE_ T FLT sIsAlBe, sUsAlBe;
static AMCLIB_ACIM ROT FLUX OBSRV_T FLT sRfoParam;

void Isr (void) ;

void main (void)

{

sRfoParam.sCtrl.f1tPGain = 32750.0F;
sRfoParam.sCtrl.f1ltIGain = 12500.0F;
sRfoParam. fltKrInvGain = 1.0851063829787235F;

sRfoParam.fltKrLsTotLeakGain = 0.08340425531914897F;
sRfoParam.f1ltPsiRA1Gain = 0.995151077592515F;
sRfoParam.fltPsiRB1Gain = 0.002278993531517996F;
sRfoParam.fltPsiSAl1Gain = 0.9981185907806752F;
sRfoParam.f1ltPsiSA2Gain = 0.00009981185907806752F;
2

sRfoParam.fltRsEst = 26.06F;

/* Initialization of the RFO's structure */
AMCLIB ACIMRotFluxObsrvInit FLT (&sRfoParam);

sIsAlBe.fltAlpha = 0.05F;
sIsAlBe.fltBeta = 0.1F;
sUsAlBe.fltAlpha = 0.2F;
sUsAlBe.fltBeta = -0.1F;

}

/* Periodical function or interrupt */
void Isr (void)

/* Rotor flux observer calculation */
AMCLIB ACIMRotFluxObsrv_ FLT(&sIsAlBe, &sUsAlBe, &sRfoParam) ;

2.3 AMCLIB_ACIMSpeedMRAS

AMCLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 43

A
AMCLIB_ACIMSpeedMRAS

The AMCLIB_ACIMSpeedMRAS function is based on the model reference approach
(MRAS), and it uses the redundancy of two machine models of different structures that
estimate the same state variable based on different sets of input variables. It means that
the rotor speed can obtained using an estimator with MRAS principle, in which the error
vector is formed from the outputs of two models (both dependent on different motor
parameters) - as shown in Figure 2-3.

Us —] Reference Model
Rotor

Flux \|!R

Observer

Is

Adaptive
- MRAS VR
Model

[1
Or s

Figure 2-3. The estimated and real rotor dq synchronous reference frames

The closed-loop flux observer provides a stationary-axis-based rotor flux Wi from RFO
as a reference for the MRAS model, whereas the adaptive model of MRAS is the current-
mode flux observer, which provides adjustable stationary-axis-based rotor flux:

dl/lfWRAS 1 Lm?’
P R
Equation 9

where:

* i, 1s the stator current vector

» W, is the rotor flux-linkage vector

* W, is the rotor electrical angular speed
* T, 1s the rotor electrical time constant

* L, is the mutual equivalent inductance

The phase angle between the two estimated rotor flux vectors is used to correct the
adaptive model, according to:

= wRFO . yMRAS — yRFO . yyMRAS
EMRAS l//ra l//r/), Wr[)’ l//ra

Equation 10

The estimated speed Wy is adjusted by a PI regulator.

AMCLIB User's Guide, Rev. 4, 12/2020
44 NXP Semiconductors

2.3.1 Available versions
The available versions of the AMCLIB_ACIMSpeedMRAS function are shown in the

following table:

Chapter 2 Algorithms in detail

Table 2-5. Init version
Function name Parameters Result type
AMCLIB_ACIMSpeedMRASInit_FLT AMCLIB_ACIMSpeedMRAS_T_FLT * void
The initialization does not have an input.
Table 2-6. Function version
Function name Input/output type Result type
AMCLIB_ACIMSpeedMRAS_FLT Input GMCLIB_2COOR_ALBE_T_FLT * void
GMCLIB_2COOR_ALBE_T_FLT *
acc32_t
Parameters AMCLIB_ACIMSpeedMRAS_T_FLT *

The AMCLIB_ACIMSpeedMRAS_FLT function with a 32-bit single precision
floating-point inputs: stator current and voltage in alpha-beta coordinates.

2.3.2 AMCLIB_ACIMSpeedMRAS_T_FLT type description

Variable name

Data type

Description

sSpeedlIR1Param

GDFLIB_FILTER_IIR1_T_F
LT

The IIR1 filter structure for estimated speed filtration. Set by the
user.

sPsiRotRDQ GMCLIB_2COOR_DQ_T_F |[The output rotor flux estimated structure from the current model.
LT The structure consists of the D and Q rotor flux components
stored for the next step.
fliSpeed float_t The output rotor estimated electrical speed.
fltSpeedEllIR1 float_t The output rotor estimated electrical speed filtered.
fltSpeedMellR1 float_t The output rotor estimated mechanical speed filtered.
a32RotPos acc32_t The output rotor estimated electric position (angle) - a 32-bit
accumulator is normalized to the range <-1 ; 1) that represents
an angle (in radians) within the range <-1 ; m).
sCirl fliSpeedinteg_1 float_t The speed integral part - state variable at step k-1 of the
electrical speed controller.
fliSpeedErr_1 float_t The speed error - state variable at step k-1 of the electrical
speed controller.
fltPGain float_t The MRAS proportional gain coefficient. Set by the user.
fltIGain float_t The MRAS integral gain coefficient. Set by the user.

Table continues on the next page...

AMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors

45

A
AMCLIB_ACIMSpeedMRAS

Variable name Data type Description

fltPsiRA1Gain float_t The coefficient gain is defined as:

L
v L
= where: 7, R,

The parameter is a 32-bit single precision floating-point type non-
negative value. Set by the user.

fltPsiRB1Gain float_t The coefficient gain is defined as:

L,-T L
F—where: Tr:R—:

The parameter is a 32-bit single precision floating-point type non-
negative value. Set by the user.

fltTs float_t The sample time constant - the time between the steps. Set by
the user.
fltSpeedMeGain float_t The speed gain coefficient, defined as:
60
27[- PP

Where Pp is the number of motor pole-pairs. The parameter is a
32-bit single precision floating-point type non-negative value. Set
by the user.

2.3.3 Declaration

The available AMCLIB_ACIMSpeedMRASInit function have the following
declarations:

void AMCLIB ACIMSpeedMRASInit FLT (AMCLIB ACIM SPEED MRAS T FLT *psCtrl)

The available AMCLIB_ACIMSpeedMRAS function have the following declarations:

void AMCLIB ACIMSpeedMRAS FLT (const GMCLIB 2COOR _ALBE T FLT *psISAlBe, const
GMCLIB 2COOR_ALBE T FLT *psPsiRAlBe, acc32 t a32RotPos, AMCLIB ACIM SPEED MRAS T FLT *psCtrl)

2.3.4 Function use

The use of the AMCLIB_ACIMSpeedMRAS function is shown in the following
examples:

Floating-point version:

AMCLIB User's Guide, Rev. 4, 12/2020
46 NXP Semiconductors

4
Chapter 2 Algorithms in detail

#include "amclib.h"

static GMCLIB_2COOR_ALBE_T FLT sIsAlBe, sPsiRAlBe;
static AMCLIB ACIM SPEED MRAS T sMrasParam;
static acc32_t a32RotPosIn;

void Isr (void) ;

void main (void)

{
sMrasParam.sCtrl.fltIGain
sMrasParam.sCtrl.f1ltPGain
sMrasParam.fltPsiRAlGain
sMrasParam.fltPsiRB1Gain
sMrasParam.fltTs

12500.0F;

32750.0F;
0.995151077592515F;
0.002278993531517996F;
0.0001F;

/* Initialization of the MRAS's structure */
AMCLIB ACIMSpeedMRASInit FLT (&sMrasParam) ;

sIsAlBe.fltAlpha = 0.05F;
sIsAlBe.fltBeta = 0.1F;
sPsiRAlBe.fltAlpha = 0.2F;
sPsiRAlBe.fltBeta = -0.1F;

}

/* Periodical function or interrupt */
void Isr (void)

{

/* Speed estimation calculation based on MRAS */
AMCLIB ACIMSpeedMRAS FLT (&sIsAlBe, &sPsiRAlBe, a32RotPosIn, &sMrasParam) ;

2.4 AMCLIB_AngleTrackObsrv

The AMCLIB_TrackObsrv function calculates an angle-tracking observer for
determination of angular speed and position of the input signal. It requires two input
arguments as sine and cosine samples. The practical implementation of the angle-tracking
observer algorithm is described below.

The angle-tracking observer compares values of the input signals - sin(0), cos(0) with
their corresponding estimations. As in any common closed-loop systems, the intent is to
minimize the observer error towards zero value. The observer error is given here by
subtracting the estimated resolver rotor angle from the actual rotor angle.

The tracking-observer algorithm uses the phase-locked loop mechanism. It is
recommended to call this function at every sampling period. It requires a single input
argument as phase error. A phase-tracking observer with standard PI controller used as
the loop compensator is shown in Figure 2-4.

AMCLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 47

AMCLIB_AngleTrackObsrv

Figure 2-4. Block diagram of proposed PLL scheme for position estimation

Note that the mathematical expression of the observer error is known as the formula of
the difference between two angles:
sin(6 — 9) = sin(6) - cos(d) — cos(d) - sin(0)

Equation 11
If the deviation between the estimated and the actual angle is very small, then the
observer error may be expressed using the following equation:

sin@—)= 60— 0

Equation 12
The primary benefit of the angle-tracking observer utilization, in comparison with the
trigonometric method, is its smoothing capability. This filtering is achieved by the
integrator and the proportional and integral controllers, which are connected in series and
closed by a unit feedback loop. This block diagram tracks the actual rotor angle and

speed, and continuously updates their estimations. The angle-tracking observer transfer
function is expressed as follows:

) K(1+sK))
H(S) o S2+SK1K2+K1

Equation 13
The characteristic polynomial of the angle-tracking observer corresponds to the
denominator of the following transfer function:

s2+sK K, +K;

AMCLIB User's Guide, Rev. 4, 12/2020
48 NXP Semiconductors

L __4

Chapter 2 Algorithms in detail
Appropriate dynamic behavior of the angle-tracking observer is achieved by the
placement of the poles of characteristic polynomial. This general method is based on
matching the coefficients of characteristic polynomial with the coefficients of a general
second-order system.

The analog integrators in the previous figure (marked as 1/ s) are replaced by an
equivalent of the discrete-time integrator using the backward Euler integration method.
The discrete-time block diagram of the angle-tracking observer is shown in the following
figure:

K>
sin(6(k))
K1 7= = o0k
cos(6(k))—
Y 1
Vi z

Figure 2-5. Block scheme of discrete-time tracking observer

The essential equations for implementating the angle-tracking observer (according to this
block scheme) are as follows:

(k) = sin(6(k)) - cos(O(k — 1)) — cos(6Xk)) - sin(B(k — 1))
Equation 14
wk)=Ty* K ;= e(k)+ axk — 1)

Equation 15

axk)= Ty a(k)+axk — 1)
Equation 16

O(k) =K, w(k)+ay(k)
Equation 17

where:
» K, is the integral gain of the I controller

* K, is the proportional gain of the PI controller

AMCLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 49

A
AMCLIB_AngleTrackObsrv

T, 1s the sampling period [s]

e(k) is the position error in step k

w(k) is the rotor speed [rad / s] in step k

w(k - 1) s the rotor speed [rad / s] in step k - 1

a(k) is the integral output of the PI controler [rad / s] in step k

a(k - 1) is the integral output of the PI controler [rad / s] in step k - 1
B(k) is the rotor angle [rad] in step k

* O(k - 1) is the rotor angle [rad] in step k - 1

* O(k) is the estimated rotor angle [rad] in step k

* O(k - 1) is the estimated rotor angle [rad] in step k - 1

In the fractional arithmetic, Equation 14 on page 49 to Equation 17 on page 49 are as
follows:
5 lk)* gy =Ts* Ko e(k)+ wgdk — 1) * 0y
Equation 18
A K) * Omax = T's * 5k) * Omax+ Aok = 1)* Oprax

Equation 19

ésc(k) 'amax:Kz'wsc(k) .wmax+a2.vc(k) * Omax

Equation 20
where:

* e,.(k) 1s the scaled position error in step k

* W.(k) 1s the scaled rotor speed [rad / s] in step k

* Wq.(k - 1) is the scaled rotor speed [rad / s] in step k - 1

* a,(k) is the integral output of the PI controler [rad / s] in step k
* a.(k - 1) is the integral output of the PI controler [rad / s] in step k - 1
* O,.(k) is the scaled rotor angle [rad] in step k

* O,.(k - 1) is the scaled rotor angle [rad] in step k - 1

* O,.(k) is the scaled rotor angle [rad] in step k

e O..(k - 1) is the scaled rotor angle [rad] in step k - 1

* Wpax 1S the maximum speed

* 0,,.x is the maximum rotor angle (typicaly)

2.4.1 Available versions

The function is available in the following versions:

AMCLIB User's Guide, Rev. 4, 12/2020
50 NXP Semiconductors

L __4
Chapter 2 Algorithms in detail
* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1).
» Accumulator output with floating point inputs - the output is the accumulator type,

where the inputs for the calculation are the floating-point types within the range
<-1.0; 1.0>.

