MCSDKERPCGSUG

eRPC Getting Started User Guide
Rev. 11 — 27 July 2023

User guide

Document Information
Information Content

Keywords
Abstract

eRPC, Getting Started, Remote Procedure Calls, RPC, Embedded, Multicore

This Getting Started User Guide document lists the steps to use Remote Procedure Calls (RPC)
in embedded multicore microcontrollers (eRPC).

NXP Semiconductors MCSDKERPCGSUG

eRPC Getting Started User Guide

1 Overview

This Getting Started User Guide shows software developers how to use Remote Procedure Calls (RPC) in
embedded multicore microcontrollers (eRPC).

The eRPC documentation is located in the <MCUXpressoSDK _install_dir>/ middleware/multicore/erpc/doc
folder.

2 Create an eRPC application

This section describes a generic way to create a client/server eRPC application:

1. Design the eRPC application: Decide which data types are sent between applications, and define
functions that send/receive this data.

2. Create the IDL file: The IDL file contains information about data types and functions used in an eRPC
application, and is written in the IDL language.

3. Use the eRPC generator tool: This tool takes an IDL file and generates the shim code for the client and
the server-side applications.

4. Create an eRPC application:

a. Create two projects, where one project is for the client side (primary core) and the other project is for the
server side (secondary core).

b. Add generated files for the client application to the client project, and add generated files for the server
application to the server project.

c. Add infrastructure files.
d. Add user code for client and server applications.
e. Set the client and server project options.

5. Run the eRPC application: Run both the server and the client applications. Make sure that the server has
been run before the client request was sent.

A specific example follows in the next section.

3 eRPC example

This section shows how to create an example eRPC application called “Matrix multiply”, which implements one
eRPC function (matrix multiply) with two function parameters (two matrices). The client-side application calls
this eRPC function, and the server side performs the multiplication of received matrices. The server side then
returns the result.

For example, use the NXP MIMXRT1170-EVK board as the target dual-core platform, and the IAR Embedded
Workbench for ARM (EWARM) as the target IDE for developing the eRPC example.

* The primary core (CM7) runs the eRPC client.
* The secondary core (CM4) runs the eRPC server.
* RPMsg-Lite (Remote Processor Messaging Lite) is used as the eRPC transport layer.

The “Matrix multiply” application can be also run in the multi-processor setup. In other words, the eRPC client
running on one SoC comunicates with the eRPC server that runs on anothe SoC, utilizing different transport
channels. It is possible to run the board-to-PC example (PC as the eRPC server and a board as the eRPC
client, and vice versa) and also the board-to-board example. These multiprocessor examples are prepared for
selected boards only.

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 11 — 27 July 2023

2/27

NXP Semiconductors MCSDKERPCGSUG

eRPC Getting Started User Guide

Table 1. File locations

Multicore application source and project <MCUXpressoSDK install_dir>/boards/evkmimxrt1170/multicore_examples/
files erpc_matrix_multiply _romsg/

Multiprocessor application source and <MCUXpressoSDK install_dir>/boards/<board_name>/multiprocessor_
project files examples/erpc_client_matrix_multiply _<transport_layer>/

<MCUXpressoSDK_install_dir>/boards/<board_name>/multiprocessor _
examples/erpc_server_matrix_multiply _<transport_layer>/

eRPC source files <MCUXpressoSDK _install_dir>/middleware/multicore/erpc/

RPMsg-Lite source files <MCUXpressoSDK _install_dir>/middleware/multicore/rpmsg_lite/

3.1 Designing the eRPC application

The matrix multiply application is based on calling single eRPC function that takes 2 two-dimensional arrays as
input and returns matrix multiplication results as another 2 two-dimensional array. The IDL file syntax supports
arrays with the dimension length set by the number only (in the current eRPC implementation). Because of this,
a variable is declared in the IDL dedicated to store information about matrix dimension length, and to allow easy
maintenance of the user and server code.

For a simple use of the two-dimensional array, the alias name (new type definition) for this data type has is
declared in the IDL. Declaring this alias name ensures that the same data type can be used across the client
and server applications.

3.2 Creating the IDL file

The created IDL file is located in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_
multiply/service/erpc_matrix_multiply.erpc

The created IDL file contains the following code:

program erpc matrix multiply

/*! This const defines the matrix size. The value has to be the same as the
Matrix array dimension. Do not forget to re-generate the erpc code once the
matrix size is changed in the erpc file */

const int32 matrix size = 5;

/*! This is the matrix array type. The dimension has to be the same as the
matrix size const. Do not forget to re-generate the erpc code once the
matrix size is changed in the erpc file */

type Matrix = int32[matrix size] [matrix size];

interface MatrixMultiplyService ({

erpcMatrixMultiply (in Matrix matrixl, in Matrix matrix2, out Matrix result matrix) ->
void

}

Details:

* The IDL file starts with the program name (erpc_matrix_multiply), and this program name is used in the
naming of all generated outputs.

* The declaration and definition of the constant variable named matrix_size follows next. The matrix_size
variable is used for passing information about the length of matrix dimensions to the client/server user code.

* The alias name for the two-dimensional array type (Matrix) is declared.

* The interface group MatrixMultiplyService is located at the end of the IDL file. This interface group contains
only one function declaration erpcMatrixMultiply.

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 11 — 27 July 2023

3/27

NXP Semiconductors MCSDKERPCGSUG

eRPC Getting Started User Guide

* As shown above, the function’s declaration contains three parameters of Matrix type: matrix1 and matrix2 are
input parameters, while result_matrix is the output parameter. Additionally, the returned data type is declared
as void.

