
GMCLIB User's Guide
ARM® Cortex® M33F

Document Number: CM33FGMCLIBUG
Rev. 4, 12/2020

GMCLIB User's Guide, Rev. 4, 12/2020

2 NXP Semiconductors

Contents

Section number Title Page

Chapter 1
Library

1.1 Introduction.. 5

1.2 Library integration into project (MCUXpresso IDE) ..8

1.3 Library integration into project (Keil µVision) ... 17

1.4 Library integration into project (IAR Embedded Workbench) ... 25

Chapter 2
Algorithms in detail

2.1 GMCLIB_Clark..33

2.2 GMCLIB_ClarkInv.. 35

2.3 GMCLIB_Park... 37

2.4 GMCLIB_ParkInv..39

2.5 GMCLIB_DecouplingPMSM.. 41

2.6 GMCLIB_ElimDcBusRipFOC.. 47

2.7 GMCLIB_ElimDcBusRip.. 52

2.8 GMCLIB_SvmStd..57

2.9 GMCLIB_SvmIct... 72

2.10 GMCLIB_SvmU0n.. 76

2.11 GMCLIB_SvmU7n.. 80

2.12 GMCLIB_SvmDpwm.. 84

2.13 GMCLIB_SvmExDpwm..87

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 3

GMCLIB User's Guide, Rev. 4, 12/2020

4 NXP Semiconductors

Chapter 1
Library

1.1 Introduction

1.1.1 Overview

This user's guide describes the General Motor Control Library (GMCLIB) for the family
of ARM Cortex M33F core-based microcontrollers. This library contains optimized
functions.

1.1.2 Data types

GMCLIB supports several data types: (un)signed integer, fractional, and accumulator,
and floating point. The integer data types are useful for general-purpose computation;
they are familiar to the MPU and MCU programmers. The fractional data types enable
powerful numeric and digital-signal-processing algorithms to be implemented. The
accumulator data type is a combination of both; that means it has the integer and
fractional portions.The floating-point data types are capable of storing real numbers in
wide dynamic ranges. The type is represented by binary digits and an exponent. The
exponent allows scaling the numbers from extremely small to extremely big numbers.
Because the exponent takes part of the type, the overall resolution of the number is
reduced when compared to the fixed-point type of the same size.

The following list shows the integer types defined in the libraries:

• Unsigned 16-bit integer —<0 ; 65535> with the minimum resolution of 1
• Signed 16-bit integer —<-32768 ; 32767> with the minimum resolution of 1
• Unsigned 32-bit integer —<0 ; 4294967295> with the minimum resolution of 1
• Signed 32-bit integer —<-2147483648 ; 2147483647> with the minimum resolution

of 1

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 5

The following list shows the fractional types defined in the libraries:

• Fixed-point 16-bit fractional —<-1 ; 1 - 2-15> with the minimum resolution of 2-15

• Fixed-point 32-bit fractional —<-1 ; 1 - 2-31> with the minimum resolution of 2-31

The following list shows the accumulator types defined in the libraries:

• Fixed-point 16-bit accumulator —<-256.0 ; 256.0 - 2-7> with the minimum
resolution of 2-7

• Fixed-point 32-bit accumulator —<-65536.0 ; 65536.0 - 2-15> with the minimum
resolution of 2-15

The following list shows the floating-point types defined in the libraries:

• Floating point 32-bit single precision —<-3.40282 · 1038 ; 3.40282 · 1038> with the
minimum resolution of 2-23

1.1.3 API definition

GMCLIB uses the types mentioned in the previous section. To enable simple usage of the
algorithms, their names use set prefixes and postfixes to distinguish the functions'
versions. See the following example:

f32Result = MLIB_Mac_F32lss(f32Accum, f16Mult1, f16Mult2);

where the function is compiled from four parts:

• MLIB—this is the library prefix
• Mac—the function name—Multiply-Accumulate
• F32—the function output type
• lss—the types of the function inputs; if all the inputs have the same type as the

output, the inputs are not marked

The input and output types are described in the following table:

Table 1-1. Input/output types

Type Output Input

frac16_t F16 s

frac32_t F32 l

acc32_t A32 a

float_t FLT f

Introduction

GMCLIB User's Guide, Rev. 4, 12/2020

6 NXP Semiconductors

1.1.4 Supported compilers
GMCLIB for the ARM Cortex M33F core is written in C language or assembly language
with C-callable interface depending on the specific function. The library is built and
tested using the following compilers:

• MCUXpresso IDE
• IAR Embedded Workbench
• Keil µVision

For the MCUXpresso IDE, the library is delivered in the gmclib.a file.

For the Kinetis Design Studio, the library is delivered in the gmclib.a file.

For the IAR Embedded Workbench, the library is delivered in the gmclib.a file.

For the Keil µVision, the library is delivered in the gmclib.lib file.

The interfaces to the algorithms included in this library are combined into a single public
interface include file, gmclib.h. This is done to lower the number of files required to be
included in your application.

1.1.5 Library configuration

GMCLIB for the ARM Cortex M33F core is written in C language or assembly language
with C-callable interface depending on the specific function. Some functions from this
library are inline type, which are compiled together with project using this library. The
optimization level for inline function is usually defined by the specific compiler setting. It
can cause an issue especially when high optimization level is set. Therefore the
optimization level for all inline assembly written functions is defined by compiler
pragmas using macros. The configuration header file RTCESL_cfg.h is located in:
specific library folder\MLIB\Include. The optimization level can be changed by
modifying the macro value for specific compiler. In case of any change the library
functionality is not guaranteed.

Similarly as optimization level the PowerQuad DSP Coprocessor and Accelerator support
can be disable or enable if it has not been done by defined symbol RTCESL_PQ_ON or
RTCESL_PQ_OFF in project setting described in the PowerQuad DSP Coprocessor and
Accelerator support cheaper for specific compiler.

Chapter 1 Library

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 7

1.1.6 Special issues
1. The equations describing the algorithms are symbolic. If there is positive 1, the

number is the closest number to 1 that the resolution of the used fractional type
allows. If there are maximum or minimum values mentioned, check the range
allowed by the type of the particular function version.

2. The library functions that round the result (the API contains Rnd) round to nearest
(half up).

3. This RTCESL requires the DSP extension for some saturation functions. If the core
does not support the DSP extension feature the assembler code of the RTCESL will
not be buildable. For example the core1 of the LPC55s69 has no DSP extension.

1.2 Library integration into project (MCUXpresso IDE)

This section provides a step-by-step guide on how to quickly and easily include GMCLIB
into any MCUXpresso SDK example or demo application projects using MCUXpresso
IDE. This example uses the default installation path (C:\NXP\RTCESL
\CM33F_RTCESL_4.6_MCUX). If you have a different installation path, use that path
instead.

1.2.1 PowerQuad DSP Coprocessor and Accelerator support

Some LPC platforms (LPC55S6x) contain a hardware accelerator dedicated to common
calculations in DSP applications. This section shows how to turn the PowerQuad (PQ)
support for a function on and off.

1. In the MCUXpresso SDK project name node or in the left-hand part, click Properties
or select Project > Properties from the menu. A project properties dialog appears.

2. Expand the C/C++ Build node and select Settings. See .
3. On the right-hand side, under the MCU C Compiler node, click the Preprocessor

node. See .

Library integration into project (MCUXpresso IDE)

GMCLIB User's Guide, Rev. 4, 12/2020

8 NXP Semiconductors

Figure 1-1. Defined symbols
4. In the right-hand part of the dialog, click the Add... icon located next to the Defined

symbols (-D) title.
5. In the dialog that appears (see), type the following:

• RTCESL_PQ_ON—to turn the PowerQuad support on
• RTCESL_PQ_OFF—to turn the PowerQuad support off

If neither of these two defines is defined, the hardware division and square root
support is turned off by default.

Figure 1-2. Symbol definition
6. Click OK in the dialog.
7. Click OK in the main dialog.
8. Ensure the PowerQuad moduel to be clocked by calling function

RTCESL_PQ_Init(); prior to the first function using PQ module calling.

Chapter 1 Library

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 9

See the device reference manual to verify whether the device contains the PowerQuad
DSP Coprocessor and Accelerator support.

1.2.2 Library path variable

To make the library integration easier, create a variable that holds the information about
the library path.

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
Properties, or select Project > Properties from the menu. A project properties dialog
appears.

2. Expand the Resource node and click Linked Resources. See Figure 1-3.

Figure 1-3. Project properties
3. Click the New… button in the right-hand side.

Library integration into project (MCUXpresso IDE)

GMCLIB User's Guide, Rev. 4, 12/2020

10 NXP Semiconductors

4. In the dialog that appears (see Figure 1-4), type this variable name into the Name
box: RTCESL_LOC.

5. Select the library parent folder by clicking Folder…, or just type the following path
into the Location box: C:\NXP\RTCESL\CM33F_RTCESL_4.6_MCUX. Click OK.

Figure 1-4. New variable
6. Create such variable for the environment. Expand the C/C++ Build node and click

Environment.
7. Click the Add… button in the right-hand side.
8. In the dialog that appears (see Figure 1-5), type this variable name into the Name

box: RTCESL_LOC.
9. Type the library parent folder path into the Value box: C:\NXP\RTCESL

\CM33F_RTCESL_4.6_MCUX.
10. Tick the Add to all configurations box to use this variable in all configurations. See

Figure 1-5.
11. Click OK.
12. In the previous dialog, click OK.

Chapter 1 Library

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 11

Figure 1-5. Environment variable

1.2.3 Library folder addition

To use the library, add it into the Project tree dialog.

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
New > Folder, or select File > New > Folder from the menu. A dialog appears.

2. Click Advanced to show the advanced options.
3. To link the library source, select the Link to alternate location (Linked Folder)

option.
4. Click Variables..., select the RTCESL_LOC variable in the dialog, click OK, and/or

type the variable name into the box. See Figure 1-6.
5. Click Finish, and the library folder is linked in the project. See Figure 1-7.

Library integration into project (MCUXpresso IDE)

GMCLIB User's Guide, Rev. 4, 12/2020

12 NXP Semiconductors

Figure 1-6. Folder link

Figure 1-7. Projects libraries paths

1.2.4 Library path setup

GMCLIB requires MLIB and GFLIB to be included too. These steps show how to
include all dependent modules:

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
Properties, or select Project > Properties from the menu. The project properties
dialog appears.

2. Expand the C/C++ General node, and click Paths and Symbols.
3. In the right-hand dialog, select the Library Paths tab. See Figure 1-9.
4. Click the Add… button on the right, and a dialog appears.

Chapter 1 Library

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 13

5. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the
path in the box by adding the following (see Figure 1-8): ${RTCESL_LOC}\MLIB.

6. Click OK, and then click the Add… button.
7. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the

path in the box by adding the following: ${RTCESL_LOC}\GFLIB.
8. Click OK, and then click the Add… button.
9. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the

path in the box by adding the following: ${RTCESL_LOC}\GMCLIB.
10. Click OK, you will see the paths added into the list. See Figure 1-9.

Figure 1-8. Library path inclusion

Figure 1-9. Library paths
11. After adding the library paths, add the library files. Click the Libraries tab. See

Figure 1-11.
12. Click the Add… button on the right, and a dialog appears.
13. Type the following into the File text box (see Figure 1-10): :mlib.a
14. Click OK, and then click the Add… button.

Library integration into project (MCUXpresso IDE)

GMCLIB User's Guide, Rev. 4, 12/2020

14 NXP Semiconductors

15. Type the following into the File text box: :gflib.a
16. Click OK, and then click the Add… button.
17. Type the following into the File text box: :gmclib.a
18. Click OK, and you will see the libraries added in the list. See Figure 1-11.

Figure 1-10. Library file inclusion

Figure 1-11. Libraries
19. In the right-hand dialog, select the Includes tab, and click GNU C in the Languages

list. See Figure 1-13.
20. Click the Add… button on the right, and a dialog appears. See Figure 1-12.
21. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the

path in the box to be: ${RTCESL_LOC}\MLIB\Include
22. Click OK, and then click the Add… button.
23. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the

path in the box to be: ${RTCESL_LOC}\GFLIB\Include
24. Click OK, and then click the Add… button.
25. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the

path in the box to be: ${RTCESL_LOC}\GMCLIB\Include
26. Click OK, and you will see the paths added in the list. See Figure 1-13. Click OK.

Chapter 1 Library

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 15

Figure 1-12. Library include path addition

Figure 1-13. Compiler setting

Type the #include syntax into the code where you want to call the library functions. In
the left-hand dialog, open the required .c file. After the file opens, include the following
lines into the #include section:

#include "mlib_FP.h"
#include "gflib_FP.h"
#include "gmclib_FP.h"

When you click the Build icon (hammer), the project is compiled without errors.

Library integration into project (MCUXpresso IDE)

GMCLIB User's Guide, Rev. 4, 12/2020

16 NXP Semiconductors

1.3 Library integration into project (Keil µVision)

This section provides a step-by-step guide on how to quickly and easily include GMCLIB
into an empty project or any MCUXpresso SDK example or demo application projects
using Keil µVision. This example uses the default installation path (C:\NXP\RTCESL
\CM33F_RTCESL_4.6_KEIL). If you have a different installation path, use that path
instead. If any MCUXpresso SDK project is intended to use (for example hello_world
project) go to Linking the files into the project chapter otherwise read next chapter.

1.3.1 NXP pack installation for new project (without MCUXpresso
SDK)

This example uses the NXP LPC55s69 part, and the default installation path (C:\NXP
\RTCESL\CM33F_RTCESL_4.6_KEIL) is supposed. If the compiler has never been
used to create any NXP MCU-based projects before, check whether the NXP MCU pack
for the particular device is installed. Follow these steps:

1. Launch Keil µVision.
2. In the main menu, go to Project > Manage > Pack Installer….
3. In the left-hand dialog (under the Devices tab), expand the All Devices > Freescale

(NXP) node.
4. Look for a line called "KVxx Series" and click it.
5. In the right-hand dialog (under the Packs tab), expand the Device Specific node.
6. Look for a node called "Keil::Kinetis_KVxx_DFP." If there are the Install or Update

options, click the button to install/update the package. See Figure 1-14.
7. When installed, the button has the "Up to date" title. Now close the Pack Installer.

Chapter 1 Library

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 17

Figure 1-14. Pack Installer

1.3.2 New project (without MCUXpresso SDK)
To start working on an application, create a new project. If the project already exists and
is opened, skip to the next section. Follow these steps to create a new project:

1. Launch Keil µVision.
2. In the main menu, select Project > New µVision Project…, and the Create New

Project dialog appears.
3. Navigate to the folder where you want to create the project, for example C:

\KeilProjects\MyProject01. Type the name of the project, for example MyProject01.
Click Save. See Figure 1-15.

Figure 1-15. Create New Project dialog
4. In the next dialog, select the Software Packs in the very first box.
5. Type '' into the Search box, so that the device list is reduced to the devices.
6. Expand the node.
7. Click the LPC55s69 node, and then click OK. See Figure 1-16.