The available versions of the AMCLIB_AngleTrackObsrv function are shown in the
following table:

Table 2-7. Init versions

Function nhame Init angle Parameters Result
type
AMCLIB_AngleTrackObsrvinit_F16 frac16_t AMCLIB_ANGLE_TRACK_OBSRV_T_F32 * void

The input is a 16-bit fractional value of the angle normalized to the range <-1; 1)
that represents an angle in (radians) within the range <-11 ; m).

AMCLIB_AngleTrackObsrvInit_A32af acc32_t AMCLIB_ANGLE_TRACK_OBSRV_T_FLT * |v0id

The input is a 32-bit accumulator value of the angle divided by .

Table 2-8. Function versions

Function name Input type Parameters Result
type
AMCLIB_AngleTrackObsrv_F16 GMCLIB_2COOR_SINCOS_T_F16 * AMCLIB_ANGLE_TRACK_OB |frac16_t
SRV_T_F32*

Angle-tracking observer with a two-componenent (sin/cos) 16-bit fractional position
input within the range <-1 ; 1). The output from the obsever is a 16-bit fractional
position normalized to the range <-1 ; 1) that represents an angle (in radians) within
the range <-1; m).

AMCLIB_AngleTrackObsrv_A32ff GMCLIB_2COOR_SINCOS_T_FLT * AMCLIB_ANGLE_TRACK_OB|acc32_t
SRV_T_FLT*

Tracking observer with a a two-componenent (sin/cos) 32-bit accumulator position
input within the range <-1.0 ; 1.0>. The output from the obsever is a 32-bit
accumulator position normalized to the range <-1 ; 1) that represents an angle (in
radians) within the range <-m ; m).

2.4.2 AMCLIB_ANGLE_TRACK_ OBSRV_T_F32

Variable name Input Description
type
f32Speed frac32_t |Estimated speed as the output of the first numerical integrator. The parameter is within the

range <-1; 1). Controlled by the AMCLIB_AngleTrackObsrv_F16 algorithm; cleared by the
AMCLIB_AngleTrackObsrvinit_F16 function.

Table continues on the next page...

AMCLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 51

A
AMCLIB_AngleTrackObsrv

Variable name

Input
type

Description

f32A2

frac32_t

Output of the second numerical integrator. The parameter is within the range <-1; 1).
Controlled by the AMCLIB_AngleTrackObsrv_F16 and AMCLIB_AngleTrackObsrvinit_F16
algorithms.

f16Theta

frac16_t

Estimated position as the output of the observer. The parameter is normalized to the range
<-1; 1) that represents an angle (in radians) within the range <-m ; m). Controlled by the
AMCLIB_AngleTrackObsrv_F16 and AMCLIB_AngleTrackObsrvinit_F16 algorithms.

f16SinEstim

frac16_t

Sine of the estimated position as the output of the actual step. Keeps the sine of the
position for the next step. The parameter is within the range <-1 ; 1). Controlled by the
AMCLIB_AngleTrackObsrv_F16 and AMCLIB_AngleTrackObsrvInit_F16 algorithms.

f16CosEstim

frac16_t

Cosine of the estimated position as the output of the actual step. Keeps the cosine of the
position for the next step. The parameter is within the range <-1 ; 1). Controlled by the
AMCLIB_AngleTrackObsrv_F16 and AMCLIB_AngleTrackObsrvinit_F16 algorithms.

f16K1Gain

frac16_t

Observer K1 gain is set up according to Equation 18 on page 50 as:
TS . K[. m . 2*K1Sh

The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.

i16K1GainSh

int16_t

Observer K2 gain shift takes care of keeping the f16K1Gain variable within the fractional
range <-1; 1). The shift is determined as:

log (T K #W) —log,1<KlIsh<log(Ts K; #m) —log 0.5

The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.

f16K2Gain

frac16_t

Observer K2 gain is set up according to Equation 20 on page 50 as:

@, —
KZ' Hmax) K2sh

max

The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.

i16K2GainSh

int16_t

Observer K2 gain shift takes care of keeping the f16K2Gain variable within the fractional
range <-1; 1). The shift is determined as:

log (K, Z’"n’“

X
ax

)~ log,1<K2sh<log (K- mar) log,0.5

9"11],‘6

The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.

f16A2Gain

frac16_t

Observer A2 gain for the output position is set up according to Equation 19 on page 50 as:

. Wmax ~—A2sh
T G 2

The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.

i16A2GainSh

int16_t

Observer A2 gain shift for the position integrator takes care of keeping the f16A2Gain
variable within the fractional range <-1 ; 1). The shift is determined as:

log,(Ts- maxy log,1< A2sh<log (T omaxy log,0.5

ethX emax

The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.

AMCLIB User's Guide, Rev. 4, 12/2020

52

NXP Semiconductors

4
Chapter 2 Algorithms in detail

2.4.3 AMCLIB_ANGLE_TRACK OBSRV_T_FLT

Variable name Input Description
type
fltSpeed float_t Estimated speed as the output of the first numerical integrator. The parameter is within the

range <-32768.0; 32767.99998). Controlled by the AMCLIB_AngleTrackObsrv_A32ff
algorithm; cleared by AMCLIB_AngleTrackObsrvinit_A32af function.

f32A2 frac32_t |Output of the second numerical integrator. The parameter is within the range <-1; 1).
Controlled by the AMCLIB_AngleTrackObsrv_A32ff and
AMCLIB_AngleTrackObsrvinit_A32af algorithms.

a32Theta acc32_t |Estimated position as the output of the observer. The parameter is normalized to the range
<-1; 1) that represents an angle (in radians) within the range <-m ; m). Controlled by the
AMCLIB_AngleTrackObsrv_A32ff and AMCLIB_AngleTrackObsrvinit_A32af algorithms.

fltSinEstim float_t Sine of the estimated position as the output of the actual step. Keeps the sine of the
position for the next step. The parameter is within the range <-1; 1>. Controlled by the
AMCLIB_AngleTrackObsrv_A32ff and AMCLIB_AngleTrackObsrvinit_A32af algorithms.

fltCosEstim float_t Cosine of the estimated position as the output of the actual step. Keeps the cosine of the
position for the next step. The parameter is within the range <-1 ; 1>. Controlled by the
AMCLIB_AngleTrackObsrv_A32ff and AMCLIB_AngleTrackObsrvinit_A32af algorithms.

fltK1Gain float_t Observer K1 gain is set up according to Equation 15 on page 49 as: K;Ts.

The parameter is a 32-bit single precision floating-point value in range (0; 16383.99999).
Set by the user.

fltk2Gain float_t Observer K2 gain is set up according to Equation 17 on page 49 as: Ko.

The parameter is a 32-bit single precision floating-point value in range (0;
65535.9999689999). Set by the user.

fltA2Gain float_t Observer A2 gain for the output position is set up according to Equation 16 on page 49 as:
Ts.

The parameter is a 32-bit single precision floating-point value in range (0;
65535.9999689999). Set by the user.

2.4.4 Declaration
The available AMCLIB_AngleTrackObsrvInit functions have the following declarations:

void AMCLIB_AngleTrackObsrvInit_ F16 (fraclé_t flé6ThetaInit, AMCLIB_ANGLE_ TRACK OBSRV_T F32
*
psCtrl)

void AMCLIB_ AngleTrackObsrvInit A32ff (acc32 t a32ThetaInit, AMCLIB ANGLE TRACK OBSRV T FLT
*
psCtrl)

The available AMCLIB_AngleTrackObsrv functions have the following declarations:

fraclé t AMCLIB AngleTrackObsrv F16 (const GMCLIB 2COOR_SINCOS T F16 *psAnglePos,
AMCLIB ANGLE TRACK OBSRV_T F32 *psCtrl)

acc32 t AMCLIB AngleTrackObsrv A32ff (const GMCLIB 2COOR_SINCOS T FLT *psAnglePos,
AMCLIB ANGLE TRACK OBSRV_T FLT *psCtrl)

AMCLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 53

A
AMCLIB_CtrIFluxWkng

2.4.5 Function use

The use of the AMCLIB_AngleTrackObsrvInit and AMCLIB_AngleTrackObsrv
functions is shown in the following example:

#include "amclib.h"

static AMCLIB ANGLE TRACK OBSRV T F32 sAto;
static GMCLIB_2COOR_SINCOS T F16 sAnglePos;
static fraclé t fl6PositionEstim, fl6PositionInit;

void Isr (void) ;

void main (void)

{
sAto.f16K1Gain
sAto.116K1GainSh
sAto.f16K2Gain
sAto.116K2GainSh
sAto.f16A2Gain
sAto.116A2GainSh

FRAC16 (0.6434) ;
-9;
FRAC16 (0.6801) ;
_2;
FRAC16(0.6400) ;
_4;

fléPositionInit = FRAC16(0.0);
AMCLIB_AngleTrackObsrvInit_F16 (fl6PositionInit, &sAto);

sAnglePos.fl16Sin
sAnglePos.f1l6Cos

}

/* Periodical function or interrupt */
void Isr (void)

FRAC16(0.0) ;
FRAC16 (1.0) ;

/* Angle tracking observer calculation */
fléPositionEstim = AMCLIB AngleTrackObsrv F16 (&sAnglePos, &sAto);

2.5 AMCLIB_CtrIFluxWkng

The AMCLIB_CtrlFluxWkng function controls the motor magnetizing flux for a speed
exceeding above the nominal speed of the motor. Where a higher maximum motor speed
1s required, the flux (field) weakening technique must be used. The basic task of the
function is to maintain the motor magnetizing flux below the nominal level which does
not require a higher supply voltage when the motor rotates above the nominal motor
speed. The lower magnetizing flux is provided by maintaining the flux-producing current
component ip in the flux-weakening region, as shown in Figure 2-6).

AMCLIB User's Guide, Rev. 4, 12/2020
54 NXP Semiconductors

4
Chapter 2 Algorithms in detail

voltage T
flux

flux voltage

nominal flux

flux-weakening region
(constant power)

normal operation
(constant torque)

nominal speed speed
Figure 2-6. Flux weakening operating range

The AMCLIB_CitrlFluxWkng function processes the magnetizing flux by the PI
controller function with the anti-windup functionality and output limitation. The
controller integration can be stopped if the system is saturated by the input flag pointer in
the flux-weakening controller structure. The flux-weakening controller algorithm is
executed in the following steps:

1. The voltage error calculation from the voltage limit and the required voltage.

1 gain

Uppy = (uQLim' ‘uQ”€Q|) U gain

Equation 21.

where:
* U, is the voltage error
* UQLim 18 the Q voltage limit component
® UQreq 18 the Q required voltage component
* Ig,in 1s the voltage scale - max. value (for fraction gain = 1)
* Ugain 18 the current scale - max. value (for fraction gain = 1)
2. The input Q current error component must be positive and filtered by the infinite
impulse response first-order filter.

iQerrllR: IIRI(|iQerr‘)

Equation 22.

where:
* iQermir 18 the Q current error component filtered by the first-order IR
* iQerr 18 the input Q current error component (calculated before calling the
AMCLIB_CtrlFluxWkng function from the measured and limited required Q
current component value).

AMCLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 55

A
AMCLIB_CtriFluxWkng
3. The flux error is obtained from the previously calculated voltage and current errors
as follows:

lopr =1 QerrlIR ™ Uerr

Equation 23.

where:
* i 18 the Q current error component for the flux PI controller
* iQermir 18 the current error component filtered by the first-order IIR
* U, is the voltage error for the flux PI controller
4. Finally, the flux error (corresponding the Ip) is processed by the flux PI controller:

ipreq= CtrIPIpAW (iey)

Equation 24.

where:
* ipreq 18 the required D current component for the current control
* 1oy 18 the flux error (corresponding the D current component) for the flux PI
controller

The controller output should be used as the required D current component in the fast
control loop and concurrently used as an input for the GFLIB_VectorLimitl function
which limits the I controller as follows:

. [2
i0req = \[lmax = Ipreq

Equation 25.

where:

* iQreq 18 the required Q current component for the current control
* iax 18 application current limit
* ipreq 18 the required D current component for the current control

The following figure shows an example of applying the flux-weakening controller
function in the control structure. The flux controller starts to operate when the Ig
controller is not able to compensate the I ,r and creates a deviation between its input
and ouput. The flux controller processes the deviation and decreases the flux excititation
(for ACIM, or starts to create the flux extitation against a permanent magnet flux in case
of PMSM). A lower BEMF causes a higher I and the motor speed increases. The speed
controller with Ig ., on the output should be limited by the vector limitl function
because a part of the current is used for flux excitation.

AMCLIB User's Guide, Rev. 4, 12/2020
56 NXP Semiconductors

Chapter 2 Algorithms in detail

UQlim
Abs
1
Oreq
» > > UQreq
| IQerr
Qreq
© g jim « o
¢ I
P max
IDreq

ACIM: Iy norm ©OF

stop integration fla
P & & MTPA output

Figure 2-7. Flux weakening function in control block structure

2.5.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1) in case of no limitation. The parameters are of fractional or
accumulator types.