When writing the IDL file, the following order of items is recommended:

1. Program name at the top of the IDL file.
2. New data types and constants declarations.
3. Declarations of interfaces and functions at the end of the IDL file.

3.3 Using the eRPC generator tool

Table 2. eRPC generator application file locations

Windows OS <MCUXpressoSDK _install_dir>/middleware/multicore/tools/erpcgen/Windows

Linux OS <MCUXpressoSDK _install_dir>/middleware/multicore/tools/erpcgen/Linux_x64
<MCUXpressoSDK _install_dir>/middleware/multicore/tools/erpcgen/Linux_x86

Mac OS <MCUXpressoSDK _install_dir>/middleware/multicore/tools/erpcgen/Mac

The files for the “Matrix multiply” example are pre-generated and already a part of the application projects. The
following section describes how they have been created.

* The easiest way to create the shim code is to copy the erpcgen application to the same folder where the IDL
file (* . erpc) is located; then run the following command:
erpcgen <IDL file>.erpc

* In the “Matrix multiply” example, the command should look like:
erpcgen erpc matrix multiply.erpc

Additionally, another method to create the shim code is to execute the eRPC application using input commands:

» “?”"—help” — Shows supported commands.
» “-0 <filePath>"/"—output<filePath>" — Sets the output directory.

For example,

<path to erpcgen>/erpcgen -o <path to output>
<path to IDL>/<IDL file name>.erpc

For the “Matrix multiply” example, when the command is executed from the default erpcgen location, it looks
like:

erpcgen -o

./..1../1../../boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service ../../../../../
boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service/erpc_matrix_multiply.e
rpc

In both cases, the following four files are generated into the <MCUXpressoSDK _install_dir>/boards/
evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_multiply/service folder.

* erpc_matrix multiply.h

* erpc matrix multiply client.cpp
* erpc matrix multiply server.h

* erpc_matrix multiply server.cpp

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 11 — 27 July 2023

427

NXP Semiconductors MCSDKERPCGSUG

eRPC Getting Started User Guide

For multiprocessor examples, the eRPC file and pre-generated files can be found in the <MCUXpressoSDK_
install_dir>/boards/<board_name>/multiprocessor_examples/erpc_common/erpc_matrix_multiply/service folder.

For Linux OS users:

* Do not forget to set the permissions for the eRPC generator application.
* Run the application as . /erpcgen... instead of as erpcgen

3.4 Create an eRPC application

This section describes a generic way to create a client/server eRPC application:

1. Design the eRPC application: Decide which data types are sent between applications, and define
functions that send/receive this data.
2. Create the IDL file: The IDL file contains information about data types and functions used in an eRPC
application, and is written in the IDL language.
3. Use the eRPC generator tool: This tool takes an IDL file and generates the shim code for the client and
the server-side applications.
4. Create an eRPC application:
a. Create two projects, where one project is for the client side (primary core) and the other project is for the
server side (secondary core).
b. Add generated files for the client application to the client project, and add generated files for the server
application to the server project.
c. Add infrastructure files.
d. Add user code for client and server applications.
e. Set the client and server project options.
5. Run the eRPC application: Run both the server and the client applications. Make sure that the server has
been run before the client request was sent.

A specific example follows in the next section.

3.4.1 Multicore server application

The “Matrix multiply” eRPC server project is located in the following folder:

<MCUXpressoSDK install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply rpomsg/cm4/
iar/

The project files for the eRPC server have the cm4 suffix.

3.4.1.1 Server project basic source files

The startup files, board-related settings, peripheral drivers, and utilities belong to the basic project source files
and form the skeleton of all MCUXpresso SDK applications. These source files are located in:

e <MCUXpressoSDK install_dir>/devices/<device>
* <MCUXpressoSDK install_dir>/boards/<board _name>/multicore_examples/<example _name>/

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 11 — 27 July 2023

5/27

NXP Semiconductors MCSDKERPCGSUG

eRPC Getting Started User Guide

@ erpc_matrix_multiply_rpmsg_cmd - |AR Embedded Workbench IDE - Arm 8.30.1
File Edit View Project CMSIS-DAP Tools Window Help

Workspace * 0 X

debug

Files
El @ erpc_matrix_multiply_rpms___
=1 & hoard
board.c
— Bl hoard h
clock_canfig.c
— B clock_canfigh
ded.c
F— Qdecdh
pin_mmux.c.
[pin_musxch
H CMSIS

|-= & drivers

[21 fs]_anatop_ai.c
— [Dfsl_anatop_aih
[Elfsl_cache.c

— [fsl_cacheh
Elfsl_clackc

F— @fsl_clockh

[l fsl_common.c

— [fsl_commaon.h

[fsl_common_arm.c
F— [fsl_commaon_arm b
[£1fs]_dcde.c

— Ofsl_dcdch

Bl fsl_gpio.c

— Efsl_gpic.h

F— Rfsl_iomuxch
Elfsl_lpuarc

sl_pmu.c
L— R fsl_pmuh
M erpc
B evkmimt] 170
B mcmar
M rpmsg_lite
B snurce
&1 8 startup
[startup_MIMXRT1176_cm...
&1 utilities
Elfsl_asserc
[H fsl_debug_consolec
— Bfsl_debug_consoleh
Rsl_strc
L— Rfsl_strh
B xip
H Output

erpc_matrix_multiply_rpmsg_cm4

Figure 1. Server project basic source files

3.4.1.2 Server related generated files

The server-related generated files are:

* erpc matric multiply.h
* erpc matrix multiply server.h
* erpc_matrix multiply server.cpp

The server-related generated files contain the shim code for functions and data types declared in the IDL file.
These files also contain functions for the identification of client requested functions, data deserialization, calling

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. Al rights reserved.