Library integration into project (Keil µVision)

GMCLIB User's Guide, Rev. 4, 12/2020

18 NXP Semiconductors

Figure 1-16. Select Device dialog
8. In the next dialog, expand the Device node, and tick the box next to the Startup node.

See Figure 1-17.
9. Expand the CMSIS node, and tick the box next to the CORE node.

Figure 1-17. Manage Run-Time Environment dialog
10. Click OK, and a new project is created. The new project is now visible in the left-

hand part of Keil µVision. See Figure 1-18.

Figure 1-18. Project
11. In the main menu, go to Project > Options for Target 'Target1'…, and a dialog

appears.
12. Select the Target tab.
13. Select Use Single Precision in the Floating Point Hardware option. See Figure 1-18.

Chapter 1 Library

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 19

Figure 1-19. FPU

1.3.3 PowerQuad DSP Coprocessor and Accelerator support

Some LPC platforms (LPC55S6x) contain a hardware accelerator dedicated to common
calculations in DSP applications. This section shows how to turn the PowerQuad (PQ)
support for a function on and off.

1. In the main menu, go to Project > Options for Target 'Target1'…, and a dialog
appears.

2. Select the C/C++ tab. See Figure 1-20.
3. In the Include Preprocessor Symbols text box, type the following:

• RTCESL_PQ_ON—to turn the hardware division and square root support on.
• RTCESL_PQ_OFF—to turn the hardware division and square root support off.

If neither of these two defines is defined, the hardware division and square root
support is turned off by default.

Library integration into project (Keil µVision)

GMCLIB User's Guide, Rev. 4, 12/2020

20 NXP Semiconductors

Figure 1-20. Preprocessor symbols
4. Click OK in the main dialog.
5. Ensure the PowerQuad moduel to be clocked by calling function

RTCESL_PQ_Init(); prior to the first function using PQ module calling.

See the device reference manual to verify whether the device contains the PowerQuad
DSP Coprocessor and Accelerator support.

1.3.4 Linking the files into the project

GMCLIB requires MLIB and GFLIB to be included too. The following steps show how
to include all dependent modules.

To include the library files in the project, create groups and add them.

1. Right-click the Target 1 node in the left-hand part of the Project tree, and select Add
Group… from the menu. A new group with the name New Group is added.

2. Click the newly created group, and press F2 to rename it to RTCESL.
3. Right-click the RTCESL node, and select Add Existing Files to Group 'RTCESL'…

from the menu.

Chapter 1 Library

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 21

4. Navigate into the library installation folder C:\NXP\RTCESL
\CM33F_RTCESL_4.6_KEIL\MLIB\Include, and select the mlib_FP.h file. If the
file does not appear, set the Files of type filter to Text file. Click Add. See Figure
1-21.

Figure 1-21. Adding .h files dialog
5. Navigate to the parent folder C:\NXP\RTCESL\CM33F_RTCESL_4.6_KEIL\MLIB,

and select the mlib.lib file. If the file does not appear, set the Files of type filter to
Library file. Click Add. See Figure 1-22.

Figure 1-22. Adding .lib files dialog
6. Navigate into the library installation folder C:\NXP\RTCESL

\CM33F_RTCESL_4.6_KEIL\GFLIB\Include, and select the gflib_FP.h file. If the
file does not appear, set the Files of type filter to Text file. Click Add.

Library integration into project (Keil µVision)

GMCLIB User's Guide, Rev. 4, 12/2020

22 NXP Semiconductors

7. Navigate to the parent folder C:\NXP\RTCESL\CM33F_RTCESL_4.6_KEIL
\GFLIB, and select the gflib.lib file. If the file does not appear, set the Files of type
filter to Library file. Click Add.

8. Navigate into the library installation folder C:\NXP\RTCESL
\CM33F_RTCESL_4.6_KEIL\GMCLIB\Include, and select the gmclib_FP.h file. If
the file does not appear, set the Files of type filter to Text file. Click Add.

9. Navigate to the parent folder C:\NXP\RTCESL\CM33F_RTCESL_4.6_KEIL
\GMCLIB, and select the gmclib.lib file. If the file does not appear, set the Files of
type filter to Library file. Click Add.

10. Now, all necessary files are in the project tree; see Figure 1-23. Click Close.

Figure 1-23. Project workspace

1.3.5 Library path setup

The following steps show the inclusion of all dependent modules.

1. In the main menu, go to Project > Options for Target 'Target1'…, and a dialog
appears.

2. Select the C/C++ tab. See Figure 1-24.
3. In the Include Paths text box, type the following paths (if there are more paths, they

must be separated by ';') or add them by clicking the … button next to the text box:
• "C:\NXP\RTCESL\CM33F_RTCESL_4.6_KEIL\MLIB\Include"
• "C:\NXP\RTCESL\CM33F_RTCESL_4.6_KEIL\GFLIB\Include"
• "C:\NXP\RTCESL\CM33F_RTCESL_4.6_KEIL\GMCLIB\Include"

4. Click OK.
5. Click OK in the main dialog.

Chapter 1 Library

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 23

Figure 1-24. Library path addition

Type the #include syntax into the code. Include the library into a source file. In the new
project, it is necessary to create a source file:

1. Right-click the Source Group 1 node, and Add New Item to Group 'Source Group
1'… from the menu.

2. Select the C File (.c) option, and type a name of the file into the Name box, for
example 'main.c'. See Figure 1-25.

Library integration into project (Keil µVision)

GMCLIB User's Guide, Rev. 4, 12/2020

24 NXP Semiconductors

Figure 1-25. Adding new source file dialog
3. Click Add, and a new source file is created and opened up.
4. In the opened source file, include the following lines into the #include section, and

create a main function:

#include "mlib_FP.h"
#include "gflib_FP.h"
#include "gmclib_FP.h"

int main(void)
{
 while(1);
}

When you click the Build (F7) icon, the project will be compiled without errors.

1.4 Library integration into project (IAR Embedded
Workbench)

This section provides a step-by-step guide on how to quickly and easily include the
GMCLIB into an empty project or any MCUXpresso SDK example or demo application
projects using IAR Embedded Workbench. This example uses the default installation
path (C:\NXP\RTCESL\CM33F_RTCESL_4.6_IAR). If you have a different installation
path, use that path instead. If any MCUXpresso SDK project is intended to use (for
example hello_world project) go to Linking the files into the project chapter otherwise
read next chapter.

Chapter 1 Library

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 25

1.4.1 New project (without MCUXpresso SDK)
This example uses the NXP LPC55S69 part, and the default installation path (C:\NXP
\RTCESL\CM33F_RTCESL_4.6_IAR) is supposed. To start working on an application,
create a new project. If the project already exists and is opened, skip to the next section.
Perform these steps to create a new project:

1. Launch IAR Embedded Workbench.
2. In the main menu, select Project > Create New Project… so that the "Create New

Project" dialog appears. See Figure 1-26.

Figure 1-26. Create New Project dialog
3. Expand the C node in the tree, and select the "main" node. Click OK.
4. Navigate to the folder where you want to create the project, for example, C:

\IARProjects\MyProject01. Type the name of the project, for example, MyProject01.
Click Save, and a new project is created. The new project is now visible in the left-
hand part of IAR Embedded Workbench. See Figure 1-27.

Library integration into project (IAR Embedded Workbench)

GMCLIB User's Guide, Rev. 4, 12/2020

26 NXP Semiconductors

Figure 1-27. New project
5. In the main menu, go to Project > Options…, and a dialog appears.
6. In the Target tab, select the Device option, and click the button next to the dialog to

select the MCU. In this example, select NXP > LPC55S69 > NXP LPC55S69_core0.
Select VFPv5 single precision in the FPU option.The DSP instructions group is
required please check the DSP Extensions checkbox if not checked. Click OK. See
Figure 1-28.

Figure 1-28. Options dialog

Chapter 1 Library

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 27

1.4.2 PowerQuad DSP Coprocessor and Accelerator support

Some LPC platforms (LPC55S6x) contain a hardware accelerator dedicated to common
calculations in DSP applications. Only functions runing faster through the PowerQuad
module than the core itself are supported and targeted to be calculated by the PowerQuad
module. This section shows how to turn the PowerQuad (PQ) support for a function on
and off.

1. In the main menu, go to Project > Options…, and a dialog appears.
2. In the left-hand column, select C/C++ Compiler.
3. In the right-hand part of the dialog, click the Preprocessor tab (it can be hidden in the

right-hand side; use the arrow icons for navigation).
4. In the text box (at the Defined symbols: (one per line)), type the following (See

Figure 1-29):
• RTCESL_PQ_ON—to turn the PowerQuad support on.
• RTCESL_PQ_OFF—to turn the PowerQuad support off.

If neither of these two defines is defined, the hardware division and square root
support is turned off by default.

Figure 1-29. Defined symbols
5. Click OK in the main dialog.

Library integration into project (IAR Embedded Workbench)

GMCLIB User's Guide, Rev. 4, 12/2020

28 NXP Semiconductors

6. Ensure the PowerQuad moduel to be clocked by calling function
RTCESL_PQ_Init(); prior to the first function using PQ module calling.

See the device reference manual to verify whether the device contains the PowerQuad
DSP Coprocessor and Accelerator support.

1.4.3 Library path variable

To make the library integration easier, create a variable that will hold the information
about the library path.

1. In the main menu, go to Tools > Configure Custom Argument Variables…, and a
dialog appears.

2. Click the New Group button, and another dialog appears. In this dialog, type the
name of the group PATH, and click OK. See Figure 1-30.

Figure 1-30. New Group
3. Click on the newly created group, and click the Add Variable button. A dialog

appears.
4. Type this name: RTCESL_LOC
5. To set up the value, look for the library by clicking the '…' button, or just type the

installation path into the box: C:\NXP\RTCESL\CM33F_RTCESL_4.6_IAR. Click
OK.

6. In the main dialog, click OK. See Figure 1-31.

Chapter 1 Library

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 29

Figure 1-31. New variable

1.4.4 Linking the files into the project

GMCLIB requires MLIB and GFLIB to be included too. The following steps show the
inclusion of all dependent modules.

To include the library files into the project, create groups and add them.

1. Go to the main menu Project > Add Group…
2. Type RTCESL, and click OK.
3. Click on the newly created node RTCESL, go to Project > Add Group…, and create

a MLIB subgroup.
4. Click on the newly created node MLIB, and go to the main menu Project > Add

Files… See Figure 1-33.
5. Navigate into the library installation folder C:\NXP\RTCESL

\CM33F_RTCESL_4.6_IAR\MLIB\Include, and select the mlib.h file. (If the file
does not appear, set the file-type filter to Source Files.) Click Open. See Figure 1-32.

6. Navigate into the library installation folder C:\NXP\RTCESL
\CM33F_RTCESL_4.6_IAR\MLIB, and select the mlib.a file. If the file does not
appear, set the file-type filter to Library / Object files. Click Open.

Figure 1-32. Add Files dialog
7. Click on the RTCESL node, go to Project > Add Group…, and create a GFLIB

subgroup.
8. Click on the newly created node GFLIB, and go to the main menu Project > Add

Files….

Library integration into project (IAR Embedded Workbench)

GMCLIB User's Guide, Rev. 4, 12/2020

30 NXP Semiconductors

9. Navigate into the library installation folder C:\NXP\RTCESL
\CM33F_RTCESL_4.6_IAR\GFLIB\Include, and select the gflib.h file. (If the file
does not appear, set the file-type filter to Source Files.) Click Open.

10. Navigate into the library installation folder C:\NXP\RTCESL
\CM33F_RTCESL_4.6_IAR\GFLIB, and select the gflib.a file. If the file does not
appear, set the file-type filter to Library / Object files. Click Open.

11. Click on the RTCESL node, go to Project > Add Group…, and create a GMCLIB
subgroup.

12. Click on the newly created node GMCLIB, and go to the main menu Project > Add
Files….

13. Navigate into the library installation folder C:\NXP\RTCESL
\CM33F_RTCESL_4.6_IAR\GMCLIB\Include, and select the gmclib.h file. If the
file does not appear, set the file-type filter to Source Files. Click Open.

14. Navigate into the library installation folder C:\NXP\RTCESL
\CM33F_RTCESL_4.6_IAR\GMCLIB, and select the gmclib.a file. If the file does
not appear, set the file-type filter to Library / Object files. Click Open.

15. Now you will see the files added in the workspace. See Figure 1-33.

Figure 1-33. Project workspace

1.4.5 Library path setup

The following steps show the inclusion of all dependent modules:

1. In the main menu, go to Project > Options…, and a dialog appears.
2. In the left-hand column, select C/C++ Compiler.
3. In the right-hand part of the dialog, click on the Preprocessor tab (it can be hidden in

the right; use the arrow icons for navigation).
4. In the text box (at the Additional include directories title), type the following folder

(using the created variable):

Chapter 1 Library

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 31

• $RTCESL_LOC$\MLIB\Include
• $RTCESL_LOC$\GFLIB\Include
• $RTCESL_LOC$\GMCLIB\Include

5. Click OK in the main dialog. See Figure 1-34.

Figure 1-34. Library path adition

Type the #include syntax into the code. Include the library included into the main.c file.
In the workspace tree, double-click the main.c file. After the main.c file opens up, include
the following lines into the #include section:

#include "mlib_FP.h"
#include "gflib_FP.h"
#include "gmclib_FP.h"

When you click the Make icon, the project will be compiled without errors.

Library integration into project (IAR Embedded Workbench)

GMCLIB User's Guide, Rev. 4, 12/2020

32 NXP Semiconductors

Chapter 2
Algorithms in detail

2.1 GMCLIB_Clark

The GMCLIB_Clark function calculates the Clarke transformation, which is used to
transform values (flux, voltage, current) from the three-phase coordinate system to the
two-phase (α-β) orthogonal coordinate system, according to the following equations:

Equation 1

Equation 2

2.1.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

• Floating-point output - the output is the floating-point result within the type's full
range.

The available versions of the GMCLIB_Clark function are shown in the following table:

Table 2-1. Function versions

Function name Input type Output type Result type

GMCLIB_Clark_F16 GMCLIB_3COOR_T_F16 * GMCLIB_2COOR_ALBE_T_F16 * void

Clarke transformation of a 16-bit fractional three-phase system input to a 16-bit fractional two-
phase system. The input and output are within the fractional range <-1 ; 1).

GMCLIB_Clark_FLT GMCLIB_3COOR_T_FLT * GMCLIB_2COOR_ALBE_T_FLT * void

Table continues on the next page...

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 33

Table 2-1. Function versions (continued)

Function name Input type Output type Result type

Clarke transformation of a 32-bit single precision floating-point three-phase system input to a 32-
bit single-point floating-point two-phase system. The input and output are within the full 32-bit
single-point floating-point range.

