GDFLIB User's Guide

ARM® Cortex® M33F

Document Number: CM33FGDFLIBUG
Rev. 4, 12/2020

h
V"

GDFLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors

Contents
Section number Title Page

Chapter 1

Library

L 51 13 (e Ta L Uo7 5 o | OO OO TP 5
1.2 Library integration into project (MCUXPIESSO IDE)ccceiviiriiiiriiiiiieeiieeeeeeetee et 8
1.3 Library integration into project (Keil IVISION)ccc.eiiiiiiiiiiiiiiieeie ettt ettt ettt st ettt e e s e 16
1.4 Library integration into project AR Embedded Workbench)ccccooieiiiiiiiiiiiiiee e 24

Chapter 2

Algorithms in detail

2.1 GDFLIB_FIIEIEXD. ...ttt ettt sttt b et b et b et b et be ettt be e 33
2.2 GDFLIB_FIIEITIR ...ttt sttt ee 37
2.3 GDFLIB_FIIEITIRZ......ooiiiiiiiiiiieiiceeees ettt 42
2.4 GDFLIB_FIItEITIR3......ctiiiitiieiiet ettt ettt bbbttt bbbt b et b et b et b et b e n et ee 49
2.5 GDFLIB_FIIEIIIRA......coiiiiiieiiietite ettt ettt b ettt ne 55
2.6 GDFLIB_FIIEIMAoiiiiiiiiiiie ettt 62

GDFLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 3

GDFLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors

Chapter 1
Library

1.1 Introduction

1.1.1 Overview

This user's guide describes the General Digital Filters Library (GDFLIB) for the family
of ARM Cortex M33F core-based microcontrollers. This library contains optimized
functions.

1.1.2 Data types

GDFLIB supports several data types: (un)signed integer, fractional, and accumulator, and
floating point. The integer data types are useful for general-purpose computation; they
are familiar to the MPU and MCU programmers. The fractional data types enable
powerful numeric and digital-signal-processing algorithms to be implemented. The
accumulator data type is a combination of both; that means it has the integer and
fractional portions.The floating-point data types are capable of storing real numbers in
wide dynamic ranges. The type is represented by binary digits and an exponent. The
exponent allows scaling the numbers from extremely small to extremely big numbers.
Because the exponent takes part of the type, the overall resolution of the number is
reduced when compared to the fixed-point type of the same size.

The following list shows the integer types defined in the libraries:

* Unsigned 16-bit integer —<0 ; 65535> with the minimum resolution of 1

 Signed 16-bit integer —<-32768 ; 32767> with the minimum resolution of 1

* Unsigned 32-bit integer —<O0 ; 4294967295> with the minimum resolution of 1

* Signed 32-bit integer —<-2147483648 ; 2147483647> with the minimum resolution
of 1

GDFLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 5

Introduction

The following list shows the fractional types defined in the libraries:

* Fixed-point 16-bit fractional —<-1; 1 - 2-155 with the minimum resolution of 213
« Fixed-point 32-bit fractional —<-1 ; 1 - 2-3!> with the minimum resolution of 2-3!

The following list shows the accumulator types defined in the libraries:

* Fixed-point 16-bit accumulator —<-256.0 ; 256.0 - 277> with the minimum
resolution of 27

* Fixed-point 32-bit accumulator —<-65536.0 ; 65536.0 - 2-155 with the minimum
resolution of 2°1°

The following list shows the floating-point types defined in the libraries:

* Floating point 32-bit single precision —<-3.40282 - 1038 ; 3.40282 - 108> with the
minimum resolution of 223

1.1.3 API definition

GDFLIB uses the types mentioned in the previous section. To enable simple usage of the
algorithms, their names use set prefixes and postfixes to distinguish the functions'
versions. See the following example:

f32Result = MLIB Mac F32lss(f32Accum, fl16Multl, £f16Mult2);

where the function is compiled from four parts:

* MLIB—this is the library prefix

* Mac—the function name—Multiply-Accumulate

» F32—the function output type

* Iss—the types of the function inputs; if all the inputs have the same type as the
output, the inputs are not marked

The input and output types are described in the following table:
Table 1-1. Input/output types

Type Output Input
frac16_t F16 S
frac32_t F32 |
acc32_t A32 a

float_t FLT f

GDFLIB User's Guide, Rev. 4, 12/2020

6 NXP Semiconductors

4
Chapter 1 Library

1.1.4 Supported compilers

GDFLIB for the ARM Cortex M33F core is written in C language or assembly language
with C-callable interface depending on the specific function. The library is built and
tested using the following compilers:

* MCUXpresso IDE

* TAR Embedded Workbench

» Keil uVision

For the MCUXpresso IDE, the library is delivered in the gdflib.a file.

For the Kinetis Design Studio, the library is delivered in the gdflib.a file.

For the IAR Embedded Workbench, the library is delivered in the gdflib.a file.
For the Keil uVision, the library is delivered in the gdflib.lib file.

The interfaces to the algorithms included in this library are combined into a single public
interface include file, gdflib.h. This is done to lower the number of files required to be
included in your application.

1.1.5 Library configuration

GDFLIB for the ARM Cortex M33F core 1s written in C language or assembly language
with C-callable interface depending on the specific function. Some functions from this
library are inline type, which are compiled together with project using this library. The
optimization level for inline function is usually defined by the specific compiler setting. It
can cause an issue especially when high optimization level is set. Therefore the
optimization level for all inline assembly written functions is defined by compiler
pragmas using macros. The configuration header file RTCESL_cfg.h is located in:

specific library folder\MLIB\Include. The optimization level can be changed by
modifying the macro value for specific compiler. In case of any change the library
functionality is not guaranteed.

Similarly as optimization level the PowerQuad DSP Coprocessor and Accelerator support
can be disable or enable if it has not been done by defined symbol RTCESL_PQ_ON or

RTCESL_PQ_OFF in project setting described in the PowerQuad DSP Coprocessor and
Accelerator support cheaper for specific compiler.

GDFLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 7

A ————
Library integration into project (MCUXpresso IDE)

1.1.6 Special issues

1. The equations describing the algorithms are symbolic. If there is positive 1, the
number is the closest number to 1 that the resolution of the used fractional type
allows. If there are maximum or minimum values mentioned, check the range
allowed by the type of the particular function version.

2. The library functions that round the result (the API contains Rnd) round to nearest
(half up).

3. This RTCESL requires the DSP extension for some saturation functions. If the core
does not support the DSP extension feature the assembler code of the RTCESL will
not be buildable. For example the corel of the LPC55s69 has no DSP extension.

1.2 Library integration into project (MCUXpresso IDE)

This section provides a step-by-step guide on how to quickly and easily include GDFLIB
into any MCUXpresso SDK example or demo application projects using MCUXpresso
IDE. This example uses the default installation path (C:\NXP\RTCESL
\CM33F_RTCESL_4.6_MCUX). If you have a different installation path, use that path
instead.

1.2.1 PowerQuad DSP Coprocessor and Accelerator support

Some LPC platforms (LPC55S6x) contain a hardware accelerator dedicated to common
calculations in DSP applications. This section shows how to turn the PowerQuad (PQ)
support for a function on and off.

1. In the MCUXpresso SDK project name node or in the left-hand part, click Properties
or select Project > Properties from the menu. A project properties dialog appears.

2. Expand the C/C++ Build node and select Settings. See .

3. On the right-hand side, under the MCU C Compiler node, click the Preprocessor
node. See .

GDFLIB User's Guide, Rev. 4, 12/2020

8 NXP Semiconductors

type filter text

|» Resource
Builders
4 C/C++ Build
Build Variables
Environment
Legging
MCU settings
Settings
Tool Chain Editor
o C/C++ General
Project References
Run/Debug Settings

Settings

r ™
W s e e

Chapter 1 Library

=

4

-

Configuration: ’ Debug [Active |

'] ’Manage Configurations...]

& Tool Settings | # Build steps |

Build Artifactl Binary Parsersl @ Error Parsers|

a4 3 MCU C Compiler
@ Dialect
|(# Preprocessor|
@ Includes
(# Optimization
(2 Debugging
(# Warnings
@ Miscellanecus
@ Architecture
4 B MCU Assembler
@ General
@ Architecture & Headers
a4 B MCU Linker
@ General
@ Libraries
@ Miscellanecus
(2 Shared Library Settings
@ Architecture
(2 Managed Linker Script
@ Multicore

[] Do not search system directories (-nostdinc)

[} Preprocess only (-E)
Defined symbols (-0)

CR_INTEGER_PRINTF

DEBUG
PRINTF_FLOAT_EMNABLE=0
SCAMNF_FLOAT_EMABLE=0
PRINTF_ADVAMCED_ENABLE=0
SCAMNF_ADVANCED_EMNABLE=0
TWR_KV31F120M
TOWER
SDK_DEBUGCOMSOLE=0
_ MCUXPRESS0
__USE_CMSIS
CPU_MKV31F512VLL12
CPU_MEKV31F512VLL12 cmd
__REDUB_

8483 H

m

Undefined symbols (-U)

84 8% &

I

Figure 1-1. Defined symbols
4. In the right-hand part of the dialog, click the Add... icon located next to the Defined
symbols (-D) title.
5. In the dialog that appears (see), type the following:
* RTCESL_PQ_ON—to turn the PowerQuad support on
* RTCESL_PQ_OFF—to turn the PowerQuad support off
If neither of these two defines is defined, the hardware division and square root

support is turned off by default.

-

Defined symbols (-0

S

6. Click OK in the dialog.

RTCESL PQ ON

Figure 1-2. Symbol definition

7. Click OK in the main dialog.

8. Ensure the PowerQuad moduel to be clocked by calling function
RTCESL_PQ_Init(); prior to the first function using PQ module calling.

GDFLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors

A
Library integration into project (MCUXpresso IDE)

See the device reference manual to verify whether the device contains the PowerQuad
DSP Coprocessor and Accelerator support.

1.2.2 Library path variable

To make the library integration easier, create a variable that holds the information about
the library path.

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
Properties, or select Project > Properties from the menu. A project properties dialog
appears.

2. Expand the Resource node and click Linked Resources. See Figure 1-3.

' ™
. Properties for twrkv31f120m_demo_apps_hello_world - ['2- =l g
type filter test Linked Resources =l T

4 Resource -
e Path Variables | Linked Resources
Resource Filters Path variables specify locations in the file system, including other path variables with the syntax "S{VAR}".
Builders The locations of linked resources may be specified relative to these path variables.
> CfC++ Build Defined path variables for resource "twrlov31f120m_demo_apps_hello_world":
C/C++ G I
o _++ Eners Mame Value
Project References :
Run/Debug Settings (== ECLIPSE_ HOME CANXPAMCUXpressolDE_10.0.0_344\ide\ Edit...
(= PARENT_LOC Di\temp3
[=PROJECT_LOC Diternp3itwrio31f120m_demo_apps_hello_world Remove
(= WORKSPACE_LOC Divternp3

Figure 1-3. Project properties
3. Click the New... button in the right-hand side.

GDFLIB User's Guide, Rev. 4, 12/2020
10 NXP Semiconductors

10.

1.
12.

Chapter 1 Library

In the dialog that appears (see Figure 1-4), type this variable name into the Name
box: RTCESL_LOC.

Select the library parent folder by clicking Folder..., or just type the following path
into the Location box: C:\NXP\RTCESL\CM33F_RTCESL_4.6_MCUX. Click OK.

r . B e G !1
New Variabl - —
m ew Variable
Define a New Path Variable
Enter a new variable name and its associated location.
MName: RTCESL_LOC
Location: ICA\NXP\RTCESLAC File.. || Felder. |[ariable.
Resolved Location: CAMXPARTCESLACM33F_RTCESL_X.X_MCUX
@' [0K] ’ Cancel
L

Figure 1-4. New variable
Create such variable for the environment. Expand the C/C++ Build node and click
Environment.
Click the Add... button in the right-hand side.
In the dialog that appears (see Figure 1-5), type this variable name into the Name
box: RTCESL_LOC.
Type the library parent folder path into the Value box: C:\NXP\RTCESL
\CM33F_RTCESL_4.6_MCUX.
Tick the Add to all configurations box to use this variable in all configurations. See
Figure 1-5.
Click OK.
In the previous dialog, click OK.

GDFLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 11

A ————
Library integration into project (MCUXpresso IDE)

type filter text Environment a v v
Rescurce
Builders

w CfC++ Build Configuration: |Debug [Active] ~ | | Manage Configurations...

Build Variables

Environment

Legging

MCU settings

Settings

Tool Chain Editor
w CfC++ General Mame: | RTCESL_LOC Edit...

Code Analysis

Environment variables to set Add...
[. .. |
s MNew variable » Select... |

Value: | e\nxphRTCESLAVCM33F_RTCESL_X.X_MCUX | Variables Delete

Documentation

File Types

Undefine
Farmatter

Indexer Cancel
Language Mappings
Paths and Symbols
Preprocessor Include Pat
MCUXpresso Config Tools
Project Natures
Project References
Refactoring History
Run/Debug Settings (®) Append variables to native environment

Task Tags () Replace native environment with specified one
Validation

Restore Defaults Apply

@' Apply and Close Cancel

Figure 1-5. Environment variable

1.2.3 Library folder addition

To use the library, add it into the Project tree dialog.

1.

W

Right-click the MCUXpresso SDK project name node in the left-hand part and click
New > Folder, or select File > New > Folder from the menu. A dialog appears.
Click Advanced to show the advanced options.

To link the library source, select the Link to alternate location (Linked Folder)
option.

Click Variables..., select the RTCESL_LOC variable in the dialog, click OK, and/or
type the variable name into the box. See Figure 1-6.

Click Finish, and the library folder is linked in the project. See Figure 1-7.

GDFLIB User's Guide, Rev. 4, 12/2020

12

NXP Semiconductors

Chapter 1 Library

Folder —

Create a new folder resource. li .n_“

Enter or select the parent folder
twrkv31f120m_demo_apps_hello_world

[y
=3 twrkw31f120m_demo_apps_hello_world

Folder name: RTCESL_LOC

() [= Use default location
) [Folder is not located in the file system (Virtual Folder)
@ (% Link to alternate location (Linked Folder)

RTCESL_LOC | Browse.. || Variables.. | |

Figure 1-6. Folder link

a5 twrkv31f120m_demo_apps_hello_world
s g’;ﬁ Binariez
> [t Includes
- 2 CMSIS

- 2 board
- 2 drivers

- 2 source
» [startup
- A2 utilities

> [= Debug
» = doc
> |y RTCESL_LOC

Figure 1-7. Projects libraries paths

1.2.4 Library path setup

GDFLIB requires MLIB to be included too. These steps show how to include all
dependent modules:

1. Right-click the MCUXpresso SDK project name node in the left-hand part and click
Properties, or select Project > Properties from the menu. The project properties
dialog appears.

2. Expand the C/C++ General node, and click Paths and Symbols.

In the right-hand dialog, select the Library Paths tab. See Figure 1-9.

4. Click the Add... button on the right, and a dialog appears.

e

GDFLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 13

A
Library integration into project (MCUXpresso IDE)
5. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following (see Figure 1-8): ${RTCESL_LOC}\MLIB.
6. Click OK, and then click the Add... button.
7. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding the following: ${RTCESL_LOC }\GDFLIB.
8. Click OK, you will see the paths added into the list. See Figure 1-9.

- T—
" Add. S ==
Directory:
S{RTCESL_LOCHMLIB]

[7] Add te all configurations
[T Add to all languages
[= Is a workspace path

Variables...