User guide Rev. 11 — 27 July 2023

6/27

NXP Semiconductors MCSDKERPCGSUG

eRPC Getting Started User Guide

requested function’s implementations, and data serialization and return, if requested by the client. These shim
code files can be found in the following folder:

<MCUXpressoSDK install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_
multiply/service/

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 11 — 27 July 2023

7127

NXP Semiconductors MCSDKERPCGSUG

eRPC Getting Started User Guide

@ erpc_mmatrix_multiply_rpmsg_cmd - AR Embedded Workbench IDE - Arm 9.30.1
File Edit View Project CMSIS-DAP Tools Window Help

Dy ok u-"in =
Workspace b

debug

Files

= @@ erpc_matrix_multiply_rpmsg_cmd -d___
M hoard

i CMSIS

B component

M device

M doc

1 W erpc

Bl infra

M port

1 W service

— [erpo_matrix_multiphy.erpc
erpc_matrix_multiphy.h

[] erpc_mattix_multiphy_serser.cpp
—] erpc_matrix_multiphy_server.h
M setup

Bl fransports

B evkmirmxt1 1710

B momgr

M rpmsg_lite

M source

B startup

W utilities

W xip

B Output

Figure 2. Server-related generated files

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. Al rights reserved.

User guide Rev. 11 — 27 July 2023

81/27

NXP Semiconductors MCSDKERPCGSUG

eRPC Getting Started User Guide

3.4.1.3 Server infrastructure files

The eRPC infrastructure files are located in the following folder:
<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/erpc_c

The erpc_c folder contains files for creating eRPC client and server applications in the C/C++ language. These
files are distributed into subfolders.

* The infra subfolder contains C++ infrastructure code used to build server and client applications.

— Four files, erpc_server.hpp, erpc_server.cpp, erpc_simple server.hpp, and
erpc_simple server.cpp, are used for running the eRPC server on the server-side applications. The
simple server is currently the only implementation of the server, and its role is to catch client requests,
identify and call requested functions, and send data back when requested.

— Three files (erpc_codec.hpp, erpc basic codec.hpp, and erpc basic codec.cpp) are used for
codecs. Currently, the basic codec is the initial and only implementation of the codecs.

— The erpc common. hpp file is used for common eRPC definitions, typedefs, and enums.
—The erpc_manually constructed.hpp file is used for allocating static storage for the used objects.
— Message buffer files are used for storing serialized data: erpc_message buffer.h and
erpc_message buffer.cpp.
—The erpc_transport.h file defines the abstract interface for transport layer.
» The port subfolder contains the eRPC porting layer to adapt to different environments.
—erpc_port.h file contains definition of erpc malloc () and erpc free () functions.
—erpc_port stdlib.cpp file ensures adaptation to stdlib.
—erpc_config internal.h internal erpc configuration file.

* The setup subfolder contains a set of plain C APlIs that wrap the C++ infrastructure, providing client and
server init and deinit routines that greatly simplify eRPC usage in C-based projects. No knowledge of C++ is
required to use these APIs.

—The erpc_server setup.handerpc server setup.cpp files needs to be added into the “Matrix
multiply” example project to demonstrate the use of C-wrapped functions in this example.

—The erpc_transport setup.hand erpc setup rpmsg lite remote.cpp files needs to be added
into the project in order to allow the C-wrapped function for transport layer setup.

—The erpc_mbf setup.hand erpc setup mbf rpmsg.cpp files needs to be added into the project in
order to allow message buffer factory usage.

* The transports subfolder contains transport classes for the different methods of communication supported
by eRPC. Some transports are applicable only to host PCs, while others are applicable only to embedded or
multicore systems. Most transports have corresponding client and server setup functions in the setup folder.
— RPMsg-Lite is used as the transport layer for the communication between cores,

erpc_rpmsg_lite_base_transport.hpp,erpc_rpmsg_lite_transport.hpp,and
erpc_rpmsg lite transport.cpp files need to be added into the server project.

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 11 — 27 July 2023

9/27

NXP Semiconductors

MCSDKERPCGSUG

eRPC Getting Started User Guide

File Edit View Project CMSIS-DAP Tools Window Help
DO R B [
Waorkspace * 0 X
debug ~
Files &~
El @ erpc_matrix_multiply_rpmsg_cm4 - debug +

M board

I CHMEIS

=
=
=
_—E

Figure 3. Server infrastructure files

[erpc_basic_codec.cpp

— Dlerpc_basic_codechpp

— Dlerpc_client_server_common.hpp
— Dlerpc_codechpp

— K erpc_commonh

[l erpc_crclB.opp

— Dlerpc_crcibhop

— Dlerpc_manually_constructad hpp
[erpc_message_buffer.cpp
— Dlerpc_message_bufferhpp
[l erpc_message_loggers.cpp
— DClerpc_message_loggers.hpp
[l erpc_pre_post_action.cpp
— [l erpc_pre_post_actionh
ErIC_server.cpp