* Floating-point output - the output is the floating-point result within the type's full
range in case of no limitation. The parameters are of a floating-point type as well.

The available versions of the AMCLIB_CtrlFluxWknglnit function are shown in the
following table:

Table 2-9. Init function versions

Function name Input Parameters Result
type type
AMCLIB_CtrIFluxWknglnit_F16 |frac16_t |AMCLIB_CtrIFluxWknglnit_A32 * void

The inputs are a 16-bit fractional initial value for the flux Pl controller integrating the part
state and a pointer to the flux-weakening controller's parameters structure. The function
initializes the flux PI controller and the IIR1 filter.

AMCLIB_CtrlIFluxWknglnit_FLT |float_t AMCLIB_CtrlFluxWknglnit_FLT * void

The inputs are a 32-bit single precision floating-point initial value for the flux Pl controller
integrating the part state and a pointer to the flux-weakening controller's parameters
structure. The function initializes the flux PI controller and the 1IR1 filter.

AMCLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 57

AMCLIB_CtrIFluxWkng

The available versions of the AMCLIB_CtrlFluxWkng function are shown in the

following table:

Table 2-10. Function versions

F16

Function name Input type Parameters Result
Q current Q required Q voltage type
error voltage limit
AMCLIB_CtrIFluxWkng_ |frac16_t frac16_t frac16_t AMCLIB_CTRL_FLUX_WKNG_T_A32 * |frac16_t

The Q current error component value input (Ig controller input) and the Q required voltage value
input (Iq controller output) are 16-bit fractional values within the range <-1; 1). The Q voltage limit
value input (constant value) is a 16-bit fractional value within the range (0 ; 1). The parameters are
pointed to by an input pointer. The function returns a 16-bit fractional value in the range
<f16LowerLim ; f16UpperLim>.

AMCLIB_CtrIFluxWkng_
FLT

float_t |f|oat_t |f|oat_t |AMCLIB_CTRL_FLUX_WKNG_T_FLT * |f|oat_t

The Q current error component value input (I controller input) is a 32-bit single precision floating-
point value within the full type's range. The Q required voltage value input (Iq controller output) is a
32-bit single precision floating-point value within the full type's range.The Q voltage limit value
(constant value) is a 32-bit single precision floating-point positive value. The parameters are
pointed to by an input pointer. The function returns a 32-bit single precision floating-point value in
the range <fltLowerLim ; fltUpperLim>.

2.5.2 AMCLIB_CTRL_FLUX_WKNG_T_A32

Variable name

Input type Description

sFWPiParam

GFLIB_CTRL_PI_P_AW_T_A32 |The input pointer for the flux Pl controller parameter structure. The flux

controller output should be negative. Therefore, set at least the
following parameters:
¢ aB82PGain - proportional gain, the range is <0 ; 65536.0).
¢ a32IGain - integral gain, the range is <0 ; 65536.0).
e f16UpperLim - upper limit, the zero value should be set.
* f16LowerLim - the lower limit, the range is <-1; 0).

slgErrlIR1Param

GDFLIB_FILTER_IIR1_T_F32

The input pointer for the 1IR1 filter parameter structure. The 1IR1 filters
the absolute value of the Q current error component for the flux
controller. Set at least the following parameters:
* sFltCoeff.f32B0 - B0 coefficient, must be divided by 2.
* sFitCoeff.f32B1 - B1 coefficient, must be divided by 2.
* sFItCoeff.f32A1 - A1 (sign-inverted) coefficient, must be divided
by -2 (negative two).

f16IqErrlIR1 frac32_t The Iq current error component,filtered by the IIR1 filter for the flux Pl
controller, as shown in Equation 22 on page 55. The output value
calculated by the algorithm.

f16UFWETrr frac16_t The voltage error, as shown in Equation 21 on page 55. The output
value calculated by the algorithm.

f16FWErr frac16_t The flux-weakening error, as shown in Equation 23 on page 56. The
output value calculated by the algorithm.

*bStopintegFlag |[frac16_t The integration of the Pl controller is suspended if the stop flag is set.

When it is cleared, the integration continues. The pointer is set by the
user and controlled by the application.

AMCLIB User's Guide, Rev. 4, 12/2020

58

NXP Semiconductors

Chapter 2 Algorithms in detail

2.5.3 AMCLIB_CTRL_FLUX_WKNG_T_FLT

Variable name Input type Description

sFWPiParam GFLIB_CTRL_PI_P_AW_T_FLT |The input pointer for the flux Pl controller parameter structure. The flux
controller output should be negative. Therefore, set at least the
following parameters:
» fltPGain - the proportional gain, the parameter is a 32-bit single
precision floating-point type non-negative value.
* fltiGain - the integral gain, the parameter is a 32-bit single
precision floating-point type non-negative value.
* fltUpperLim - the upper limit, the zero value should be set.
¢ fltLowerLim - the lower limit, the parameter is a 32-bit single
precision floating-point type positive value.

slgErrlIR1Param |GDFLIB_FILTER_IIR1_T_FLT |The input pointer for the IIR1 filter parameter structure. The IIR1 filters
the absolute value of the Q current error component for the flux
controller. Set at least the following parameters:

¢ sFItCoeff.fltBO - BO coefficient.

o sFItCoeff.fltB1 - B1 coefficient.

o sFItCoeff.fltA1 - A1 coefficient.

fltigErrlIR1 float_t The Iq current error, filtered by the 1IR1 filter for the flux Pl controller, as
shown in Equation 22 on page 55. The output value calculated by the
algorithm.

ftUFWErr float_t The voltage error, as shown in Equation 21 on page 55. The output
value calculated by the algorithm.

ftFWErr float_t The flux-weakening error, as shown in Equation 23 on page 56. The
output value calculated by the algorithm.

fltiGainUgain float_t The current/voltage scale, calculated according to:

o
fltIGainUgain= Ugmn

gain

Set by the user.

*bStopintegFlag |float_t The integration of the flux PI controller is suspended if the input stop
flag is set. When it is cleared, the integration continues. The pointer is
set by the user and controlled by the application.

2.5.4 Declaration
The available AMCLIB_CtrlFluxWknglnit functions have the following declarations:

void AMCLIB_ CtrlFluxWkngInit F16(fraclé_t £16InitVal, AMCLIB_CTRL_FLUX WKNG T A32 *psParam)

void AMCLIB CtrlFluxWkngInit FLT(float t fltInitVal, AMCLIB CTRL FLUX WKNG T FLT *psParam)
The available AMCLIB_CtrlFluxWkng functions have the following declarations:
fraclé t AMCLIB CtrlFluxWkng Fl6 (fraclé t fl16IQErr, fraclé t fl16UQReq, fraclé t £16UQLim,

AMCLIB CTRL_FLUX WKNG T A32 *psParam)

AMCLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 59

A
AMCLIB_CtrIFluxWkng

float_t AMCLIB_CtrlFluxWkng FLT (float_t fltIQErr, float t fltUQReq, float t f1tUQLim,
AMCLIB CTRL FLUX WKNG T FLT *psParam)

2.5.5 Function use

The use of the AMCLIB_CtrlFluxWknglnit and AMCLIB_CtrlFluxWkng functions is
shown in the following examples:

Fixed-point version:

#include "amclib.h"

static AMCLIB_CTRL_FLUX WKNG T A32 sCtrl;
static fraclé_t f16IQErr, f16UQReq, f£16UQLim;
static fraclée t fl6IdReq, fl6InitVal;

static bool t bStopIntegFlag;

void Isr (void) ;
void main (void)

/* Associate input stop integration flag */
bStopIntegFlag = FALSE;
sCtrl.bStopIntegFlag = &bStopIntegFlag;

/* Set PI controller and IIR1 parameters */

sCtrl.sFWPiParam.a32PGain = ACC32(0.1);

sCtrl.sFWPiParam.a32IGain = ACC32(0.2);

sCtrl.sFWPiParam.f1l6UpperLim = FRAC16(0.) ;

sCtrl.sFWPiParam.fl6LowerLim = FRAC16(-0.9) ;
sCtrl.sIgErrIIlParam.sFltCoeff.f32B0 = FRAC32(0.245237275252786 / 2.0);
sCtrl.sIgErrIIlParam.sFltCoeff.f32B1 = FRAC32(0.245237275252786 / 2.0);
sCtrl.sIgErrIIlParam.sFltCoeff.f32A1 = FRAC32(-0.509525449494429 / -2.0);

/* Flux weakening controller initialization */
fl16InitVal = FRAC16(0.0) ;
AMCLIB CtrlFluxWkngInit Fl6(fl16InitVal, &sCtrl);

/* Assign input variable */
f16IQErr = FRAC16(-0.1) ;
f16UQReq FRAC16(-0.2) ;
f16UQLim FRAC16(0.8) ;

}

/* Periodical function or interrupt */
void Isr()

/* Flux weakening controller calculation */
fl6Result = AMCLIB CtrlFluxWkng F16 (f16IQErr, f16UQReq, £f16UQLim, &sCtrl);

Floating-point version:

#include "amclib.h"
static AMCLIB CTRL FLUX WKNG T FLT sCtrl;

static float t f1ltIQErr, fltUQReq, £ltUQLim;
static float t fltIdReq, fltInitVval;

AMCLIB User's Guide, Rev. 4, 12/2020
60 NXP Semiconductors

4
Chapter 2 Algorithms in detail

static bool_ t bStopIntegFlag;
void Isr (void) ;
void main (void)

/* Associate input stop integration flag */
bStopIntegFlag = FALSE;
sCtrl.bStopIntegFlag = &bStopIntegFlag;

/* Set PI controller and IIR1 parameters */
sCtrl.sFWPiParam.fltPGain = 0.1F;
sCtrl.sFWPiParam.f1ltIGain = 0.2F;
sCtrl.sFWPiParam.fltUpperLim = 0.0F;
sCtrl.sFWPiParam.fltLowerLim = -0.9F;
sCtrl.sIgErrIIR1Param.sFltCoeff.f1tBO
sCtrl.sIgErrIIR1Param.sFltCoeff.f1tB1l
sCtrl.sIgErrIIR1Param.sFltCoeff.f1tAl

0.245237275252786f;
0.245237275252786%;
-0.509525449494429¢f;

/* Flux weakening controller initialization */
fltInitval = 0.0F;
AMCLIB CtrlFluxWkngInit FLT(fltInitVal, &sCtrl);

/* Assign input variable */

fltIQErr = -0.1F;
f1tUQReq = -0.2F;
f1tUQLim = 0.8F;

}

/* Periodical function or interrupt */
void Isr(void)

/* Flux weakening controller calculation */
fltIdReq = AMCLIB CtrlFluxWkng FLT(f1l1tIQErr, £ltUQReq, f£1tUQLim, &sCtrl);

2.6 AMCLIB_PMSMBemfObsrvAB

The AMCLIB_PMSMBemfObsrvAB function calculates the algorithm of the back-
electro-motive force (back-EMF) observer in a stationary reference frame. The estimation
method for the rotor position and the angular speed is based on the mathematical model
of an interior PMSM motor with an extended electro-motive force function, which is
realized in the alpha/beta stationary reference frame.

The back-EMF observer detects the generated motor voltages, induced by the permanent
magnets. The angle-tracking observer uses the back-EMF signals to calculate the position
and speed of the rotor. The transformed model is then derived as:
ug] [Rs+sLp AL
[”/f | ~wdL Rg+sLp|

— sin(6,)
cos(6;)

ly

1,

+ [AL . (coriD - siQ) + ‘Pma)r] . [
Equation 26
Where:

* Rg is the stator resistance

AMCLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 61

A
AMCLIB_PMSMBemfObsrvAB
* Lp and L are the D-axis and Q-axis inductances
* AL =Lp - Lg is the motor saliency
W, is the back-EMF constant
w;, 1s the angular electrical rotor speed
* ug and ug are the estimated stator voltages
iy and ig are the estimated stator currents
B, is the estimated rotor electrical position
* s is the operator of the derivative

This extended back-EMF model includes both the position information from the
conventionally defined back-EMF and the stator inductance as well. This enables
extracting the rotor position and velocity information by estimating the extended back-
EMF only.

Both the alpha and beta axes consist of the stator current observer based on the RL motor
circuit which requires the motor parameters.

The current observer input is the sum of the actual applied motor voltage and the cross-
coupled rotational term, which corresponds to the motor saliency (Lp - L) and the
compensator corrective output. The observer provides the back-EMF signals as a
disturbance because the back-EMF is not included in the observer model.