Workspace...

File systern...

Cancel

o
-

Figure 1-8. Library path inclusion

e e =

type filter text Paths and Symbols Prm v
> Resource
Builders —
. CfC++ Build Configuration: ’Debug [Active] V] lManage Configurations...l
a CfC++ General
> Code Analysis
Documentation | (sl Includesl # Symbols | = Libraries| (B Library Paths |[B Source Location | 3| References| :
File Types)
Formatter S{RTCESL_LOCAMLIB | Add. | |7
Indexer = ${RTCESL_LOCNGDFLIB :
Language Mappings |
Paths and Symbols
Delete
Preprocessor Include P: I
Project References |4
Run/Debug Settings I
@ "Preprocessor Include Paths, Macros etc.” property page may define additicnal entries ~ [N
4 | 1 L2 < o LD I
® [oK] [Cancel] I

Figure 1-9. Library paths
9. After adding the library paths, add the library files. Click the Libraries tab. See
Figure 1-11.
10. Click the Add... button on the right, and a dialog appears.
11. Type the following into the File text box (see Figure 1-10): :mlib.a
12. Click OK, and then click the Add... button.
13. Type the following into the File text box: :gdflib.a
14. Click OK, and you will see the libraries added in the list. See Figure 1-11.

GDFLIB User's Guide, Rev. 4, 12/2020
14 NXP Semiconductors

4
Chapter 1 Library

B Add.. X

File:

[MLIB

(] Add to all configuraticns Variahles...

[] Add to all languages

[= Is a workspace path Workspace...
File systern...

Figure 1-10. Library file inclusion

@ Includes # Symbols B Libraries @& |ibrary Paths 2 Sou

5 MLIB
5. GDFLIB

Figure 1-11. Libraries

15. In the right-hand dialog, select the Includes tab, and click GNU C in the Languages
list. See Figure 1-13.

16. Click the Add... button on the right, and a dialog appears. See Figure 1-12.

17. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\MLIB\Include

18. Click OK, and then click the Add... button.

19. Look for the RTCESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${RTCESL_LOC }\GDFLIB\Include

20. Click OK, and you will see the paths added in the list. See Figure 1-13. Click OK.

L ———
8 ' Add directory path ﬁ
Directory:
5{RTCESL_LOC}\MUB\includEI
[7] Add te all configurations
[T Add to all languages
[= Is a workspace path
| [OK J ’ Cancel l
_

Figure 1-12. Library include path addition

GDFLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 15

Library integration into project (Keil pVision)

. -
n Properties for twrkv31f120m_demo_apps_hello_world B . .' .m fhlélg
type filter text Paths and Symbols =l v

> Resource
Builders
. C/C++ Build Configuration: IDEbUg [Active] 'l [Manage Configurations...l
4 C/C++ General
> Code Analysis
I Documentation (= Includes | # Symbols | = Libraries | [Library Paths | 2 Source Location | 5 References|
File Types
: Formatter Languages Include directories i Add...
Indexer - .
Additional Assem [B-H(ProJName}fboard .
I . Edit...
';”EUEQS ’SV'EPE”:EIS Assembly (= ${RTCESL_LOCAMLIB\Include
pat — 3’"’1” T‘d . GNU C [[=TS{RTCESL LOC\GDFLIB\Include i
reprocessor Include P: B s : P P
l) o/nxp/mecuxpressoide_10.0.0_344/ide/tools/redlib/include =
Project References Export
|| J, . [¢ fmxp/mecuxpressoide_10.0.0_344/ide/tools/features/include |
I Run/Debug Settings s
@ "Preprocessor Include Paths, Macros etc.” property page may define additional entries [M
Show built-in values Moave Down
’ 2 Import Settings... l 5% Export Settings...
a| — - [Restore Defaultsl [Apply] I
ﬁ @' [OK l ’ Cancel]

Figure 1-13. Compiler setting

Type the #include syntax into the code where you want to call the library functions. In
the left-hand dialog, open the required .c file. After the file opens, include the following
lines into the #include section:

#include "mlib FP.h"
#include "gdflib FP.h"

When you click the Build icon (hammer), the project is compiled without errors.

1.3 Library integration into project (Keil pVision)

This section provides a step-by-step guide on how to quickly and easily include GDFLIB
into an empty project or any MCUXpresso SDK example or demo application projects
using Keil pVision. This example uses the default installation path (C:\NXP\RTCESL
\CM33F_RTCESL_4.6_KEIL). If you have a different installation path, use that path
instead. If any MCUXpresso SDK project is intended to use (for example hello_world
project) go to Linking the files into the project chapter otherwise read next chapter.

GDFLIB User's Guide, Rev. 4, 12/2020
16 NXP Semiconductors

4

Chapter 1 Library

1.3.1 NXP pack installation for new project (without MCUXpresso
SDK)

This example uses the NXP LPC55s69 part, and the default installation path (C:\NXP
\RTCESL\CM33F_RTCESL_4.6_KEIL) is supposed. If the compiler has never been
used to create any NXP MCU-based projects before, check whether the NXP MCU pack
for the particular device is installed. Follow these steps:

1. Launch Keil uVision.

2. In the main menu, go to Project > Manage > Pack Installer....

3. In the left-hand dialog (under the Devices tab), expand the All Devices > Freescale
(NXP) node.

4. Look for a line called "KVxx Series" and click it.

In the right-hand dialog (under the Packs tab), expand the Device Specific node.

6. Look for a node called "Keil::Kinetis_ KVxx_DFP." If there are the Install or Update
options, click the button to install/update the package. See Figure 1-14.

7. When installed, the button has the "Up to date" title. Now close the Pack Installer.

b

i) Pack Installer - C:AKeil yS\ARM\PACK ([=[E] =
File Packs Window Help
¥ | Device: Freescale - KVix Series
ﬂ Devices Boards ﬂ ﬂ Packs Examples ﬂ
| Search: - X Pack Action Description
I Toim /| Summary =1 -Device Specific 1 Pack
- @ Atmel 257 Devices | 41 Keil:Kinetis_KVi_DFP | & Install Freescale Kinetis Ko Series Device Support
@ Freescale 234 Devices =-Generic 10 Packs
2% K Series T Device - ARM:CMSIS @ Up to date | CMSIS (Cortex Microcontroller Software Interface Standard)
7% KOO Series 2 Devices +-Keil:ARM_Compiler Q Up to date | Keil ARM Compiler extensions
2% K10 Series 23 Devices +I-KeilzJansson & Install Jansson is a C library for encoding, decoding and manipula
7% K20 Series 11 Devices + Keil:MDK-Middleware | & Update | Keil MDK-ARM Professional Middleware for ARM Cortex-M
2% K30 Series & Devices +1- Keil:MDK-Network_DS Install Keil MDK-ARM Professional Middleware Dual-Stack IPvd/I>
1% K40 Series & Devices 4 lwiIP:wIP Q Install IwlP is a light-weight implementation of the TCP/IP protocy
252 K50 Series 1 Devices 41 Micrium:RTOS & Install Micrium software components
% K80 Series 18 Devices +- Oryx-Embedded:Midd... Q Install Middleware Package (CycloneTCP, CycloneSSL and Cyclon
2% K70 Series 1 Devices - wolfSSL:CyaSsL & _Install Light weight SSL/TLS and Crypt Library for Embedded Syste
7% KBO Series 2 Devices | 4 YOGITECH:fRSTL_AR... | &5 Install VOGITECH fRSTL Functional Safety EVAL Saftware Pack for
#-7 KEAvor Series 6 Devices
=1 Kb Series 11 Devices
=7 Ko« Series 54 Devices
=T KM Series 14 Devices
=7 Ko Series 26 Devices
H-TE Ko Series 8 Devices
= WPR1516 Series 1 Device
Output 2 x
Refresh Pack descriptions
Update available for Keil:: MDK-Middleware (installed: 6.4.0, available: 7.0.0-beta)
Ready ONLINE

Figure 1-14. Pack Installer

1.3.2 New project (without MCUXpresso SDK)

To start working on an application, create a new project. If the project already exists and
1s opened, skip to the next section. Follow these steps to create a new project:
1. Launch Keil pVision.

GDFLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 17

A
Library integration into project (Keil pVision)
2. In the main menu, select Project > New pVision Project..., and the Create New
Project dialog appears.
3. Navigate to the folder where you want to create the project, for example C:
\KeilProjects\MyProjectO1. Type the name of the project, for example MyProjectO1.
Click Save. See Figure 1-15.

ﬂ Create New Project

%| . » Computer » System (C) » KeilProjects » MyProjectll L4

File name: MyProjectll

Save as type: ’Project Files (*.uvproj; *.uvprojx)

¥ Browse Folders

Figure 1-15. Create New Project dialog
In the next dialog, select the Software Packs in the very first box.
Type " into the Search box, so that the device list is reduced to the devices.
Expand the node.
Click the LPC55s69 node, and then click OK. See Figure 1-16.

Device |Targat| Omputl Listing' User I C/Ca+| Asm I Unker' Debug' Utilihesl

Nk

IEnﬂ\.\‘are Packs LI
Vendor: NXP Software Pack
Device: LPC55563JBD100.cm33_corel Pack: |N><P LPC55565_DFP.12.1.1
Toolset: ARM URL: hitp://meuxpresso nip com/cmsis _pack /repc

Search:

@ ARM | |The LPCE5x«,/LPC555xx is an ARM Cortex M33 based micro-
controller for embedded applications. These devices include up to
E-% NXP 320 KB of on-chip SRAM, up to 540 KB on-chip flash, high-speed

")[3 K32L2A41A and full-speed USB host and device interface with crystaldess

operation for full-speed. five general-purpose timers, one

. KExx Series |SCTimer/PWM, one RTC/alam timer, one 24-bit Multi-Rate Timer
=9 LPCS55E9 (MRT), a Windowed Watchdog Timer (WWDT), eight flexible serial
'communication peripherals (each of which can be a USART, SPI,
= \)[3 LPC55569 12C. or 125 interface), one 16bit 1.0 Msamples/sec ADC, temperature

£ LPCS5569/BD100 sensor

@ LPC55569)BD100

@ LPCS5569/BD100

4 i 3 | -
G|

Figure 1-16. Select Device dialog
8. In the next dialog, expand the Device node, and tick the box next to the Startup node.
See Figure 1-17.
9. Expand the CMSIS node, and tick the box next to the CORE node.

Figure 1-17. Manage Run-Time Environment dialog
10. Click OK, and a new project is created. The new project is now visible in the left-
hand part of Keil uVision. See Figure 1-18.

GDFLIB User's Guide, Rev. 4, 12/2020
18 NXP Semiconductors

4
Chapter 1 Library

T ————
kA CiKeilProjects\MyProject01\MyProject01.uvprojx - pVision

File Edit Wiew Project Flash Debug Peripherals Tool
5 A | B | |

5] [& | %Q| Target 1 |Z| £\|
Project a B
=T device j

_1 fsl_device_registers.h

_] LPC53569_cm33_corel.h

_1 LPC55569_cm33_corel_features.h

_1 system_LPC35569_cm33_corel.c

] system_LPC55569_cm33_corel.h
=T startup

] startup_LPC55569_cm33_core0.5 |

Figure 1-18. Project
11. In the main menu, go to Project > Options for Target 'Targetl'..., and a dialog
appears.
12. Select the Target tab.
13. Select Use Single Precision in the Floating Point Hardware option. See Figure 1-18.

Code Generation
ARM Compiler: |Use default compiler version ﬂ

[~ Use Cross-Module Optimization
[Use MicroLIB o
Floating Poirt Hardware: lUse Single Precision [Kd

Figure 1-19. FPU

1.3.3 PowerQuad DSP Coprocessor and Accelerator support

Some LPC platforms (LPC55S6x) contain a hardware accelerator dedicated to common
calculations in DSP applications. This section shows how to turn the PowerQuad (PQ)
support for a function on and off.

1. In the main menu, go to Project > Options for Target "Targetl'..., and a dialog
appears.
2. Select the C/C++ tab. See Figure 1-20.
3. In the Include Preprocessor Symbols text box, type the following:
 RTCESL_PQ_ON—to turn the hardware division and square root support on.
 RTCESL_PQ_OFF—to turn the hardware division and square root support off.

If neither of these two defines is defined, the hardware division and square root
support is turned off by default.

GDFLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 19

Library integration into project (Keil pVision)

’
k] Options for Target 'Target 1' . E
Device] Target] Output] Listing] User C/Ce+]Asm] Linker] Debug] Utilities]
Preprocessor Symbols
Define: [RTCESL_PQ_ON
Undefine: |
Language / Code Generation
[~ Execute-only Cods [~ Strict ANSIC Wamings:
Optimization: |Level 0(00) - [~ Enum Cortainer always int All Wamings =
[Optimize for Time I Plain Char is Signed I
[~ Split Load and Store Muttiple ™ Read-Only Position Independent [Mo Auto Includes
[~ One ELF Section per Function I Bead-Write Position Independent [C99 Mode
Include
Paths | J
Misc |
Controls
Compiler |-c —cpu Cortex-M4fp -D__EVAL -g -00 -apcs=interwork -
contral |- C:\KeilProjects \MyProject 01"RTE
string 7
oK | cancel | Defouts | Help

Figure 1-20. Preprocessor symbols
4. Click OK in the main dialog.
5. Ensure the PowerQuad moduel to be clocked by calling function
RTCESL_PQ_Init(); prior to the first function using PQ module calling.

See the device reference manual to verify whether the device contains the PowerQuad
DSP Coprocessor and Accelerator support.

1.3.4 Linking the files into the project

GDFLIB requires MLIB to be included too. The following steps show how to include all
dependent modules.

To include the library files in the project, create groups and add them.

1. Right-click the Target 1 node in the left-hand part of the Project tree, and select Add
Group... from the menu. A new group with the name New Group is added.

2. Click the newly created group, and press F2 to rename it to RTCESL.

3. Right-click the RTCESL node, and select Add Existing Files to Group 'RTCESL'...
from the menu.

GDFLIB User's Guide, Rev. 4, 12/2020
20 NXP Semiconductors

4. Navigate into the library installation folder C:\NXP\RTCESL

Chapter 1 Library

\CM33F_RTCESL_4.6_KEIL\MLIB\Include, and select the mlib_FP.h file. If the
file does not appear, set the Files of type filter to Text file. Click Add. See Figure

1-21.

Look in: |) Include

Mame

(& MUB_DiniQ_F32

[mlib_FP

(2 MLIB_Log2_U16

[MLIB_Mac_a32

o MUIB_Mac_F16_Asmi
[MLIB_Mac_F32

[cif MLIB_Mac_F32_Asmi
(& MLIB_Mac_FLT

[MLIB_Macd_F32

(2 MLIB_Mact_F32_Asmi

[a1 1D Kdacd C1 T

j & £ EEv
Date modified
6/20/2016 9:49 AM

7/22/2016 1:15 PM
6/20/2016 9:49 AM

.

6/20/2016 943 AM

7/25/2016 8:27 AM
6,/20/2016 9:49 AM
7/25/2016 8:27 AM
6/20/2016 9:49 AM
6,/20/2016 9:49 AM
7/25/2016 8:27 AM

EIWNAE LA ARA

i mn

File name: |m|ib_FP

Files of type: |Te:d file (“bd; “h; *inc)

-

b

j Close

Figure 1-21. Adding .h files dialog
5. Navigate to the parent folder C:\NXP\RTCESILA\CM33F_RTCESL_4.6_KEIL\MLIB,

and select the mlib.lib file. If the file does not appear, set the Files of type filter to

Library file. Click Add. See Figure 1-22.