— Dlerpc_server hpp

[erpc_simple_senser.cpp
— Dlerpc_simple_senverhpp
— Dlerpc_static_queuehpp

— DClerpc_transpaorthpp

L — [erpc_wersionh

=2 & port

F— [l erpc_config_internal.h

— [l erpc_endianness_agnostic_example.h
— [l erpc_endisnness_undefined.h

— klerpc_porth

[erpe_port_stdlib.cpp

L — [erpc_setup_extensions.h

B service
2 & setup

F— [l ermc_mbf_setup.h

[erpc_serer_setup.cpp

F— [l erpc_server_setup.h

[erpe_setup_mbf_rpmsg.cpp

[erpc_setup_rpmsg_lite_remate.cpp
L — [erpc_transport_setup.h

L1 8 transports

— Dlerpc_pmsg_lite_base_transporthpp
[erpc_rpmsg_lite_transport.opp

L— Derpc_rpmsg_lite_transport hpp

B evkmirmart] 170

M mcmgr

M rpmsg_lite

B source

erpc_matrix_multiply_rpmsg_cmd4

3.4.1.4 Server multicore infrastructure files

Because of the RPMsg-Lite (transport layer), it is also necessary to include RPMsg-Lite related files, which are

in the following folder:

<MCUXpressoSDK_install_dir>/middleware/multicore/romsg_lite/

The multicore example applications also use the Multicore Manager software library to control the secondary
core startup and shutdown. These source files are located in the following folder:

<MCUXpressoSDK__install_dir>/middleware/multicore/mcmgr/

MCSDKERPCGSUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 11 — 27 July 2023

10/27

NXP Semiconductors

MCSDKERPCGSUG

eRPC Getting Started User Guide

@ erpc_matrix_multiply_rpmsg_cmd - [AR Embedded Workbench IDE - Arm 9.

File Edit WView Project CMSIS-DAP Tools Window Help

DoR@ = &0 OC

Workspace v O X

debug it |

Files o
El @ erpc_matrix_multiply_rpmsg_cm4 - debug L
M board
l CMSIS

M companent
B device

B evkmirmt] 170
E1 8 rmcmgr
mCmgr.c
F— [mcmar.h
F— [memgr_intemal_core_apih
mcmgr_internal_core_api_imxt1170.c
mecmgr_mu_internal.c
1 8 rpmisn_lite
£1 8 camman
lliste
HE M includa
E1 B ervironment
B b
— R rpmsg_env_specifich

HE1 8 platform
L3 Wl irnwrt1170

— R rpmsg_platiorm h
— Elllisth
F— [l rpmeg_compilerh
F— [rpmeg_default_config.h
F— B rpmsg_envh
F— [rpmsg_liteh
F— Elrpmsg_nsh
— klvirtio_ting.h
L— Blwirtqueue.h
&l B rpmsg_lite
£l M poring
-8 & erviranment
| rpmsg_env_bim.c
L3 & platiorm

B imert1 170
pmsg_lite.c
rprnsg_ns.c
== B virtio

] wirtqueus.c
M source
H startup
B utilities
B xip
= Output

erpc_matrix_multiply_rpmsg_cm4

Figure 4. Server multicore infrastructure files

3.4.1.5 Server user code

The server’s user code is stored in the main corel. c file, located in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply _rpomsg/cm4

Themain corel.c file contains two functions:

* The main() function contains the code for the target board and eRPC server initialization. After the
initialization, the matrix multiply service is added and the eRPC server waits for client’s requests in the while

loop.

* The erpcMatrixMultiply() function is the user implementation of the eRPC function defined in the IDL file.

MCSDKERPCGSUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. Al rights reserved.

User guide

Rev. 11 — 27 July 2023

111727

NXP Semiconductors MCSDKERPCGSUG

eRPC Getting Started User Guide

* There is the possibility to write the application-specific eRPC error handler. The eRPC error
handler of the matrix multiply application is implemented in the erpc_error handler.hand
erpc_error handler.cpp files.

The eRPC-relevant code is captured in the following code snippet:

/* erpcMatrixMultiply function user implementation */
void erpcMatrixMultiply (const Matrix *matrixl, const Matrix *matrix2, Matrix
*result matrix)

{
}

int main ()

{

/* RPMsg-Lite transport layer initialization */

erpc_transport t transport;

transport = erpc transport rpmsg lite remote init(src, dst, (void*)startupData,
ERPC_TRANSPORT RPMSG LITE LINK ID, SignalReady, NULL);

/* MessageBufferFactory initialization */
erpc_ mbf t message buffer factory;
message buffer factory = erpc mbf rpmsg init (transport):;

/* eRPC server side initialization */
erpc_server_ t server;
server = erpc server init (transport, message buffer factory);

/* Adding the service to the server */
erpc_service t service = create MatrixMultiplyService service();
erpc_add service to server (server, service);

while (1)
{
/* Process eRPC requests */
erpc_status t status = erpc server poll (server);
/* handle error status */
if (status != kErpcStatus_ Success)
{
/* print error description */
erpc_error handler (status, 0);

Except for the application main file, there are configuration files for the RPMsg-Lite (rpmsg config.h)
and eRPC (erpc_config.h), located in the <MCUXpressoSDK _install_dir>/boards/evkmimxrt1170/
multicore_examples/ erpc_matrix_multiply rpmsg folder.