2.1.2 Declaration

The available GMCLIB_Clark functions have the following declarations:

void GMCLIB_Clark_F16(const GMCLIB_3COOR_T_F16 *psIn, GMCLIB_2COOR_ALBE_T_F16 *psOut)
void GMCLIB_Clark_FLT(const GMCLIB_3COOR_T_FLT *psIn, GMCLIB_2COOR_ALBE_T_FLT *psOut)

2.1.3 Function use

The use of the GMCLIB_Clark function is shown in the following examples:

Fixed-point version:

#include "gmclib.h"

static GMCLIB_2COOR_ALBE_T_F16 sAlphaBeta;
static GMCLIB_3COOR_T_F16 sAbc;

void Isr(void);

void main(void)
{
 /* ABC structure initialization */
 sAbc.f16A = FRAC16(0.0);
 sAbc.f16B = FRAC16(0.0);
 sAbc.f16C = FRAC16(0.0);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* Clarke Transformation calculation */
 GMCLIB_Clark_F16(&sAbc, &sAlphaBeta);
}

Floating-point version:

#include "gmclib.h"

static GMCLIB_2COOR_ALBE_T_FLT sAlphaBeta;
static GMCLIB_3COOR_T_FLT sAbc;

void Isr(void);

GMCLIB_Clark

GMCLIB User's Guide, Rev. 4, 12/2020

34 NXP Semiconductors

void main(void)
{
 /* ABC structure initialization */
 sAbc.fltA = 0.0F;
 sAbc.fltB = 0.0F;
 sAbc.fltC = 0.0F;
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* Clarke Transformation calculation */
 GMCLIB_Clark_FLT(&sAbc, &sAlphaBeta);
}

2.2 GMCLIB_ClarkInv

The GMCLIB_ClarkInv function calculates the Clarke transformation, which is used to
transform values (flux, voltage, current) from the two-phase (α-β) orthogonal coordinate
system to the three-phase coordinate system, according to the following equations:

Equation 3

Equation 4

Equation 5

2.2.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

• Floating-point output - the output is the floating-point result within the type's full
range.

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 35

The available versions of the GMCLIB_ClarkInv function are shown in the following
table:

Table 2-2. Function versions

Function name Input type Output type Result type

GMCLIB_ClarkInv_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * void

Inverse Clarke transformation with a 16-bit fractional two-phase system input and a 16-bit
fractional three-phase output. The input and output are within the fractional range <-1 ; 1).

GMCLIB_ClarkInv_FLT GMCLIB_2COOR_ALBE_T_FLT * GMCLIB_3COOR_T_FLT * void

Inverse Clarke transformation with a 32-bit single precision floating-point two-phase system input
and a 32-bit single precision floating-point three-phase output. The input and output are within
the full 32-bit single-point floating-point range.

2.2.2 Declaration

The available GMCLIB_ClarkInv functions have the following declarations:

void GMCLIB_ClarkInv_F16(const GMCLIB_2COOR_ALBE_T_F16 *psIn, GMCLIB_3COOR_T_F16 *psOut)
void GMCLIB_ClarkInv_FLT(const GMCLIB_2COOR_ALBE_T_FLT *psIn, GMCLIB_3COOR_T_FLT *psOut)

2.2.3 Function use

The use of the GMCLIB_ClarkInv function is shown in the following examples:

Fixed-point version:

#include "gmclib.h"

static GMCLIB_2COOR_ALBE_T_F16 sAlphaBeta;
static GMCLIB_3COOR_T_F16 sAbc;

void Isr(void);

void main(void)
{
 /* Alpha, Beta structure initialization */
 sAlphaBeta.f16Alpha = FRAC16(0.0);
 sAlphaBeta.f16Beta = FRAC16(0.0);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* Inverse Clarke Transformation calculation */
 GMCLIB_ClarkInv_F16(&sAlphaBeta, &sAbc);
}

GMCLIB_ClarkInv

GMCLIB User's Guide, Rev. 4, 12/2020

36 NXP Semiconductors

Floating-point version:

#include "gmclib.h"

static GMCLIB_2COOR_ALBE_T_FLT sAlphaBeta;
static GMCLIB_3COOR_T_FLT sAbc;

void Isr(void);

void main(void)
{
 /* Alpha, Beta structure initialization */
 sAlphaBeta.fltAlpha = 0.0F;
 sAlphaBeta.fltBeta = 0.0F;
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* Inverse Clarke Transformation calculation */
 GMCLIB_ClarkInv_FLT(&sAlphaBeta, &sAbc);
}

2.3 GMCLIB_Park

The GMCLIB_Park function calculates the Park transformation, which transforms values
(flux, voltage, current) from the stationary two-phase (α-β) orthogonal coordinate system
to the rotating two-phase (d-q) orthogonal coordinate system, according to the following
equations:

Equation 6

Equation 7

where:

• θ is the position (angle)

2.3.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

• Floating-point output - the output is the floating-point result within the type's full
range.

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 37

The available versions of the GMCLIB_Park function are shown in the following table:

Table 2-3. Function versions

Function name Input type Output type Result type

GMCLIB_Park_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_2COOR_DQ_T_F16 * void

GMCLIB_2COOR_SINCOS_T_F16 *

The Park transformation of a 16-bit fractional two-phase stationary system input to a 16-bit
fractional two-phase rotating system, using a 16-bit fractional angle two-component (sin / cos)
position information. The inputs and the output are within the fractional range <-1 ; 1).

GMCLIB_Park_FLT GMCLIB_2COOR_ALBE_T_FLT * GMCLIB_2COOR_DQ_T_FLT * void

GMCLIB_2COOR_SINCOS_T_FLT *

The Park transformation of a 32-bit single precision floating-point two-phase stationary system
input to a 32-bit single precision floating-point two-phase rotating system, using a 32-bit single
precision floating-point angle two-component (sin / cos) position information. The two-phase
stationary system input and the output are within the full 32-bit single-point floating-point range;
the angle input is within the range <-1.0 ; 1.0>.

2.3.2 Declaration

The available GMCLIB_Park functions have the following declarations:

void GMCLIB_Park_F16(const GMCLIB_2COOR_ALBE_T_F16 *psIn, const GMCLIB_2COOR_SINCOS_T_F16
*psAnglePos, GMCLIB_2COOR_DQ_T_F16 *psOut)

void GMCLIB_Park_FLT(const GMCLIB_2COOR_ALBE_T_FLT *psIn, const GMCLIB_2COOR_SINCOS_T_FLT
*psAnglePos, GMCLIB_2COOR_DQ_T_FLT *psOut)

2.3.3 Function use

The use of the GMCLIB_Park function is shown in the following examples:

Fixed-point version:

#include "gmclib.h"

static GMCLIB_2COOR_ALBE_T_F16 sAlphaBeta;
static GMCLIB_2COOR_DQ_T_F16 sDQ;
static GMCLIB_2COOR_SINCOS_T_F16 sAngle;

void Isr(void);

void main(void)
{
 /* Alpha, Beta structure initialization */
 sAlphaBeta.f16Alpha = FRAC16(0.0);
 sAlphaBeta.f16Beta = FRAC16(0.0);

GMCLIB_Park

GMCLIB User's Guide, Rev. 4, 12/2020

38 NXP Semiconductors

 /* Angle structure initialization */
 sAngle.f16Sin = FRAC16(0.0);
 sAngle.f16Cos = FRAC16(1.0);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* Park Transformation calculation */
 GMCLIB_Park_F16(&sAlphaBeta, &sAngle, &sDQ);
}

Floating-point version:

#include "gmclib.h"

static GMCLIB_2COOR_ALBE_T_FLT sAlphaBeta;
static GMCLIB_2COOR_DQ_T_FLT sDQ;
static GMCLIB_2COOR_SINCOS_T_FLT sAngle;

void Isr(void);

void main(void)
{
 /* Alpha, Beta structure initialization */
 sAlphaBeta.fltAlpha = 0.0F;
 sAlphaBeta.fltBeta = 0.0F;

 /* Angle structure initialization */
 sAngle.fltSin = 0.0F;
 sAngle.fltCos = 1.0F;
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* Park Transformation calculation */
 GMCLIB_Park_FLT(&sAlphaBeta, &sAngle, &sDQ);
}

2.4 GMCLIB_ParkInv

The GMCLIB_ParkInv function calculates the Park transformation, which transforms
values (flux, voltage, current) from the rotating two-phase (d-q) orthogonal coordinate
system to the stationary two-phase (α-β) coordinate system, according to the following
equations:

Equation 8

Equation 9

where:

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 39

• θ is the position (angle)

2.4.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

• Floating-point output - the output is the floating-point result within the type's full
range.

The available versions of the GMCLIB_ParkInv function are shown in the following
table:

Table 2-4. Function versions

Function name Input type Output type Result type

GMCLIB_ParkInv_F16 GMCLIB_2COOR_DQ_T_F16 * GMCLIB_2COOR_ALBE_T_F16 * void

GMCLIB_2COOR_SINCOS_T_F16 *

Inverse Park transformation of a 16-bit fractional two-phase rotating system input to a 16-bit
fractional two-phase stationary system, using a 16-bit fractional angle two-component (sin / cos)
position information. The inputs and the output are within the fractional range <-1 ; 1).

GMCLIB_ParkInv_FLT GMCLIB_2COOR_DQ_T_FLT * GMCLIB_2COOR_ALBE_T_FLT * void

GMCLIB_2COOR_SINCOS_T_FLT *

Inverse Park transformation of a 32-bit single precision floating-point two-phase rotating system
input to a 32-bit single precision floating-point two-phase stationary system, using a 32-bit single
precision floating-point angle two-component (sin / cos) position information. The two-phase
rotating system input and the output are within the full 32-bit single-point floating-point range; the
angle input is within the range <-1.0 ; 1.0> .

2.4.2 Declaration

The available GMCLIB_ParkInv functions have the following declarations:

void GMCLIB_ParkInv_F16(const GMCLIB_2COOR_DQ_T_F16 *psIn, const GMCLIB_2COOR_SINCOS_T_F16
*psAnglePos, GMCLIB_2COOR_ALBE_T_F16 *psOut)

void GMCLIB_ParkInv_FLT(const GMCLIB_2COOR_DQ_T_FLT *psIn, const GMCLIB_2COOR_SINCOS_T_FLT
*psAnglePos, GMCLIB_2COOR_ALBE_T_FLT *psOut)

2.4.3 Function use

The use of the GMCLIB_ParkInv function is shown in the following examples:

GMCLIB_ParkInv

GMCLIB User's Guide, Rev. 4, 12/2020

40 NXP Semiconductors

Fixed-point version:

#include "gmclib.h"

static GMCLIB_2COOR_ALBE_T_F16 sAlphaBeta;
static GMCLIB_2COOR_DQ_T_F16 sDQ;
static GMCLIB_2COOR_SINCOS_T_F16 sAngle;

void Isr(void);

void main(void)
{
 /* D, Q structure initialization */
 sDQ.f16D = FRAC16(0.0);
 sDQ.f16Q = FRAC16(0.0);

 /* Angle structure initialization */
 sAngle.f16Sin = FRAC16(0.0);
 sAngle.f16Cos = FRAC16(1.0);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* Inverse Park Transformation calculation */
 GMCLIB_ParkInv_F16(&sDQ, &sAngle, &sAlphaBeta);
}

Floating-point version:

#include "gmclib.h"

static GMCLIB_2COOR_ALBE_T_FLT sAlphaBeta;
static GMCLIB_2COOR_DQ_T_FLT sDQ;
static GMCLIB_2COOR_SINCOS_T_FLT sAngle;

void Isr(void);

void main(void)
{
 /* D, Q structure initialization */
 sDQ.fltD = 0.0F;
 sDQ.fltQ = 0.0F;

 /* Angle structure initialization */
 sAngle.fltSin = 0.0F;
 sAngle.fltCos = 1.0F;
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* Inverse Park Transformation calculation */
 GMCLIB_ParkInv_FLT(&sDQ, &sAngle, &sAlphaBeta);
}

2.5 GMCLIB_DecouplingPMSM

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 41

The GMCLIB_DecouplingPMSM function calculates the cross-coupling voltages to
eliminate the d-q axis coupling that causes nonlinearity of the control.

The d-q model of the motor contains cross-coupling voltage that causes nonlinearity of
the control. Figure 2-1 represents the d-q model of the motor that can be described using
the following equations, where the underlined portion is the cross-coupling voltage:

Equation 10

where:

• ud, uq are the d and q voltages
• id, iq are the d and q currents
• Rs is the stator winding resistance
• Ld, Lq are the stator winding d and q inductances
• ωel is the electrical angular speed
• ψr is the rotor flux constant

Figure 2-1. The d-q PMSM model

To eliminate the nonlinearity, the cross-coupling voltage is calculated using the
GMCLIB_DecouplingPMSM algorithm, and feedforwarded to the d and q voltages. The
decoupling algorithm is calculated using the following equations:

GMCLIB_DecouplingPMSM

GMCLIB User's Guide, Rev. 4, 12/2020

42 NXP Semiconductors

Equation 11

where:

• ud, uq are the d and q voltages; inputs to the algorithm
• uddec, uqdec are the d and q decoupled voltages; outputs from the algorithm

The fractional representation of the d-component equation is as follows:

Equation 12

The fractional representation of the q-component equation is as follows:

Equation 13

where:

• kd, kq are the scaling coefficients
• imax is the maximum current
• umax is the maximum voltage
• ωel_max is the maximum electrical speed

The kd and kq parameters must be set up properly.

The principle of the algorithm is depicted in Figure 2-2 :

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 43

Figure 2-2. Algorithm diagram

2.5.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate. The parameters use the
accumulator types.

• Floating-point output - the output is the floating-point result within the type's full
range.

The available versions of the GMCLIB_DecouplingPMSM function are shown in the
following table:

Table 2-5. Function versions

Function name Input/output type Result type

GMCLIB_DecouplingPMSM_F16 Input GMCLIB_2COOR_DQ_T_F16 * void

GMCLIB_2COOR_DQ_T_F16 *

frac16_t

Parameters GMCLIB_DECOUPLINGPMSM_T_A32 *

Output GMCLIB_2COOR_DQ_T_F16 *

Table continues on the next page...

GMCLIB_DecouplingPMSM

GMCLIB User's Guide, Rev. 4, 12/2020

44 NXP Semiconductors

Table 2-5. Function versions (continued)

Function name Input/output type Result type

The PMSM decoupling with a 16-bit fractional d-q voltage, current inputs, and a 16-
bit fractional electrical speed input. The parameters are 32-bit accumulator types.
The output is a 16-bit fractional decoupled d-q voltage. The inputs and the output are
within the range <-1 ; 1).

GMCLIB_DecouplingPMSM_FLT Input GMCLIB_2COOR_DQ_T_FLT * void

GMCLIB_2COOR_DQ_T_FLT *

float_t

Parameters GMCLIB_DECOUPLINGPMSM_T_FLT *

Output GMCLIB_2COOR_DQ_T_FLT *

The PMSM decoupling with a 32-bit single precision floating-point d-q voltage,
current, and electrical speed input. The parameters are 32-bit single precision
floating-point types. The output is a 32-bit single precision floating-point decoupled d-
q voltage. The inputs and the output are within the full 32-bit single-point floating-
point range.