The block diagram of the observer in the estimated reference frame is shown in Figure
2-8. The observer compensator is substituted by a standard PI controller with following
equation in the fractional arithmetic.

isc(k) Cimax = Kp- esc(k) “emax T Ts Ky esc(k) *€max T isc(k - 1) * Iax

Equation 27

where:

» Kp is the observer proportional gain [-]

» K is the observer integral gain [-]

* ig(k) = [ly, i5] is the scaled stator current vector in the actual step

* ige(k - 1) =[iy, ig] is the scaled stator current vector in the previous step

* es(k) = [ey, e5] is the scaled stator back-EMF voltage vector in the actual step
* inax 18 the maximum current [A]

* €nax 1S the maximum back-EMF voltage [V]

Ty is the sampling time [s]

As shown in Figure 2-8, the observer model and hence also the PI controller gains in both
axes are identical to each other.

AMCLIB User's Guide, Rev. 4, 12/2020
62 NXP Semiconductors

Chapter 2 Algorithms in detail

Ua
T : L
a a SsLp+Rs
% o
Wr 4" Lp—=1Lo If
X -eg
[s 1
g 4 : sLp+Rs
up

Figure 2-8. Block diagram of back-EMF observer

It is obvious that the accuracy of the back-EMF estimates is determined by the
correctness of the motor parameters used (R, L), the fidelity of the reference stator
voltage, and the quality of the compensator, such as the bandwidth, phase lag, and so on.

The appropriate dynamic behavior of the back-EMF observer is achieved by the
placement of the poles of the stator current observer characteristic polynomial. This
general method is based on matching the coefficients of the characteristic polynomial to
the coefficients of the general second-order system.

A FAs)
EafS)= = EafS)* ST R TF)

Equation 28

The back-EMF observer is a Luenberger-type observer with a motor model, which is
implemented using the backward Euler transformation as:

. _ TS Ts ALT?) LD .
0= T riRs 0 T gy o)~ T i " ol 10+ 7 =D

Equation 29

AMCLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 63

A
AMCLIB_PMSMBemfObsrvAB

Where:

* i(k) = [iy, i5] is the stator current vector in the actual step

* i(k - 1) =iy, ig] is the stator current vector in the previous step

* u(k) = [uy, ug] is the stator voltage vector in the actual step

* e(k) = [ey, eg] is the stator back-EMF voltage vector in the actual step

e i'(k) = [iy, -i5] is the complementary stator current vector in the actual step
* We(k) is the electrical angular speed in the actual step

Tg 1s the sampling time [s]

This equation is transformed into the fractional arithmetic as:

. . T T ALT , . L . .
lsc(k) ® Unax = LD+—}SRS * uvc(k) * Upax T+ LD+—%SRS * esc(k) ® €max — LD+—TiRS * wesc(k) ® Wpgx * 1 sc(k) * Ipax T]4D+—?1vRs * lsc(k - l) ® Lnax

Equation 30
Where:

* ig(k) = [iy, i3] 1s the scaled stator current vector in the actual step

* ige(k - 1) =[iy, ig] is the scaled stator current vector in the previous step

* ugc(k) = [uy, us] is the scaled stator voltage vector in the actual step

* es(k) = [ey, ep] 1s the scaled stator back-EMF voltage vector in the actual step

* i'so(k) = [iy, -15] is the scaled complementary stator current vector in the actual step
* Wesc(k) 1s the scaled electrical angular speed in the actual step

* iax 18 the maximum current [A]

* €max 15 the maximum back-EMEF voltage [V]

* Uy.x 1S the maximum stator voltage [V]

* Wpax 18 the maximum electrical angular speed in [rad / s]

If the Luenberger-type stator current observer is properly designed in the stationary
reference frame, the back-EMF can be estimated as a disturbance produced by the
observer controller. However, this is only valid when the back-EMF term is not included
in the observer model. The observer is a closed-loop current observer, therefore, it acts as
a state filter for the back-EMF term.

The estimate of the extended EMF term can be derived from Equation 28 on page 63 as:

LBy sKp+K
E,s) ~ s2Lp+sRg+sKp+K;

Equation 31

The observer controller can be designed by comparing the closed-loop characteristic
polynomial to that of a standard second-order system as:

AMCLIB User's Guide, Rev. 4, 12/2020
64 NXP Semiconductors

4
Chapter 2 Algorithms in detail

52+ I, YL, =52+ 2l wys + }

Equation 32

where:

W 1s the natural frequency of the closed-loop system (loop bandwidth)
¢ is the loop attenuation

Kp is the proporional gain
K; is the integral gain

2.6.1 Available versions
This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The parameters use the accumulator types.

* Floating-point output - the output is the floating-point result within the type's full
range.

The available versions of the AMCLIB_PMSMBemfObsrvAB function are shown in the
following table:

Table 2-11. Init versions

Function name Parameters Result type
AMCLIB_PMSMBem{ObsrvABInit_F16 AMCLIB_BEMF_OBSRV_AB_T_A32* void
The initialization does not have an input.
AMCLIB_PMSMBemfObsrvABInit_A32fff AMCLIB_BEMF_OBSRV_AB_T_FLT * void
The initialization does not have an input.

The available versions of the AMCLIB_PMSMBemfObsrvAB function are shown in the
following table:

Table 2-12. Function versions

Function name Input/output type Result type
AMCLIB_PMSMBemf{ObsrvAB_F16 Input GMCLIB_2COOR_ALBE_T_F16 * void
GMCLIB_2COOR_ALBE_T_F16 *
frac16_t
Parameters AMCLIB_BEMF_OBSRV_AB_T_A32 *
The back-EMF observer with a 16-bit fractional input Alpha/Beta current and voltage,
and a 16-bit electrical speed. All are within the range <-1; 1).

Table continues on the next page...

AMCLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 65

AMCLIB_PMSMBemfObsrvAB

Table 2-12. Function versions (continued)

Function name Input/output type Result type
AMCLIB_PMSMBemfObsrvAB_FLT |Input GMCLIB_2COOR_ALBE_T_FLT * void
GMCLIB_2COOR_ALBE_T_FLT *
float_t
Parameters AMCLIB_BEMF_OBSRV_AB_T_FLT *

The back-EMF observer with a 32-bit single precision floating-point input Alpha/Beta
current and voltage, and a 32-bit single precision floating-point electrical speed. All
are within the full range.

2.6.2 AMCLIB_BEMF_OBSRV_AB_T_A32 type description

Variable name Data type Description
sEObsrv GMCLIB_2COOR_ALBE_ |The estimated back-EMF voltage structure.
T_F32
slObsrv GMCLIB_2COOR_ALBE_ |The estimated current structure.
T_F32
sCitrl f32IAlpha_1 frac32_t The state variable in the alpha part of the observer, integral
part at step k-1. The variable is within the range <-1; 1).
f321Beta_1 frac32_t The state variable in the beta part of the observer, integral
part at step k-1. The variable is within the range <-1; 1).
a32PGain acc32_t The observer proportional gain is set up according to
Equation 32 on page 65 as:
imax
(2E"UOLD - RS) €max
The parameter is within the range <0 ; 65536.0). Set by the
user.
a32lGain acc32_t The observer integral gain is set up according to Equation
32 on page 65 as:
imax
w(Z)LDTS o
The parameter is within the range <0 ; 65536.0). Set by the
user.
a32lGain acc32_t The current coefficient gain is set up according to Equation
5 as:
Lp
Lp+ TR
The parameter is within the range <0 ; 65536.0). Set by the
user.
a32UGain acc32_t The voltage coefficient gain is set up according to Equation
5 as:
TS . "fmax
Lp+TRg ipmax

Table continues on the next page...

AMCLIB User's Guide, Rev. 4, 12/2020

66

NXP Semiconductors

Chapter 2 Algorithms in detail

Variable name

Data type

Description

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32WIGain

acc32_t

The angular speed coefficient gain is set up according to
Equation 5 as:

ALT,
Lyt TRy~ “max

The parameter is within the range <0 ; 65536.0).Set by the
user.

a32EGain

acc32_t

The back-EMF coefficient gain is set up according to
Equation 5 as:

T o Gmax
LD+ TS‘RS Umax

The parameter is within the range <0 ; 65536.0). Set by the
user.

sUnityVctr

GMCLIB_2COOR_SINCO
S_T_F16

The output - estimated angle as the sin/cos vector.

2.6.3 AMCLIB_BEMF_OBSRV_AB_T_FLT type description

Variable name

Data type

Description

sEObsrv GMCLIB_2COOR_ALBE_ |The estimated back-EMF voltage structure.
T_FLT
slObsrv GMCLIB_2COOR_ALBE_ |The estimated current structure.
T_FLT
sCtrl fltIAlpha_1 float_t The state variable in the alpha part of the observer, integral
part at step k-1. The variable is within the range <-1; 1).
fltIBeta_1 float_t The state variable in the beta part of the observer, integral
part at step k-1. The variable is within the range <-1; 1).
fltPGain float_t The observer proportional gain is set up according to
Equation 32 on page 65 as:
2wplp-Rs
The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.
fltIGain float_t The observer integral gain is set up according to Equation
32 on page 65 as:
wiLp- R
The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.
fltiIGain float_t The current coefficient gain is set up according to Equation

4 as:

LD
I+ ToRs

Table continues on the next page...

AMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors

67

A
AMCLIB_PMSMBemfObsrvAB

Variable name Data type Description

The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.

fltUGain float_t The voltage coefficient gain is set up according to Equation
4 as:

_ I
I+ ToRs

The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.

fltWIGain float_t The angular speed coefficient gain is set up according to
Equation 4 as:

ALT,
I+ TsRs

The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.

fltEGain float_t The back-EMF coefficient gain is set up according to
Equation 4 as:

_ I

Lp+TsRg

The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.

sUnityVctr GMCLIB_2COOR_SINCO |The output - estimated angle as the sin/cos vector.
S T FLT

2.6.4 Declaration

The available AMCLIB_PMSMBemfObsrvABInit functions have the following
declarations:

void AMCLIB_PMSMBemfObsrvABInit F16 (AMCLIB_BEMF_OBSRV_AB T A32 *psCtrl)
void AMCLIB PMSMBemfObsrvABInit FLT (AMCLIB BEMF OBSRV AB T FLT *psCtrl)

The available AMCLIB_PMSMBemfObsrvAB functions have the following
declarations:

void AMCLIB_PMSMBemfObsrvAB_F16 (const GMCLIB_2COOR_ALBE_T_F16 *psIAlBe, const
GMCLIB_2COOR_ALBE_T_F16 *psUAlBe, fraclé_t flé6Speed, AMCLIB_BEMF OBSRV_AB_T A32 *psCtrl)

void AMCLIB_ PMSMBemfObsrvAB FLT (const GMCLIB 2COOR ALBE T FLT *psIAlBe, const
GMCLIB 2COOR_ALBE T FLT *psUAlBe, float t fltSpeed, AMCLIB BEMF OBSRV_AB T FLT *psCtrl)

AMCLIB User's Guide, Rev. 4, 12/2020
68 NXP Semiconductors

Chapter 2 Algorithms in detail

2.6.5 Function use

The use of the AMCLIB_PMSMBemfObsrvAB function is shown in the following

examples:

Fixed-point version:

#include "amclib.h"

static GMCLIB 2COOR_ALBE T F16 sIAlBe, sUAlBe;
static AMCLIB BEMF OBSRV_AB T A32 sBemfObsrv;
static fraclé_t flé6Speed;

void Isr (void) ;

void main (void)

{

sBemfObsrv.
sBemfObsrv.
sBemfObsrv.

sCtrl.a32PGain= ACC32(1.697);
sCtrl.a32IGain= ACC32(0.134);

a32IGain

ACC32 (0.

986) ;

sBemfObsrv.a32UGain = ACC32(0.170
sBemfObsrv.a32WIGain
sBemfObsrv.a32EGain = ACC32(0.116

1

) ;
ACC32(0.110) ;
)

7

/* Initialization of the observer's structure */
AMCLIB_PMSMBemfObsrvABInit F16 (&sBemfObsrv) ;

sIAlBe.fl6Alpha = FRAC16(0.05) ;
sIAlBe.fl6Beta = FRAC16(0.1);
sUAlBe.f1l6Alpha = FRAC16(0.2);
sUAlBe.fl6Beta = FRAC16(-0.1);

}

/* Periodical function or interrupt */

void Isr (void)

/* BEMF Observer calculation */
AMCLIB_PMSMBemfObsrvAB_F16 (&sIAlBe, &sUAlBe, flé6Speed, &sBemfObsrv) ;

}

Floating-point version:

#include "amclib.h"

static GMCLIB_ 2COOR ALBE T FLT sIAlBe, sUAlBe;
static AMCLIB_BEMF_OBSRV_AB T FLT sBemfObsrv;
static float t fltSpeed;

void Isr (void) ;

void main (void)

sBemfObsrv.sCtrl.
sBemfObsrv.sCtrl.
sBemfObsrv.sCtrl.
sBemfObsrv.sCtrl.
sBemfObsrv.f1ltIGain = 0.986F;
sBemfObsrv.£f1tUGain = 0.170F;
sBemfObsrv.f1tWIGain = 0.110F;
sBemfObsrv.f1ltEGain = 0.116F;

fltIAlpha 1 = 0.0F;
fltIBeta 1 = 0.0F;
fltPGain = 1.697F;

fltIGain = 0.134F;

AMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors

69

A
AMCLIB_PMSMBemfObsrvDQ

sIAlBe.fltAlpha = 0.05F;
sIAlBe.fltBeta = 0.1F;

sUAlBe.fltAlpha = 0.2F;
sUAlBe.fltBeta = -0.1F;

}

/* Periodical function or interrupt */
void Isr (void)

/* BEMF Observer calculation */
AMCLIB PMSMBemfObsrvAB FLT (&sIAlBe, &sUAlBe, fltSpeed, &sBemfObsrv) ;

}

2.7 AMCLIB_PMSMBemfObsrvDQ

The AMCLIB_PMSMBemfObsrvDQ function calculates the algorithm of back-electro-
motive force observer in a rotating reference frame. The method for estimating the rotor
position and angular speed is based on the mathematical model of an interior PMSM
motor with an extended electro-motive force function, which is realized in an estimated
quasi-synchronous reference frame y-0 as shown in Figure 2-9.