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 11 — 27 July 2023

12/ 27

NXP Semiconductors MCSDKERPCGSUG

eRPC Getting Started User Guide

@ erpc_matriz_multiply_rpmsg_crmd - |AR Embedded Workbench IDE - Arm 9.30.1
File Edit View Project CMSIS-DAP Tools Window Help

N D = WO OC g

Workspace w* I

x
|del:nug V|
Files o
= @ erpc_matrix_multiply_rpmsg_cm4 - debuq o

M board

B CMSIS

Hl component
H device

M doc

M erpc

B evkmimt1170

B momgr

B rpmso_ite

21 M source

F—) erpe_config.h

[] erpc_error_handler.cpp
I— k] erpc_error_handlerh
main_carel.c

L— &) rpmsg_configh

B startup

M utilities

Bl xip

B Output

erpc_matrix_multiply_rpmsg_cmd

Figure 5. Server user code

3.4.2 Multicore client application

The “Matrix multiply” eRPC client project is located in the following folder:

<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply _rpmsg/cm7/
iar/

Project files for the eRPC client have the _cm7 suffix.

3.4.2.1 Client project basic source files

The startup files, board-related settings, peripheral drivers, and utilities belong to the basic project source files
and form the skeleton of all MCUXpresso SDK applications. These source files are located in the following
folders:

* <MCUXpressoSDK install_dir>/devices/<device>
* <MCUXpressoSDK install_dir>/boards/<board_name>/multicore _examples/<example_name>/

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. Al rights reserved.

User guide Rev. 11 — 27 July 2023

137127

NXP Semiconductors MCSDKERPCGSUG

eRPC Getting Started User Guide

@ erpc_matrix_multiply_rpmsg_cm7 - Master - |AR Embedded Workbench IDE - Arm 9.30.1
File Edit View Project CMSIS-DAP Tools Window Help

Workspace * 0 X

flexspi_nor_debug

Files

&1 & hoard
board.c
— B boardh
clock_canfig.c
— B clock_canfigh
ded.c
F— Rdcdh
pin_mmux.c.
L— B pin_muxh
B CMSIS
M companent
M device
B doc
|-= & drivers
fsl_anatop_ai.c
B fsl_anatop_ai h
fzl_cache.c
fzl_cache h
fsl_clock.c
fsl_clack h
[l fsl_comman.c
1 fs|_commaon.h
fsl_common_arm.c
Bl fsl_commaon_arm.h
Elfsl_dcde.c
Elfsl_dedch
B fsl_gpio.c
R fsl_gpio.h
fsliomuxc.h
B sl_lpuarc
& fsl_lpuarth
B fsl_mu.c
Bl fsl_mu.h
Elfel_prmu.c
R fsl_pmu.h
M erpc
B evkmimt] 170
B mcmar
M rpmsg_lite
B snurce
&1 8 startup
[startup_MIMXRT1176_cm...
&1 utilities
B fsl_asserc
& fsl_debug_consolec
— R fsl_debug_consoleh
Rfsl_strc
L— Rifsl_strh
B xip
H Output

|i|ﬂ|i|‘!|!|i|!‘!|!|i

erpc_matrix_multiply_rpmsg_cm?

Figure 6. Client application

3.4.2.2 Client-related generated files

The client-related generated files are:

* erpc_matric multiply.h
* erpc matrix multiply client.cpp

These files contain the shim code for the functions and data types declared in the IDL file. These functions
also call methods for codec initialization, data serialization, performing eRPC requests, and de-serializing
outputs into expected data structures (if return values are expected). These shim code files can be found in
the <MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_common/erpc_matrix_
multiply/service/ folder.

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. Al rights reserved.

User guide Rev. 11 — 27 July 2023

1427

NXP Semiconductors MCSDKERPCGSUG

eRPC Getting Started User Guide

@ erpc_matrix_multiply_rpmsg_cm? - Master - |AR Embedded Workbench |DE - Arm 9.30.1
File Edit View Project CMSIS-DAP Tools Window Help

.

X

Waorkspace w 0
Hlexzpl_nor_debug o
Files e

B @ erpc_matrix_multiply_rpmsg_cm? - flexsp_.. +
M board

B CWSIS

B component

B device

M doc

1 W erpc

M infra

M port

—E W service

— [erpc_matrix_multiphy.erpc
— [erpc_matrix_multiphy.h
erpc_matrx_multiply_client.cpp
M setup

Bl transports

B evlmimert1170

B mormgr

B rpmsg_lite

Bl source

M startup

B utilities

Ml xip

B Dutput

erpc_matnx_multiply_rpmsg_cm/

Figure 7. Client-related generated files

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. Al rights reserved.

User guide Rev. 11 — 27 July 2023

15/27

NXP Semiconductors MCSDKERPCGSUG

eRPC Getting Started User Guide

3.4.2.3 Client infrastructure files

The eRPC infrastructure files are located in the following folder:
<MCUXpressoSDK_install_dir>/middleware/multicore/erpc/erpc_c

The erpc_c folder contains files for creating eRPC client and server applications in the C/C++ language. These
files are distributed into subfolders.

* The infra subfolder contains C++ infrastructure code used to build server and client applications.

* Twofiles, erpc_client manager.hand erpc client manager.cpp, are used for managing the client-
side application. The main purpose of the client files is to create, perform, and release eRPC requests.

* Three files (erpc_codec.hpp, erpc _basic codec.hpp, and erpc_basic codec.cpp) are used for
codecs. Currently, the basic codec is the initial and only implementation of the codecs.

* erpc_common. h file is used for common eRPC definitions, typedefs, and enums.
* erpc_manually constructed.hpp file is used for allocating static storage for the used objects.