Lookin: | Ji MLIB

MName

. Include
|| MLIB.lib

Date modified

x| e Bk Er

2010.2014 15:37

16.10.2014 2:19

4| n

File: name: |MLIB.Iib

Files of type: | Library file {*ib)

Figure 1-22. Adding .lib files dialog
6. Navigate into the library installation folder C:\NXP\RTCESL
\CM33F_RTCESL_4.6_KEIL\GDFLIB\Include, and select the gdflib_FP.h file. If
the file does not appear, set the Files of type filter to Text file. Click Add.

GDFLIB User's Guide, Rev. 4, 12/2020

Ty
Fi
LI

k

j Close

NXP Semiconductors

21

Library integration into project (Keil pVision)

7. Navigate to the parent folder C:\NXP\RTCESL\CM33F_RTCESL_4.6_KEIL
\GDFLIB, and select the gdflib.lib file. If the file does not appear, set the Files of
type filter to Library file. Click Add.

8. Now, all necessary files are in the project tree; see Figure 1-23. Click Close.

Il Project n @
=% Project: MyProject01
g Targetl
{d Source Group1
=% RTCESL
L1 mlib_FP.h
L] MLUB.ib
1 gdflib_FP.h
] GDFLUEB.ib
€ cMmss
= @ Device

Figure 1-23. Project workspace

1.3.5 Library path setup
The following steps show the inclusion of all dependent modules.

1. In the main menu, go to Project > Options for Target "Targetl'..., and a dialog
appears.
2. Select the C/C++ tab. See Figure 1-24.
3. In the Include Paths text box, type the following paths (if there are more paths, they
must be separated by ;') or add them by clicking the ... button next to the text box:
e "C:\NXP\RTCESL\CM33F_RTCESL_4.6_KEIL\MLIB\Include"
e "C:\NXP\RTCESL\CM33F_RTCESL_4.6_KEIL\GDFLIB\Include"
4. Click OK.
Click OK in the main dialog.

hd

GDFLIB User's Guide, Rev. 4, 12/2020
22 NXP Semiconductors

4
Chapter 1 Library

r H b
Options for Target ‘Target x

Device I Targetl Outputl IJstingl User C/Ces |A5m I IJnkerI Debugl |Kilities I

— Preprocessaor Symbols

Diefine: I
Undefine: I

— Language / Code Generation

[~ Strict ANSIC Wamings:
Optimization: Im [Enum Container always int I‘D“" Wamings "I
[Optimize for Time I Plain Charis Signed [Thumb Mode
[Split Load and Store Muttiple [Read-Only Position Independent [No Auto Includes
[~ One ELF Section per Function [~ Read-Write Position Independent [~ C59 Mode

Include ||
Paths

Mizc I
Controls

Compiler |-¢ —cpu Cortex-M0+ -D__EVAL g 00 —apcs=intenwork
control |- C:\KeilProjects \MyProject01\RTE
string

Figure 1-24. Library path addition

Type the #include syntax into the code. Include the library into a source file. In the new
project, it is necessary to create a source file:

1. Right-click the Source Group 1 node, and Add New Item to Group 'Source Group
1'... from the menu.

2. Select the C File (.c) option, and type a name of the file into the Name box, for
example 'main.c'. See Figure 1-25.

GDFLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 23

A ————
Library integration into project (IAR Embedded Workbench)

Add MNew Item to Group "Source Group 1°

Create a new C source file and add it to the projed
C | CFie ()

@ C++ File (cpp)
\ﬂ Asm File (.5)

\ﬂ Header File (h)
é Teat File (i)
@ Image File (%)
7‘@ User Code Template

Type:
Marme: | i, &
Location: | C:\KeilProjects\MyProjectd1
|
Add Close |
R —

Figure 1-25. Adding new source file dialog
3. Click Add, and a new source file is created and opened up.
4. In the opened source file, include the following lines into the #include section, and
create a main function:

#include "mlib FP.h"
#include "gdflib FP.h"

int main (void)

{

while (1) ;

When you click the Build (F7) icon, the project will be compiled without errors.

1.4 Library integration into project (IAR Embedded
Workbench)

This section provides a step-by-step guide on how to quickly and easily include the
GDFLIB into an empty project or any MCUXpresso SDK example or demo application
projects using IAR Embedded Workbench. This example uses the default installation
path (C:\NXP\RTCESL\CM33F_RTCESL_4.6_IAR). If you have a different installation
path, use that path instead. If any MCUXpresso SDK project is intended to use (for
example hello_world project) go to Linking the files into the project chapter otherwise
read next chapter.

GDFLIB User's Guide, Rev. 4, 12/2020
24 NXP Semiconductors

Chapter 1 Library

1.4.1 New project (without MCUXpresso SDK)

This example uses the NXP LPC55S69 part, and the default installation path (C:\NXP
\RTCESL\CM33F_RTCESL_4.6_IAR) is supposed. To start working on an application,
create a new project. If the project already exists and is opened, skip to the next section.

Perform these steps to create a new project:
1. Launch TAR Embedded Workbench.
2. In the main menu, select Project > Create New Project... so that the "Create New

Project" dialog appears. See Figure 1-26.

S
Create New Project A ﬁ

Taol chain: [&RM -

Project templates:
- asm P
- C++
Il |55 ‘_

DLIE [C, C++ with exceptions and RTTI] | &
DLIE [C, Extended Embedded C++)

m

1

R e |

Dezcription:
C project uzing default tool gettings inchuding an empty main.c file.

[oK] [Cancel]

Figure 1-26. Create New Project dialog

3. Expand the C node in the tree, and select the "main" node. Click OK.

4. Navigate to the folder where you want to create the project, for example, C:
\[ARProjects\MyProjectO1. Type the name of the project, for example, MyProjectO1.
Click Save, and a new project is created. The new project is now visible in the left-
hand part of IAR Embedded Workbench. See Figure 1-27.

GDFLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 25

A ————
Library integration into project (IAR Embedded Workbench)

& IAR Embedded Workbench IDE

FrIEin.c
L@ 3 Output

Ef&|MyProjectdl -Deb__ | v [| T :
. }

return 0;

Figure 1-27. New project

Eile Edit View Project Simulator JTools Window Help
DNed@ & %2R | > 4
I * main.cl

lDebug v]
|| Files £ B tne maind)

5. In the main menu, go to Project > Options..., and a dialog appears.

6. In the Target tab, select the Device option, and click the button next to the dialog to
select the MCU. In this example, select NXP > LPC55S69 > NXP LPC55S69_core0.
Select VFPV5 single precision in the FPU option.The DSP instructions group is
required please check the DSP Extensions checkbox if not checked. Click OK. See

Figure 1-28.

Category:

Static Analysis
Runtime Checking

C/C++ Compiler
Assembler
Qutput Converter
Custom Build
Build Actions
Linker
Debugger
Simulator

Angel

CMSIS DAP

GDE Server

IAR. ROM-monitor
I-jet/ITAGjet
Jink/1-Trace
TI Stellaris
Macraigor

PE micro

RDI

STALINK
Third-Party Driver

TIXDS

i

Library Options 2
Target Output

MISRALC:2004
Library Configuration

MISRALC:1358
Library Options 1

Processor variant
(O Core
(® Device

Cortex-M33

NXP LPC55565_corel

OCMsIS-Pack Mlone

Endian mode
Little:
Big
BE32
BES

Floating point settings
FPU VFPv5 single precision ~
[reqgisters 16

TrustZone
DSP Extension

Advanced SIMD (NEON) Mode. | e

[ok

] [Cancel

Figure 1-28. Options dialog

GDFLIB User's Guide, Rev. 4, 12/2020

26

NXP Semiconductors

4
Chapter 1 Library

1.4.2 PowerQuad DSP Coprocessor and Accelerator support

Some LPC platforms (LPC55S6x) contain a hardware accelerator dedicated to common
calculations in DSP applications. Only functions runing faster through the PowerQuad
module than the core itself are supported and targeted to be calculated by the PowerQuad

module. This section shows how to turn the PowerQuad (PQ) support for a function on
and off.

1. In the main menu, go to Project > Options..., and a dialog appears.
2. In the left-hand column, select C/C++ Compiler.
3. In the right-hand part of the dialog, click the Preprocessor tab (it can be hidden in the
right-hand side; use the arrow icons for navigation).
4. In the text box (at the Defined symbols: (one per line)), type the following (See
Figure 1-29):
 RTCESL_PQ_ON—to turn the PowerQuad support on.
* RTCESL_PQ_OFF—to turn the PowerQuad support off.

If neither of these two defines is defined, the hardware division and square root
support is turned off by default.

Options for node "MyProject01” | =

Categony: Factom Settings

General Options [Multifile Compilation

Static Analysis Diszard Unused Publics

Runtime Chedking

| Language 2 I Code I Optimizations IOutert I List | Preprocessor || ¢ | »
Assembler
Output Converter [lgnore standard include dirsctories

Custom Build Additional include directories: (one per line)
Build Actions I E]

Linker
Debuager
Simulator
Angel
CMSIS DAP Preinclude file:
GDE Server [:]
TAR. ROM-monitor
T4et/TTAGIet Defined symbols: {one per line)
1ink{1-Trace RTCESL_FPG_ON " [] Preprocessor output ta file
TI Stellaris Preserve comments
Macraigor il Generate Hine directives

PE micro

RDI

ST-LIMK
Third-Party Driver
TI XDS

l (]S l [Cancel

Figure 1-29. Defined symbols
5. Click OK in the main dialog.

GDFLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 27

A ————
Library integration into project (IAR Embedded Workbench)

6.

Ensure the PowerQuad moduel to be clocked by calling function
RTCESL_PQ_Init(); prior to the first function using PQ module calling.

See the device reference manual to verify whether the device contains the PowerQuad
DSP Coprocessor and Accelerator support.

1.4.3 Library path variable

To make the library integration easier, create a variable that will hold the information
about the library path.

1.

2.

i

In the main menu, go to Tools > Configure Custom Argument Variables..., and a
dialog appears.

Click the New Group button, and another dialog appears. In this dialog, type the
name of the group PATH, and click OK. See Figure 1-30.

B ' Configure Custom Argument Variables

Workspace | Global

~ahle Grour
Enable Group

MNew Group m

Mame: PATH

lable...

OK] l Cancel =

prt...

|'\
‘ Flanie. ..
.

Expand/Collapse Al

[Hide disabled groups

[OK] [Cancel

Figure 1-30. New Group
Click on the newly created group, and click the Add Variable button. A dialog
appears.
Type this name: RTCESL_LOC
To set up the value, look for the library by clicking the '..." button, or just type the
installation path into the box: C:\NXP\RTCESL\CM33F_RTCESL_4.6_IAR. Click
OK.
In the main dialog, click OK. See Figure 1-31.

GDFLIB User's Guide, Rev. 4, 12/2020

28

NXP Semiconductors

Chapter 1 Library

' Configure Custom Argument Variables =
Workspace | Global
[PATH Disable Group
———
N
Add Variable =5
Name: |RTCESL_LOC |
Value: |C:\,NXP\,RTCESL_CM33F_RTCESL_X.X_IAR | 0.
[OK.] [Cancel]

Figure 1-31. New variable

1.4.4 Linking the files into the project

GDFLIB requires MLIB to be included too. The following steps show the inclusion of all
dependent modules.

To include the library files into the project, create groups and add them.

1.
2.
3.

Go to the main menu Project > Add Group...

Type RTCESL, and click OK.

Click on the newly created node RTCESL, go to Project > Add Group..., and create
a MLIB subgroup.

Click on the newly created node MLIB, and go to the main menu Project > Add
Files... See Figure 1-33.

. Navigate into the library installation folder C:\NXP\RTCESL

\CM33F_RTCESL_4.6_IAR\MLIB\Include, and select the mlib.h file. (If the file
does not appear, set the file-type filter to Source Files.) Click Open. See Figure 1-32.
Navigate into the library installation folder C:\NXP\RTCESL

\CM33F _RTCESL_ 4.6 IAR\MLIB, and select the mlib.a file. If the file does not
appear, set the file-type filter to Library / Object files. Click Open.

» System (C:) » NXP » RTCESL » CM33RTCESLXXIAR » MLUE » Include

i MName Date modified Type

| mlib.h 16.10.2015 9:38 H File
|| MLB_Abs_F16.h 16.10.2015 9:38 H File

Figure 1-32. Add Files dialog
Click on the RTCESL node, go to Project > Add Group..., and create a GDFLIB
subgroup.
Click on the newly created node GDFLIB, and go to the main menu Project > Add
Files....

GDFLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 29

A ————
Library integration into project (IAR Embedded Workbench)

9. Navigate into the library installation folder C:\NXP\RTCESL
\CM33F_RTCESL_4.6_IAR\GDFLIB\Include, and select the gdflib.h file. (If the file
does not appear, set the file-type filter to Source Files.) Click Open.

10. Navigate into the library installation folder C:\NXP\RTCESL
\CM33F_RTCESL_4.6_TIAR\GDFLIB, and select the gdflib.a file. If the file does not
appear, set the file-type filter to Library / Object files. Click Open.

11. Now you will see the files added in the workspace. See Figure 1-33.

Workspace x
lDebug v]
Files nomy
= (F MyProjectd1 - Debug * v
I CIRTCESL
FaCamUB
| — CMuB.a
| Y~ Rl mlib_FFh
o O R
— [GDFLIE.A
L— k] gefli_FP.h
main.c
= [Output

Figure 1-33. Project workspace

1.4.5 Library path setup
The following steps show the inclusion of all dependent modules:

1. In the main menu, go to Project > Options..., and a dialog appears.
2. In the left-hand column, select C/C++ Compiler.
3. In the right-hand part of the dialog, click on the Preprocessor tab (it can be hidden in
the right; use the arrow icons for navigation).
4. In the text box (at the Additional include directories title), type the following folder
(using the created variable):
e SRTCESL_LOC$\MLIB\Include
» SRTCESL_LOCS$\GDFLIB\Include
5. Click OK in the main dialog. See Figure 1-34.

GDFLIB User's Guide, Rev. 4, 12/2020
30 NXP Semiconductors

,

Cateqary:

=)

General Options
Static Analysis
Runtime Checking

CfC++ Compiler

Assembler
Output Conwverter
Custom Build
Build Actions
Linker
Debugger
Simulator
Angel
CMSIS DAP
GOB Server
IAR. ROM-monitor
I4et/TTAGjet
J-Link{1-Trace
TI Stellaris
Macraigor
PE micro
RDI
ST-LIMNK
Third-Party Driver
TLXDS

[Multi-file Compilation
Dizcard Unuzed Publics

Factony Settingz

| Language 1 I Language 2 I Code IOptirnizations IDutput I List

|[1 3

[lgnore standard include directories
Additional include directories: fone per line)

SRTCESL_LOCS'\MLIBinclude
SRTCESL_LOCSWGDFLIENnclude|

Preinclude file:

Defined symbols: {one per line)

Preserve
Generate

. [T Preprocessor output to file

comments
Hine directives

[ok

] l Cancel

Figure 1-34. Library path adition

Chapter 1 Library

Type the #include syntax into the code. Include the library included into the main.c file.
In the workspace tree, double-click the main.c file. After the main.c file opens up, include
the following lines into the #include section:

#include "mlib_FP.h"
#include "gdflib FP.h"

When you click the Make icon, the project will be compiled without errors.

GDFLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors

31

A ————
Library integration into project (IAR Embedded Workbench)

GDFLIB User's Guide, Rev. 4, 12/2020
32 NXP Semiconductors

Chapter 2
Algorithms in detail

2.1 GDFLIB_FilterExp

The GDFLIB_FilterExp function calculates the exponential smoothing. The exponential
filter is the simplest filter with only one tuning parameter, requiring to store only one
variable - the filter output (it is used in the next step). For a proper use, it is recommended
that the algorithm is initialized by the GDFLIB_FilterExpInit function, before using the
GDFLIB_FilterExp function.

The filter calculation consists of the following equation:

y(k) =y(k-1) +A4- (x(k)-(k-1))

Equation 1.

where:

* x(k) 1s the actual value of the input signal
* y(k) is the actual filter output
* A is the filter constant (O ; 1) (it defines the smoothness of the exponential filter)

The exponential filter tuning is based on these rules: for a small value of the filter
constant there is a strong filtering effect (if A = 0 then the output equals the new input).
For a high value of the filtering constant, there is a weak filtering effect (if A = 1 then the
new input is ignored). The filter constant defines the ratio between the filter inputs and
the last step output, used for the next calculation.

2.1.1 Available versions

This function is available in the following versions:

GDFLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 33

A
GDFLIB_FilterExp
* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The parameter uses the fraction type.
* Floating-point output - the output is the floating-point result within the type's full
range. The parameter is of a floating-point range as well.

The available versions of the GDFLIB_FilterExplnit function are shown in the following
table:

Table 2-1. Init function versions

Function name Input Parameters Result Description
type type
GDFLIB_FilterExplnit_F16 |frac16_t |GDFLIB_FILTER_EXP_T_F32* |void The input argument is a 16-bit

fractional value that represents the
initial value of the filter at the current
step. The input is within the range
<-1; 1). The parameters' structure is
pointed to by a pointer.

GDFLIB_FilterExplnit_FLT |float_t GDFLIB_FILTER_EXP_T_FLT * void The input argument is a 32-bit single
precision floating-point value that
represents the initial value of the filter
at the current step. The input is within
the full range. The parameters'
structure is pointed to by a pointer.

The available versions of the GDFLIB_FilterExp function are shown in the following
table:

Table 2-2. Function versions

Function name Input Parameters Result Description
type type
GDFLIB_FilterExp_F16 |[frac16_t |GDFLIB_FILTER_EXP_T_F32 * |frac16_t |The input argument is a 16-bit fractional
value of the input signal to be filtered within
the range <-1; 1). The parameters'
structure is pointed to by a pointer. The
function returns a 16-bit fractional value
within the range <-1; 1).

GDFLIB_FilterExp_FLT |float_t GDFLIB_FILTER_EXP_T_FLT * |float_t The input argument is a 32-bit single
precision floating-point value of the input
signal to be filtered within the full range.
The parameters' structure is pointed to by a
pointer. The function returns a 32-bit single
precision floating-point value within the full
range.

GDFLIB User's Guide, Rev. 4, 12/2020
34 NXP Semiconductors

Chapter 2 Algorithms in detail

2.1.2 GDFLIB_FILTER_EXP_T_F32

Variable Input Description
name type

f32A frac32_t |Filter constant value (filter parameter). It defines the smoothness of the exponential filter (high value
= small filtering effect, low value = strong filtering effect). It is usually defined as:
A=1- exp%
Where Ty is the sample time and 7 is the filter time constant. The parameter is a 32-bit fractional
value within the range <-0 ; 1). Set by the user.

f32AccK_1 |frac32_t |Filter accumulator (last step output) value. The parameter is a 32-bit accumulator type within the

range <-1.0 ; 1.0). Controlled by the algorithm.

2.1.3 GDFLIB_FILTER_EXP_T_FLT

Variable Input Description
name type

fltA float_t Filter constant value (filter parameter). It defines the smoothness of the exponential filter (high value
= small filtering effect, low value = strong filtering effect). It is ussually defined as:
A=1- exp;
Where T is the sample time and 1 is the filter time constant. The parameter is a 32-bit single
precision floating-point type within the range (0 ; 1.0>. Set by the user.

fltAccK_1 float_t Filter accumulator (last step output) value. The parameter is a 32-bit accumulator type within the 32-

bit single precision floating-point range. Controlled by the algorithm.

2.1.4 Declaration

The available GDFLIB_FilterExplnit functions have the following declarations:

void GDFLIB_ FilterExpInit F16 (fraclé_t f16Initval, GDFLIB FILTER EXP_T F32 *psParam)

void GDFLIB FilterExpInit FLT(float t fltInitVal, GDFLIB FILTER EXP T FLT *psParam)

The available GDFLIB_FilterExp functions have the following declarations:

fraclé t GDFLIB FilterExp F16(fraclé t fle6InX, GDFLIB FILTER EXP T F32 *psParam)

float t GDFLIB FilterExp FLT(float t f£1ltInX, GDFLIB FILTER EXP T FLT *psParam)

GDFLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors

35

A
GDFLIB_FilterExp

2.1.5 Function use

The use of the GDFLIB_FilterExpInit and GDFLIB_FilterExp functions is shown in the
following examples:

Fixed-point version:

#include "gdflib.h"

static fraclé_t fl6Result;

static fracle t fl6InitVal, £f16InX;

static GDFLIB_FILTER EXP T F32 sFilterParam;
void Isr (void) ;

void main(void)

{

fl16InitVal = FRAC16(0.0) ; /* £16Initval = 0.0 */

/* Filter constant = 0.05 */
sFilterParam.f32A = FRAC32(0.05);

GDFLIB FilterExpInit F16(f16InitVal, &sFilterParam) ;

f16InX = FRAC16(0.5);

}

/* periodically called function */
void Isr(void)

fl6Result = GDFLIB FilterExp F16(f£16InX, &sFilterParam) ;

Floating-point version:

#include "gdflib.h"

static float t fltResult;

static float t fltInitval, fltInX;

static GDFLIB FILTER EXP T FLT sFilterParam;
void Isr (void) ;

void main (void)

fltInitval = 0.0F; /* fltInitval = 0.0 */

/* Filter constant = 0.05 */
sFilterParam.fltA = 0.05F;

GDFLIB FilterExpInit FLT(fltInitVal, &sFilterParam) ;

fltInX = 0.5F;

}

/* periodically called function */
void Isr(void)

{

fltResult = GDFLIB FilterExp FLT(fltInX, &sFilterParam) ;

GDFLIB User's Guide, Rev. 4, 12/2020
36 NXP Semiconductors

4
Chapter 2 Algorithms in detail

2.2 GDFLIB_FilterlIR1

This function calculates the first-order direct form 1 IIR filter.

For a proper use, it is recommended that the algorithm is initialized by the
GDFLIB_FilterlIR 11Init function, before using the GDFLIB_Filter[IR1 function. The
GDFLIB_FilterIIR 11Init function initializes the buffer and coefficients of the first-order
IIR filter.

The GDFLIB_FilterIIR1 function calculates the first-order infinite impulse response
(ITR) filter. The IIR filters are also called recursive filters, because both the input and the
previously calculated output values are used for calculation. This form of feedback
enables the transfer of energy from the output to the input, which leads to an infinitely
long impulse response (IIR). A general form of the IIR filter, expressed as a transfer
function in the Z-domain, is described as follows:

B(z) bgtbiz Mbyz 2+ 4byz N
H(Z) TAG ajz"Wayz2+. +ayz—N

Equation 2.

where N denotes the filter order. The first-order IIR filter in the Z-domain is expressed as
follows:

_Blz) bytbz!
H(z)= Az) ~ T+az1

Equation 3.
which is transformed into a time-domain difference equation as follows:

k)= box(k) + ek = 1)-a(k = 1)

Equation 4.

The filter difference equation is implemented in the digital signal controller directly, as
given in Equation 4 on page 37; this equation represents a direct-form 1 first-order IIR
filter, as shown in Figure 2-1.

x(k)

Figure 2-1. Direct form 1 first-order IIR filter

GDFLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 37

A
GDFLIB_FilterlIR1

The coefficients of the filter shown in Figure 2-1 can be designed to meet the
requirements for the first-order low-pass filter (LPF) or high-pass filter (HPF). The
coefficient quantization error is not important in the case of a first-order filter due to a
finite precision arithmetic. A higher-order LPF or HPF can be obtained by connecting a
number of first-order filters in series. The number of connections gives the order of the
resulting filter.

The filter coefficients must be defined before calling this function. As some coefficients
can be greater than 1 (and lesser than 2), the coefficients are scaled down (divided) by 2.0
for the fractional version of the algorithm. For faster calculation, the A coefficient is sign-
inverted. The function returns the filtered value of the input in the step k, and stores the
input and the output values in the step k into the filter buffer.

2.2.1 Available versions
This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1).

* Floating-point output - the output is a floating-point result within the type's full
range.

The available versions of the GDFLIB_FilterIIR 11Init function are shown in the following
table:

Table 2-3. Init function versions

Function nhame Parameters Result Description
type

GDFLIB_FilterlIR1Init_F16 GDFLIB_FILTER_IIR1_T_F32 * void Filter initialization (reset) function. The
parameters' structure is pointed to by a
pointer.

GDFLIB_FilterlIR1Init_FLT GDFLIB_FILTER_IIR1_T_FLT * void Filter initialization (reset) function. The
parameters' structure is pointed to by a
pointer.

GDFLIB User's Guide, Rev. 4, 12/2020
38 NXP Semiconductors

4
Chapter 2 Algorithms in detail

The available versions of the GDFLIB_FilterIIR1 function are shown in the following
table:

Table 2-4. Function versions

Function name Input Parameters Result Description
type type
GDFLIB_FilterlIR1_F16 frac16_t |GDFLIB_FILTER_IIR1_T_F32* frac16_t |The input argument is a 16-bit
fractional value of the input signal to
be filtered within the range <-1 ; 1).
The parameters' structure is pointed
to by a pointer. The function returns
a 16-bit fractional value within the
range <-1; 1).
GDFLIB_FilterlIR1_FLT float_t GDFLIB_FILTER_IIR1_T_FLT* |float_t The input argument is a 32-bit single
precision floating-point value of the
input signal within the full range. The
parameters' structure is pointed to
by a pointer. The function returns a
32-bit single precision floating-point
value within the full range.

2.2.2 GDFLIB_FILTER_IIR1_T_F32

Variable name Input type Description
sFItCoeff GDFLIB_FILTER_IIR1_COEFF_T_F32 * Substructure containing filter coefficients.
f32FItBfrY[1] frac32_t Internal buffer of y-history. Controlled by the
algorithm.
f16FItBfrX[1] frac16_t Internal buffer of x-history. Controlled by the
algorithm.

2.2.3 GDFLIB_FILTER_IIR1_COEFF_T_F32

Variable name Type Description
f32B0 frac32_t |BO coefficient of the IIR1 filter. Set by the user, and must be divided by 2.
f32B1 frac32_t |B1 coefficient of the 1IR1 filter. Set by the user, and must be divided by 2.
f32A1 frac32_t |A1 (sign-inverted) coefficient of the 1IR1 filter. Set by the user, and must be divided by -2
(negative two).

GDFLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 39

A
GDFLIB_FilterlIR1

2.2.4 GDFLIB_FILTER_IIR1_T_FLT

Variable name Input type Description
sFltCoeff GDFLIB_FILTER_IIR1_COEFF_T_FLT * Substructure containing filter coefficients.
fitFItBfrY[1] float_t Internal buffer of y-history. Controlled by the
algorithm.
fItFItBfrX[1] float_t Internal buffer of x-history. Controlled by the
algorithm.

2.2.5 GDFLIB_FILTER_IIR1_COEFF_T_FLT

Variable name Type Description
fltBO float_t BO coefficient of the IIR1 filter. Set by the user.
fltB1 float_t B1 coefficient of the IIR1 filter. Set by the user.
fltA1 float_t A1 (sign-inverted) coefficient of the l1IR1 filter. Set by the user.

2.2.6 Declaration
The available GDFLIB_FilterIIR 11Init functions have the following declarations:

void GDFLIB_FilterIIR1Init F16 (GDFLIB_FILTER_IIR1 T F32 *psParam)
void GDFLIB FilterIIR1Init FLT (GDFLIB FILTER IIR1 T FLT *psParam)

The available GDFLIB_FilterIIR1 functions have the following declarations:

fraclé_t GDFLIB FilterIIR1 _F16(fraclé t f16InX, GDFLIB FILTER ITR1 T F32 *psParam)
float t GDFLIB_FilterIIR1 FLT(float t f1ltInX, GDFLIB FILTER IIR1 T FLT *psParam)

2.2.7 Calculation of filter coefficients

There are plenty of methods for calculating the coefficients. The following example
shows the use of Matlab to set up a low-pass filter with the 500 Hz sampling frequency,
and 240 Hz stopped frequency with a 20 dB attenutation. Maximum passband ripple is 3
dB at the cut-off frequency of 50 Hz.

% sampling frequency 500 Hz, low pass
s =1/ 500

H

% cut-off frequency 50 Hz
Fc = 50

GDFLIB User's Guide, Rev. 4, 12/2020
40 NXP Semiconductors

4
Chapter 2 Algorithms in detail

max. passband ripple 3 dB
p =3

W o

% stopped frequency 240Hz
Fs = 240

% attenuation 20 dB
Rs = 20

% checking order of the filter
n = buttord(2 * Ts * Fc, 2 * Ts * Fs, Rp, Rs)
$ n=1, i.e. the filter is achievable with the 1lst order

% getting the filter coefficients
[b, al] = butter(n, 2 * Ts * Fc, 'low');

e coefs are:
0.245237275252786, bl = 0.245237275252786

% th
% bo
% a0 1.0000, al = -0.509525449494429

The filter response is shown in Figure 2-2.

Magnitude (dB) and Phase Responzes

-2.3032

-150.7897

-29.2742

-42 TEET

Magnitude (dB)
Phase (degrees)

-56.2432

-EQTRTT

-53.2121

i} =] 100 150 200
Freguency (Hz)

Figure 2-2. Filter response

2.2.8 Function use

The use of the GDFLIB_FilterIIR1Init and GDFLIB_FilterIIR1 functions is shown in the
following examples. The filter uses the above-calculated coefficients:

Fixed-point version:

GDFLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 41

A
GDFLIB_FilterlIR2

#include "gdflib.h"
static fraclé_t fl6Result;
static fracle t fl6InX;
static GDFLIB_FILTER_IIR1_T_F32 sFilterParam;
void Isr (void) ;
void main (void)
sFilterParam.sFltCoeff.£32B0 FRAC32(0.245237275252786 / 2.0);

sFilterParam.sFltCoeff.f32B1 FRAC32(0.245237275252786 / 2.0);
sFilterParam.sFltCoeff.£f32A1 = FRAC32(-0.509525449494429 / -2.0);

GDFLIB FilterIIR1Init F16 (&sFilterParam) ;

f16InX = FRAC16(0.1);

}

/* periodically called function */
void Isr (void)

fl6Result = GDFLIB FilterIIR1 F16(f16InX, &sFilterParam) ;

Floating-point version:

#include "gdflib.h"

static float t fltResult;
static float t fltInX;
static GDFLIB FILTER IIR1 T FLT sFilterParam;

void Isr (void) ;

void main (void)

{
sFilterParam.sFltCoeff.f1tB0 = 0.245237275252786f;
sFilterParam.sFltCoeff.f1tB1 0.245237275252786f;
sFilterParam.sFltCoeff.fltAl = -0.509525449494429f;

GDFLIB FilterIIR1Init FLT(&sFilterParam) ;

fltInX = 0.1F;

}

/* periodically called function */
void Isr(void)

{

fltResult = GDFLIB_FilterIIR1 FLT(f1tInX, &sFilterParam);

2.3 GDFLIB_FilterlIR2

This function calculates the second-order direct-form 1 IIR filter.