Figure 2-9. The estimated and real rotor dq synchronous reference frames

The back-EMF observer detects the generated motor voltages induced by the permanent
magnets. A tracking observer uses the back-EMF signals to calculate the position and
speed of the rotor. The transformed model is then derived as follows:

uy] [Retslp —awlg

- Sin(eermr)
c08(Oerror)

Iy
[]

ls

+ (AL . (wri D~ siQ) + S”ma)r) . [
Equation 33
where:

AMCLIB User's Guide, Rev. 4, 12/2020
70 NXP Semiconductors

4
Chapter 2 Algorithms in detail

* Ry is the stator resistance
* Lp and L are the D-axis and Q-axis inductances

W, is the back-EMF constant

w;, 1s the angular electrical rotor speed

uy and ug are the estimated stator voltages

iy and i are the estimated stator currents

* O.ror 18 the error between the actual D-Q frame and the estimated frame position

* s is the operator of the derivative

The block diagram of the observer in the estimated reference frame is shown in Figure
2-10. The observer compensator is substituted by a standard PI controller with following
equation in the fractional arithmetic.

isc(k) Cimax = Kp- esc(k) “epax T Ts- Ky esc(k) *€max T isc(k - l) * Iax

Equation 34

where:

» Kp is the observer proportional gain [-]

K is the observer integral gain [-]

isc(k) = [iy, 5] is the scaled stator current vector in the actual step

ic(k - 1) = [iy, i5] is the scaled stator current vector in the previous step

esc(k) = [ey, e5] is the scaled stator back-EMF voltage vector in the actual step
* iax 18 the maximum current [A]

* €max 15 the maximum back-EMEF voltage [V]

Tg 1s the sampling time [s]

As shown in Figure 2-10, the observer model and hence also the PI controller gains in
both axes are identical to each other.

AMCLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 71

AMCLIB_PMSMBemfObsrvDQ

Uy
{ —1_ :r‘z'p_, 1
Y N sLp+Rs
e
X 1 Y
wr— Lo _f—’eerror
X T85
5 od L
6 a p SsLp+Rs
Us

Figure 2-10. Block diagram of proposed Luenberger-type stator current observer acting
as state filter for back-EMF

The position estimation can now be performed by extracting the 8., term from the
model, and adjusting the position of the estimated reference frame to achieve 6., = 0.
Because the 6y, term is only included in the saliency-based EMF component of both uy
and ug axis voltage equations, the Luenberger-based disturbance observer is designed to
observe the u, and ug voltage components. The position displacement information Oy
is then obtained from the estimated back-EMFs as follows:

—e
Ocrror = atan(es

Equation 35

The estimated position . can be obtained by driving the position of the estimated
reference frame to achieve zero displacement 6., = 0. The phase-locked-loop
mechanism can be adopted, where the loop compensator ensures correct tracking of the
actual rotor flux position by keeping the error signal 8., zeroed, 8o = 0.

A perfect match between the actual and estimated motor model parameters is assumed,
and then the back-EMF transfer function can be simplified as follows:

AMCLIB User's Guide, Rev. 4, 12/2020
72 NXP Semiconductors

4
Chapter 2 Algorithms in detail

A FAs)
Eaf$)= = EafS)* ST TR AF)

Equation 36

The appropriate dynamic behavior of the back-EMF observer is achieved by the
placement of the poles of the stator current observer characteristic polynomial. This
general method is based on matching the coefficients of the characteristic polynomial
with the coefficients of the general second-order system.

The back-EMF observer is a Luenberger-type observer with a motor model, which is
implemented using the backward Euler transformation as follows:

TN Ts Ts LQTS . # .
=T FT.R; "M TR, * T T 3T Ry “@db) i)+ g =ik =D

Equation 37

where:

* i(k) = [iy, i5] is the stator current vector in the actual step

* i(k - 1) = [iy, ig] is the stator current vector in the previous step

* u(k) = [uy, ug] is the stator voltage vector in the actual step

* e(k) = [ey, ep] is the stator back-EMF voltage vector in the actual step

e i'(k) = [iy, -i5] is the complementary stator current vector in the actual step
* We(k) is the electrical angular speed in the actual step

Tg 1s the sampling time [s]

This equation is transformed into the fractional arithmetic as follows:

. T T LoTs e L . .
isck) * Imax = LD+—]Y“SRS * Us(K) * Uy + LD+—;SRS e esdk) ® emaxt LD+—T5RS * Wesdk) * Omax * 1's (k) * Imax + LD+—?5RS ¢ sk = 1) gy

Equation 38

where:

* ige(k) = [iy, i5] is the scaled stator current vector in the actual step

* ig(k - 1) = [iy, ig] is the scaled stator current vector in the previous step

* u(k) = [uy, ug] is the scaled stator voltage vector in the actual step

* ey(k) = [ey, e5] is the scaled stator back-EMF voltage vector in the actual step

* 1'y(k) = [iy, -i5] is the scaled complementary stator current vector in the actual step
* Wee(k) is the scaled electrical angular speed in the actual step

* inax 1S the maximum current [A]

* €max 1S the maximum back-EMF voltage [V]

* Upax 1S the maximum stator voltage [V]

* Wpax 18 the maximum electrical angular speed in [rad / s]

AMCLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 73

A
AMCLIB_PMSMBemfObsrvDQ

If the Luenberger-type stator current observer is properly designed in the stationary
reference frame, the back-EMF can be estimated as a disturbance produced by the
observer controller. However, this is only valid when the back-EMF term is not included
in the observer model. The observer is a closed-loop current observer, therefore it acts as
a state filter for the back-EMF term.

The estimate of the extended EMF term can be derived from Equation 36 on page 73 as
follows:

Eyo(s) B sKp+K;
" Es) $2LptsRg+sKp+K;

Equation 39

The observer controller can be designed by comparing the closed-loop characteristic
polynomial with that of a standard second-order system as follows:

52+ I, .S+E :s2+26a)0s+a%

Equation 40

where:

* Wy 1s the natural frequency of the closed-loop system (loop bandwith)
* ¢ is the loop attenuation

* Kp is the proporional gain

* kjis the integral gain

2.7.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The parameters use the accumulator types.

* Accumulator output with floating-point inputs - the output is the accumulator result;
the result is within the range <-1 ; 1). The inputs are 32-bit single precision floating-
point values.

The available versions of the AMCLIB_PMSMBem{ObsrvDQ function are shown in the
following table:

Table 2-13. Init versions

Function name Parameters Result type
AMCLIB_PMSMBemfObsrvDQInit_F16 AMCLIB_BEMF_OBSRV_DQ_T_A32 * void

Table continues on the next page...

AMCLIB User's Guide, Rev. 4, 12/2020
74 NXP Semiconductors

Chapter 2 Algorithms in detail

Table 2-13. Init versions (continued)

Function name

Parameters | Result type

Initialization does not have any input.

AMCLIB_PMSMBemfObsrvDQInit_A32fff

AMCLIB_BEMF_OBSRV_DQ_T_FLT * |void

Initialization does not have any input.

Table 2-14. Function versions

Function name Input/output type Result type
AMCLIB_PMSMBemfObsrvDQ_F16 Input GMCLIB_2COOR_DQ_T_F16* frac16_t
GMCLIB_2COOR_DQ_T_F16 *
frac16_t
Parameters AMCLIB_BEMF_OBSRV_DQ_T_A32 *

Back-EMF observer with a 16-bit fractional input D-Q current and voltage, and
a 16-bit electrical speed. All are within the range <-1 ; 1).

AMCLIB_PMSMBem{ObsrvDQ_A32fff Input GMCLIB_2COOR_DQ_T_FLT * acc32_t
GMCLIB_2COOR_DQ_T_FLT *
float_t
Parameters AMCLIB_BEMF_OBSRV_DQ_T_FLT *

range <-1 ;).

Back-EMF observer with a 32-bit single precision floating-point input D-Q
current and voltage, and a 32-bit single precision floating-point electrical speed.
All are within the full range. The output is a 32-bit accumulator angle error
normalized to the range <-1 ; 1) that represents an angle (in radians) within the

2.7.2 AMCLIB_BEMF_OBSRV_DQ_T_A32 type description

Variable name

Data type

Description

sEObsrv GMCLIB_2COOR_DQ_T_ |Estimated back-EMF voltage structure.
F32
slObsrv GMCLIB_2COOR_DQ_T_ |Estimated current structure.
F32
sCirl f32ID_1 frac32_t State variable in the alpha part of the observer, integral part
at step k - 1. The variable is within the range <-1 ; 1).
f321Q_1 frac32_t State variable in the beta part of the observer, integral part
at step k - 1. The variable is within the range <-1 ; 1).
a32PGain acc32_t The observer proportional gain is set up according to

Equation 40 on page 74 as:

(28wpLp-Rg) o

€max

The parameter is within the range <0 ; 65536.0). Set by the
user.

Table continues on the next page...

AMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors

75

A
AMCLIB_PMSMBemfObsrvDQ

Variable name Data type Description

a32lGain acc32_t The observer integral gain is set up according to Equation
40 on page 74 as:

i
2 max
wOLD T 52,0

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32lGain acc32_t The current coefficient gain is set up according to Equation
38 on page 73 as:

Lp
Lp+ TR

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32UGain acc32_t The voltage coefficient gain is set up according to Equation
38 on page 73 as:

T o Ymax
Lp+ TRy imax

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32WIGain acc32_t The angular speed coefficient gain is set up according to
Equation 38 on page 73 as:

LoT .
L+ TRy * @max

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32EGain acc32_t The back-EMF coefficient gain is set up according to
Equation 38 on page 73 as:

T o Emax
Lp+T4Rg imax

The parameter is within the range <0 ; 65536.0). Set by the
user.

f16Error frac16_t Output - estimated phase error between a real D / Q frame
system and an estimated D / Q reference system. The error
is within the range <-1; 1).

2.7.3 AMCLIB_BEMF_OBSRV_DQ_T_FLT type description

Variable name Data type Description
sEObsrv GMCLIB_2COOR_DQ_T_ |Estimated back-EMF voltage structure.
FLT
slObsrv GMCLIB_2COOR_DQ_T_ |Estimated current structure.
FLT

Table continues on the next page...

AMCLIB User's Guide, Rev. 4, 12/2020
76 NXP Semiconductors

Chapter 2 Algorithms in detail

Variable name

Data type

Description

sCirl fltiD_1 float_t State variable in the alpha part of the observer; integral part
at step k - 1. The variable is within the range <-1 ; 1).
fltlIQ_1 float_t State variable in the beta part of the observer; integral part
at step k - 1. The variable is within the range <-1 ; 1).
fltPGain float_t Observer proportional gain is set up according to Equation
40 on page 74 as:
2cwolp-Rg
The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.
fltIGain float_t The observer integral gain is set up according to Equation
40 on page 74 as:
w%LD-RS
The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.
fltIGain float_t The current coefficient gain is set up according to Equation
37 on page 73 as:
Lp
Lp+TRg
The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.
fltUGain float_t The voltage coefficient gain is set up according to Equation
37 on page 73 as:
T,
Lp+ TR
The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.
fltWIGain float_t The angular speed coefficient gain is set up according to
Equation 37 on page 73 as:
LoTy
Lp+TRg
The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.
fltEGain float_t The back-EMF coefficient gain is set up according to
Equation 37 on page 73 as:
Ts
Lp+ TR
The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.
a32Error acc32_t Output - estimated phase error between a real D / Q frame

system and an estimated D / Q reference system. The error
is within the range <-1; 1).

AMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors

77

A
AMCLIB_PMSMBemfObsrvDQ

2.7.4 Declaration

The available AMCLIB_PMSMBemfObsrvDQInit functions have the following
declarations:

void AMCLIB PMSMBemfObsrvDQInit F16 (AMCLIB BEMF OBSRV DQ T A32 *psCtrl)
void AMCLIB PMSMBemfObsrvDQInit A32fff (AMCLIB_BEMF_OBSRV DQ T FLT *psCtrl)

The available AMCLIB_PMSMBemfObsrvDQ functions have the following
declarations:

fraclé_t AMCLIB_ PMSMBemfObsrvDQ F16 (const GMCLIB 2COOR_DQ T F16 *psIDQ, const
GMCLIB 2COOR_DQ T F16 *psUDQ, fraclé t flé6Speed, AMCLIB BEMF OBSRV _DQ T A32 *psCtrl)

acc32_t AMCLIB_PMSMBemfObsrvDQ A32fff (const GMCLIB_2COOR_DQ T FLT *psIDQ, const
GMCLIB_2COOR_DQ_T FLT *psUDQ, float_t fltSpeed, AMCLIB_BEMF_OBSRV_DQ_ T FLT *psCtrl)

2.7.5 Function use

The use of the AMCLIB_PMSMBemfObsrvDQ function is shown in the following
example:

#include "amclib.h"

static GMCLIB 2COOR DQ T F16 sIdqg, sUdg;
static AMCLIB BEMF OBSRV DQ T A32 sBemfObsrv;
static fraclé_t fl6Speed, fl6Error;

void Isr (void) ;

void main (void)

{
sBemfObsrv.sCtrl.a32PGain= ACC32(1.697);
sBemfObsrv.sCtrl.a32IGain= ACC32(0.134) ;
sBemfObsrv.a32IGain ACC32(0.986) ;
sBemfObsrv.a32UGain ACC32(0.170) ;
sBemfObsrv.a32WIGain= ACC32(0.110) ;

)i

sBemfObsrv.a32EGain ACC32(0.116

/* Initialization of the observer's structure */
AMCLIB PMSMBemfObsrvDQInit F16 (&sBemfObsrv) ;

sIdg.f16D = FRAC16(0.05) ;
sTIdg.f16Q = FRAC16(0.1);
sUdg.f16D = FRAC16(0.2) ;
sUdg.£f16Q = FRAC16(-0.1);

}

/* Periodical function or interrupt */
void Isr (void)

/* BEMF Observer calculation */
fl6Error = AMCLIB_ PMSMBemfObsrvDQ F16 (&sIdq, &sUdg, flé6Speed, &sBemfObsrv) ;

AMCLIB User's Guide, Rev. 4, 12/2020
78 NXP Semiconductors

Chapter 2 Algorithms in detail

2.8 AMCLIB TrackObsrv

The AMCLIB_TrackObsrv function calculates a tracking observer for the determination
of angular speed and position of the input error functional signal. The tracking-observer
algorithm uses the phase-locked-loop mechanism. It is recommended to call this function
at every sampling period. It requires a single input argument as a phase error. A phase-
tracking observer with a standard PI controller used as the loop compensator is shown in
Figure 2-11.

Oerror , W | 1 _,9
S

Figure 2-11. Block diagram of proposed PLL scheme for position estimation
The depicted tracking observer structure has the following transfer function:

Os) _ sKptK;
O(s) s2+sKp+K;

Equation 41

The controller gains K, and K; are calculated by comparing the characteristic polynomial
of the resulting transfer function to a standard second-order system polynomial.

The essential equations for implementation of the tracking observer according to the
block scheme in Figure 2-11 are as follows:
(k) =K p*e(k)+ Ts K » e(k)+ ok — 1)
Equation 42
0(k) =Ty w(k)+0(k—1)

Equation 43

where:

» Kp is the proportional gain

K is the integral gain

* T, is the sampling period [s]

* e(k) is the position error in step k

AMCLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 79

A
AMCLIB_TrackObsrv

* w(k) is the rotor speed [rad / s] in step k

* W(k - 1) is the rotor speed [rad / s] in step k - 1

* O(k) is the rotor angle [rad] in step k

* O(k - 1) is the rotor angle [rad] in step k - 1

In the fractional arithmetic, Equation 41 on page 79 and Equation 42 on page 79 are as
follows:

wsc(k) * Wpax = KP . esc(k) + TS : K] . esc(k) + wvc(k - 1) * Wmax

Equation 44

Osc (k) Opax = Ts* 05 (k) - Oprax T Ose (k= 1) = Oy

Equation 45

where:

* e..(k) 1s the scaled position error in step k

* Wq.(k) is the scaled rotor speed [rad / s] in step k

* Wy.(k - 1) 1s the scaled rotor speed [rad / s] in step k - 1
* O,.(k) is the scaled rotor angle [rad] in step k

* O,.(k - 1) is the scaled rotor angle [rad] in step k - 1

* Wpax 1S the maximum speed

* 0.« is the maximum rotor angle (typically)

2.8.1 Available versions
The function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1; 1).

* Accumulator output with floating point structure - the output is the accumulator
result; the result is within the range <-1 ; 1). The structure of the parameters contains
the 32-bit single precision floating-point values.

The available versions of the AMCLIB_TrackObsrv function are shown in the following
table:

Table 2-15. Init versions

Function name Init angle Parameters Result type
AMCLIB_TrackObsrvinit_F16 frac16_t AMCLIB_TRACK_OBSRV_T_F32 * void

The input is a 16-bit fractional value of the angle normalized to the range <-1 ; 1) that
represents an angle (in radians) within the range <-m ; m).

Table continues on the next page...

AMCLIB User's Guide, Rev. 4, 12/2020
80 NXP Semiconductors

4
Chapter 2 Algorithms in detail

Table 2-15. Init versions (continued)

Function name Init angle Parameters Result type
AMCLIB_TrackObsrvInit_A32af acc32_t AMCLIB_TRACK_OBSRV_T_FLT * void

Input is the 32-bit accumulator value of the angle normalized to the range <-1 ; 1) that
represents an angle in radians within the range <-m ; m). The parameters are 32-bit
single precision values.

Table 2-16. Function versions

Function name Input type Parameters Result type
AMCLIB_TrackObsrv_F16 frac16_t AMCLIB_TRACK_OBSRV_T_F32 * frac16_t

Tracking observer with a 16-bit fractional position error input divided by . The output
from the obsever is a 16-bit fractional position normalized to the range <-1; 1) that
represents an angle (in radians) within the range <-m ; m).

AMCLIB_TrackObsrv_A32af acc32_t | AMCLIB_TRACK_OBSRV_T_FLT * | acc32_t

Tracking observer with a 32-bit accumulator position divided by m. The output from the
obsever is a 32-bit accumulator position normalized to the range <-1; 1) that
represents an angle (in radians) within the range <-m ; 7). The parameters are 32-bit
single precision values.

2.8.2 AMCLIB_TRACK_OBSRV_T_F32

Variable name Input Description
type
f32Theta frac32_t |Estimated position as the output of the second numerical integrator. The parameter is

within the range <-1; 1). Controlled by the algorithm.

f32Speed frac32_t |Estimated speed as the output of the first numerical integrator. The parameter is within the
range <-1; 1). Controlled by the algorithm.

f321_1 frac32_t |State variable in the controller part of the observer; integral part at step k - 1. The
parameter is within the range <-1 ; 1). Controlled by the algorithm.

f161Gain frac16_t |The observer integral gain is set up according to Equation 44 on page 80 as:

TS'KI 1. 2—Ish

DOmax

The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.

i161GainSh int16_t The observer integral gain shift takes care of keeping the f161Gain variable within the
fractional range <-1 ; 1). The shift is determined as:

l0g (T K me) — log 1 < Ish < log (T~ K) — log 0.5

The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.

f16PGain frac16_t |The observer proportional gain is set up according to Equation 44 on page 80 as:

KP' I .szsh

Omax

The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.

Table continues on the next page...

AMCLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 81

A
AMCLIB_TrackObsrv

Variable name Input Description
type
i16PGainSh int16_t The observer proportional gain shift takes care of keeping the f16PGain variable within the

fractional range <-1 ; 1). The shift is determined as:
log (K p mze) — l0g, 1 < Psh < 10g,(K p* mpzz) — l0g 0.5

The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.

f16ThGain frac16_t |The observer gain for the output position integrator is set up according to Equation 45 on
page 80 as:

, —
T, max. Thsh

max

The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.

i16ThGainSh int16_t The observer gain shift for the position integrator takes care of keeping the f16 ThGain
variable within the fractional range <-1 ; 1). The shift is determined as:

log(Ts- %) —log 1< THsh<log (T maxy log,0.5

Omax

The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.

2.8.3 AMCLIB_TRACK_OBSRV_T_FLT

Variable name Input Description
type
f32Theta frac32_t |Estimated position as the output of the second numerical integrator. The parameter is

within the range <-1; 1). Controlled by the algorithm.

fliSpeed float_t Estimated speed as the output of the first numerical integrator. The parameter is within the
full range. Controlled by the algorithm.

fltl_1 float_t State variable in the controller part of the observer; integral part at the step k- 1. The
parameter is within the full range. Controlled by the algorithm.

fltIGain float_t The observer integral gain is set up according to Equation 42 on page 79 as: K|T¢

The parameter is a 32-bit single precision floating-point value in range (0; 16383.99999).
Set by the user.

fltPGain float_t The observer proportional gain is set up according to Equation 42 on page 79 as: Kp

The parameter is a 32-bit single precision floating-point value in range (0; 32767.99998).
Set by the user.

fltThGain float_t The observer gain for the output position integrator is set up according to Equation 43 on
page 79 as: Tg

The parameter is a 32-bit single precision floating-point value in range (0; 1). Set by the
user.

2.8.4 Declaration
The available AMCLIB_TrackObsrvInit functions have the following declarations:

AMCLIB User's Guide, Rev. 4, 12/2020
82 NXP Semiconductors

4
Chapter 2 Algorithms in detail

void AMCLIB_TrackObsrvInit_ F16 (fraclé6_t fléThetalInit, AMCLIB_TRACK OBSRV_T_F32 *psCtrl)
void AMCLIB_TrackObsrvInit A32af (acc32_t a32Thetalnit, AMCLIB_TRACK OBSRV_T_FLT *psCtrl)

The available AMCLIB_TrackObsrv functions have the following declarations:

fracle t AMCLIB_TrackOber_F16(fracl6_t fl6Error, AMCLIB TRACK OBSRV T F32 *psCtrl)
acc32_t AMCLIB_TrackObsrv_A32af (acc32_t a32Error, AMCLIB_TRACK_OBSRV_T_FLT *psCtrl)

2.8.5 Function use
The use of the AMCLIB_TrackObsrv function is shown in the following example:

#include "amclib.h"

static AMCLIB TRACK OBSRV T F32 sTo;
static fraclé_t fl6ThetaError;
static fraclé t fl6PositionEstim;

void Isr (void) ;

void main (void)

sTo.f16IGain = FRAC16(0.6434) ;
sTo.116IGainSh = -9;
sTo.f1l6PGain = FRAC16(0.6801) ;
sTo.116PGainSh = -2;
sTo.f16ThGain = FRAC16(0.6400) ;
sTo.i1i16ThGainSh = -4;

AMCLIB TrackObsrvInit F16 (FRAC16(0.0), &sTo);

fl6ThetaError = FRAC16(0.5);

}

/* Periodical function or interrupt */
void Isr (void)

/* Tracking observer calculation */
fléPositionEstim = AMCLIB TrackObsrv F16 (fl6ThetaError, &sTo) ;

}

AMCLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 83

A
AMCLIB_TrackObsrv

AMCLIB User's Guide, Rev. 4, 12/2020
84 NXP Semiconductors

Appendix A
Library types

A.1 bool t

The bool_t type 1s a logical 16-bit type. It is able to store the boolean variables with two
states: TRUE (1) or FALSE (0). Its definition is as follows:

typedef unsigned short bool t;
The following figure shows the way in which the data is stored by this type:
Table A-1. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Unused LC(;?i
0 | 0 | 0 | oo | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | 1
TRUE
0 0 0 1
0 | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | 0
FALSE
0 0 0 0

To store a logical value as bool_t, use the FALSE or TRUE macros.