* Message buffer files are used for storing serialized data: erpc_message buffer.hpp and
erpc_message buffer.cpp.

* erpc_transport.hpp file defines the abstract interface for transport layer.
The port subfolder contains the eRPC porting layer to adapt to different environments.

* erpc_port.h file contains definition of erpc_malloc() and erpc_free() functions.
* erpc_port stdlib.cpp file ensures adaptation to stdlib.
* erpc_config internal.h internal eRPC configuration file.

The setup subfolder contains a set of plain C APIs that wrap the C++ infrastructure, providing client and server
init and deinit routines that greatly simplify eRPC usage in C-based projects. No knowledge of C++ is required
to use these APIs.

* erpc_client setup.handerpc client setup.cpp files needs to be added into the “Matrix multiply”
example project to demonstrate the use of C-wrapped functions in this example.

* erpc_transport setup.h anderpc setup rpmsg lite master.cpp files needs to be added into
the project in order to allow C-wrapped function for transport layer setup.

* erpc_mbf setup.handerpc setup mbf rpmsg.cpp files needs to be added into the project in order to
allow message buffer factory usage.

The transports subfolder contains transport classes for the different methods of communication supported
by eRPC. Some transports are applicable only to host PCs, while others are applicable only to embedded or
multicore systems. Most transports have corresponding client and server setup functions, in the setup folder.

* RPMsg-Lite is used as the transport layer for the communication between cores,
erpc_rpmsg lite base transport.hpp, erpc rpmsg lite transport.hpp, and
erpc_rpmsg lite transport.cpp files needs to be added into the client project.

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 11 — 27 July 2023

16 /27

NXP Semiconductors MCSDKERPCGSUG

eRPC Getting Started User Guide

@ erpc_matrix_multiply_rpmsg_cm7 - Master - AR Embedded Workbench IDE - Arm 8.30.1
File Edit View Project CMSIS-DAP Tools Window Help

ke = cED OC

Workspace * 0 X

-(Q_

flexspi_nor_debug ~

Files - Il
El @ erpc_matrix_mulliply_rpmsg_cm? - flexspi_n_.. +
M board

o CMSIS

H companent

M device

M doc

& drivers

= & erpc

&1 o infra

[erpc_basic_codec.cpp

— Derpc_basic_codechpp

[erpe_client_manager.cpp

— [k erpe_client_managerh

— O erpc_client_server_common hpp
— D erpc_codechpp

— K erpc_common.h

[erpc_crclb.ocpp

— Derpc_crclbhpp

— D erpe_manually_constructed hpp

[erpe_message_buffer.cpp

— [erpc_message_butferhpp

[erpe_message_loggers.cpp

— D erpc_message_loggers hpp

[erpe_pre_post_action.cpp

— & erpc_pre_post_action h

— Derpc_statlc_queue.hpp

— Dlerpc_transporthpp

L— B erpc_versionh

e & port

— Kl erpc_config_internalh

— k! erpc_endianness_agnostic_example.h
— B erpc_endianness_undefined.h

— K empc_porth

[erpc_port_stdliib.cpp

— B erpc_setup_extensions.h

M zarvice

e & setup

[erpc_client_setup.cpp

— K erpc_client_setup h

F— k) erpc_mbf_setup.h

[erpc_setup_mbi_rpmsg.cpp

[erpc_setup_rpmsg_lite_master.cpp
— [erpc_transport_setup.h

=N Jtranspors
— Oerpc_rpmsg_lite_hase_transporthpp
[erpc_rpmsg_lite_transportcpp

L— D erpc_rpmsg_lite_transparthpp

B evkmimxrt! 170

H memar

M rprsg_lite

M zource

M startup

 utilities v

erpc_matrix_multiplp_rpmsg_cm?

Figure 8. Client infrastructure files

3.4.2.4 Client multicore infrastructure files

Because of the RPMsg-Lite (transport layer), it is also necessary to include RPMsg-Lite related files, which are
in the following folder:

<MCUXpressoSDK install_dir>/middleware/multicore/romsg_lite/

The multicore example applications also use the Multicore Manager software library to control the secondary
core startup and shutdown. These source files are located in the following folder:

<MCUXpressoSDK install_dir>/middleware/multicore/mcmgr/

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. Al rights reserved.

User guide Rev. 11 — 27 July 2023

17127

NXP Semiconductors MCSDKERPCGSUG

eRPC Getting Started User Guide

@ erpc_matrix_multiply_rpmsg_cm7 - Master - |AR Embedded Workbench IDE - Arm 9.30.1
File Edit WView Project CMSIS-DAP Tools Window Help
T 7

i@ = cED OC

Workspace * o X

.(Q_

flexspi_nor_debug w

Files o
El @ erpc_matrix_multiply_rpmsg_cm? - flexspi_nor_... +
M baoard
B CMSIS
M companent
M dlevice
B cloc
B drivers
M erpo
B evkmirmt] 170
E1 8 rmcmgr
MCmgr.c
F— [memar.h
F— [memgr_intemal_core_apih
mcmgr_internal_core_api_imxt1170.c
mecmgr_mu_internal.c
1 8 rpmisn_lite
1 8 comman
lliste
HE M includa
E1 B ervironment
La s bm
— R rpmsg_env_specifich
HE1 B platform
L3 Wl irnwrt1170
— R rpmsg_platiorm h
— [l llisth
F— [kl rpmeg_compilerh
— k] rpmsg_default_config.h
F— Elrpmsg_envh
F— K rpmsg_liteh
F— K rpmsg_nsh
— klvirtio_ting.h
L— Klwirtqueue.h
&l B rpmsg_lite
£l M poring
-8 & erviranment
| rpmsg_env_bim.c
L3 & platiorm
B imert1 170
pmsg_lite.c
rpInsg_ns.c
La I
] virtqueue.c
M source
H startup
B utilities
B xip
= Output