2.5.2 GMCLIB_DECOUPLINGPMSM_T_A32 type description

Variable name Input type Description

a32KdGain acc32_t Direct axis decoupling parameter. The parameter is within the range <0 ; 65536.0)

a32KqGain acc32_t Quadrature axis decoupling parameter. The parameter is within the range <0 ;
65536.0)

2.5.3 GMCLIB_DECOUPLINGPMSM_T_FLT type description

Variable name Input type Description

fltLd float_t Direct axis inductance parameter. The parameter is a nonnegative value.

fltLq float_t Quadrature axis inductance parameter. The parameter is a nonnegative value.

2.5.4 Declaration

The available GMCLIB_DecouplingPMSM functions have the following declarations:

void GMCLIB_DecouplingPMSM_F16(const GMCLIB_2COOR_DQ_T_F16 *psUDQ, const
GMCLIB_2COOR_DQ_T_F16 *psIDQ, frac16_t f16SpeedEl, const GMCLIB_DECOUPLINGPMSM_T_A32
*psParam, GMCLIB_2COOR_DQ_T_F16 *psUDQDec)

void GMCLIB_DecouplingPMSM_FLT(const GMCLIB_2COOR_DQ_T_FLT *psUDQ, const

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 45

GMCLIB_2COOR_DQ_T_FLT *psIDQ, float_t fltSpeedEl, const GMCLIB_DECOUPLINGPMSM_T_FLT
*psParam, GMCLIB_2COOR_DQ_T_FLT *psUDQDec)

2.5.5 Function use

The use of the GMCLIB_DecouplingPMSM function is shown in the following
examples:

Fixed-point version:

#include "gmclib.h"

static GMCLIB_2COOR_DQ_T_F16 sVoltageDQ;
static GMCLIB_2COOR_DQ_T_F16 sCurrentDQ;
static frac16_t f16AngularSpeed;
static GMCLIB_DECOUPLINGPMSM_T_A32 sDecouplingParam;
static GMCLIB_2COOR_DQ_T_F16 sVoltageDQDecoupled;

void Isr(void);

void main(void)
{
 /* Voltage D, Q structure initialization */
 sVoltageDQ.f16D = FRAC16(0.0);
 sVoltageDQ.f16Q = FRAC16(0.0);

 /* Current D, Q structure initialization */
 sCurrentDQ.f16D = FRAC16(0.0);
 sCurrentDQ.f16Q = FRAC16(0.0);

 /* Speed initialization */
 f16AngularSpeed = FRAC16(0.0);

 /* Motor parameters for decoupling Kd = 40, Kq = 20 */
 sDecouplingParam.a32KdGain = ACC32(40.0);
 sDecouplingParam.a32KqGain = ACC32(20.0);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* Decoupling calculation */
 GMCLIB_DecouplingPMSM_F16(&sVoltageDQ, &sCurrentDQ, f16AngularSpeed, &sDecouplingParam,
&sVoltageDQDecoupled);
}

Floating-point version:

#include "gmclib.h"

static GMCLIB_2COOR_DQ_T_FLT sVoltageDQ;
static GMCLIB_2COOR_DQ_T_FLT sCurrentDQ;
static float_t fltAngularSpeed;
static GMCLIB_DECOUPLINGPMSM_T_FLT sDecouplingParam;
static GMCLIB_2COOR_DQ_T_FLT sVoltageDQDecoupled;

void Isr(void);

GMCLIB_DecouplingPMSM

GMCLIB User's Guide, Rev. 4, 12/2020

46 NXP Semiconductors

void main(void)
{
 /* Voltage D, Q structure initialization */
 sVoltageDQ.fltD = 0.0F;
 sVoltageDQ.fltQ = 0.0F;

 /* Current D, Q structure initialization */
 sCurrentDQ.fltD = 0.0F;
 sCurrentDQ.fltQ = 0.0F;

 /* Speed initialization */
 fltAngularSpeed = 0.0F;

 /* Motor parameters for decoupling Kd = 40, Kq = 20 */
 sDecouplingParam.fltLd = 40.0F;
 sDecouplingParam.fltLq = 20.0F;
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* Decoupling calculation */
 GMCLIB_DecouplingPMSM_FLT(&sVoltageDQ, &sCurrentDQ, fltAngularSpeed, &sDecouplingParam,
&sVoltageDQDecoupled);
}

2.6 GMCLIB_ElimDcBusRipFOC

The GMCLIB_ElimDcBusRipFOC function is used for the correct PWM duty cycle
output calculation, based on the measured DC-bus voltage. The side effect is the
elimination of the the DC-bus voltage ripple in the output PWM duty cycle. This function
is meant to be used with a space vector modulation, whose modulation index (with
respect to the DC-bus voltage) is an inverse square root of 3.

The general equation to calculate the duty cycle for the above-mentioned space vector
modulation is as follows:

Equation 14

where:

• UPWM is the duty cycle output
• uFOC is the real FOC voltage
• udcbus is the real measured DC-bus voltage

Using the previous equations, the GMCLIB_ElimDcBusRipFOC function compensates
an amplitude of the direct-α and the quadrature-β component of the stator-reference
voltage vector, using the formula shown in the following equations:

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 47

Equation 15

Equation 16

where:

• Uα* is the direct-α duty cycle ratio
• Uβ* is the quadrature-β duty cycle ratio
• Uα is the direct-α voltage
• Uβ is the quadrature-β voltage

If the fractional arithmetic is used, the FOC and DC-bus voltages have their scales, which
take place in Equation 14 on page 47; the equation is as follows:

Equation 17

where:

• UFOC is the scaled FOC voltage
• Udcbus is the scaled measured DC-bus voltage
• UFOC_max is the FOC voltage scale
• Udcbus_max is the DC-bus voltage scale

If this algorithm is used with the space vector modulation with the ratio of square root
equal to 3, then the FOC voltage scale is expressed as follows :

Equation 18

The equation can be simplified as follows:

GMCLIB_ElimDcBusRipFOC

GMCLIB User's Guide, Rev. 4, 12/2020

48 NXP Semiconductors

Equation 19

The GMCLIB_ElimDcBusRipFOC function compensates an amplitude of the direct-α
and the quadrature-β component of the stator-reference voltage vector in the fractional
arithmetic, using the formula shown in the following equations:

Equation 20

Equation 21

where:

• Uα* is the direct-α duty cycle ratio
• Uβ* is the quadrature-β duty cycle ratio
• Uα is the direct-α voltage
• Uβ is the quadrature-β voltage

The GMCLIB_ElimDcBusRipFOC function can be used in general motor-control
applications, and it provides elimination of the voltage ripple on the DC-bus of the power
stage. Figure 2-3 shows the results of the DC-bus ripple elimination, while compensating
the ripples of the rectified voltage using a three-phase uncontrolled rectifier.

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 49

Figure 2-3. Results of the DC-bus voltage ripple elimination

2.6.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

• Fractional output with floating-point input - the output is the fractional portion of the
result; the result is within the range <-1 ; 1). The result may saturate. The inputs are
floating-point values.

GMCLIB_ElimDcBusRipFOC

GMCLIB User's Guide, Rev. 4, 12/2020

50 NXP Semiconductors

The available versions of the GMCLIB_ElimDcBusRipFOC function are shown in the
following table:

Table 2-6. Function versions

Function name Input type Output type Result
type

GMCLIB_ElimDcBusRipFOC_F16 frac16_t GMCLIB_2COOR_ALBE_T_F16 * void

GMCLIB_2COOR_ALBE_T_F16 *

Compensation of a 16-bit fractional two-phase system input to a 16-bit fractional
two-phase system, using a 16-bit fractional DC-bus voltage information. The DC-
bus voltage input is within the fractional range <0 ; 1); the stationary (α-β) voltage
input and the output are within the fractional range <-1 ; 1).

GMCLIB_ElimDcBusRipFOC_F16ff float_t GMCLIB_2COOR_ALBE_T_F16 * void

GMCLIB_2COOR_ALBE_T_FLT *

Compensation of a 32-bit single precision floating-point two-phase system input to
a 16-bit fractional two-phase system, using a 32-bit single precision floating-point
DC-bus voltage information. The DC-bus voltage input is a nonnegative value; the
two-phase voltage input is within the full 32-bit single-point floating-point range, and
the output is within the fractional range <-1 ; 1).

2.6.2 Declaration

The available GMCLIB_ElimDcBusRipFOC functions have the following declarations:

void GMCLIB_ElimDcBusRipFOC_F16(frac16_t f16UDCBus, const GMCLIB_2COOR_ALBE_T_F16 *psUAlBe,
GMCLIB_2COOR_ALBE_T_F16 *psUAlBeComp)

void GMCLIB_ElimDcBusRipFOC_F16ff(float_t fltUDCBus, const GMCLIB_2COOR_ALBE_T_FLT *psUAlBe,
GMCLIB_2COOR_ALBE_T_F16 *psUAlBeComp)

2.6.3 Function use

The use of the GMCLIB_ElimDcBusRipFOC function is shown in the following
example:

#include "gmclib.h"

static frac16_t f16UDcBus;
static GMCLIB_2COOR_ALBE_T_F16 sUAlBe;
static GMCLIB_2COOR_ALBE_T_F16 sUAlBeComp;

void Isr(void);

void main(void)
{
 /* Voltage Alpha, Beta structure initialization */

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 51

 sUAlBe.f16Alpha = FRAC16(0.0);
 sUAlBe.f16Beta = FRAC16(0.0);

 /* DC bus voltage initialization */
 f16UDcBus = FRAC16(0.8);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* FOC Ripple elimination calculation */
 GMCLIB_ElimDcBusRipFOC_F16(f16UDcBus, &sUAlBe, &sUAlBeComp);
}

2.7 GMCLIB_ElimDcBusRip

The GMCLIB_ElimDcBusRip function is used for a correct PWM duty cycle output
calculation, based on the measured DC-bus voltage. The side effect is the elimination of
the the DC-bus voltage ripple in the output PWM duty cycle. This function can be used
with any kind of space vector modulation; it has an additional input - the modulation
index (with respect to the DC-bus voltage).

The general equation to calculate the duty cycle is as follows:

Equation 22

where:

• UPWM is the duty cycle output
• uFOC is the real FOC voltage
• udcbus is the real measured DC-bus voltage
• imod is the space vector modulation index

Using the previous equations, the GMCLIB_ElimDcBusRip function compensates an
amplitude of the direct-α and the quadrature-β component of the stator-reference voltage
vector, using the formula shown in the following equations:

Equation 23

GMCLIB_ElimDcBusRip

GMCLIB User's Guide, Rev. 4, 12/2020

52 NXP Semiconductors

Equation 24

where:

• Uα* is the direct-α duty cycle ratio
• Uβ* is the quadrature-β duty cycle ratio
• Uα is the direct-α voltage
• Uβ is the quadrature-β voltage

If the fractional arithmetic is used, the FOC and DC-bus voltages have their scales, which
take place in Equation 22 on page 52; the equation is as follows:

Equation 25

where:

• UFOC is the scaled FOC voltage
• Udcbus is the scaled measured DC-bus voltage
• UFOC_max is the FOC voltage scale
• Udcbus_max is the DC-bus voltage scale

Thus, the modulation index in the fractional representation is expressed as follows :

Equation 26

where:

• imodfr is the space vector modulation index in the fractional arithmetic

The GMCLIB_ElimDcBusRip function compensates an amplitude of the direct-α and the
quadrature-β component of the stator-reference voltage vector in the fractional
arithmetic, using the formula shown in the following equations:

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 53

Equation 27

Equation 28

where:

• Uα* is the direct-α duty cycle ratio
• Uβ* is the quadrature-β duty cycle ratio
• Uα is the direct-α voltage
• Uβ is the quadrature-β voltage

The GMCLIB_ElimDcBusRip function can be used in general motor-control
applications, and it provides elimination of the voltage ripple on the DC-bus of the power
stage. Figure 2-4 shows the results of the DC-bus ripple elimination, while compensating
the ripples of the rectified voltage, using a three-phase uncontrolled rectifier.

GMCLIB_ElimDcBusRip

GMCLIB User's Guide, Rev. 4, 12/2020

54 NXP Semiconductors

Figure 2-4. Results of the DC-bus voltage ripple elimination

2.7.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate. The modulation index is a non-
negative accumulator type value.

• Fractional output with floating-point input - the output is the fractional portion of the
result; the result is within the range <-1 ; 1). The result may saturate. The inputs are
floating-point values.

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 55

The available versions of the GMCLIB_ElimDcBusRip function are shown in the
following table:

Table 2-7. Function versions

Function name Input type Output type Result
type

GMCLIB_ElimDcBusRip_F16sas frac16_t GMCLIB_2COOR_ALBE_T_F16 * void

acc32_t

GMCLIB_2COOR_ALBE_T_F16 *

Compensation of a 16-bit fractional two-phase system input to a 16-bit fractional
two-phase system using a 16-bit fractional DC-bus voltage information and a 32-bit
accumulator modulation index. The DC-bus voltage input is within the fractional
range <0 ; 1); the modulation index is a non-negative value; the stationary (α-β)
voltage input and output are within the fractional range <-1 ; 1).

GMCLIB_ElimDcBusRip_F16fff float_t GMCLIB_2COOR_ALBE_T_F16 * void

float_t

GMCLIB_2COOR_ALBE_T_FLT *

Compensation of a 32-bit single precision floating-point two-phase system input to
a 16-bit fractional two-phase system using a 32-bit single precision floating-point
DC-bus voltage information and modulation index. The DC-bus voltage and
modulation index inputs are non-negative values; the two-phase voltage input is
within the full 32-bit single-point floating-point range, and the output is within the
fractional range <-1 ; 1).

2.7.2 Declaration

The available GMCLIB_ElimDcBusRip functions have the following declarations:

void GMCLIB_ElimDcBusRip_F16sas(frac16_t f16UDCBus, acc32_t a32IdxMod, const
GMCLIB_2COOR_ALBE_T_F16 *psUAlBeComp, GMCLIB_2COOR_ALBE_T_F16 *psUAlBe)

void GMCLIB_ElimDcBusRip_F16fff(float_t fltUDCBus, float_t fltIdxMod, const
GMCLIB_2COOR_ALBE_T_FLT *psUAlBeComp, GMCLIB_2COOR_ALBE_T_F16 *psUAlBe)

2.7.3 Function use

The use of the GMCLIB_ElimDcBusRip function is shown in the following example:

#include "gmclib.h"

static frac16_t f16UDcBus;
static acc32_t a32IdxMod;
static GMCLIB_2COOR_ALBE_T_F16 sUAlBe;
static GMCLIB_2COOR_ALBE_T_F16 sUAlBeComp;

GMCLIB_ElimDcBusRip

GMCLIB User's Guide, Rev. 4, 12/2020

56 NXP Semiconductors

void Isr(void);

void main(void)
{
 /* Voltage Alpha, Beta structure initialization */
 sUAlBe.f16Alpha = FRAC16(0.0);
 sUAlBe.f16Beta = FRAC16(0.0);

 /* SVM modulation index */
 a32IdxMod = ACC32(1.3);

 /* DC bus voltage initialization */
 f16UDcBus = FRAC16(0.8);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* Ripple elimination calculation */
 GMCLIB_ElimDcBusRip_F16sas(f16UDcBus, a32IdxMod, &sUAlBe, &sUAlBeComp);
}

2.8 GMCLIB_SvmStd

The GMCLIB_SvmStd function calculates the appropriate duty-cycle ratios, which are
needed for generation of the given stator-reference voltage vector, using a special
standard space vector modulation technique.