GDFLIB User's Guide, Rev. 4, 12/2020
42 NXP Semiconductors

e

Chapter 2 Algorithms in detail
For a proper use, it is recommended that the algorithm is initialized by the
GDFLIB_FilterIIR2Init function, before using the GDFLIB_FilterIIR2 function. The
GDEFLIB_FilterIIR2Init function initializes the buffer and coefficients of the second-
order IIR filter.

The GDFLIB_FilterIIR2 function calculates the second-order infinite impulse response
(IIR) filter. The IIR filters are also called recursive filters, because both the input and the
previously calculated output values are used for calculation. This form of feedback
enables the transfer of energy from the output to the input, which leads to an infinitely
long impulse response (IIR). A general form of the IIR filter, expressed as a transfer
function in the Z-domain, is described as follows:

H(z) = Be) _ botbyzWhyz 2+ . +byz N
(2= Az~ VazHayz 2+ tayz N

Equation 5.

where N denotes the filter order. The second-order IIR filter in the Z-domain is expressed
as follows:

_ Bl bytbizl+byz2
Hz)= Az) l+az'+a,z2

Equation 6.
which is transformed into a time-domain difference equation as follows:
(k) = byx(k) + bk — 1)+ byx(k — 2)- ayy(k — 1)- agy(k — 2)
Equation 7.

The filter difference equation is implemented in the digital signal controller directly, as
given in Equation 7 on page 43; this equation represents a direct-form 1 second-order IIR
filter, as depicted in Figure 2-3.

x(k) yik)

Figure 2-3. Direct-form 1 second-order IIR filter

GDFLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 43

A
GDFLIB_FilterlIR2

The coefficients of the filter depicted in Figure 2-3 can be designed to meet the
requirements for the second-order low-pass filter (LPF), high-pass filter (HPF), band-pass
filter (BPF) or band-stop filter (BSF). The coefficient quantization error can be neglected
in the case of a second-order filter due to a finite precision arithmetic. A higher-order
LPF or HPF can be obtained by connecting a number of second-order filters in series.
The number of connections gives the order of the resulting filter.

The filter coefficients must be defined before calling this function. As some coefficients
can be greater than 1 (and lesser than 2), the coefficients are scaled down (divided) by 2.0
for the fractional version of the algorithm. For faster calculation, the A coefficients are
sign-inverted. The function returns the filtered value of the input in the step k, and stores
the input and output values in the step k into the filter buffer.

2.3.1 Available versions
This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1).

* Floating-point output - the output is the floating-point result within the type's full
range.

The available versions of the GDFLIB_FilterIIR2Init function are shown in the following
table:

Table 2-5. Init function versions

Function nhame Parameters Result Description
type
GDFLIB_FilterlIR2Init_F16 GDFLIB_FILTER_IIR2_T_F32 * void Filter initialization (reset) function. The
parameters' structure is pointed to by a
pointer.

If PowerQuad based function used the Init
function must be called prior to
FilterllR2_F16 function to transfer [IR2
parameters from fraction to float, without the
Init function required parameters will not be
used for the 1IR2 calculations.

GDFLIB_FilterlIR2Init_FLT GDFLIB_FILTER_IIR2_T_FLT * |void Filter initialization (reset) function. The
parameters' structure is pointed to by a
pointer.

GDFLIB User's Guide, Rev. 4, 12/2020
44 NXP Semiconductors

Chapter 2 Algorithms in detail

The available versions of the GDFLIB_FilterIIR2 function are shown in the following

table:

Table 2-6. Function versions

Function name Input

type

Parameters

Result
type

Description

GDFLIB_FilterlIR2_F16 frac16_t

GDFLIB_FILTER_IIR2_T_F32 *

frac16_t

Input argument is a 16-bit fractional
value of the input signal to be filtered
within the range <-1; 1). The
parameters' structure is pointed to
by a pointer. The function returns a
16-bit fractional value within the
range <-1; 1).

If PowerQuad based function used
the Init function must be called prior
to FilterlIR2_F16 function to transfer
IIR2 parameters from fraction to
float, without the Init function
required parameters will not be used
for the 1IR2 calculations.

GDFLIB_FilterlIR2_FLT float_t

GDFLIB_FILTER_IIR2_T_FLT *

float_t

Input argument is a 32-bit single
precision floating-point value of the
input signal within the full range. The
parameters' structure is pointed to
by a pointer. The function returns a
32-bit single precision floating-point
value within the full range.

2.3.2 GDFLIB_FILTER_IIR2_T_F32

Variable name

Input type

Description

sFltCoeff GDFLIB_FILTER_IIR2_COEFF_T_F32 * Substructure containing filter coefficients.

f32FItBfrY[2] frac32_t Internal buffer of y-history. Controlled by the
algorithm.

f16FItBfrX[2] frac16_t Internal buffer of x-history. Controlled by the

algorithm.

2.3.3 GDFLIB_FILTER_IIR2_COEFF_T_F32

Variable name Type Description
f32B0 frac32_t |BO coefficient of the 1IR2 filter. Set by the user, and must be divided by 2.
f32B1 frac32_t |B1 coefficient of the IIR2 filter. Set by the user, and must be divided by 2.
f32B2 frac32_t |B2 coefficient of the 1IR2 filter. Set by the user, and must be divided by 2.

Table continues on the next page...

GDFLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors

45

GDFLIB_FilterlIR2

Variable name Type Description

f32A1 frac32_t |A1 (sign-inverted) coefficient of the I1IR2 filter. Set by the user, and must be divided by -2
(negative two).

f32A2 frac32_t |A2 (sign-inverted) coefficient of the 1IR2 filter. Set by the user, and must be divided by -2
(negative two).

2.3.4 GDFLIB_FILTER_IIR2_T_FLT

Variable name Input type Description
sFltCoeff GDFLIB_FILTER_IIR2_COEFF_T_FLT * Substructure containing filter coefficients.
fitFItBfrY[2] float_t Internal buffer of y-history. Controlled by the
algorithm.
fltFItBfrX[2] float_t Internal buffer of x-history. Controlled by the
algorithm.

2.3.5 GDFLIB_FILTER_IIR2_COEFF_T_FLT

Variable name Type Description
fltBO float_t BO coefficient of the IIR2 filter. Set by the user.
fltB1 float_t B1 coefficient of the IIR2 filter. Set by the user.
fltB2 float_t B2 coefficient of the IIR2 filter. Set by the user.
fltA1 float_t A1 (sign-inverted) coefficient of the IIR2 filter. Set by the user.
fltA2 float_t A2 (sign-inverted) coefficient of the I1IR2 filter. Set by the user.

2.3.6 Declaration
The available GDFLIB_FilterIIR2Init functions have the following declarations:

void GDFLIB_FilterIIR2Init F16 (GDFLIB_FILTER_IIR2 T F32 *psParam)
void GDFLIB FilterIIR2Init FLT (GDFLIB FILTER IIR2 T FLT *psParam)

The available GDFLIB_FilterIIR2 functions have the following declarations:

fraclé_t GDFLIB FilterTIR2 F16(fraclé t f16InX, GDFLIB FILTER ITR2 T F32 *psParam)
float_t GDFLIB_FilterIIR2 FLT(float t fltInX, GDFLIB FILTER IIR2 T FLT *psParam)

GDFLIB User's Guide, Rev. 4, 12/2020

46 NXP Semiconductors

4
Chapter 2 Algorithms in detail

2.3.7 Calculation of filter coefficients

There are plenty of methods for calculating the coefficients. The following example
shows the use of Matlab to set up a stopband filter with the 1000 Hz sampling frequency,
100 Hz stop frequency with 10 dB attenuation, and 30 Hz bandwidth. Maximum

passband ripple is 3 dB.

% sampling frequency 1000 Hz,
s =1/ 1000

H

% center stop frequency 100 Hz
Fc = 50

% attenuation 10 dB

Rs = 10
% bandwidth 30 Hz
Fbw = 30

max. passband ripple 3 dB
p =3

W o

o\°

checking order of the filter
= buttord(2 * Ts * [Fc - Fbw

o 3

— o°

b, al = butter(n / 2, 2 * Ts
% the coefs are:

% b0 = 0.913635972986238, bl =
% a0 = 1.0000, al = -1.7455858

stop band

/2 Fc + Fbw / 2], 2 * Ts * [Fc - Fbw Fc + Fbw],

n =2, i.e. the filter is achievable with the 2nd order

getting the filter coefficients

* [Fc - Fbw /2 Fc + Fbw / 2], 'stop')

-1.745585863109291, b2 = 0.913635972986238
63109291, a2 = 0.827271945972476

The filter response is shown in Figure 2-4.

GDFLIB User's Guide, Rev. 4, 12/2020

Rp, Rs)

NXP Semiconductors

47

GDFLIB_FilterlIR2

Magnitucie (dB) and Phase Responses

M agnitude (dB)

16333

1012

- —0.5692

- —0.037

Phase (radians)

-—-0.485

-—-1.0271

-—-1.5592

2.3.8 Function use

The use of the GDFLIB_FilterIIR2Init and GDFLIB_Filter[IR2 functions is shown in the
following examples. The filter uses the above-calculated coefficients:

Fixed-point version:

#include "gdflib.h"

static fraclé_t fl6Result;

static fraclé t

fle6InX;

150

200 250 300 350
Frequency (Hz)

Figure 2-4. Filter response

static GDFLIB FILTER IIR2 T F32 sFilterParam;

void Isr (void) ;

void main (void)

sFilterParam.
sFilterParam.
sFilterParam.
sFilterParam.
sFilterParam.

sFltCoeff.
sFltCoeff.
sFltCoeff.
sFltCoeff.
sFltCoeff.

£32B0
£32B1
£32B2
£32A1
£32A2

FRAC32(0.913635972986238 / 2.0) ;
FRAC32(-1.745585863109291 / 2.0);
FRAC32(0.913635972986238 / 2.0);
FRAC32(-1.745585863109291 / -2.0);
FRAC32(0.827271945972476 / -2.0);

GDFLIB FilterIIR2Init F16 (&sFilterParam) ;

f16InX = FRAC16(0.1);

}

/* periodically called function */

void Isr (void)

{

GDFLIB User's Guide, Rev. 4, 12/2020

400 450

48

NXP Semiconductors

4
Chapter 2 Algorithms in detail

fl6Result = GDFLIB FilterIIR2 F16 (f16InX, &sFilterParam);

Floating-point version:

#include "gdflib.h"

static float t fltResult;
static float_t fltInX;
static GDFLIB_FILTER IIR2 T FLT sFilterParam;

void Isr (void) ;
void main (void)

sFilterParam.sFltCoeff.f1tBO
sFilterParam.sFltCoeff.f1tB1
sFilterParam.sFltCoeff.f1tB2
sFilterParam.sFltCoeff.f1tAl
sFilterParam.sFltCoeff.f1tA2

0.913635972986238f;
-1.745585863109291¢f;
0.913635972986238f;
-1.745585863109291f;
0.827271945972476f;

GDFLIB FilterIIR2Init FLT(&sFilterParam) ;

fltInX = 0.1F;

}

/* periodically called function */
void Isr(void)

{

fltResult = GDFLIB_FilterIIR2 FLT(fltInX, &sFilterParam) ;

2.4 GDFLIB_FilterlIR3

This function calculates the third-order direct-form 1 IIR filter.

For a proper use, it is recommended to initialize the algorithm by the
GDFLIB_FilterlIR3Init function before using the GDFLIB_FilterlIR3 function. The
GDFLIB_FilterIIR31Init function initializes the buffer and coefficients of the third-order
IIR filter.

The GDFLIB_FilterlIR3 function calculates the third-order infinite impulse response
(ITR) filter. The IIR filters are also called recursive filters because both the input and the
previously calculated output values are used for calculation. This form of feedback
enables the transfer of energy from the output to the input, which leads to an infinitely
long impulse response (IIR). A general form of the IIR filter (expressed as a transfer
function in the Z-domain) is described as follows:

_ B _ botbiz by 2. Abyz N
H(z)= Alz) — MHaz Hagz2.tayz N

Equation 8.

GDFLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors

49

A
GDFLIB_FilterlIR3

where N denotes the filter order. The third-order IIR filter in the Z-domain is expressed
as follows:

B(2) 3 byt bz 1+ byz 2+ byz3

H(z)= Aiz) ~ Traz+az2+azs3

Equation 9.
which is transformed into a time-domain difference equation as follows:

(k) = by(k) + bpx(k — 1)+ byx(k — 2)+ bax(k — 3)-aptk — 1)-ay(k — 2)-azytk — 3)

Equation 10.

The filter difference equation is implemented in the digital signal controller directly, as
given in Equation 10 on page 50. This equation represents a direct-form 1 third-order IIR
filter, as depicted in Figure 2-5.

b0

x(k) . yik)
v v g
Z1 Z1
A 4 - A 4
Z1 Z1
Z1! Z!
L 5 PR

Figure 2-5. Direct-form 1 third-order lIR filter

The coefficients of the filter depicted in Figure 2-5 can be designed to meet the
requirements for the third-order low-pass filter (LPF) or high-pass filter (HPF). The
coefficient quantization error can be neglected in the case of a third-order filter due to a
finite precision arithmetic. A higher-order LPF or HPF can be obtained by connecting a
number of third-order filters in series. The number of connections gives the order of the
resulting filter.

Define the filter coefficients before calling this function. As some coefficients can be
greater than 1 (and lesser than 4), the coefficients are scaled down (divided) by 4.0 for the
fractional version of the algorithm. For a faster calculation, the A coefficients are sign-
inverted. The function returns the filtered value of the input in the step k, and stores the
input and output values in the step k into the filter buffer.

GDFLIB User's Guide, Rev. 4, 12/2020
50 NXP Semiconductors

Chapter 2 Algorithms in detail

2.4.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1).

* Floating-point output - the output is the floating-point result within the type's full
range.

The available versions of the GDFLIB_FilterIIR31Init function are shown in the following
table:

Table 2-7. Init function versions

Function name Parameters Result Description
type

GDFLIB_FilterlIR3Init_F16 GDFLIB_FILTER_IIR3_T_F32 * void Filter initialization (reset) function. The
parameters' structure is pointed to by a
pointer.

GDFLIB_FilterlIR3Init_FLT GDFLIB_FILTER_IIR3_T_FLT * void Filter initialization (reset) function. The
parameters' structure is pointed to by a
pointer.

The available versions of the GDFLIB_FilterIIR3 function are shown in the following
table:

Table 2-8. Function versions

Function name Input Parameters Result Description
type type
GDFLIB_FilterlIR3_F16 frac16_t |GDFLIB_FILTER_IIR3_T_F32* frac16_t |Input argument is a 16-bit fractional
value of the input signal to be filtered
within the range <-1; 1). The
parameters' structure is pointed to
by a pointer. The function returns a
16-bit fractional value within the
range <-1; 1).

GDFLIB_FilterlIR3_FLT float_t GDFLIB_FILTER_IIR3_T_FLT * |float_t Input argument is a 32-bit single
precision floating-point value of the
input signal within the full range. The
parameters' structure is pointed to
by a pointer. The function returns a
32-bit single precision floating-point
value within the full range.

GDFLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 51

GDFLIB_FilterlIR3

2.4.2 GDFLIB_FILTER_IIR3_T_F32

Variable name Input type Description
sFltCoeff GDFLIB_FILTER_IIR3_COEFF_T_F32 * Substructure containing filter coefficients.
f32FItBfrY[3] frac32_t Internal buffer of y-history. Controlled by the
algorithm.
f16FItBfrX[3] frac16_t Internal buffer of x-history. Controlled by the
algorithm.
Variable name Type Description
f32B0 frac32_t |BO coefficient of the 1IR3 filter. Set by the user, and must be divided by 4.
f32B1 frac32_t |B1 coefficient of the IIR3 filter. Set by the user, and must be divided by 4.
f32B2 frac32_t |B2 coefficient of the 1IR3 filter. Set by the user, and must be divided by 4.
f32B3 frac32_t |B3 coefficient of the 1IR3 filter. Set by the user, and must be divided by 4 (negative four).
f32A1 frac32_t | A1 (sign-inverted) coefficient of the IIR3 filter. Set by the user. Must be divided by -4
(negative four).
f32A2 frac32_t |A2 (sign-inverted) coefficient of the 1IR3 filter. Set by the user. Must be divided by -4
(negative four).
f32A3 frac32_t |A3 (sign-inverted) coefficient of the 1IR3 filter. Set by the user. Must be divided by -4
(negative four).
Variable name Input type Description
sFltCoeff GDFLIB_FILTER_IIR3_COEFF_T_FLT * Substructure containing filter coefficients.
fItFItBfrY[3] float_t Internal buffer of y-history. Controlled by the
algorithm.
fltFItBfrX[3] float_t Internal buffer of x-history. Controlled by the
algorithm.

2.4.5 GDFLIB_FILTER_IIR3_COEFF_T_FLT

Variable name Type Description

fltBO float_t BO coefficient of the 1IR3 filter. Set by the user.

Table continues on the next page...

GDFLIB User's Guide, Rev. 4, 12/2020

52

NXP Semiconductors

Chapter 2 Algorithms in detail

Variable name Type Description
fltB1 float_t B1 coefficient of the 1IR3 filter. Set by the user.
fltB2 float_t B2 coefficient of the IIR3 filter. Set by the user.
flitB3 float_t B3 coefficient of the IIR3 filter. Set by the user.
fltA1 float_t A1 (sign-inverted) coefficient of the IIR3 filter. Set by the user.
fltA2 float_t A2 (sign-inverted) coefficient of the 1IR3 filter. Set by the user.
fltA3 float_t A3 (sign-inverted) coefficient of the IIR3 filter. Set by the user.

2.4.6 Declaration
The available GDFLIB_FilterIIR3Init functions have the following declarations:

void GDFLIB FilterIIR3Init F16 (GDFLIB FILTER IIR3 T F32 *psParam)
void GDFLIB FilterIIR3Init FLT(GDFLIB_FILTER_IIR3 T FLT *psParam)

The available GDFLIB_FilterIIR3 functions have the following declarations:

fraclé t GDFLIB FilterIIR3 F16 (fraclé t f16InX, GDFLIB FILTER IIR3 T F32 *psParam)
float t GDFLIB_FilterIIR3 FLT(float t fltInX, GDFLIB FILTER TIIR3 T FLT *psParam)

2.4.7 Calculation of filter coefficients

There are plenty of methods for calculating the coefficients. The following example
shows the use of Matlab to set up a high-pass filter with the 10000 Hz sampling
frequency and 200 Hz stop frequency with 60 dB attenuation. The ripple is 3 dB at the
cut-off frequency of 2000 Hz.

% sampling frequency 10000 Hz, high pass
Ts = 1 / 10000

% cut-off frequency 2 KHz
Fc = 2000

% attenuation 60 dB
Rs = 60

% stop frequency 200 Hz
Fs = 200

max. passband ripple 3 dB
p =3

o o

o\°

checking order of the filter
= buttord(2 * Ts * Fc, 2 * Ts * Fs, Rp, Rs)
n =3, i.e. the filter is achievable with the 3rd order

o 3

getting the filter coefficients
b, al = butter(n, 2* Ts * Fc, 'high')

— o\

GDFLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 53

A
GDFLIB_FilterlIR3

the coefs are:

% b0 = 0.256915601248463, bl = -0.770746803745390, b2 = 0.770746803745390,
% b3 = -0.256915601248463
% a0 = 1.0000, al = -0.577240524806303, a2 = 0.421787048689562, a3 = -0.056297236491843

The filter response is shown in Figure 2-6.

Magnitude (dB) and Phase Responses
T I T T T

-1.716

-2.3055

-—-2.5948

-3.4844

-4.0739

Magnitude (dB)
FPhase (radians)

-—-4.6633

-5.2528

-5.5423

-6.4317

i} 0s 1 15 2 25 3 3.5 4 45
Frequency (kHz)

Figure 2-6. Filter response

2.4.8 Function use

The use of the GDFLIB_FilterIIR3Init and GDFLIB_FilterIIR3 functions is shown in the
following examples. The filter uses the above-calculated coefficients:

Fixed-point version:

#include "gdflib.h"

static fraclé t fl6Result;
static fraclé_t fl6InX;
static GDFLIB FILTER IIR3 T F32 sFilterParam;

void Isr (void) ;

void main (void)

{
sFilterParam.sFltCoeff.f£32B0
sFilterParam.sFltCoeff.f32B1
sFilterParam.sFltCoeff.f32B2

FRAC32(0.256915601248463 / 4.0) ;
FRAC32(-0.770746803745390 / 4.0) ;
FRAC32(0.770746803745390 / 4.0);
FRAC32 (
(
(
(

sFilterParam.sFltCoeff.f32B3 -0.256915601248463 / 4.0);
sFilterParam.sFltCoeff.f32A1 FRAC32(-0.577240524806303 / -4.0);
sFilterParam.sFltCoeff.f32A2 FRAC32(0.421787048689562 / -4.0) ;

sFilterParam.sFltCoeff.f32A3 FRAC32(-0.056297236491843 / -4.0);

GDFLIB User's Guide, Rev. 4, 12/2020
54 NXP Semiconductors

4
Chapter 2 Algorithms in detail

GDFLIB FilterIIR3Init F16 (&sFilterParam) ;

£f16InX = FRAC16(0.1);

}

/* periodically called function */
void Isr(void)

fl6Result = GDFLIB_FilterIIR3 F16(f16InX, &sFilterParam) ;

Floating-point version:

#include "gdflib.h"

static float t fltResult;
static float t fltInX;
static GDFLIB FILTER IIR3 T FLT sFilterParam;

void Isr (void) ;

void main (void)

{
sFilterParam.sFltCoeff.f1tBO
sFilterParam.sFltCoeff.f1tB1
sFilterParam.sFltCoeff.f1tB2
sFilterParam.sFltCoeff.f1tB3
sFilterParam.sFltCoeff.f1tAl
sFilterParam.sFltCoeff.f1tA2
sFilterParam.sFltCoeff.f1tA3

0.256915601248463F;
-0.770746803745390F;
0.770746803745390F;
-0.256915601248463F;
-0.577240524806303F;
0.421787048689562F;
-0.056297236491843F;

GDFLIB FilterIIR3Init FLT(&sFilterParam) ;

fltInX = 0.1F;

}

/* periodically called function */
void Isr (void)

{
}

fltResult = GDFLIB FilterIIR3 FLT(f1tInX, &sFilterParam);

2.5 GDFLIB_FilterlIR4

This function calculates the fourth-order direct-form 1 IIR filter.

For a proper use, it is recommended to initialize the algorithm by the
GDFLIB_FilterlIR4Init function, before using the GDFLIB_FilterlIR4 function. The
GDFLIB_FilterlIR4Init function initializes the buffer and coefficients of the fourth-order
IIR filter.

The GDFLIB_FilterlIR4 function calculates the fourth-order infinite impulse response
(IIR) filter. The IIR filters are also called recursive filters, because both the input and the
previously calculated output values are used for calculation. This form of feedback

GDFLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 55

A
GDFLIB_FilterllR4

enables the transfer of energy from the output to the input, which leads to an infinitely
long impulse response (IIR). A general form of the IIR filter (expressed as a transfer
function in the Z-domain) is described as follows:

B(z) botbiz Mbyz 2+ Abyz N
H(Z) TAG ajz"Wayz2+. +ayz—N

Equation 11.

where N denotes the filter order. The fourth-order IIR filter in the Z-domain is expressed
as follows:

B(z) bytbzl+byz2+byz3+byz4

H(z)= Az) ~ Trazlraz2+az3taz?

Equation 12.
which is transformed into a time-domain difference equation as follows:
(k) = box(k) + byx(k — 1)+ byx(k — 2)+ byx(k — 3)+ byx(k — 4)- ay(k — 1)-ayy(k — 2)- ayp(k — 3)- agyk — 4)
Equation 13.

The filter difference equation is implemented directly in the digital signal controller, as
given in Equation 13 on page 56; this equation represents a direct-form 1 fourth-order IIR
filter, as shown in Figure 2-7.

b0

x(k) . yik)
v v
Z1 Z1
A 4 g A 4
Z! Z1
Zt Z1!
A g A
Zt Z1
L 5 PR

Figure 2-7. Direct-form 1 fourth-order IIR filter

The coefficients of the filter shown in Figure 2-7 can be designed to meet the
requirements for the fourth-order low-pass filter (LPF), high-pass filter (HPF), band-pass
filter (BPF), or band-stop filter (BSF). The coefficient quantization error can be ignored

GDFLIB User's Guide, Rev. 4, 12/2020
56 NXP Semiconductors

L __4

Chapter 2 Algorithms in detail
in the case of a fourth-order filter due to a finite precision arithmetic. A higher-order LPF
or HPF can be obtained by connecting a number of fourth-order filters in series. The
number of connections gives the order of the resulting filter.

Define the filter coefficients before calling this function. As some coefficients can be
greater than 1 (and lesser than 8), the coefficients are scaled down (divided) by 8.0 for the
fractional version of the algorithm. For a faster calculation, the A coefficients are sign-
inverted. The function returns the filtered value of the input in step k, and stores the input
and output values in the step k into the filter buffer.

2.5.1 Available versions
This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1).

* Floating-point output - the output is the floating-point result within the type's full
range.

The available versions of the GDFLIB_Filter[IR4Init function are shown in the following
table:

Table 2-9. Init function versions

Function nhame Parameters Result Description
type

GDFLIB_FilterlIR4Init_F16 GDFLIB_FILTER_IIR4_T_F32 * void Filter initialization (reset) function. The
parameters' structure is pointed to by a
pointer.

GDFLIB_FilterlIR4Init_FLT GDFLIB_FILTER_IIR4_T_FLT * void Filter initialization (reset) function. The
parameters' structure is pointed to by a
pointer.

The available versions of the GDFLIB_Filter[IR4 function are shown in the following
table:

Table 2-10. Function versions

Function name Input Parameters Result Description
type type
GDFLIB_FilterliIR4_F16 frac16_t |GDFLIB_FILTER_IIR4_T_F32* frac16_t |Input argument is a 16-bit fractional
value of the input signal to be filtered
within the range <-1; 1). The
parameters' structure is pointed to

Table continues on the next page...

GDFLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 57

GDFLIB_FilterliR4

Table 2-10. Function versions (continued)

Function name Input Parameters Result Description
type type
by a pointer. The function returns a
16-bit fractional value within the
range <-1; 1).
GDFLIB_FilterlIR4_FLT float_t GDFLIB_FILTER_IIR4_T_FLT* |float_t Input argument is a 32-bit single

precision floating-point value of the
input signal within the full range. The
parameters' structure is pointed to
by a pointer. The function returns a
32-bit single precision floating-point
value within the full range.

2.5.2 GDFLIB_FILTER_IIR4_T_F32

Variable name

Input type

Description

sFItCoeff GDFLIB_FILTER_IIR4_COEFF_T_F32 * Substructure containing filter coefficients.

f32FItBfrY[4] frac32_t Internal buffer of y-history. Controlled by the
algorithm.

f16FItBfrX[4] frac16_t Internal buffer of x-history. Controlled by the

algorithm.

2.5.3 GDFLIB_FILTER_IIR4_COEFF_T_F32

Variable name Type Description

f32B0 frac32_t |BO coefficient of the 1IR4 filter. Set by the user, and must be divided by 8.

f32B1 frac32_t |B1 coefficient of the 1IR4 filter. Set by the user, and must be divided by 8.

f32B2 frac32_t |B2 coefficient of the IIR4 filter. Set by the user, and must be divided by 8.

f32B3 frac32_t |B3 coefficient of the IIR4 filter. Set by the user, and must be divided by 8.

f32B4 frac32_t |B4 coefficient of the 1IR4 filter. Set by the user, and must be divided by 8.

f32A1 frac32_t |A1 (sign-inverted) coefficient of the IIR4 filter. Set by the user, and must be divided by -8
(negative eight).

f32A2 frac32_t |A2 (sign-inverted) coefficient of the 1IR4 filter. Set by the user, and must be divided by -8
(negative eight).

f32A3 frac32_t | A3 (sign-inverted) coefficient of the 1IR4 filter. Set by the user, and must be divided by -8
(negative eight).

f32A4 frac32_t |A4 (sign-inverted) coefficient of the 1IR4 filter. Set by the user, and must be divided by -8
(negative eight).

GDFLIB User's Guide, Rev. 4, 12/2020

58

NXP Semiconductors

4
Chapter 2 Algorithms in detail

2.5.4 GDFLIB_FILTER_IIR4_T_FLT

Variable name Input type Description
sFltCoeff GDFLIB_FILTER_IIR4_COEFF_T_FLT * Substructure containing filter coefficients.
fitFItBfrY[4] float_t Internal buffer of y-history. Controlled by the
algorithm.
fltFItBfrX[4] float_t Internal buffer of x-history. Controlled by the
algorithm.

2.5.5 GDFLIB_FILTER_IIR4_COEFF_T_FLT

Variable name Type Description
fltBO float_t BO coefficient of the IIR4 filter. Set by the user.
fltB1 float_t B1 coefficient of the IIR4 filter. Set by the user.
fltB2 float_t B2 coefficient of the IIR4 filter. Set by the user.
flitB3 float_t B3 coefficient of the IIR4 filter. Set by the user.
fltB4 float_t B4 coefficient of the IIR4 filter. Set by the user.
fltA1 float_t A1 (sign-inverted) coefficient of the 1IR4 filter. Set by the user.
fltA2 float_t A2 (sign-inverted) coefficient of the IIR4 filter. Set by the user.
fltA3 float_t A3 (sign-inverted) coefficient of the 1IR4 filter. Set by the user.
fltA4 float_t A4 (sign-inverted) coefficient of the IIR4 filter. Set by the user.