A.2 uint8_t

The uint8_t type is an unsigned 8-bit integer type. It is able to store the variables within
the range <0 ; 255>. Its definition is as follows:

typedef unsigned char uint8 t;

The following figure shows the way in which the data is stored by this type:

AMCLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 85

uint16_t
Table A-2. Data storage
7 6 5 4 3 2 1 0
Value Integer
1 | 1 | 1 | 1 1 | 1 | 1 | 1
255
F F
y 0 | 0 | 0 | 0 1 | 0 | 1 | 1
0 B
0 | 1 | 1 | 1 1 | 1 | 0 | 0
124
7 C
156 1 | o | o | A R
9 F

A.3 uint16_t

The uint16_t type is an unsigned 16-bit integer type. It is able to store the variables
within the range <0 ; 65535>. Its definition is as follows:

typedef unsigned short uintlé t;
The following figure shows the way in which the data is stored by this type:
Table A-3. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Value Integer
1 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1
65535
F F F F
0 | 0 | 0 | oo | 0 | 0 | o] o | 0 | 0 | o] o | 1 | 0 | 1
5
0 0 0 5
0 | 0 | 1 | 1] 1 | 1 | 0 | o | 1 | 0 | 0 | 1] 1 | 1 | 1 | 0
15518
3 C 9 E
1 | 0 | 0 | 1] 1 | 1 | 1 | 1]o | 1 | 0 | o] o | 0 | 0 | 0
40768
9 F 4 0

A.4 uint32_t

AMCLIB User's Guide, Rev. 4, 12/2020
86 NXP Semiconductors

Appendix A Library types

The uint32_t type is an unsigned 32-bit integer type. It is able to store the variables
within the range <0 ; 4294967295>. Its definition is as follows:

typedef unsigned long uint32 t;

The following figure shows the way in which the data is stored by this type:
Table A-4. Data storage

31 24 23 16 15 87 0
Value Integer
4294967295 F F F F F F F F
2147483648 8 0 0 0 0 0 0 0
55977296 0 3 5 6 2 5 5 0
3451051828 C D B 2 D F 3 4

A.5 uint64 t

The uint64_t type is an unsigned 64-bit integer type. It is able to store the variables
within the range <0 ; 264 -1>). Its definition is as follows:

typedef unsigned long long uinté64 t;

The following figure shows the way in which the data is stored by this type:
Table A-5. Data storage

63 48 47 32 31 16 15 0
Value Integer
18446744073709551315 FF FF FF FF FF FF FE D3
9223372036854775808 80 00 00 00 00 00 00 00
5971730530807955574 52 DF D9 47 37 29 Cco 76
18080213425565777426 FA E9 D2 51 46 18 B E 12

A.6 int8_t

The int8_t type is a signed 8-bit integer type. It is able to store the variables within the
range <-128 ; 127>. Its definition is as follows:

typedef char int8 t;

AMCLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 87

A
int16_t

The following figure shows the way in which the data is stored by this type:
Table A-6. Data storage

7 6 5 4 3 2 1 0
Value Sign Integer
0 1 | 1 | 1 1 | 1 | 1 | 1
127
7 F
1 | 0 | 0 | 0 0 | 0 | 0 | 0
-128
8 0
0 | 0 | 1 | 1 1 | 1 | 0 | 0
60
3 C
o7 1 | o | o | 1 1 K K K
9 F

A.7 int16_t

The int16_t type is a signed 16-bit integer type. It is able to store the variables within the
range <-32768 ; 32767>. Its definition is as follows:

typedef short intlé t;
The following figure shows the way in which the data is stored by this type:
Table A-7. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer
o | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1
32767
7 F F F
1 | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | oo | 0 | 0 | 0
-32768
8 0 0 0
0 | 0 | 1 | 1] 1 | 1 | 0 | o | 1 | 0 | 0 | 1] 1 | 1 | 1 | 0
15518
3 C 9 E
1 | 0 | 0 | 1] 1 | 1 | 1 | 1]o | 1 | 0 | o] o | 0 | 0 | 0
-24768
9 F 4 0

AMCLIB User's Guide, Rev. 4, 12/2020
88 NXP Semiconductors

4
Appendix A Library types

A.8 int32_t

The int32_t type is a signed 32-bit integer type. It is able to store the variables within the
range <-2147483648 ; 2147483647>. Its definition is as follows:

typedef long int32 t;
The following figure shows the way in which the data is stored by this type:
Table A-8. Data storage

31 24 23 16 15 87 0
Value S | Integer
2147483647 7 F F F F F F F
-2147483648 8 0 0 0 0 0 0 0
55977296 0 3 5 6 2 5 5 0
-843915468 C D B 2 D F 3 4
A9 frac8_t

The frac8_t type is a signed 8-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef char frac8 t;
The following figure shows the way in which the data is stored by this type:
Table A-9. Data storage

7 6 5 4 3 2 1 0
Value Sign Fractional
0 1 | 1 | 1 1 | 1 | 1 | 1
0.99219
7 F
1 | 0 | 0 | 0 0 | 0 | 0 | 0
1.0
8 0
0 | 0 | 1 | 1 1 | 1 | 0 | 0
0.46875
3 C
1 | 0 | 0 | 1 1 | 1 | 1 | 1
-0.75781
9 F

AMCLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 89

A
frac16_t

To store a real number as frac8_t, use the FRACS8 macro.

A.10 frac16_t

The frac16_t type is a signed 16-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef short fraclé t;
The following figure shows the way in which the data is stored by this type:
Table A-10. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Fractional
o1|1|11|1|1|11|1|1|11|1|1|1
0.99997
7 F F F
1|o|o|o o|o|o|o o|o|o|o o|o|o|o
1.0
8 0 0 0
o|o|1|11|1|o|o1|o|o|11|1|1|o
0.47357
3 C 9 E
1|o|o|11|1|1|1o|1|o|o o|o|o|o
-0.75586
9 F 4 0

To store a real number as frac16 _t, use the FRACI16 macro.

A.11 frac32 t

The frac32_t type is a signed 32-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef long frac32 t;
The following figure shows the way in which the data is stored by this type:
Table A-11. Data storage

31 24 23 16 15 87 0
Value S Fractional
0.9999999995 7 F F F F F F F

Table continues on the next page...

AMCLIB User's Guide, Rev. 4, 12/2020
90 NXP Semiconductors

4
Appendix A Library types

Table A-11. Data storage (continued)

-1.0 8 0 0 0 0 0
0.02606645970 0 3 5 6 2 5
-0.3929787632 C D B 2 D F

To store a real number as frac32_t, use the FRAC32 macro.

A.12 acc16_t

The accl6_t type is a signed 16-bit fractional type. It is able to store the variables within
the range <-256 ; 256). Its definition is as follows:

typedef short acclé t;
The following figure shows the way in which the data is stored by this type:
Table A-12. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Value Sign Integer Fractional
o1|1|11|1|1|111|1|11|1|1|1
255.9921875
7 F F F
1|o|o|o o|o|o|o o|o|o|o o|o|o|o
-256.0
8 0 0 0
o|o|o|o o|o|o|o1|o|o|o o|o|o|o
1.0
0 0 8 0
o t 1111|111]1]o]lofo]o]o]o]o
F F 8 0
o|o|o|o o|1|1|o1|1|1|o o|1|o|1
13.7890625
0 6 E 5
1|1|o|1o|o|1|1o|o|1|o o|1|o|o
-89.71875
D 3 2 4

To store a real number as accl16_t, use the ACC16 macro.

A.13 acc32_ t

AMCLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 91

A
float_t

The acc32_t type is a signed 32-bit accumulator type. It is able to store the variables
within the range <-65536 ; 65536). Its definition is as follows:

typedef long acc32 t;
The following figure shows the way in which the data is stored by this type:
Table A-13. Data storage

31 24 23 16 15 87 0
Value S Integer | Fractional
65535.999969
-65536.0
1.0
-1.0
23.789734
-1171.306793

oW Mo |o|
ol |o|lo|oOo|
| =|OC|OC|O| T
O|lo|jojo|o| ™

(M| |0 |O| T

WjolmMmo|o|

M| o|M|o|o| N
O|lolm|o|o|m

To store a real number as acc32_t, use the ACC32 macro.

A.14 float t

The float_t type is a signed 32-bit single precision floating-point type, defined by IEEE
754. It is able to store the full precision (normalized) finite variables within the range
<-3.40282 - 1038 ; 3.40282 - 103®) with the minimum resolution of 2-23. The smallest
normalized number is £1.17549 - 1038, Nevertheless, the denormalized numbers (with
reduced precision) reach yet lower values, from +1.40130 - 10"% to £1.17549 - 1038, The
standard also defines the additional values:

* Negative zero

* Infinity

» Negative infinity
e Not a number

The 32-bit type is composed of:

* Sign (bit 31)
* Exponent (bits 23 to 30)
e Mantissa (bits O to 22)

AMCLIB User's Guide, Rev. 4, 12/2020
92 NXP Semiconductors

L __4

Appendix A Library types
The conversion of the number is straighforward. The sign of the number is stored in bit
31. The binary exponent is decoded as an integer from bits 23 to 30 by subtracting 127.
The mantissa (fraction) is stored in bits O to 22. An invisible leading bit (it is not actually
stored) with value 1.0 is placed in front; therefore, bit 23 has a value of 0.5, bit 22 has a
value 0.25, and so on. As a result, the mantissa has a value between 1.0 and 2. If the
exponent reaches -127 (binary 00000000), the leading 1.0 is no longer used to enable the
gradual underflow.

The float_t type definition is as follows:
typedef float float t;
The following figure shows the way in which the data is stored by this type:

Table A-14. Data storage - normalized values

31 24 23 16 15 87 0
Value S Exponent Mantissa
@0-22%.227 [ol1 111 1110/11111111111111111111111
~ 3.40282 - 1038 7 F | 7 F | F F | F F

—_
—_
—_
—_
—
—_
—_
—_
—_
—_
—_
—_
—
—_
—_
—_
—_
—_
—_
—_
—_
—_

(20-22%.227 11 11 111101 1

~ -3.40282 - 1038 F F | 7 F | F F | F F
2126 o|ooooooo1|ooooooooooooooooooooooo
~1.17549 . 1038 0 0 | 8 0 | 0 0 | 0 0
0126 1|ooooooo1|ooooooooooooooooooooooo
~-1.17549 . 1038 8 0 | 8 0 | 0 0 | 0 0
1.0 o|o1111111|ooooooooooooooooooooooo

3 F | 8 0 | 0 0 | 0 0

1.0 1[0 1 1

-
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

1111|oo

B F | 8 0 | 0 0 | 0 0
n o|1ooooooo|1oo1oo1oooo111111011011
~ 3.1415927 4 0 | 4 9 | 0 F | D B
-20810.086 1|1ooo11o1|o1ooo101001o100001o1100
C 6 | A 2 | 9 4 | 2 C

Table A-15. Data storage - denormalized values

31 24 23 16 15 87 0
Value S Exponent Mantissa
0.0 0|0 0OOOOOOO0OD0OOODODOOOOOOOOOOOOOOOOOOO
0 0 0 0 0 0 0 0

Table continues on the next page...

AMCLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 93

A
GMCLIB_3COOR_T_F16

Table A-15. Data storage - denormalized values (continued)

-0.0 1|oooooooo|ooooooooooooooooooooooo
8 o | o o | o o | o 0
(1.0-2-23)-2-126o|oooooooo|11111111111111111111111
~1.17549 - 1038 0 o | 7 F [F F | F F
-(1.0-2-23)-2-1261|oooooooo|11111111111111111111111
~ -1.17549 - 10°38 8 o | 7 F | F F | F F

o1 0126 0|oooooooo|1oooooooooooooooooooooo
~ 5.87747 - 10739 0 0 | 4 0 | 0 0 | 0 0

21,0126 1|oooooooo|1oooooooooooooooooooooo
~ -5.87747 - 10°% 8 0 | 4 0 | 0 0 | 0 0

223 . 126 o|oooooooo|oooooooooooooooooooooo1
= 1.40130 - 1045 0 0 | 0 0 | 0 0 | 0 1

223 126 1|oooooooo|oooooooooooooooooooooo1
~-1.40130 - 1045 8 0 | 0 0 | 0 0 | 0 1

Table A-16. Data storage - special values

31 24 23 16 15 87 0
Value S Exponent Mantissa
oo 0/[1t1111111/00000000000000000O000O0O0GO0O0
7 F | 8 0 | 0 0 | 0 0
-0 1|11111111|ooooooooooooooooooooooo
F F | 8 0 | 0 0 | 0 0
Not a number 1M1 111 1 1 1| non zero
7/F F | 800001 to FFFFFF

A.15 GMCLIB_3COOR_T_F16

The GMCLIB_3COOR_T_F16 structure type corresponds to the three-phase stationary
coordinate system, based on the A, B, and C components. Each member is of the frac16_t
data type. The structure definition is as follows:

typedef struct
fracle t f1l6A;
fracle_t £f16B;

AMCLIB User's Guide, Rev. 4, 12/2020
94 NXP Semiconductors

4
Appendix A Library types

fracle_t fle6C;
} GMCLIB 3COOR T F16;

The structure description is as follows:

Table A-17. GMCLIB_3COOR_T_F16 members description

Type Name Description
frac16_t f16A A component; 16-bit fractional type
frac16_t f16B B component; 16-bit fractional type
frac16_t f16C C component; 16-bit fractional type

A.16 GMCLIB_3COOR_T_FLT

The GMCLIB_3COOR_T_FLT structure type corresponds to the three-phase stationary
coordinate system, based on the A, B, and C components. Each member is of the float_t
data type. The structure definition is as follows:

typedef struct
float t fltA;
float t f1tB;

float_t f£1tC;
} GMCLIB 3COOR T FLT;

The structure description is as follows:

Table A-18. GMCLIB_3COOR_T_FLT members description

Type Name Description
float_t fltA A component; 32-bit single precision floating-point type
float_t fltB B component; 32-bit single precision floating-point type
float_t fltC C component; 32-bit single precision floating-point type