The GMCLIB_SvmStd function for calculating the duty-cycle ratios is widely used in
modern electric drives. This function calculates the appropriate duty-cycle ratios, which
are needed for generating the given stator reference voltage vector, using a special space
vector modulation technique, called standard space vector modulation.

The basic principle of the standard space vector modulation technique can be explained
using the power stage diagram shown in Figure 2-5.

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 57

Figure 2-5. Power stage schematic diagram

The top and bottom switches are working in a complementary mode; for example, if the
top switch SAt is on, then the corresponding bottom switch SAb is off, and vice versa.
Considering that the value 1 is assigned to the ON state of the top switch, and value 0 is
assigned to the ON state of the bottom switch, the switching vector [a, b, c]T can be
defined. Creating of such vector allows for numerical definition of all possible switching
states. Phase-to-phase voltages can then be expressed in terms of the following states:

Equation 29

where UDCBus is the instantaneous voltage measured on the DC-bus.

Assuming that the motor is completely symmetrical, it is possible to write a matrix
equation, which expresses the motor phase voltages shown in Equation 29 on page 58.

Equation 30

GMCLIB_SvmStd

GMCLIB User's Guide, Rev. 4, 12/2020

58 NXP Semiconductors

In a three-phase power stage configuration (as shown in Figure 2-5), eight possible
switching states (shown in Figure 2-6) are feasible. These states, together with the
resulting instantaneous output line-to-line and phase voltages, are listed in Table 2-8.

Table 2-8. Switching patterns

A B C Ua Ub Uc UAB UBC UCA Vector

0 0 0 0 0 0 0 0 0 O000

1 0 0 2UDCBus/3 -UDCBus/3 -UDCBus/3 UDCBus 0 -UDCBus U0

1 1 0 UDCBus/3 UDCBus/3 -2UDCBus/3 0 UDCBus -UDCBus U60

0 1 0 -UDCBus/3 2UDCBus/3 -UDCBus/3 -UDCBus UDCBus 0 U120

0 1 1 -2UDCBus/3 UDCBus/3 UDCBus/3 -UDCBus 0 UDCBus U240

0 0 1 -UDCBus/3 -UDCBus/3 2UDCBus/3 0 -UDCBus UDCBus U300

1 0 1 UDCBus/3 -2UDCBus/3 UDCBus/3 UDCBus -UDCBus 0 U360

1 1 1 0 0 0 0 0 0 O111

The quantities of the direct-α and the quadrature-β components of the two-phase
orthogonal coordinate system, describing the three-phase stator voltages, are expressed
using the Clark transformation, arranged in a matrix form:

Equation 31

The three-phase stator voltages - Ua, Ub, and Uc, are transformed using the Clark
transformation into the direct-α and the quadrature-β components of the two-phase
orthogonal coordinate system. The transformation results are listed in Table 2-9.

Table 2-9. Switching patterns and space vectors

A B C Uα Uβ Vector

0 0 0 0 0 O000

1 0 0 2UDCBus/3 0 U0

1 1 0 UDCBus/3 UDCBus/√3 U60

0 1 0 -UDCBus/3 UDCBus/√3 U120

0 1 1 -2UDCBus/3 0 U240

0 0 1 -UDCBus/3 -UDCBus/√3 U300

1 0 1 UDCBus/3 -UDCBus/√3 U360

1 1 1 0 0 O111

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 59

Figure 2-6 depicts the basic feasible switching states (vectors). There are six nonzero
vectors - U0, U60,U120, U180, U240, and U300, and two zero vectors - O111 and O000, usable
for switching. Therefore, the principle of the standard space vector modulation lies in
applying the appropriate switching states for a certain time, and thus generating a voltage
vector identical to the reference one.

Figure 2-6. Basic space vectors

Referring to this principle, the objective of the standard space vector modulation is an
approximation of the reference stator voltage vector US, with an appropriate combination
of the switching patterns, composed of basic space vectors. The graphical explanation of
this objective is shown in Figure 2-7 and Figure 2-8.

GMCLIB_SvmStd

GMCLIB User's Guide, Rev. 4, 12/2020

60 NXP Semiconductors

Figure 2-7. Projection of reference voltage vector in the respective sector

The stator reference voltage vector US is phase-advanced by 30° from the direct-α, and
thus can be generated with an appropriate combination of the adjacent basic switching
states U0 and U60. These figures also indicate the resultant direct-α and quadrature-β
components for space vectors U0 and U60.

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 61

Figure 2-8. Detail of the voltage vector projection in the respective sector

In this case, the reference stator voltage vector US is located in sector I, and can be
generated using the appropriate duty-cycle ratios of the basic switching states U0 and
U60. The principal equations concerning this vector location are as follows:

Equation 32

where T60 and T0 are the respective duty-cycle ratios, for which the basic space vectors
T60 and T0 should be applied within the time period T. Tnull is the time, for which the null
vectors O000 and O111 are applied. Those duty-cycle ratios can be calculated using the
following equations:

GMCLIB_SvmStd

GMCLIB User's Guide, Rev. 4, 12/2020

62 NXP Semiconductors

Equation 33

Considering that normalized magnitudes of basic space vectors are |U60| = |U0| = 2 / √3,
and by the substitution of the trigonometric expressions sin 60° and tan 60° by their
quantities 2 / √3, and √3, respectively, the Equation 33 on page 63 can be rearranged for
the unknown duty-cycle ratios T60 / T and T0 / T as follows:

Equation 34

Sector II is depicted in Figure 2-9. In this particular case, the reference stator voltage
vector US is generated using the appropriate duty-cycle ratios of the basic switching
states T60 and T120. The basic equations describing this sector are as follows:

Equation 35

where T120 and T60 are the respective duty-cycle ratios, for which the basic space vectors
U120 and U60 should be applied within the time period T. Tnull is the time, for which the
null vectors O000 and O111 are applied. These resultant duty-cycle ratios are formed from
the auxiliary components, termed A and B. The graphical representation of the auxiliary
components is shown in Figure 2-10.

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 63

Figure 2-9. Projection of the reference voltage vector in the respective sector

GMCLIB_SvmStd

GMCLIB User's Guide, Rev. 4, 12/2020

64 NXP Semiconductors

Figure 2-10. Detail of the voltage vector projection in the respective sector

The equations describing those auxiliary time-duration components are as follows:

Equation 36

Equations in Equation 36 on page 65 have been created using the sine rule.

The resultant duty-cycle ratios T120 / T and T60 / T are then expressed in terms of the
auxiliary time-duration components, defined by Equation 37 on page 65 as follows:

Equation 37

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 65

Using these equations, and also considering that the normalized magnitudes of the basic
space vectors are |U120| = |U60| = 2 / √3 , the equations expressed for the unknown duty-
cycle ratios of basic space vectors T120 / T and T60 / T can be expressed as follows:

Equation 38

The duty-cycle ratios in the remaining sectors can be derived using the same approach.
The resulting equations will be similar to those derived for sector I and sector II.

Equation 39

To depict the duty-cycle ratios of the basic space vectors for all sectors, we define:

• Three auxiliary variables:

Equation 40
• Two expressions - t_1 and t_2, which generally represent the duty-cycle ratios of the

basic space vectors in the respective sector (for example, for the first sector, t_1 and
t_2), represent duty-cycle ratios of the basic space vectors U60 and U0; for the second
sector, t_1 and t_2 represent duty-cycle ratios of the basic space vectors U120 and
U60, and so on.

The expressions t_1 and t_2, in terms of auxiliary variables X, Y, and Z for each sector,
are listed in Table 2-10.

Table 2-10. Determination of t_1 and t_2 expressions

Sectors U0, U60 U60, U120 U120, U180 U180, U240 U240, U300 U300, U0

t_1 X Y -Y Z -Z -X

t_2 -Z Z X -X -Y Y

For the determination of auxiliary variables X, Y, and Z, the sector number is required.
This information can be obtained using several approaches. The approach discussed here
requires the use of modified Inverse Clark transformation to transform the direct-α and
quadrature-β components into balanced three-phase quantities uref1, uref2, and uref3, used
for straightforward calculation of the sector number, to be shown later.

GMCLIB_SvmStd

GMCLIB User's Guide, Rev. 4, 12/2020

66 NXP Semiconductors

Equation 41

The modified Inverse Clark transformation projects the quadrature-uβ component into
uref1, as shown in Figure 2-11 and Figure 2-12, whereas voltages generated by the
conventional Inverse Clark transformation project the direct-uα component into uref1.

Figure 2-11. Direct-ua and quadrature-ub components of the stator reference voltage

Figure 2-11 depicts the direct-uα and quadrature-uβ components of the stator reference
voltage vector US, which were calculated using equations uα = cos ϑ and uβ = sin ϑ,
respectively.

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 67

Figure 2-12. Reference voltages Uref1, Uref2, and Uref3

The sector identification tree shown in Figure 2-13 can be a numerical solution of the
approach shown in GMCLIB_SvmStd_Img8.

Figure 2-13. Identification of the sector number

In the worst case, at least three simple comparisons are required to precisely identify the
sector of the stator reference voltage vector. For example, if the stator reference voltage
vector is located as shown in Figure 2-7, the stator-reference voltage vector is phase-
advanced by 30° from the direct α-axis, which results in the positive quantities of uref1
and uref2, and the negative quantity of uref3; see Figure 2-12. If these quantities are used
as the inputs for the sector identification tree, the product of those comparisons will be
sector I. The same approach identifies sector II, if the stator-reference voltage vector is

GMCLIB_SvmStd

GMCLIB User's Guide, Rev. 4, 12/2020

68 NXP Semiconductors

located as shown in Figure 2-9. The variables t1, t2, and t3, which represent the switching
duty-cycle ratios of the respective three-phase system, are calculated according to the
following equations:

Equation 42

where T is the switching period, and t_1 and t_2 are the duty-cycle ratios of the basic
space vectors given for the respective sector; Table 2-10, Equation 31 on page 59, and
Equation 42 on page 69 are specific solely to the standard space vector modulation
technique; other space vector modulation techniques discussed later will require deriving
different equations.

The next step is to assign the correct duty-cycle ratios - t1, t2, and t3, to the respective
motor phases. This is a simple task, accomplished in a view of the position of the stator
reference voltage vector; see Table 4.

Table 2-11. Assignment of the duty-cycle ratios to motor phases

Sectors U0, U60 U60, U120 U120, U180 U180, U240 U240, U300 U300, U0

pwm_a t3 t2 t1 t1 t2 t3

pwm_b t2 t3 t3 t2 t1 t1

pwm_c t1 t1 t2 t3 t3 t2

The principle of the space vector modulation technique consists of applying the basic
voltage vectors UXXX and OXXX for certain time, in such a way that the main vector
generated by the pulse width modulation approach for the period T is equal to the original
stator reference voltage vector US. This provides a great variability of arrangement of the
basic vectors during the PWM period T. These vectors might be arranged either to lower
the switching losses, or to achieve diverse results, such as center-aligned PWM, edge-
aligned PWM, or a minimal number of switching states. A brief discussion of the widely
used center-aligned PWM follows.

Generating the center-aligned PWM pattern is accomplished by comparing the threshold
levels pwm_a, pwm_b, and pwm_c with a free-running up-down counter. The timer
counts to one, and then down to zero. It is supposed that when a threshold level is larger
than the timer value, the respective PWM output is active. Otherwise, it is inactive; see
Figure 2-14.

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 69

Figure 2-14. Standard space vector modulation technique — center-aligned PWM

Figure 2-15 shows the waveforms of the duty-cycle ratios, calculated using standard
space vector modulation.

For the accurate calculation of the duty-cycle ratios, direct-α, and quadrature-β
components of the stator reference voltage vector, it must be considered that the duty
cycle cannot be higher than one (100 %); in other words, the assumption must be
met.

GMCLIB_SvmStd

GMCLIB User's Guide, Rev. 4, 12/2020

70 NXP Semiconductors

Figure 2-15. Standard space vector modulation technique

2.8.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <0 ; 1). The result may saturate.

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 71

The available versions of the GMCLIB_SvmStd function are shown in the following
table.

Table 2-12. Function versions

Function name Input type Output type Result type

GMCLIB_SvmStd_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * uint16_t

Standard space vector modulation with a 16-bit fractional stationary (α-β) input and a 16-bit
fractional three-phase output. The result type is a 16-bit unsigned integer, which indicates the
actual SVM sector. The input is within the range <-1 ; 1); the output duty cycle is within the range
<0 ; 1). The output sector is an integer value within the range <1 ; 6>.

2.8.2 Declaration

The available GMCLIB_SvmStd functions have the following declarations:

uint16_t GMCLIB_SvmStd_F16(const GMCLIB_2COOR_ALBE_T_F16 *psIn, GMCLIB_3COOR_T_F16 *psOut)

2.8.3 Function use

The use of the GMCLIB_SvmStd function is shown in the following example:

#include "gmclib.h"

static uint16_t u16Sector;
static GMCLIB_2COOR_ALBE_T_F16 sAlphaBeta;
static GMCLIB_3COOR_T_F16 sAbc;

void Isr(void);

void main(void)
{
 /* Alpha, Beta structure initialization */
 sAlphaBeta.f16Alpha = FRAC16(0.0);
 sAlphaBeta.f16Beta = FRAC16(0.0);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* SVM calculation */
 u16Sector = GMCLIB_SvmStd_F16(&sAlphaBeta, &sAbc);
}

2.9 GMCLIB_SvmIct

GMCLIB_SvmIct

GMCLIB User's Guide, Rev. 4, 12/2020

72 NXP Semiconductors

The GMCLIB_SvmIct function calculates the appropriate duty-cycle ratios, which are
needed for generation of the given stator-reference voltage vector using the general
sinusoidal modulation technique.

The GMCLIB_SvmIct function calculates the appropriate duty-cycle ratios, needed for
generation of the given stator reference voltage vector using the conventional Inverse
Clark transformation. Finding the sector in which the reference stator voltage vector US
resides is similar to GMCLIB_SvmStd. This is achieved by first converting the direct-α
and the quadrature-β components of the reference stator voltage vector US into the
balanced three-phase quantities uref1, uref2, and uref3 using the modified Inverse Clark
transformation:

Equation 43

The calculation of the sector number is based on comparing the three-phase reference
voltages uref1, uref2, and uref3 with zero. This computation is described by the following
set of rules:

Equation 44

After passing these rules, the modified sector numbers are then derived using the
following formula:

Equation 45

The sector numbers determined by this formula must be further transformed to
correspond to those determined by the sector identification tree. The transformation
which meets this requirement is shown in the following table:

Table 2-13. Transformation of the sectors

Sector* 1 2 3 4 5 6

Sector 2 6 1 4 3 5

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 73

Use the Inverse Clark transformation for transforming values such as flux, voltage, and
current from an orthogonal rotating coordination system (uα, uβ) to a three-phase rotating
coordination system (ua, ub, and uc). The original equations of the Inverse Clark
transformation are scaled here to provide the duty-cycle ratios in the range <0 ; 1). These
scaled duty cycle ratios pwm_a, pwm_b, and pwm_c can be used directly by the registers
of the PWM block.