2.5.6 Declaration
The available GDFLIB_FilterIIR4Init functions have the following declarations:

void GDFLIB FilterIIR4Init F16 (GDFLIB FILTER IIR4 T F32 *psParam)
void GDFLIB_FilterIIR4Init FLT (GDFLIB_FILTER IIR4 T FLT *psParam)

The available GDFLIB_FilterlIR4 functions have the following declarations:

fraclé_t GDFLIB_FilterIIR4_F16 (fraclé6_t f16InX, GDFLIB_FILTER_IIR4_T_F32 *psParam)
float t GDFLIB FilterIIR4 FLT(float t fltInX, GDFLIB FILTER IIR4 T FLT *psParam)

GDFLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 59

A
GDFLIB_FilterliR4

2.5.7 Calculation of filter coefficients

There are plenty of methods for the coefficients calculation. The following example
shows the use of Matlab to set up a band-pass filter with the 10000 Hz sampling
frequency, 1000 Hz pass frequency, and 250 Hz bandwidth. The maximum passband
ripple is 3 dB, and the attenuation is 20 dB.

sampling frequency 10000 Hz, band pass
s =1/ 10000

H oe

% center pass frequency 2000 Hz
Fc = 2000

% attenuation 20 dB
Rs = 20

bandwidth 250 Hz
bw = 250

i oo

max. passband ripple 3 dB
p =3

W oo

o\

checking order of the filter
= buttord(2 * Ts * [Fc - Fbw /2 Fc + Fbw / 2], 2 * Ts * [Fc - Fbw Fc + Fbw], Rp, Rs)
n =4, i.e. the filter is achievable with the 4th order

o 3

getting the filter coefficients
b, al = butter(n / 2, 2 * Ts * [Fc - Fbw /2 Fc + Fbw / 2])

— o

the coefs are:

% b0 = 0.005542717210281, bl = 0, b2 = -0.011085434420561, b3 = 0, b4 = 0.005542717210281
% a0 = 1.0000, al = -1.171272075750262, a2 = 2.122554479822350, a3 = -1.047780658093187,
% a4 = 0.800802646665706

The filter response is shown in Figure 2-8.

GDFLIB User's Guide, Rev. 4, 12/2020
60 NXP Semiconductors

4
Chapter 2 Algorithms in detail

Magnitucie (dB) and Phase Responses
T I T T T

-—28718

-—2.2329

-—1584

0955

- —0.3161

-—-0.3228

M agnitude (dB)
Phase (radians)

-0.9617

-1 6006

- —-2.23895

-—-2.8785

a as 1 15 2 25 3 35 4 45
Frequency (kHz)

Figure 2-8. Filter response

2.5.8 Function use

The use of the GDFLIB_FilterlIR4Init and GDFLIB_Filter[IR4 functions is shown in the
following examples. The filter uses the above-calculated coefficients:

Fixed-point version:

#include "gdflib.h"

static fraclé_t fl6Result;

static fraclée t fl6InX;

static GDFLIB FILTER IIR4 T F32 sFilterParam;

void Isr (void) ;

void main (void)

sFilterParam.sFltCoeff.£f32B0 = FRAC32(0.005542717210281 / 8.0);
sFilterParam.sFltCoeff.f32B1 = FRAC32(0.0 / 8.0);
sFilterParam.sFltCoeff.f32B2 = FRAC32(-0.011085434420561 / 8.0);
sFilterParam.sFltCoeff.£f32B3 = FRAC32(0.0 / 8.0);

sFilterParam.sFltCoeff.f32B4
sFilterParam.sFltCoeff.f32A1
sFilterParam.sFltCoeff.f32A2
sFilterParam.sFltCoeff.£f32A3
sFilterParam.sFltCoeff.f32A4

FRAC32(-1.171272075750262 / -8.0) ;
FRAC32(2.122554479822350 / -8.0);
-1.047780658093187 / -8.0) ;
0.800802646665706 / -8.0);

FRAC32
FRAC32

(

(

(

(
FRAC32(0.005542717210281 / 8.0);

(

(

(

(
GDFLIB FilterIIR4Init F16 (&sFilterParam) ;
f16InX = FRAC16(0.1);

GDFLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 61

GDFLIB_FilterMA

/* periodically called function */

void Isr(void)

{

fl6Result = GDFLIB FilterIIR4 F16 (f16InX, &sFilterParam);

}

Floating-point version:

#include "gdflib.h"

static float t fltResult;
static float_t fltInX;

static GDFLIB_FILTER IIR4 T FLT sFilterParam;

void Isr (void) ;
void main (void)

sFilterParam.sFltCoeff.
sFilterParam.sFltCoeff.
sFilterParam.sFltCoeff.
sFilterParam.sFltCoeff.
sFilterParam.sFltCoeff.
sFilterParam.sFltCoeff.
sFilterParam.sFltCoeff.
sFilterParam.sFltCoeff.
sFilterParam.sFltCoeff.

£1tBO = 0.005542717210281F;
f1tBl = 0.0F;

f1tB2 = -0.011085434420561F;
£f1tB3 = 0.0F;

f1tB4 = 0.005542717210281F;
fl1tAl = -1.171272075750262F;
fl1tA2 = 2.122554479822350F;
fl1tA3 = -1.047780658093187F;
fl1tA4 = 0.800802646665706F;

GDFLIB FilterIIR4Init FLT(&sFilterParam) ;

fltInX = 0.1F;

}

/* periodically called function */

void Isr(void)

{

fltResult = GDFLIB_FilterIIR4 FLT(fltInX, &sFilterParam) ;

2.6 GDFLIB_FilterMA

The GDFLIB_FilterMA function calculates a recursive form of a moving average filter.

For a proper use, it is recommended that the algorithm is initialized by the

GDFLIB_FilterMAlInit function, before using the GDFLIB_FilterMA function.

The filter calculation consists of the following equations:

acc(k) = acc(k — 1)+ x(k)
Equation 14.

k
O

Equation 15.

GDFLIB User's Guide, Rev. 4, 12/2020

62

NXP Semiconductors

4
Chapter 2 Algorithms in detail

acc(k) «— acc(k) — (k)
Equation 16.

where:

x(k) 1s the actual value of the input signal
acc(k) is the internal filter accumulator

y(k) is the actual filter output

n, is the number of points in the filter window

The size of the filter window (number of filtered points) must be defined before calling
this function, and must be equal to or greater than 1.

The function returns the filtered value of the input at step k, and stores the difference
between the filter accumulator and the output at step k into the filter accumulator.

2.6.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The parameters use the accumulator types.

* Floating-point output - the output is the floating-point result within the type's full
range.

The available versions of the GDFLIB_FilterMAlnit function are shown in the following
table:

Table 2-11. Function versions

Function name Input Parameters Result Description
type type
GDFLIB_FilterMAInit_F16 |frac16_t |GDFLIB_FILTER_MA_T_A32* void Input argument is a 16-bit fractional

value that represents the initial value
of the filter at the current step. The
input is within the range <-1; 1). The
parameters' structure is pointed to
by a pointer.

GDFLIB_FilterMAInit_FLT |float_t GDFLIB_FILTER_MA_T_FLT * void Input argument is a 32-bit single
precision floating-point value that
represents the initial value of the
filter at the current step. The input is
within the full range. The
parameters' structure is pointed to
by a pointer.

GDFLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 63

GDFLIB_FilterMA

The available versions of the GDFLIB_FilterMA function are shown in the following

table:
Table 2-12. Function versions
Function name Input type Result type Description
Value Parameter
GDFLIB_FilterMA_F16 |frac16_t |GDFLIB_FILTER_MA_T_A32 * |frac16_t Input argument is a 16-bit fractional value

of the input signal to be filtered within the
range <-1; 1). The parameters' structure
is pointed to by a pointer. The function
returns a 16-bit fractional value within the
range <-1; 1).

GDFLIB_FilterMA_FLT |float_t

GDFLIB_FILTER_MA_T_FLT * |float_t Input argument is a 32-bit single
precision floating-point value of the input
signal to be filtered within the full range.
The parameters' structure is pointed to by
a pointer. The function returns a 32-bit
single precision floating-point value within
the full range.

2.6.2 GDFLIB_FILTER_MA_T_A32

Variable name Input Description
type
a32Acc acc32_t |Filter accumulator. The parameter is a 32-bit accumulator type within the range <-65536.0 ;
65536.0). Controlled by the algorithm.
u16Sh uint16_t |Number of samples for averaging filtered points (size of the window) defined as a number

of shifts:
Hp= Qul6Sh
ul6Sh=1log np

The parameter is a 16-bit unsigned integer type within the range <0 ; 15>. Set by the user.

2.6.3 GDFLIB_FILTER_MA_T_FLT

Variable name Input Description
type
fltAcc float_t Filter accumulator. Controlled by the algorithm.
fliLambda float_t Number of samples for averaging filtered points (size of the window) defined as an inverted

value:

fltLambda = 75

GDFLIB User's Guide, Rev. 4, 12/2020

64

NXP Semiconductors

4
Chapter 2 Algorithms in detail

Variable name Input Description
type

The parameter is a 32-bit single precision floating-point type within the range (0 ; 1.0>. Set
by the user.

2.6.4 Declaration
The available GDFLIB_FilterMAlnit functions have the following declarations:

void GDFLIB_FilterMAInit F16 (fraclé_t fl6InitVal, GDFLIB FILTER MA T _A32 *psParam)
void GDFLIB FilterMAInit FLT(float t fltInitVal, GDFLIB FILTER MA T FLT *psParam)

The available GDFLIB_FilterMA functions have the following declarations:

fraclé t GDFLIB FilterMA F16(fraclé t f16InX, GDFLIB FILTER MA T A32 *psParam)
float t GDFLIB_FilterMA FLT (float t fltInX, GDFLIB FILTER MA T FLT *psParam)

2.6.5 Function use

The use of GDFLIB_FilterMAInit and GDFLIB_FilterMA functions is shown in the
following examples:

Fixed-point version:

#include "gdflib.h"

static fraclé_t fl6Result;
static fracle t fl6InitVal, £f16InX;
static GDFLIB_FILTER MA T A32 sFilterParam;

void Isr (void) ;

void main (void)

{

fl16InitVal = FRAC16(0.0) ; /* £16Initval = 0.0 */

2;

/* Filter window

= 2 = 4 points */
sFilterParam.ulé6Sh

2

GDFLIB FilterMAInit F16(fl6InitVal, &sFilterParam) ;

f16InX = FRAC16(0.8);

}

/* periodically called function */
void Isr(void)

fl6Result = GDFLIB FilterMA F16(f16InX, &sFilterParam) ;

GDFLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 65

GDFLIB_FilterMA
Floating-point version:

#include "gdflib.h"

static float t fltResult;

static float t fltInitval, fltInX;

static GDFLIB_FILTER MA T FLT sFilterParam;
void Isr (void) ;

void main (void)

fltInitval = 0.0F; /* fl6InitvVal = 0.0 */

/* Filter window = 4 points-> fltLambda = 1/4 */
sFilterParam.fltLambda = 0.25F;

GDFLIB FilterMAInit FLT(fltInitVal, &sFilterParam);

fltInX = 0.8F;

}

/* periodically called function */
void Isr (void)

fltResult = GDFLIB_FilterMA FLT(fltInX, &sFilterParam);

}

GDFLIB User's Guide, Rev. 4, 12/2020

66

NXP Semiconductors

Appendix A

A.1 bool t

The bool_t type is a logical 16-bit type. It is able to store the boolean variables with two
states: TRUE (1) or FALSE (0). Its definition is as follows:

typedef unsigned short bool t;
The following figure shows the way in which the data is stored by this type:
Table A-1. Data storage

Value Unused Lcc;glyi
0 | 0 | 0 | oo | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | 1
TRUE
0 0 0 1
0 | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | 0
FALSE
0 0 0 0

To store a logical value as bool_t, use the FALSE or TRUE macros.

A.2 uint8_t

The uint8_t type is an unsigned 8-bit integer type. It is able to store the variables within
the range <0 ; 255>. Its definition is as follows:

typedef unsigned char uint8 t;
The following figure shows the way in which the data is stored by this type:
Table A-2. Data storage

Table continues on the next page...

GDFLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 67

uint16_t
Table A-2. Data storage (continued)
7 6 5 4 3 2 1 0
Value Integer
1 | 1 | 1 | 1 1 | 1 | 1 | 1
255
F F
» 0 | 0 | 0 | 0 1 | 0 | 1 | 1
0 B
0 | 1 | 1 | 1 1 | 1 | 0 | 0
124
7 C
156 1 | o | o | 1 1 K K K
9 F

A.3 uint16_t

The uint16_t type is an unsigned 16-bit integer type. It is able to store the variables
within the range <0 ; 65535>. Its definition is as follows:

typedef unsigned short uintlé t;
The following figure shows the way in which the data is stored by this type:
Table A-3. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Integer
1 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1
65535
F F F F
0 | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | o] o | 1 | 0 | 1
5
0 0 0 5
0 | 0 | 1 | 1] 1 | 1 | 0 | o | 1 | 0 | 0 | 1] 1 | 1 | 1 | 0
15518
3 C 9 E
1 | 0 | 0 | 1] 1 | 1 | 1 | 1]o | 1 | 0 | o] o | 0 | 0 | 0
40768
9 F 4 0

A.4 uint32_t

GDFLIB User's Guide, Rev. 4, 12/2020
68 NXP Semiconductors

4
Appendix A

The uint32_t type is an unsigned 32-bit integer type. It is able to store the variables
within the range <0 ; 4294967295>. Its definition is as follows:

typedef unsigned long uint32 t;
The following figure shows the way in which the data is stored by this type:
Table A-4. Data storage

31 24 23 16 15 87 0
Value Integer
4294967295 F F F F F F F F
2147483648 8 0 0 0 0 0 0 0
55977296 0 3 5 6 2 5 5 0
3451051828 C D B 2 D F 3 4
A5 int8_t

The int8_t type is a signed 8-bit integer type. It is able to store the variables within the
range <-128 ; 127>. Its definition is as follows:

typedef char int8 t;
The following figure shows the way in which the data is stored by this type:
Table A-5. Data storage

7 6 5 4 3 2 1 0
Value Sign Integer
0 1 | 1 | 1 1 | 1 | 1 | 1
127
7 F
1 | 0 | 0 | 0 0 | 0 | 0 | 0
-128
8 0
0 | 0 | 1 | 1 1 | 1 | 0 | 0
60
3 o}
o7 1 | o | o | A R
9 F

GDFLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 69

A
int16_t

A.6 int16_t

The int16_t type is a signed 16-bit integer type. It is able to store the variables within the
range <-32768 ; 32767>. Its definition is as follows:

typedef short intlé t;
The following figure shows the way in which the data is stored by this type:
Table A-6. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer
0o | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1
32767
7 F F F
1 | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | oo | 0 | 0 | 0
-32768
8 0 0 0
0 | 0 | 1 | 1] 1 | 1 | 0 | o | 1 | 0 | 0 | 1] 1 | 1 | 1 | 0
15518
3 C 9 E
1 | 0 | 0 | 1] 1 | 1 | 1 | 1]o | 1 | 0 | o] o | 0 | 0 | 0
-24768
9 F 4 0

A.7 Int32_t

The int32_t type is a signed 32-bit integer type. It is able to store the variables within the
range <-2147483648 ; 2147483647>. Its definition is as follows:

typedef long int32 t;
The following figure shows the way in which the data is stored by this type:
Table A-7. Data storage

31 24 23 16 15 87 0
Value S | Integer
2147483647 7 F F F F F F F
-2147483648 8 0 0 0 0 0 0 0
55977296 0 3 5 6 2 5 5 0
-843915468 C D B 2 D F 3 4

GDFLIB User's Guide, Rev. 4, 12/2020
70 NXP Semiconductors

4
Appendix A

A.8 frac8 t

The frac8_t type is a signed 8-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef char frac8_t;
The following figure shows the way in which the data is stored by this type:
Table A-8. Data storage

7 6 5 4 3 2 1 0
Value Sign Fractional
0 1 | 1 | 1 1 | 1 | 1 | 1
0.99219
7 F
1 | 0 | 0 | 0 0 | 0 | 0 | 0
-1.0
8 0
0 | 0 | 1 | 1 1 | 1 | 0 | 0
0.46875
3 c
1 | 0 | 0 | 1 1 | 1 | 1 | 1
-0.75781
9 F

To store a real number as frac8_t, use the FRACS8 macro.