erpc_matrix_multiply_rpmsg_cm7

Figure 9. Client multicore infrastructure files

3.4.2.5 Client user code

The client’s user code is stored in the main_core0.c file, located in the following folder:
<MCUXpressoSDK_install_dir>/boards/evkmimxrt1170/multicore_example/erpc_matrix_multiply _romsg/cm7
Themain coreO0.c file contains the code for target board and eRPC initialization.

* After initialization, the secondary core is released from reset.
* When the secondary core is ready, the primary core initializes two matrix variables.
* The erpcMatrixMultiply eRPC function is called to issue the eRPC request and get the result.

It is possible to write the application-specific eRPC error handler. The eRPC error handler of the matrix multiply
application is implemented in erpc_error handler.hand erpc_error handler.cpp files.

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. Al rights reserved.

User guide Rev. 11 — 27 July 2023

181727

NXP Semiconductors MCSDKERPCGSUG

eRPC Getting Started User Guide

The matrix multiplication can be issued repeatedly, when pressing a software board button.

The eRPC-relevant code is captured in the following code snippet:

extern bool g erpc error occurred;

/* Declare matrix arrays */
Matrix matrixl = {0}, matrix2 = {0}, result matrix = {0};

/* RPMsg-Lite transport layer initialization */
erpc_transport t transport;

transport = erpc transport rpmsg lite master init(src, dst,
ERPC_TRANSPORT RPMSG LITE LINK ID);

/* MessageBufferFactory initialization */
erpc_mbf t message buffer factory;
message buffer factory = erpc mbf rpmsg init (transport);

/* eRPC client side initialization */
erpc_client t client;
client = erpc client init (transport, message buffer factory);

/* Set default error handler */
erpc_client set error handler(client, erpc error handler);

while (1)

{
/* Invoke the erpcMatrixMultiply function */
erpcMatrixMultiply (matrixl, matrix2, result matrix);

/* Check if some error occured in eRPC */
if (g _erpc error occurred)
{

/* Exit program loop */

break;

}

Except for the application main file, there are configuration files for the RPMsg-Lite (rpmsg config.h)and
eRPC (erpc_config.h), located in the following folder:

<MCUXpressoSDK install_dir>/boards/evkmimxrt1170/multicore_examples/erpc_matrix_multiply romsg

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 11 — 27 July 2023

19/27

NXP Semiconductors MCSDKERPCGSUG

eRPC Getting Started User Guide

e

File Edit WView Project CMSIS-DAP Tools Window Help

e~ - = TN ©

Workspace w O X

flexspi_nor_debug ~

Files o
B @ erpc_matrix_multiply_rpmsg_cm? - flexspi_nor_... +
M board
B CMSIS
B component
M clevice
B doc
H dtivers
Herpo
B evkmirmt] 170
M rmcmar
M rprsg_lite
& i source
[erpc_canfigh
[erpc_error_handler.cpp
— B erpc_eror_handlerh
main_corel.c
— Rlrpmsg_config.h
M startup
H utilities
B xip
B Output

erpc_matrix_multiply_rpmsg_cm7

Figure 10. Client user code

3.4.3 Multiprocessor server application

The “Matrix multiply” eRPC server project for multiprocessor applications is located in the <MCUXpressoSDK _

install_dir>>/boards/<board_name>/multiprocessor_examples/ erpc_server_matrix_multiply <transport layer>
folder.

Most of the multiprocessor application setup is the same as for the multicore application. The multiprocessor
server application requires server-related generated files (server shim code), server infrastructure files, and
the server user code. There is no need for server multicore infrastructure files (MCMGR and RPMsg-Lite). The

RPMsg-Lite transport layer is replaced either by SPI or UART transports. The following table shows the required
transport-related files per each transport type.

Table 3. Transport-related eRPC files for the server side application

SPI <eRPC base directory>/erpc_c/setup/erpc_setup (d)spi slave.cpp
<eRPC base directory>/erpc c/transports/erpc (d)spi slave
transport.hpp
<eRPC base directory>/erpc_c/transports/erpc (d)spi slave
transport.cpp

UART

<eRPC base directory>/erpc c/setup/erpc setup uart cmsis.cpp
<eRPC base directory>/erpc c/transports/erpc uart cmsis_
transport.hpp

<eRPC base directory>/erpc c/transports/erpc uart cmsis
transport.cpp

3.4.3.1 Server user code

The server’s user code is stored in the main server.c file, located in the <MCUXpressoSDK_install_dir>/
boards/ <board _name>/multiprocessor_examples/erpc_server_matrix_multiply <transport_layer>/folder.