Equation 46

The following figure shows the waveforms of the duty-cycle ratios calculated using the
Inverse Clark transformation.

GMCLIB_SvmIct

GMCLIB User's Guide, Rev. 4, 12/2020

74 NXP Semiconductors

Figure 2-16. Inverse Clark transform modulation technique

For an accurate calculation of the duty-cycle ratios and the direct-α and quadrature-β
components of the stator reference voltage vector, the duty cycle cannot be higher than
one (100 %); in other words, the assumption must be met.

2.9.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <0 ; 1). The result may saturate.

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 75

The available versions of the GMCLIB_SvmIct function are shown in the following
table:

Table 2-14. Function versions

Function name Input type Output type Result type

GMCLIB_SvmIct_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * uint16_t

General sinusoidal space vector modulation with a 16-bit fractional stationary (α-β) input and a
16-bit fractional three-phase output. The result type is a 16-bit unsigned integer, which indicates
the actual SVM sector. The input is within the range <-1 ; 1); the output duty cycle is within the
range <0 ; 1). The output sector is an integer value within the range <1 ; 6>.

2.9.2 Declaration

The available GMCLIB_SvmIct functions have the following declarations:

uint16_t GMCLIB_SvmIct_F16(const GMCLIB_2COOR_ALBE_T_F16 *psIn, GMCLIB_3COOR_T_F16 *psOut)

2.9.3 Function use

The use of the GMCLIB_SvmIct function is shown in the following example:

#include "gmclib.h"

static uint16_t u16Sector;
static GMCLIB_2COOR_ALBE_T_F16 sAlphaBeta;
static GMCLIB_3COOR_T_F16 sAbc;

void Isr(void);

void main(void)
{
 /* Alpha, Beta structure initialization */
 sAlphaBeta.f16Alpha = FRAC16(0.0);
 sAlphaBeta.f16Beta = FRAC16(0.0);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* SVM calculation */
 u16Sector = GMCLIB_SvmIct_F16(&sAlphaBeta, &sAbc);
}

2.10 GMCLIB_SvmU0n

GMCLIB_SvmU0n

GMCLIB User's Guide, Rev. 4, 12/2020

76 NXP Semiconductors

The GMCLIB_SvmU0n function calculates the appropriate duty-cycle ratios, which are
needed for generation of the given stator-reference voltage vector using the general
sinusoidal modulation technique.

The GMCLIB_SvmU0n function for calculating of duty-cycle ratios is widely used in
modern electric drives. This function calculates the appropriate duty-cycle ratios, which
are needed for generating the given stator reference voltage vector using a special space
vector modulation technique called space vector modulation with O000 nulls, where only
one type of null vector O000 is used (all bottom switches are turned on in the invertor).

The derivation approach of the space vector modulation technique with O000 nulls is in
many aspects identical to the approach presented in GMCLIB_SvmStd. However, a
distinct difference lies in the definition of the variables t1, t2, and t3 that represent
switching duty-cycle ratios of the respective phases:

Equation 47

where T is the switching period, and t_1 and t_2 are the duty-cycle ratios of the basic
space vectors that are defined for the respective sector in Table 2-10.

The generally used center-aligned PWM is discussed briefly in the following sections.
Generating the center-aligned PWM pattern is accomplished practically by comparing the
threshold levels pwm_a, pwm_b, and pwm_c with the free-running up/down counter. The
timer counts up to 1 (0x7FFF) and then down to 0 (0x0000). It is supposed that when a
threshold level is larger than the timer value, the respective PWM output is active.
Otherwise it is inactive (see Figure 2-17).

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 77

Figure 2-17. Space vector modulation technique with O000 nulls — center-aligned PWM

Figure Figure 2-17 shows calculated waveforms of the duty cycle ratios using space
vector modulation with O000 nulls.

For an accurate calculation of the duty-cycle ratios, direct-α, and quadrature-β
components of the stator reference voltage vector, consider that the duty cycle cannot be
higher than one (100 %); in other words, the assumption must be met.

GMCLIB_SvmU0n

GMCLIB User's Guide, Rev. 4, 12/2020

78 NXP Semiconductors

Figure 2-18. Space vector modulation technique with O000 nulls

2.10.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <0 ; 1). The result may saturate.

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 79

The available versions of the GMCLIB_SvmU0n function are shown in the following
table:

Table 2-15. Function versions

Function name Input type Output type Result type

GMCLIB_SvmU0n_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * uint16_t

General sinusoidal space vector modulation with a 16-bit fractional stationary (α-β) input, and a
16-bit fractional three-phase output. The result type is a 16-bit unsigned integer, which indicates
the actual SVM sector. The input is within the range <-1 ; 1); the output duty cycle is within the
range <0 ; 1). The output sector is an integer value within the range <1 ; 6>.

2.10.2 Declaration

The available GMCLIB_SvmU0n functions have the following declarations:

uint16_t GMCLIB_SvmU0n_F16(const GMCLIB_2COOR_ALBE_T_F16 *psIn, GMCLIB_3COOR_T_F16 *psOut)

2.10.3 Function use

The use of the GMCLIB_SvmU0n function is shown in the following example:

#include "gmclib.h"

static uint16_t u16Sector;
static GMCLIB_2COOR_ALBE_T_F16 sAlphaBeta;
static GMCLIB_3COOR_T_F16 sAbc;

void Isr(void);

void main(void)
{
 /* Alpha, Beta structure initialization */
 sAlphaBeta.f16Alpha = FRAC16(0.0);
 sAlphaBeta.f16Beta = FRAC16(0.0);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* SVM calculation */
 u16Sector = GMCLIB_SvmU0n_F16(&sAlphaBeta, &sAbc);
}

2.11 GMCLIB_SvmU7n

GMCLIB_SvmU7n

GMCLIB User's Guide, Rev. 4, 12/2020

80 NXP Semiconductors

The GMCLIB_SvmU7n function calculates the appropriate duty-cycle ratios, which are
needed for generation of the given stator-reference voltage vector, using the general
sinusoidal modulation technique.

The GMCLIB_SvmU7n function for calculating the duty-cycle ratios is widely used in
modern electric drives. This function calculates the appropriate duty-cycle ratios, which
are needed for generating the given stator reference voltage vector using a special space
vector modulation technique called space vector modulation with O111 nulls, where only
one type of null vector O111 is used (all top switches are turned on in the invertor).

The derivation approach of the space vector modulation technique with O111 nulls is
identical (in many aspects) to the approach presented in GMCLIB_SvmStd. However, a
distinct difference lies in the definition of variables t1, t2, and t3 that represent switching
duty-cycle ratios of the respective phases:

Equation 48

where T is the switching period, and t_1 and t_2 are the duty-cycle ratios of the basic
space vectors defined for the respective sector in Table 2-10.

The generally-used center-aligned PWM is discussed briefly in the following sections.
Generating the center-aligned PWM pattern is accomplished by comparing threshold
levels pwm_a, pwm_b, and pwm_c with the free-running up/down counter. The timer
counts up to 1 (0x7FFF) and then down to 0 (0x0000). It is supposed that when a
threshold level is larger than the timer value, the respective PWM output is active.
Otherwise, it is inactive (see Figure 2-19).

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 81

Figure 2-19. Space vector modulation technique with O111 nulls — center-aligned PWM

Figure Figure 2-19 shows calculated waveforms of the duty-cycle ratios using Space
Vector Modulation with O111 nulls.

For an accurate calculation of the duty-cycle ratios, direct-α, and quadrature-β
components of the stator reference voltage vector, it must be considered that the duty
cycle cannot be higher than one (100 %); in other words, the assumption must be
met.

GMCLIB_SvmU7n

GMCLIB User's Guide, Rev. 4, 12/2020

82 NXP Semiconductors

Figure 2-20. Space vector modulation technique with O111 nulls

2.11.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <0 ; 1). The result may saturate.

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 83

The available versions of the GMCLIB_SvmU7n function are shown in the following
table:

Table 2-16. Function versions

Function name Input type Output type Result type

GMCLIB_SvmU7n_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * uint16_t

General sinusoidal space vector modulation with a 16-bit fractional stationary (α-β) input and a
16-bit fractional three-phase output. The result type is a 16-bit unsigned integer, which indicates
the actual SVM sector. The input is within the range <-1 ; 1); the output duty cycle is within the
range <0 ; 1). The output sector is an integer value within the range <1 ; 6>.

2.11.2 Declaration

The available GMCLIB_SvmU7n functions have the following declarations:

uint16_t GMCLIB_SvmU7n_F16(const GMCLIB_2COOR_ALBE_T_F16 *psIn, GMCLIB_3COOR_T_F16 *psOut)

2.11.3 Function use

The use of the GMCLIB_SvmU7n function is shown in the following example:

#include "gmclib.h"

static uint16_t u16Sector;
static GMCLIB_2COOR_ALBE_T_F16 sAlphaBeta;
static GMCLIB_3COOR_T_F16 sAbc;

void Isr(void);

void main(void)
{
 /* Alpha, Beta structure initialization */
 sAlphaBeta.f16Alpha = FRAC16(0.0);
 sAlphaBeta.f16Beta = FRAC16(0.0);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* SVM calculation */
 u16Sector = GMCLIB_SvmU7n_F16(&sAlphaBeta, &sAbc);
}

2.12 GMCLIB_SvmDpwm

GMCLIB_SvmDpwm

GMCLIB User's Guide, Rev. 4, 12/2020

84 NXP Semiconductors

The GMCLIB_SvmDpwm function calculates the appropriate duty-cycle ratios needed
for the generation of the given stator-reference voltage vector using the general non-
sinusoidal modulation technique. The GMCLIB_SvmDpwm function is a subset of the
GMCLIB_SvmExDpwm function and includes a power factor angle input. Both
functions are identical if φ = 0.

The GMCLIB_SvmDpwm function belongs to the discontinuous PWM modulation
techniques for 3-phase voltage inverters. The advantages of the discontinuous PWM
technique are lower switching loses, but, on the other hand, it can cause higher harmonic
distortion at low modulation indexes. The current sensing at low modulation indexes is
more complicated and less precise when compared with the symmetrical modulation
techniques like GMCLIB_SvmStd. Therefore, the discontinuous and continous SVM are
usually combined together.

Finding the sector in which the reference stator voltage vector US resides is similar to
GMCLIB_SvmStd. This is achieved by converting the direct-α and quadrature-β
components of the reference stator voltage vector US into the balanced 3-phase quantities
uref1, uref2, and uref3 using the modified Inverse Clarke transformation:

Equation 49

The sector calculation is based on comparing the 3-phase reference voltages uref1, uref2,
and uref3 with zero. This computation is described by the following figure:

Figure 2-21. Identification of the sector number

The knowledge of the sector is necessary for the current sensing especially when shunt
resistors are used. The GMCLIB_SvmDpwm function does not require the sector
directly, but it requires the portion identification explained in the following. The Inverse
Clarke transformation converts the uα, uβ voltage components of the reference stator

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 85

voltage vector US to 3-phase voltage components ua, ub, and uc. The portion
identification selects the portion from the ua, ub, and uc voltages, based on the following
conditions.

Figure 2-22. Identification of the portion number

Finally, the corresponding duty cycle is selected according to the portion from the
column of the following table.

Table 2-17. Duty cycle calculation from portions

Portions I II III IV V VI

Voltage
boundaries

U330,U30 U30,U90 U90,U150 U150,U210 U210,U270 U270,U330

pwm_a 1 0 - uref3 1 + uref2 0 1 - uref3 0 + uref2

pwm_b 1 - uref2 0 + uref1 = uβ 1 0 - uref2 1 + uref1 = 1 + uβ 0

pwm_c 1 + uref3 0 1 - uref1 = 1 - uβ 0 + uref3 1 0 - uref1 = 0 - uβ

2.12.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <0 ; 1). The result may saturate.

The available versions of the GMCLIB_SvmDpwm function are shown in the following
table:

Table 2-18. Function versions

Function name Input type Output type Result type

GMCLIB_SvmDpwm_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * uint16_t

Standard discontinuous PWM with a 16-bit fractional stationary (α-β) input, and a 16-bit fractional
3-phase output. The result type is a 16-bit unsigned integer, which indicates the actual SVM
sector. The input is within the range <-1 ; 1); the output duty cycle is within the range <0 ; 1). The
output sector is an integer value within the range <1 ; 6>.

GMCLIB_SvmDpwm

GMCLIB User's Guide, Rev. 4, 12/2020

86 NXP Semiconductors

2.12.2 Declaration

The available GMCLIB_SvmDpwm functions have the following declarations:

uint16_t GMCLIB_SvmDpwm_F16(const GMCLIB_2COOR_ALBE_T_F16 *psIn, GMCLIB_3COOR_T_F16 *psOut)

2.12.3 Function use

The use of the GMCLIB_SvmDpwm function is shown in the following example:

#include "gmclib.h"

static uint16_t u16Sector;
static GMCLIB_2COOR_ALBE_T_F16 sAlphaBeta;
static GMCLIB_3COOR_T_F16 sAbc;

void Isr(void);

void main(void)
{
 /* Alpha, Beta structure initialization */
 sAlphaBeta.f16Alpha = FRAC16(0.0);
 sAlphaBeta.f16Beta = FRAC16(0.0);

/* Periodical function or interrupt */
}

 void Isr(void)
{
 /* Standard Discountinues PWM SVM calculation */
 u16Sector = GMCLIB_SvmGenDpwm_F16(&sAlphaBeta, &sAbc);
}

2.13 GMCLIB_SvmExDpwm

The GMCLIB_SvmExDpwm function calculates the appropriate duty-cycle ratios needed
for the generation of the given stator-reference voltage vector using the general non-
sinusoidal modulation technique. The GMCLIB_SvmExDpwm function is a superset of
the GMCLIB_SvmDpwm function without the power factor angle input.

The GMCLIB_SvmExDpwm function belongs to the discontinuous PWM modulation
techniques for a 3-phase voltage inverter. The advantages of the discontinuous PWM
technique are lower switching loses, but, on the other hand, it can cause higher harmonic
distortion at low modulation indexes. The current sensing at low modulation indexes is

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 87

more complicated and less precise when compared to the symmetrical modulation
techniques like GMCLIB_SvmStd. Therefore, the discontinuous and continuous SVM
are usually combined together.