A.17 GMCLIB_2COOR_ALBE_T_F16

The GMCLIB_2COOR_ALBE_T_F16 structure type corresponds to the two-phase
stationary coordinate system, based on the Alpha and Beta orthogonal components. Each
member is of the frac16_t data type. The structure definition is as follows:

typedef struct
fraclé t flé6Alpha;

fraclé t fléBeta;
} GMCLIB_2COOR ALBE T F16;

AMCLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 95

A
GMCLIB_2COOR_ALBE_T_FLT

The structure description is as follows:

Table A-19. GMCLIB_2COOR_ALBE_T_F16 members description

Type Name Description
frac16_t f16Apha a-component; 16-bit fractional type
frac16_t f16Beta B-component; 16-bit fractional type

A.18 GMCLIB_2COOR_ALBE_T_FLT

The GMCLIB_2COOR_ALBE_T_FLT structure type corresponds to the two-phase
stationary coordinate system based on the Alpha and Beta orthogonal components. Each
member is of the float_t data type. The structure definition is as follows:
typedef struct

float t fltAlpha;

float_t fltBeta;
} GMCLIB_2COOR_ALBE T_FLT;

The structure description is as follows:

Table A-20. GMCLIB 2COOR_ALBE T FLT members

description
Type Name Description
float_t fltApha a-component; 32-bit single precision floating-point type
float_t fltBeta B-component; 32-bit single precision floating-point type

A.19 GMCLIB_2COOR_DQ_T_F16

The GMCLIB_2COOR_DQ_T_F16 structure type corresponds to the two-phase rotating
coordinate system, based on the D and Q orthogonal components. Each member is of the
frac16_t data type. The structure definition is as follows:

typedef struct

fraclée t £f16D;
fracle t £16Q;
} GMCLIB_2COOR DQ T F16;

AMCLIB User's Guide, Rev. 4, 12/2020
96 NXP Semiconductors

Appendix A Library types

The structure description is as follows:

Table A-21. GMCLIB_2COOR_DQ_T_F16 members description

Type Name Description
frac16_t f16D D-component; 16-bit fractional type
frac16_t f16Q Q-component; 16-bit fractional type

A.20 GMCLIB_2COOR_DQ_T_F32

The GMCLIB_2COOR_DQ_T_F32 structure type corresponds to the two-phase rotating
coordinate system, based on the D and Q orthogonal components. Each member is of the
frac32_t data type. The structure definition is as follows:

typedef struct
frac32 t £32D;

frac32 t £32Q;
} GMCLIB_2COOR DQ T F32;

The structure description is as follows:

Table A-22. GMCLIB_2COOR_DQ_T_F32 members description

Type Name Description
frac32_t f32D D-component; 32-bit fractional type
frac32_t 32Q Q-component; 32-bit fractional type

A.21 GMCLIB_2COOR_DQ_T_FLT

The GMCLIB_2COOR_DQ_T_FLT structure type corresponds to the two-phase rotating
coordinate system, based on the D and Q orthogonal components. Each member is of the
float_t data type. The structure definition is as follows:

typedef struct
float t £1tD;

float_t f£1tQ;
} GMCLIB_2COOR DQ T FLT;

AMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 97

GMCLIB_2COOR_SINCOS_T_F16
The structure description is as follows:

Table A-23. GMCLIB_2COOR_DQ_T_FLT members description

Type Name Description
float_t fltD D-component; 32-bit single precision floating-point type
float_t fltQ Q-component; 32-bit single precision floating-point type

A.22 GMCLIB_2COOR_SINCOS_T_F16

The GMCLIB_2COOR_SINCOS_T_F16 structure type corresponds to the two-phase
coordinate system, based on the Sin and Cos components of a certain angle. Each
member is of the frac16_t data type. The structure definition is as follows:

typedef struct
fracle t fle6Sin;

fracle _t fléCos;
} GMCLIB_2COOR_SINCOS T F16;

The structure description is as follows:

Table A-24. GMCLIB_2COOR_SINCOS_T_F16 members description

Type Name Description
frac16_t f16Sin Sin component; 16-bit fractional type
frac16_t f16Cos Cos component; 16-bit fractional type

A.23 GMCLIB_2COOR_SINCOS_T_FLT

The GMCLIB_2COOR_SINCOS_T_FLT structure type corresponds to the two-phase
coordinate system, based on the Sin and Cos components of a certain angle. Each
member is of the float_t data type. The structure definition is as follows:

typedef struct

float t fltSin;
float_t fltCos;
} GMCLIB 2COOR_SINCOS T FLT;

AMCLIB User's Guide, Rev. 4, 12/2020
98 NXP Semiconductors

4
Appendix A Library types

The structure description is as follows:

Table A-25. GMCLIB_2COOR_SINCOS_T_FLT members

description
Type Name Description
float_t fltSin Sin component; 32-bit single precision floating-point type
float_t fltCos Cos component; 32-bit single precision floating-point type

A.24 FALSE

The FALSE macro serves to write a correct value standing for the logical FALSE value
of the bool_t type. Its definition is as follows:

#define FALSE ((bool t)0)

#include "mlib.h"
static bool t bval;
void main (void)

bval = FALSE; /* bval = FALSE */

}

A.25 TRUE

The TRUE macro serves to write a correct value standing for the logical TRUE value of
the bool_t type. Its definition is as follows:

#define TRUE ((bool_t)1)

#include "mlib.h"
static bool_t bval;
void main (void)

{

bval = TRUE; /* bval = TRUE */

A.26 FRACS

AMCLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 99

A
FRAC16

The FRACS8 macro serves to convert a real number to the frac8_t type. Its definition is as
follows:

#define FRAC8 (x) ((frac8 t) ((x) < 0.9921875 ? ((x) >= -1 ? (x)*0x80 : 0x80) : 0x7F))

The input is multiplied by 128 (=27). The output is limited to the range <0x80 ; 0x7F>,
which corresponds to <-1.0 ; 1.0-277>.

#include "mlib.h"
static frac8 t f8Val;
void main (void)

f8val = FRAC8(0.187); /* £8val = 0.187 */

A.27 FRAC16

The FRAC16 macro serves to convert a real number to the frac16_t type. Its definition is
as follows:

#define FRAC16(x) ((fraclé_t) ((x) < 0.999969482421875 ? ((x) >= -1 ? (x)*0x8000 : 0x8000)
0x7FFF))

The input is multiplied by 32768 (=213). The output is limited to the range <0x8000 ;
0x7FFF>, which corresponds to <-1.0 ; 1.0-215>,

#include "mlib.h"
static fraclé_t flé6Val;
void main (void)

fleval = FRAC16(0.736); /* fleval = 0.736 */

}

A.28 FRAC32

The FRAC32 macro serves to convert a real number to the frac32_t type. Its definition is
as follows:

#define FRAC32(x) ((frac32 t) ((x) < 1 ? ((x) >= -1 ? (x)*0x80000000 : 0x80000000)
0x7FFFFFFF))

AMCLIB User's Guide, Rev. 4, 12/2020
100 NXP Semiconductors

4
Appendix A Library types

The input is multiplied by 2147483648 (=231). The output is limited to the range
<0x80000000 ; Ox7FFFFFFF>, which corresponds to <-1.0 ; 1.0-2731>,

#include "mlib.h"
static frac32 t £32val;
void main (void)

f32val = FRAC32(-0.1735667) ; /* £32Val = -0.1735667 */

}

A.29 ACC16

The ACC16 macro serves to convert a real number to the acc16_t type. Its definition is as
follows:

#define ACCl6 (x) ((acclé_t) ((x) < 255.9921875 ? ((x) >= -256 ? (x)*0x80 : 0x8000) : OX7FFF))

The input is multiplied by 128 (=27). The output is limited to the range <0x8000 ;
0x7FFF> that corresponds to <-256.0 ; 255.9921875>.

#include "mlib.h"
static acclé_t aléeVal;
void main (void)

{

aléVal = ACC16(19.45627); /* aleVal = 19.45627 */

}

A.30 ACC32

The ACC32 macro serves to convert a real number to the acc32_t type. Its definition is as
follows:

#define ACC32(x) ((acc32 t) ((x) < 65535.999969482421875 ? ((x) >= -65536 ? (x)*0x8000 :
0x80000000) : Ox7FFFFFFF))

The input is multiplied by 32768 (=21°). The output is limited to the range
<0x80000000 ; Ox7FFFFFFF>, which corresponds to <-65536.0 ; 65536.0-2"15>

#include "mlib.h"

static acc32_t a32val;

AMCLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 101

void main (void)

a32Val = ACC32(-13.654437); /* a32Val = -13.654437 */

}

AMCLIB User's Guide, Rev. 4, 12/2020
102 NXP Semiconductors

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

arm

Information in this document is provided solely to enable system and software implementers to use
Freescale products. There are no express or implied copyright licenses granted hereunder to design
or fabricate any integrated circuits based on the information in this document. Freescale reserves the
right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical’ parameters that may be provided in Freescale data
sheets and/or specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for each customer
application by customer's technical experts. Freescale does not convey any license under its patent
rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of
sale, which can be found at the following address: www.freescale.com/salestermsandconditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc. ARM and Cortex
are the registered trademarks of ARM Limited, in EU and/or elsewhere. ARM logo is the trademark of
ARM Limited. All rights reserved. All other product or service names are the property of their
respective owners.

© 2021 NXP B.V.

Document Number CM33FAMCLIBUG
Revision 4, 12/2020

r
4\

http://www.nxp.com
http://www.nxp.com/support
http://www.freescale.com/salestermsandconditions

	Chapter 1​: Library
	Introduction
	Overview
	Data types
	API definition
	Supported compilers
	Library configuration
	Special issues

	Library integration into project (MCUXpresso IDE)
	PowerQuad DSP Coprocessor and Accelerator support
	Library path variable
	Library folder addition
	Library path setup

	Library integration into project (Keil µVision)
	NXP pack installation for new project (without MCUXpresso SDK)
	New project (without MCUXpresso SDK)
	PowerQuad DSP Coprocessor and Accelerator support
	Linking the files into the project
	Library path setup

	Library integration into project (IAR Embedded Workbench)
	New project (without MCUXpresso SDK)
	PowerQuad DSP Coprocessor and Accelerator support
	Library path variable
	Linking the files into the project
	Library path setup

	Chapter 2​: Algorithms in detail
	AMCLIB_ACIMCtrlMTPA
	Available versions
	AMCLIB_ACIM_CTRL_MTPA_T_FLT type description
	Declaration
	Function use

	AMCLIB_ACIMRotFluxObsrv
	Available versions
	AMCLIB_ACIM_ROT_FLUX_OBSRV_T_FLT type description
	Declaration
	Function use

	AMCLIB_ACIMSpeedMRAS
	Available versions
	AMCLIB_ACIMSpeedMRAS_T_FLT type description
	Declaration
	Function use

	AMCLIB_AngleTrackObsrv
	Available versions
	AMCLIB_ANGLE_TRACK_OBSRV_T_F32
	AMCLIB_ANGLE_TRACK_OBSRV_T_FLT
	Declaration
	Function use

	AMCLIB_CtrlFluxWkng
	Available versions
	AMCLIB_CTRL_FLUX_WKNG_T_A32
	AMCLIB_CTRL_FLUX_WKNG_T_FLT
	Declaration
	Function use

	AMCLIB_PMSMBemfObsrvAB
	Available versions
	AMCLIB_BEMF_OBSRV_AB_T_A32 type description
	AMCLIB_BEMF_OBSRV_AB_T_FLT type description
	Declaration
	Function use

	AMCLIB_PMSMBemfObsrvDQ
	Available versions
	AMCLIB_BEMF_OBSRV_DQ_T_A32 type description
	AMCLIB_BEMF_OBSRV_DQ_T_FLT type description
	Declaration
	Function use

	AMCLIB_TrackObsrv
	Available versions
	AMCLIB_TRACK_OBSRV_T_F32
	AMCLIB_TRACK_OBSRV_T_FLT
	Declaration
	Function use

	Appendix A: Library types
	bool_t
	uint8_t
	uint16_t
	uint32_t
	uint64_t
	int8_t
	int16_t
	int32_t
	frac8_t
	frac16_t
	frac32_t
	acc16_t
	acc32_t
	float_t
	GMCLIB_3COOR_T_F16
	GMCLIB_3COOR_T_FLT
	GMCLIB_2COOR_ALBE_T_F16
	GMCLIB_2COOR_ALBE_T_FLT
	GMCLIB_2COOR_DQ_T_F16
	GMCLIB_2COOR_DQ_T_F32
	GMCLIB_2COOR_DQ_T_FLT
	GMCLIB_2COOR_SINCOS_T_F16
	GMCLIB_2COOR_SINCOS_T_FLT
	FALSE
	TRUE
	FRAC8
	FRAC16
	FRAC32
	ACC16
	ACC32

	
	