A.9 frac16 t

The frac16_t type is a signed 16-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef short fraclé t;
The following figure shows the way in which the data is stored by this type:
Table A-9. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value

0.99997

-1.0

Fractional

1|1|1|1

1|1|1|1

F

F

o|o|o|o o|o|o|o

Table continues on the next page...

GDFLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors

71

frac32_t
Table A-9. Data storage (continued)
8 0 0 0
o|o|1|11|1|o|o1|o|o|11|1|1|o
0.47357
3 C 9 E
1|o|o|11|1|1|1o|1|o|o o|o|o|o
-0.75586
9 F 4 0

To store a real number as frac16_t, use the FRAC16 macro.

A.10 frac32_ t

The frac32_t type is a signed 32-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef long frac32 t;
The following figure shows the way in which the data is stored by this type:
Table A-10. Data storage

31 24 23 16 15 87 0
Value S Fractional
0.9999999995 7 F F F F F F F
-1.0 8 0 0 0 0 0 0 0
0.02606645970 0 3 5 6 2 5 5 0
-0.3929787632 C D B 2 D F 3 4

To store a real number as frac32_t, use the FRAC32 macro.

A.11 acci16_t

The accl6_t type is a signed 16-bit fractional type. It is able to store the variables within
the range <-256 ; 256). Its definition is as follows:

typedef short acclé t;

The following figure shows the way in which the data is stored by this type:

GDFLIB User's Guide, Rev. 4, 12/2020
72 NXP Semiconductors

4
Appendix A

Table A-11. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer Fractional
o1|1|11|1|1|111|1|11|1|1|1
255.9921875
7 F F F
1|o|o|o o|o|o|o o|o|o|o o|o|o|o
-256.0
8 0 0 0
o|o|o|o o|o|o|o1|o|o|o o|o|o|o
1.0
0 0 8 0
o t 1111|111]1]o]lofo]o]o]o]o
F F 8 0
o|o|o|o o|1|1|o1|1|1|o o|1|o|1
13.7890625
0 6 E 5
1|1|o|1o|o|1|1o|o|1|o o|1|o|o
-89.71875
D 3 2 4

To store a real number as accl16_t, use the ACC16 macro.

A.12 acc32_ t

The acc32_t type is a signed 32-bit accumulator type. It is able to store the variables
within the range <-65536 ; 65536). Its definition is as follows:

typedef long acc32_t;
The following figure shows the way in which the data is stored by this type:
Table A-12. Data storage

31 24 23 16 15 87

Value S Integer | Fractional

65535.999969

-65536.0

1.0

-1.0

23.789734

Mm|o|m|lo|w| N
U|lo|mn|o|o|m
Wjo|m|lo|o|m
o|m|m|o|o|m
o|m|o|o|o|m
w|lo|lo|lo|o|m
W| —=|o|o|o|m
Olo|lo|o|o|m

-1171.306793

To store a real number as acc32_t, use the ACC32 macro.

GDFLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors

float_t

A.13 float t

The float_t type is a signed 32-bit single precision floating-point type, defined by IEEE
754. 1t is able to store the full precision (normalized) finite variables within the range
<-3.40282 - 1033 ; 3.40282 - 1038) with the minimum resolution of 2723, The smallest
normalized number is =1.17549 - 10738, Nevertheless, the denormalized numbers (with
reduced precision) reach yet lower values, from +1.40130 - 10"% to £1.17549 - 1038, The
standard also defines the additional values:

* Negative zero

* Infinity

e Negative infinity
e Not a number

The 32-bit type is composed of:

* Sign (bit 31)
* Exponent (bits 23 to 30)
e Mantissa (bits O to 22)

The conversion of the number is straighforward. The sign of the number is stored in bit
31. The binary exponent is decoded as an integer from bits 23 to 30 by subtracting 127.
The mantissa (fraction) is stored in bits O to 22. An invisible leading bit (it is not actually
stored) with value 1.0 is placed in front; therefore, bit 23 has a value of 0.5, bit 22 has a
value 0.25, and so on. As a result, the mantissa has a value between 1.0 and 2. If the
exponent reaches -127 (binary 00000000), the leading 1.0 is no longer used to enable the
gradual underflow.

The float_t type definition is as follows:
typedef float float t;
The following figure shows the way in which the data is stored by this type:

Table A-13. Data storage - normalized values

31 24 23 16 15 87 0
Value S Exponent Mantissa

20-22%.227 {0f1 1111110111111 1111111111111 1111

~ 3.40282 - 10% 7 F | 7 F | F F | F F

(20-22.22711[1 1111 110[1 1111111111111 111111111

% -3.40282 - 10% F F | 7 F | F F | F =

Table continues on the next page...

GDFLIB User's Guide, Rev. 4, 12/2020
74 NXP Semiconductors

Appendix A
Table A-13. Data storage - normalized values (continued)
2-126 0|ooooooo1|oooooooooooooooooo 000
~1.17549 . 1038 0 0 | 8 0 | 0 0 | 0
2126 1|ooooooo1|oooooooooooooooo 000
= -1.17549 . 1038 8 0 | 8 0 | 0 0 | 0
1.0 o|o1111111|oooooooooooooooo 000
3 F | 8 0 | 0 0 | 0
1.0 1|o1111111|oooooooooooooooo 000
B F | 8 0 | 0 0 | 0
n o|1ooooooo|1oo1oo1oooo11111 01 1
~ 3.1415927 4 0 | 4 9 | 0 F | B
-20810.086 1|1ooo11o1|o1ooo1o1oo1o1ooo 100
C 6 | A 2 | 9 4 | c
Table A-14. Data storage - denormalized values
31 24 23 16 15 87 0
Value S Exponent Mantissa
0.0 0/0 0 000D0D0D0/00000D000O0DO0O0OO OGO OO 000
0 0 | 0 0 | 0 0 | 0
-0.0 1|oooooooo|oooooooooooooooo 000
8 0 | 0 0 | 0 0 | 0
(1.0-2-23)-2-126o|oooooooo|1111111111111111 111
~1.17549 . 1038 0 0 | 7 F | F F | F
-(1.0-2-23)-2-1261|oooooooo|1111111111111111 111
~-1.17549 - 1038 8 o | 7 F | F Foo F
21,2126 o|oooooooo|1ooooooooooooooo 000
~ 5.87747 - 1039 0 0 | 4 0 | 0 0 | 0
1. 0126 1|oooooooo|1ooooooooooooooo 000
=~ -5.87747 - 103 8 0 | 4 0 | 0 0 | 0
223 . 0126 o|oooooooo|oooooooooooooooo 00 1
~1.40130 - 1045 0 0 | 0 0 | 0 0 | 1
223 0-126 1|oooooooo|oooooooooooooooo 00 1
~-1.40130 - 1045 8 0 | 0 0 | 0 0 | 1

GDFLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors

75

FALSE
Table A-15. Data storage - special values
31 24 23 16 15 87 0
Value S Exponent Mantissa
0 0/|[11111111/00000000000000O0O0O0O0O0O0OO0GO 0O
7 F | 8 0 | 0 0 | 0 0
o0 1|11111111|ooooooooooooooooooooooo
F F | 8 0 | 0 0 | 0 0
Not a number *1T 1111 11 1| non zero
7/F F | 800001 to FFFFFF

The FALSE macro serves to write a correct value standing for the logical FALSE value
of the bool_t type. Its definition is as follows:

#define FALSE ((bool t)0)

#include "mlib.h"
static bool t bval;
void main (void)

bval = FALSE; /* bval = FALSE */

}

A.15 TRUE

The TRUE macro serves to write a correct value standing for the logical TRUE value of
the bool_t type. Its definition is as follows:

#define TRUE ((bool_t)1)

#include "mlib.h"
static bool_t bval;
void main (void)

{

bval = TRUE; /* bVal = TRUE */

GDFLIB User's Guide, Rev. 4, 12/2020

76 NXP Semiconductors

4
Appendix A

A.16 FRACS

The FRACS8 macro serves to convert a real number to the frac8_t type. Its definition is as
follows:

#define FRAC8 (x) ((frac8_t) ((x) < 0.9921875 ? ((x) >= -1 ? (x)*0x80 : 0x80) : O0x7F))

The input is multiplied by 128 (=27). The output is limited to the range <0x80 ; Ox7F>,
which corresponds to <-1.0 ; 1.0-277>.

#include "mlib.h"
static frac8 t f8val;
void main (void)

f8val = FRAC8(0.187); /* f8val = 0.187 */

A.17 FRAC16

The FRAC16 macro serves to convert a real number to the frac16_t type. Its definition is
as follows:

#define FRAC16(x) ((fraclé t) ((x) < 0.999969482421875 ? ((x) >= -1 ? (x)*0x8000 : 0x8000) :
0x7FFF))

The input is multiplied by 32768 (=213). The output is limited to the range <0x8000 ;
0x7FFF>, which corresponds to <-1.0 ; 1.0-215>,

#include "mlib.h"
static fraclé_t flé6Val;
void main (void)

fleval = FRAC16(0.736) ; /* £16Val = 0.736 */

}

A.18 FRAC32

The FRAC32 macro serves to convert a real number to the frac32_t type. Its definition is
as follows:

GDFLIB User's Guide, Rev. 4, 12/2020
NXP Semiconductors 77

A
ACC16

#define FRAC32(x) ((frac32_t) ((x) < 1 ? ((x) »>= -1 ? (x)*0x80000000 : 0x80000000) :
0x7FFFFFFF))

The input is multiplied by 2147483648 (=23!). The output is limited to the range
<0x80000000 ; 0x7FFFFFFF>, which corresponds to <-1.0 ; 1.0-2731>,

#include "mlib.h"
static frac32_t f32val;
void main (void)

f32Val = FRAC32(-0.1735667) ; /* £32Val = -0.1735667 */

}

A.19 ACC16

The ACC16 macro serves to convert a real number to the acc16_t type. Its definition is as
follows:

#define ACCle6 (x) ((acclé_t) ((x) < 255.9921875 ? ((x) >= -256 ? (x)*0x80 : 0x8000) : OxX7FFF))

The input is multiplied by 128 (=27). The output is limited to the range <0x8000 ;
0x7FFF> that corresponds to <-256.0 ; 255.9921875>.

#include "mlib.h"
static acclé_t aléVval;
void main (void)

aléVal = ACC16(19.45627); /* aleévVal = 19.45627 *x/

}

A.20 ACC32

The ACC32 macro serves to convert a real number to the acc32_t type. Its definition is as
follows:

#define ACC32(x) ((acc32_t) ((x) < 65535.999969482421875 ? ((x) >= -65536 ? (x)*0x8000 :
0x80000000) : Ox7FFFFFFF))

The input is multiplied by 32768 (=2!°). The output is limited to the range
<0x80000000 ; 0x7FFFFFFF>, which corresponds to <-65536.0 ; 65536.0-2-15>.

GDFLIB User's Guide, Rev. 4, 12/2020
78 NXP Semiconductors

#include "mlib.h"
static acc32_t a32val;
void main (void)

a32Val = ACC32(-13.654437); /* a32vVal = -13.654437 */

}

GDFLIB User's Guide, Rev. 4, 12/2020

NXP Semiconductors 79

GDFLIB User's Guide, Rev. 4, 12/2020

80

NXP Semiconductors

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

arm

Information in this document is provided solely to enable system and software implementers to use
Freescale products. There are no express or implied copyright licenses granted hereunder to design
or fabricate any integrated circuits based on the information in this document. Freescale reserves the
right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical’ parameters that may be provided in Freescale data
sheets and/or specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for each customer
application by customer's technical experts. Freescale does not convey any license under its patent
rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of
sale, which can be found at the following address: www.freescale.com/salestermsandconditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc. ARM and Cortex
are the registered trademarks of ARM Limited, in EU and/or elsewhere. ARM logo is the trademark of
ARM Limited. All rights reserved. All other product or service names are the property of their
respective owners.

© 2021 NXP B.V.

Document Number CM33FGDFLIBUG
Revision 4, 12/2020

r
4\

http://www.nxp.com
http://www.nxp.com/support
http://www.freescale.com/salestermsandconditions

	Chapter 1​: Library
	Introduction
	Overview
	Data types
	API definition
	Supported compilers
	Library configuration
	Special issues

	Library integration into project (MCUXpresso IDE)
	PowerQuad DSP Coprocessor and Accelerator support
	Library path variable
	Library folder addition
	Library path setup

	Library integration into project (Keil µVision)
	NXP pack installation for new project (without MCUXpresso SDK)
	New project (without MCUXpresso SDK)
	PowerQuad DSP Coprocessor and Accelerator support
	Linking the files into the project
	Library path setup

	Library integration into project (IAR Embedded Workbench)
	New project (without MCUXpresso SDK)
	PowerQuad DSP Coprocessor and Accelerator support
	Library path variable
	Linking the files into the project
	Library path setup

	Chapter 2​: Algorithms in detail
	GDFLIB_FilterExp
	Available versions
	GDFLIB_FILTER_EXP_T_F32
	GDFLIB_FILTER_EXP_T_FLT
	Declaration
	Function use

	GDFLIB_FilterIIR1
	Available versions
	GDFLIB_FILTER_IIR1_T_F32
	GDFLIB_FILTER_IIR1_COEFF_T_F32
	GDFLIB_FILTER_IIR1_T_FLT
	GDFLIB_FILTER_IIR1_COEFF_T_FLT
	Declaration
	Calculation of filter coefficients
	Function use

	GDFLIB_FilterIIR2
	Available versions
	GDFLIB_FILTER_IIR2_T_F32
	GDFLIB_FILTER_IIR2_COEFF_T_F32
	GDFLIB_FILTER_IIR2_T_FLT
	GDFLIB_FILTER_IIR2_COEFF_T_FLT
	Declaration
	Calculation of filter coefficients
	Function use

	GDFLIB_FilterIIR3
	Available versions
	GDFLIB_FILTER_IIR3_T_F32
	GDFLIB_FILTER_IIR3_COEFF_T_F32
	GDFLIB_FILTER_IIR3_T_FLT
	GDFLIB_FILTER_IIR3_COEFF_T_FLT
	Declaration
	Calculation of filter coefficients
	Function use

	GDFLIB_FilterIIR4
	Available versions
	GDFLIB_FILTER_IIR4_T_F32
	GDFLIB_FILTER_IIR4_COEFF_T_F32
	GDFLIB_FILTER_IIR4_T_FLT
	GDFLIB_FILTER_IIR4_COEFF_T_FLT
	Declaration
	Calculation of filter coefficients
	Function use

	GDFLIB_FilterMA
	Available versions
	GDFLIB_FILTER_MA_T_A32
	GDFLIB_FILTER_MA_T_FLT
	Declaration
	Function use

	Appendix A:
	bool_t
	uint8_t
	uint16_t
	uint32_t
	int8_t
	int16_t
	int32_t
	frac8_t
	frac16_t
	frac32_t
	acc16_t
	acc32_t
	float_t
	FALSE
	TRUE
	FRAC8
	FRAC16
	FRAC32
	ACC16
	ACC32

	
	