Finding the sector in which the reference stator voltage vector US resides is similar to
GMCLIB_SvmStd. This is achieved by converting the direct-α and quadrature-β
components of the reference stator voltage vector US into the balanced 3-phase quantities
uref1, uref2, and uref3 using the modified Inverse Clarke transformation:

Equation 50

The sector calculation is based on comparing the 3-phase reference voltages uref1, uref2,
and uref3 with zero. This computation is described by the following figure:

Figure 2-23. Identification of the sector number

The knowledge of the sector is necessary for the current sensing especially when shunt
resistors are used. The GMCLIB_SvmExDpwm function does not require the sector
directly, but it requires the portion identification explained in following text. The Park
transformation uses the phase shift of the generated phase voltages and currents - φ angle
to rotate the reference stator voltage vector US to US* with the uα*, uβ* components. The
inverse Clarke transformation converts the uα*, uβ* voltage components to 3-phase
voltage components ua*, ub*, and uc*. The portion identification selects the portion from
the ua*, ub*, and uc* voltages based on the following conditions.

GMCLIB_SvmExDpwm

GMCLIB User's Guide, Rev. 4, 12/2020

88 NXP Semiconductors

Figure 2-24. Identification of the portion number

Finally, the corresponding duty cycle is selected according to the portion from the
column of the following table.

Table 2-19. Duty cycle calculation from portions

Portions I II III IV V VI

Voltage
boundaries

U330,U30 U30,U90 U90,U150 U150,U210 U210,U270 U270,U330

pwm_a 1 0 - uref3 1 + uref2 0 1 - uref3 0 + uref2

pwm_b 1 - uref2 0 + uref1 = uβ 1 0 - uref2 1 + uref1 = 1 + uβ 0

pwm_c 1 + uref3 0 1 - uref1 = 1 - uβ 0 + uref3 1 0 - uref1 = 0 - uβ

2.13.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <0 ; 1). The result may saturate.

The available versions of the GMCLIB_SvmExDpwm function are shown in the
following table:

Table 2-20. Function versions

Function name Input type Output type Result type

GMCLIB_SvmExDpwm_F1
6

GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * uint16_t

GMCLIB_2COOR_SINCOS_T_F16 *

Extended discontinuous PWM with a 16-bit fractional stationary (α-β) input, the second input
using a 16-bit fractional (sin(φ) / cos(φ)) structure of φ angle (-1/6 ; 1/6) in fraction corresponding
(-π/6 ; π/6) in radians - angle of the power factor, it is a phase shift of the generated phase
voltages and currents and a 16-bit fractional 3-phase output. The result type is a 16-bit unsigned
integer which indicates the actual SVM sector. The input is within the range <-1 ; 1); the output
duty cycle is within the range <0 ; 1). The output sector is an integer value within the range <1 ;
6>.

Chapter 2 Algorithms in detail

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 89

2.13.2 Declaration

The available GMCLIB_SvmExDpwm functions have the following declarations:

uint16_t GMCLIB_SvmExDpwm_F16(const GMCLIB_2COOR_ALBE_T_F16 *psIn,const
GMCLIB_2COOR_SINCOS_T_F16 *psAngle, GMCLIB_3COOR_T_F16 *psOut)

2.13.3 Function use

The use of the GMCLIB_SvmExDpwm function is shown in the following example:

#include "gmclib.h"

static uint16_t u16Sector;
static GMCLIB_2COOR_ALBE_T_F16 sAlphaBeta;
static GMCLIB_2COOR_SINCOS_T_F16 sAlphaBeta;
static GMCLIB_3COOR_T_F16 sAbc;

void Isr(void);

void main(void)
{
 /* Alpha, Beta structure initialization */
 sAlphaBeta.f16Alpha = FRAC16(0.0);
 sAlphaBeta.f16Beta = FRAC16(0.0);

 /* Power factor angle structure initialization */
 sAngle.f16Cos = FRAC16(1.0);
 sAngle.f16Sin = FRAC16(0.0);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* Extended Discountinues PWM calculation */
 u16Sector = GMCLIB_SvmExDpwm_F16(&sAlphaBeta, &sAngle, &sAbc);
}

GMCLIB_SvmExDpwm

GMCLIB User's Guide, Rev. 4, 12/2020

90 NXP Semiconductors

Appendix A
Library types

A.1 bool_t

The bool_t type is a logical 16-bit type. It is able to store the boolean variables with two
states: TRUE (1) or FALSE (0). Its definition is as follows:

typedef unsigned short bool_t;

The following figure shows the way in which the data is stored by this type:

Table A-1. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Unused
Logi
cal

TRUE
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 1

FALSE
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

To store a logical value as bool_t, use the FALSE or TRUE macros.

A.2 uint8_t

The uint8_t type is an unsigned 8-bit integer type. It is able to store the variables within
the range <0 ; 255>. Its definition is as follows:

typedef unsigned char uint8_t;

The following figure shows the way in which the data is stored by this type:

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 91

Table A-2. Data storage

7 6 5 4 3 2 1 0

Value Integer

255
1 1 1 1 1 1 1 1

F F

11
0 0 0 0 1 0 1 1

0 B

124
0 1 1 1 1 1 0 0

7 C

159
1 0 0 1 1 1 1 1

9 F

A.3 uint16_t

The uint16_t type is an unsigned 16-bit integer type. It is able to store the variables
within the range <0 ; 65535>. Its definition is as follows:

typedef unsigned short uint16_t;

The following figure shows the way in which the data is stored by this type:

Table A-3. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Integer

65535
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

F F F F

5
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 5

15518
0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0

3 C 9 E

40768
1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0

9 F 4 0

A.4 uint32_t

uint16_t

GMCLIB User's Guide, Rev. 4, 12/2020

92 NXP Semiconductors

The uint32_t type is an unsigned 32-bit integer type. It is able to store the variables
within the range <0 ; 4294967295>. Its definition is as follows:

typedef unsigned long uint32_t;

The following figure shows the way in which the data is stored by this type:

Table A-4. Data storage

31 24 23 16 15 8 7 0

Value Integer

4294967295 F F F F F F F F

2147483648 8 0 0 0 0 0 0 0

55977296 0 3 5 6 2 5 5 0

3451051828 C D B 2 D F 3 4

A.5 int8_t

The int8_t type is a signed 8-bit integer type. It is able to store the variables within the
range <-128 ; 127>. Its definition is as follows:

typedef char int8_t;

The following figure shows the way in which the data is stored by this type:

Table A-5. Data storage

7 6 5 4 3 2 1 0

Value Sign Integer

127
0 1 1 1 1 1 1 1

7 F

-128
1 0 0 0 0 0 0 0

8 0

60
0 0 1 1 1 1 0 0

3 C

-97
1 0 0 1 1 1 1 1

9 F

Appendix A Library types

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 93

A.6 int16_t

The int16_t type is a signed 16-bit integer type. It is able to store the variables within the
range <-32768 ; 32767>. Its definition is as follows:

typedef short int16_t;

The following figure shows the way in which the data is stored by this type:

Table A-6. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer

32767
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 F F F

-32768
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0

15518
0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0

3 C 9 E

-24768
1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0

9 F 4 0

A.7 int32_t

The int32_t type is a signed 32-bit integer type. It is able to store the variables within the
range <-2147483648 ; 2147483647>. Its definition is as follows:

typedef long int32_t;

The following figure shows the way in which the data is stored by this type:

Table A-7. Data storage

31 24 23 16 15 8 7 0

Value S Integer

2147483647 7 F F F F F F F

-2147483648 8 0 0 0 0 0 0 0

55977296 0 3 5 6 2 5 5 0

-843915468 C D B 2 D F 3 4

int16_t

GMCLIB User's Guide, Rev. 4, 12/2020

94 NXP Semiconductors

A.8 frac8_t

The frac8_t type is a signed 8-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef char frac8_t;

The following figure shows the way in which the data is stored by this type:

Table A-8. Data storage

7 6 5 4 3 2 1 0

Value Sign Fractional

0.99219
0 1 1 1 1 1 1 1

7 F

-1.0
1 0 0 0 0 0 0 0

8 0

0.46875
0 0 1 1 1 1 0 0

3 C

-0.75781
1 0 0 1 1 1 1 1

9 F

To store a real number as frac8_t, use the FRAC8 macro.

A.9 frac16_t

The frac16_t type is a signed 16-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef short frac16_t;

The following figure shows the way in which the data is stored by this type:

Table A-9. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Fractional

0.99997
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 F F F

-1.0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table continues on the next page...

Appendix A Library types

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 95

Table A-9. Data storage (continued)

8 0 0 0

0.47357
0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0

3 C 9 E

-0.75586
1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0

9 F 4 0

To store a real number as frac16_t, use the FRAC16 macro.

A.10 frac32_t

The frac32_t type is a signed 32-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef long frac32_t;

The following figure shows the way in which the data is stored by this type:

Table A-10. Data storage

31 24 23 16 15 8 7 0

Value S Fractional

0.9999999995 7 F F F F F F F

-1.0 8 0 0 0 0 0 0 0

0.02606645970 0 3 5 6 2 5 5 0

-0.3929787632 C D B 2 D F 3 4

To store a real number as frac32_t, use the FRAC32 macro.

A.11 acc16_t

The acc16_t type is a signed 16-bit fractional type. It is able to store the variables within
the range <-256 ; 256). Its definition is as follows:

typedef short acc16_t;

The following figure shows the way in which the data is stored by this type:

frac32_t

GMCLIB User's Guide, Rev. 4, 12/2020

96 NXP Semiconductors

Table A-11. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer Fractional

255.9921875
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 F F F

-256.0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0

1.0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 8 0

-1.0
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

F F 8 0

13.7890625
0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 1

0 6 E 5

-89.71875
1 1 0 1 0 0 1 1 0 0 1 0 0 1 0 0

D 3 2 4

To store a real number as acc16_t, use the ACC16 macro.

A.12 acc32_t

The acc32_t type is a signed 32-bit accumulator type. It is able to store the variables
within the range <-65536 ; 65536). Its definition is as follows:

typedef long acc32_t;

The following figure shows the way in which the data is stored by this type:

Table A-12. Data storage

31 24 23 16 15 8 7 0

Value S Integer Fractional

65535.999969 7 F F F F F F F

-65536.0 8 0 0 0 0 0 0 0

1.0 0 0 0 0 8 0 0 0

-1.0 F F F F 8 0 0 0

23.789734 0 0 0 B E 5 1 6

-1171.306793 F D B 6 5 8 B C

To store a real number as acc32_t, use the ACC32 macro.

Appendix A Library types

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 97

A.13 float_t

The float_t type is a signed 32-bit single precision floating-point type, defined by IEEE
754. It is able to store the full precision (normalized) finite variables within the range
<-3.40282 · 1038 ; 3.40282 · 1038) with the minimum resolution of 2-23. The smallest
normalized number is ±1.17549 · 10-38. Nevertheless, the denormalized numbers (with
reduced precision) reach yet lower values, from ±1.40130 · 10-45 to ±1.17549 · 10-38. The
standard also defines the additional values:

• Negative zero
• Infinity
• Negative infinity
• Not a number

The 32-bit type is composed of:

• Sign (bit 31)
• Exponent (bits 23 to 30)
• Mantissa (bits 0 to 22)

The conversion of the number is straighforward. The sign of the number is stored in bit
31. The binary exponent is decoded as an integer from bits 23 to 30 by subtracting 127.
The mantissa (fraction) is stored in bits 0 to 22. An invisible leading bit (it is not actually
stored) with value 1.0 is placed in front; therefore, bit 23 has a value of 0.5, bit 22 has a
value 0.25, and so on. As a result, the mantissa has a value between 1.0 and 2. If the
exponent reaches -127 (binary 00000000), the leading 1.0 is no longer used to enable the
gradual underflow.

The float_t type definition is as follows:

typedef float float_t;

The following figure shows the way in which the data is stored by this type:

Table A-13. Data storage - normalized values

31 24 23 16 15 8 7 0

Value S Exponent Mantissa

(2.0 - 2-23) · 2127 0 1 1 1 1 1 1 1 0 1

≈ 3.40282 · 1038 7 F 7 F F F F F

-(2.0 - 2-23) · 2127 1 1 1 1 1 1 1 1 0 1

≈ -3.40282 · 1038 F F 7 F F F F F

Table continues on the next page...

float_t

GMCLIB User's Guide, Rev. 4, 12/2020

98 NXP Semiconductors

Table A-13. Data storage - normalized values (continued)

2-126 0 0 0 0 0 0 0 0 1 0

≈ 1.17549 · 10-38 0 0 8 0 0 0 0 0

-2-126 1 0 0 0 0 0 0 0 1 0

≈ -1.17549 · 10-38 8 0 8 0 0 0 0 0

1.0 0 0 1 1 1 1 1 1 1 0

3 F 8 0 0 0 0 0

-1.0 1 0 1 1 1 1 1 1 1 0

B F 8 0 0 0 0 0

π 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 1 0 1 1

≈ 3.1415927 4 0 4 9 0 F D B

-20810.086 1 1 0 0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 1 1 0 0

C 6 A 2 9 4 2 C

Table A-14. Data storage - denormalized values

31 24 23 16 15 8 7 0

Value S Exponent Mantissa

0.0 0

0 0 0 0 0 0 0 0

-0.0 1 0

8 0 0 0 0 0 0 0

(1.0 - 2-23) · 2-126 0 0 0 0 0 0 0 0 0 1

≈ 1.17549 · 10-38 0 0 7 F F F F F

-(1.0 - 2-23) · 2-126 1 0 0 0 0 0 0 0 0 1

≈ -1.17549 · 10-38 8 0 7 F F F F F

2-1 · 2-126 0 0 0 0 0 0 0 0 0 1 0

≈ 5.87747 · 10-39 0 0 4 0 0 0 0 0

-2-1 · 2-126 1 0 0 0 0 0 0 0 0 1 0

≈ -5.87747 · 10-39 8 0 4 0 0 0 0 0

2-23 · 2-126 0 1

≈ 1.40130 · 10-45 0 0 0 0 0 0 0 1

-2-23 · 2-126 1 0 1

≈ -1.40130 · 10-45 8 0 0 0 0 0 0 1

Appendix A Library types

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 99

Table A-15. Data storage - special values

31 24 23 16 15 8 7 0

Value S Exponent Mantissa

∞ 0 1 1 1 1 1 1 1 1 0

7 F 8 0 0 0 0 0

-∞ 1 1 1 1 1 1 1 1 1 0

F F 8 0 0 0 0 0

Not a number * 1 1 1 1 1 1 1 1 non zero

7/F F 800001 to FFFFFF

A.14 GMCLIB_3COOR_T_F16

The GMCLIB_3COOR_T_F16 structure type corresponds to the three-phase stationary
coordinate system, based on the A, B, and C components. Each member is of the frac16_t
data type. The structure definition is as follows:

typedef struct
{
 frac16_t f16A;
 frac16_t f16B;
 frac16_t f16C;
} GMCLIB_3COOR_T_F16;

The structure description is as follows:

Table A-16. GMCLIB_3COOR_T_F16 members description

Type Name Description

frac16_t f16A A component; 16-bit fractional type

frac16_t f16B B component; 16-bit fractional type

frac16_t f16C C component; 16-bit fractional type

A.15 GMCLIB_3COOR_T_FLT

The GMCLIB_3COOR_T_FLT structure type corresponds to the three-phase stationary
coordinate system, based on the A, B, and C components. Each member is of the float_t
data type. The structure definition is as follows:

typedef struct
{

GMCLIB_3COOR_T_F16

GMCLIB User's Guide, Rev. 4, 12/2020

100 NXP Semiconductors

 float_t fltA;
 float_t fltB;
 float_t fltC;
} GMCLIB_3COOR_T_FLT;

The structure description is as follows:

Table A-17. GMCLIB_3COOR_T_FLT members description

Type Name Description

float_t fltA A component; 32-bit single precision floating-point type

float_t fltB B component; 32-bit single precision floating-point type

float_t fltC C component; 32-bit single precision floating-point type

A.16 GMCLIB_2COOR_AB_T_F16

The GMCLIB_2COOR_AB_T_F16 structure type corresponds to the general two-phase
stationary coordinate system, based on the A and B orthogonal components. Each
member is of the frac16_t data type. The structure definition is as follows:

typedef struct
{
 frac16_t f16A;
 frac16_t f16B;
} GMCLIB_2COOR_AB_T_F16;

The structure description is as follows:

Table A-18. GMCLIB_2COOR_AB_T_F16 members description

Type Name Description

frac16_t f16A A-component; 16-bit fractional type

frac16_t f16B B-component; 16-bit fractional type

A.17 GMCLIB_2COOR_AB_T_F32

The GMCLIB_2COOR_AB_T_F32 structure type corresponds to the general two-phase
stationary coordinate system, based on the A and B orthogonal components. Each
member is of the frac32_t data type. The structure definition is as follows:

typedef struc
{
 frac32_t f32Alpha;
 frac32_t f32Beta;
} GMCLIB_2COOR_AB_T_F32;

Appendix A Library types

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 101

The structure description is as follows:

Table A-19. GMCLIB_2COOR_AB_T_F32 members description

Type Name Description

frac32_t f32A A component; 32-bit fractional type

frac32_t f32B B component; 32-bit fractional type

A.18 GMCLIB_2COOR_AB_T_FLT

The GMCLIB_2COOR_AB_T_FLT structure type corresponds to the general two-phase
stationary coordinate system, based on the A and B orthogonal components. Each
member is of the float_t data type. The structure definition is as follows:

typedef struct
{
 float_t fltAlpha;
 float_t fltBeta;
} GMCLIB_2COOR_AB_T_FLT;

The structure description is as follows:

Table A-20. GMCLIB_2COOR_AB_T_FLT members description

Type Name Description

float_t fltA B-component; 32-bit single precision floating-point type

float_t fltB B-component; 32-bit single precision floating-point type

A.19 GMCLIB_2COOR_ALBE_T_F16

The GMCLIB_2COOR_ALBE_T_F16 structure type corresponds to the two-phase
stationary coordinate system, based on the Alpha and Beta orthogonal components. Each
member is of the frac16_t data type. The structure definition is as follows:

typedef struct
{
 frac16_t f16Alpha;
 frac16_t f16Beta;
} GMCLIB_2COOR_ALBE_T_F16;

GMCLIB_2COOR_AB_T_FLT

GMCLIB User's Guide, Rev. 4, 12/2020

102 NXP Semiconductors

The structure description is as follows:

Table A-21. GMCLIB_2COOR_ALBE_T_F16 members description

Type Name Description

frac16_t f16Apha α-component; 16-bit fractional type

frac16_t f16Beta β-component; 16-bit fractional type

A.20 GMCLIB_2COOR_ALBE_T_FLT

The GMCLIB_2COOR_ALBE_T_FLT structure type corresponds to the two-phase
stationary coordinate system based on the Alpha and Beta orthogonal components. Each
member is of the float_t data type. The structure definition is as follows:

typedef struct
{
 float_t fltAlpha;
 float_t fltBeta;
} GMCLIB_2COOR_ALBE_T_FLT;

The structure description is as follows:

Table A-22. GMCLIB_2COOR_ALBE_T_FLT members
description

Type Name Description

float_t fltApha α-component; 32-bit single precision floating-point type

float_t fltBeta β-component; 32-bit single precision floating-point type

A.21 GMCLIB_2COOR_DQ_T_F16

The GMCLIB_2COOR_DQ_T_F16 structure type corresponds to the two-phase rotating
coordinate system, based on the D and Q orthogonal components. Each member is of the
frac16_t data type. The structure definition is as follows:

typedef struct
{
 frac16_t f16D;
 frac16_t f16Q;
} GMCLIB_2COOR_DQ_T_F16;

Appendix A Library types

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 103

The structure description is as follows:

Table A-23. GMCLIB_2COOR_DQ_T_F16 members description

Type Name Description

frac16_t f16D D-component; 16-bit fractional type

frac16_t f16Q Q-component; 16-bit fractional type

A.22 GMCLIB_2COOR_DQ_T_F32

The GMCLIB_2COOR_DQ_T_F32 structure type corresponds to the two-phase rotating
coordinate system, based on the D and Q orthogonal components. Each member is of the
frac32_t data type. The structure definition is as follows:

typedef struct
{
 frac32_t f32D;
 frac32_t f32Q;
} GMCLIB_2COOR_DQ_T_F32;

The structure description is as follows:

Table A-24. GMCLIB_2COOR_DQ_T_F32 members description

Type Name Description

frac32_t f32D D-component; 32-bit fractional type

frac32_t f32Q Q-component; 32-bit fractional type

A.23 GMCLIB_2COOR_DQ_T_FLT

The GMCLIB_2COOR_DQ_T_FLT structure type corresponds to the two-phase rotating
coordinate system, based on the D and Q orthogonal components. Each member is of the
float_t data type. The structure definition is as follows:

typedef struct
{
 float_t fltD;
 float_t fltQ;
} GMCLIB_2COOR_DQ_T_FLT;

GMCLIB_2COOR_DQ_T_F32

GMCLIB User's Guide, Rev. 4, 12/2020

104 NXP Semiconductors

The structure description is as follows:

Table A-25. GMCLIB_2COOR_DQ_T_FLT members description

Type Name Description

float_t fltD D-component; 32-bit single precision floating-point type

float_t fltQ Q-component; 32-bit single precision floating-point type

A.24 GMCLIB_2COOR_SINCOS_T_F16

The GMCLIB_2COOR_SINCOS_T_F16 structure type corresponds to the two-phase
coordinate system, based on the Sin and Cos components of a certain angle. Each
member is of the frac16_t data type. The structure definition is as follows:

typedef struct
{
 frac16_t f16Sin;
 frac16_t f16Cos;
} GMCLIB_2COOR_SINCOS_T_F16;

The structure description is as follows:

Table A-26. GMCLIB_2COOR_SINCOS_T_F16 members description

Type Name Description

frac16_t f16Sin Sin component; 16-bit fractional type

frac16_t f16Cos Cos component; 16-bit fractional type

A.25 GMCLIB_2COOR_SINCOS_T_FLT

The GMCLIB_2COOR_SINCOS_T_FLT structure type corresponds to the two-phase
coordinate system, based on the Sin and Cos components of a certain angle. Each
member is of the float_t data type. The structure definition is as follows:

typedef struct
{
 float_t fltSin;
 float_t fltCos;
} GMCLIB_2COOR_SINCOS_T_FLT;

Appendix A Library types

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 105

The structure description is as follows:

Table A-27. GMCLIB_2COOR_SINCOS_T_FLT members
description

Type Name Description

float_t fltSin Sin component; 32-bit single precision floating-point type

float_t fltCos Cos component; 32-bit single precision floating-point type

A.26 FALSE

The FALSE macro serves to write a correct value standing for the logical FALSE value
of the bool_t type. Its definition is as follows:

#define FALSE ((bool_t)0)

#include "mlib.h"

static bool_t bVal;

void main(void)
{
 bVal = FALSE; /* bVal = FALSE */
}

A.27 TRUE

The TRUE macro serves to write a correct value standing for the logical TRUE value of
the bool_t type. Its definition is as follows:

#define TRUE ((bool_t)1)

#include "mlib.h"

static bool_t bVal;

void main(void)
{
 bVal = TRUE; /* bVal = TRUE */
}

A.28 FRAC8

FALSE

GMCLIB User's Guide, Rev. 4, 12/2020

106 NXP Semiconductors

The FRAC8 macro serves to convert a real number to the frac8_t type. Its definition is as
follows:

#define FRAC8(x) ((frac8_t)((x) < 0.9921875 ? ((x) >= -1 ? (x)*0x80 : 0x80) : 0x7F))

The input is multiplied by 128 (=27). The output is limited to the range <0x80 ; 0x7F>,
which corresponds to <-1.0 ; 1.0-2-7>.

#include "mlib.h"

static frac8_t f8Val;

void main(void)
{
 f8Val = FRAC8(0.187); /* f8Val = 0.187 */
}

A.29 FRAC16

The FRAC16 macro serves to convert a real number to the frac16_t type. Its definition is
as follows:

#define FRAC16(x) ((frac16_t)((x) < 0.999969482421875 ? ((x) >= -1 ? (x)*0x8000 : 0x8000) :
0x7FFF))

The input is multiplied by 32768 (=215). The output is limited to the range <0x8000 ;
0x7FFF>, which corresponds to <-1.0 ; 1.0-2-15>.

#include "mlib.h"

static frac16_t f16Val;

void main(void)
{
 f16Val = FRAC16(0.736); /* f16Val = 0.736 */
}

A.30 FRAC32

The FRAC32 macro serves to convert a real number to the frac32_t type. Its definition is
as follows:

#define FRAC32(x) ((frac32_t)((x) < 1 ? ((x) >= -1 ? (x)*0x80000000 : 0x80000000) :
0x7FFFFFFF))

Appendix A Library types

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 107

The input is multiplied by 2147483648 (=231). The output is limited to the range
<0x80000000 ; 0x7FFFFFFF>, which corresponds to <-1.0 ; 1.0-2-31>.

#include "mlib.h"

static frac32_t f32Val;

void main(void)
{
 f32Val = FRAC32(-0.1735667); /* f32Val = -0.1735667 */
}

A.31 ACC16

The ACC16 macro serves to convert a real number to the acc16_t type. Its definition is as
follows:

#define ACC16(x) ((acc16_t)((x) < 255.9921875 ? ((x) >= -256 ? (x)*0x80 : 0x8000) : 0x7FFF))

The input is multiplied by 128 (=27). The output is limited to the range <0x8000 ;
0x7FFF> that corresponds to <-256.0 ; 255.9921875>.

#include "mlib.h"

static acc16_t a16Val;

void main(void)
{
 a16Val = ACC16(19.45627); /* a16Val = 19.45627 */
}

A.32 ACC32

The ACC32 macro serves to convert a real number to the acc32_t type. Its definition is as
follows:

#define ACC32(x) ((acc32_t)((x) < 65535.999969482421875 ? ((x) >= -65536 ? (x)*0x8000 :
0x80000000) : 0x7FFFFFFF))

The input is multiplied by 32768 (=215). The output is limited to the range
<0x80000000 ; 0x7FFFFFFF>, which corresponds to <-65536.0 ; 65536.0-2-15>.

#include "mlib.h"

static acc32_t a32Val;

ACC16

GMCLIB User's Guide, Rev. 4, 12/2020

108 NXP Semiconductors

void main(void)
{
 a32Val = ACC32(-13.654437); /* a32Val = -13.654437 */
}

GMCLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 109

GMCLIB User's Guide, Rev. 4, 12/2020

110 NXP Semiconductors

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software implementers to use
Freescale products. There are no express or implied copyright licenses granted hereunder to design
or fabricate any integrated circuits based on the information in this document. Freescale reserves the
right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in Freescale data
sheets and/or specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for each customer
application by customer's technical experts. Freescale does not convey any license under its patent
rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of
sale, which can be found at the following address: www.freescale.com/salestermsandconditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc. ARM and Cortex
are the registered trademarks of ARM Limited, in EU and/or elsewhere. ARM logo is the trademark of
ARM Limited. All rights reserved. All other product or service names are the property of their
respective owners.

© 2021 NXP B.V.

Document Number CM33FGMCLIBUG
Revision 4, 12/2020

http://www.nxp.com
http://www.nxp.com/support
http://www.freescale.com/salestermsandconditions

	Chapter 1​: Library
	Introduction
	Overview
	Data types
	API definition
	Supported compilers
	Library configuration
	Special issues

	Library integration into project (MCUXpresso IDE)
	PowerQuad DSP Coprocessor and Accelerator support
	Library path variable
	Library folder addition
	Library path setup

	Library integration into project (Keil µVision)
	NXP pack installation for new project (without MCUXpresso SDK)
	New project (without MCUXpresso SDK)
	PowerQuad DSP Coprocessor and Accelerator support
	Linking the files into the project
	Library path setup

	Library integration into project (IAR Embedded Workbench)
	New project (without MCUXpresso SDK)
	PowerQuad DSP Coprocessor and Accelerator support
	Library path variable
	Linking the files into the project
	Library path setup

	Chapter 2​: Algorithms in detail
	GMCLIB_Clark
	Available versions
	Declaration
	Function use

	GMCLIB_ClarkInv
	Available versions
	Declaration
	Function use

	GMCLIB_Park
	Available versions
	Declaration
	Function use

	GMCLIB_ParkInv
	Available versions
	Declaration
	Function use

	GMCLIB_DecouplingPMSM
	Available versions
	GMCLIB_DECOUPLINGPMSM_T_A32 type description
	GMCLIB_DECOUPLINGPMSM_T_FLT type description
	Declaration
	Function use

	GMCLIB_ElimDcBusRipFOC
	Available versions
	Declaration
	Function use

	GMCLIB_ElimDcBusRip
	Available versions
	Declaration
	Function use

	GMCLIB_SvmStd
	Available versions
	Declaration
	Function use

	GMCLIB_SvmIct
	Available versions
	Declaration
	Function use

	GMCLIB_SvmU0n
	Available versions
	Declaration
	Function use

	GMCLIB_SvmU7n
	Available versions
	Declaration
	Function use

	GMCLIB_SvmDpwm
	Available versions
	Declaration
	Function use

	GMCLIB_SvmExDpwm
	Available versions
	Declaration
	Function use

	Appendix A: Library types
	bool_t
	uint8_t
	uint16_t
	uint32_t
	int8_t
	int16_t
	int32_t
	frac8_t
	frac16_t
	frac32_t
	acc16_t
	acc32_t
	float_t
	GMCLIB_3COOR_T_F16
	GMCLIB_3COOR_T_FLT
	GMCLIB_2COOR_AB_T_F16
	GMCLIB_2COOR_AB_T_F32
	GMCLIB_2COOR_AB_T_FLT
	GMCLIB_2COOR_ALBE_T_F16
	GMCLIB_2COOR_ALBE_T_FLT
	GMCLIB_2COOR_DQ_T_F16
	GMCLIB_2COOR_DQ_T_F32
	GMCLIB_2COOR_DQ_T_FLT
	GMCLIB_2COOR_SINCOS_T_F16
	GMCLIB_2COOR_SINCOS_T_FLT
	FALSE
	TRUE
	FRAC8
	FRAC16
	FRAC32
	ACC16
	ACC32

	
	