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 11 — 27 July 2023

20/27

NXP Semiconductors

MCSDKERPCGSUG

eRPC Getting Started User Guide

The eRPC-relevant code with UART as a transport is captured in the following code snippet:

/* erpcMatrixMultiply function user implementation */

void erpcMatrixMultiply (Matrix matrixl, Matrix matrix2, Matrix result matrix)

{
}

int main ()

{

/* UART transport layer initialization, ERPC_DEMO UART is the structure of CMSIS UART

driver operations */
erpc_transport t transport;

transport = erpc transport cmsis uart init ((void *)&ERPC DEMO UART) ;

/* MessageBufferFactory initialization */
erpc_mbf t message buffer factory;
message buffer factory = erpc mbf dynamic init();

/* eRPC server side initialization */
erpc_server t server;

server = erpc server init (transport, message buffer factory);

/* Adding the service to the server */

erpc_service t service = create MatrixMultiplyService service();

erpc_add service to server (server, service);

while (1)
{
/* Process eRPC requests */
erpc_status t status = erpc server poll (server)
/* handle error status */
if (status != kErpcStatus_ Success)
{
/* print error description */
erpc_error handler (status, 0);

3.4.3.2 Multiprocessor client application

The “Matrix multiply” eRPC client project for multiprocessor applications is located in the
<MCUXpressoSDK_install_dir>/ boards/<board_name>/multiprocessor_examples/erpc_client_matrix_multiply

<transport_layer>/iar/ folder.

Most of the multiprocessor application setup is the same as for the multicore application. The multiprocessor
server application requires client-related generated files (server shim code), client infrastructure files, and

the client user code. There is no need for client multicore infrastructure files (MCMGR and RPMsg-Lite). The
RPMsg-Lite transport layer is replaced either by SPI or UART transports. The following table shows the required

transport-related files per each transport type.

Table 4. Transport-related eRPC files for the client side application

SPI <eRPC base directory>/erpc c/setup/erpc setup (d)spi master.

cpp

transport.hpp

transport.cpp

<eRPC base directory>/erpc_c/transports/ erpc (d)spi master

<eRPC base directory>/erpc c/transports/ erpc (d)spi master

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 11 — 27 July 2023

21/27

NXP Semiconductors MCSDKERPCGSUG

eRPC Getting Started User Guide

Table 4. Transport-related eRPC files for the client side application...continued

UART <eRPC base directory>/erpc_c/setup/erpc_setup uart cmsis.cpp
<eRPC base directory>/erpc c/transports/erpc uart cmsis
transport.hpp

<eRPC base directory>/erpc_c/transports/erpc uart cmsis_
transport.cpp

3.4.3.2.1 Client user code

The client’s user code is stored in the main client. c file, located in the <MCUXpressoSDK_install_dir>/
boards/<board _name>/multiprocessor_examples/ erpc_client_matrix_multiply _<transport_layer>/folder.

The eRPC-relevant code with UART as a transport is captured in the following code snippet:

extern bool g erpc error occurred;

/* Declare matrix arrays */
Matrix matrixl = {0}, matrix2 = {0}, result matrix = {0};

/* UART transport layer initialization, ERPC_DEMO UART is the structure of CMSIS UART
driver operations */

erpc_transport t transport;

transport = erpc transport cmsis uart init ((void *)&ERPC DEMO UART) ;

/* MessageBufferFactory initialization */
erpc_mbf t message buffer factory;
message buffer factory = erpc mbf dynamic init();

/* eRPC client side initialization */
erpc_client t client;
client = erpc client init (transport,message buffer factory);

/* Set default error handler */
erpc_client set error handler(client, erpc error handler);

while (1)

{
/* Invoke the erpcMatrixMultiply function */
erpcMatrixMultiply (matrixl, matrix2, result matrix);

/* Check if some error occured in eRPC */
if (g _erpc_error occurred)
{

/* Exit program loop */

break;

}

3.4.4 Running the eRPC application

Follow the instructions in Getting Started with MCUXpresso SDK (document MCUXSDKGSUG) (located in the
<MCUXpressoSDK install_dir>/docs folder), to load both the primary and the secondary core images into the
on-chip memory, and then effectively debug the dual-core application. After the application is running, the serial
console should look like:

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 11 — 27 July 2023

2227

NXP Semiconductors MCSDKERPCGSUG

eRPC Getting Started User Guide

. COM4%:115200baud - Tera Term VT [= |

File Edit 5etup Control Window KanjiCode Help

-

Primary core started

Matrix #1

21 33 31 31 9
23 &5 43 g 32
38 44 8 1o 36
18 18 38 44 16
22 23 6 38 7

11 23 27 4 11

{19 23 24 6
32 26 49 43 16
22 48 36 34 4l
2i 20 32 31 1

eRPC request 1s sent to the server
Secondary core is running

Result matrix

2103 40828 4759 4865 2631
2808 3142 4187 4996 1063
2284 3308 4122 4736 1821
2940 4176 4858 4868 2894
1428 2907 2715 36051 2015

Press the SW2 button to initiate the next matrix multiplication -

Figure 11. Running the eRPC application

For multiprocessor applications that are running between PC and the target evaluation board or between two
boards, follow the instructions in the accompanied example readme files that provide details about the proper
board setup and the PC side setup (Python).

4 Other uses for an eRPC implementation

The eRPC implementation is generic, and its use is not limited to just embedded applications. When creating
an eRPC application outside the embedded world, the same principles apply. For example, this manual can be
used to create an eRPC application for a PC running the Linux operating system. Based on the used type of
transport medium, existing transport layers can be used, or new transport layers can be implemented.

For more information and erpc updates see the github.com/EmbeddedRPC.

5 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2023 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 11 — 27 July 2023

23 /27

https://github.com/EmbeddedRPC

NXP Semiconductors MCSDKERPCGSUG

eRPC Getting Started User Guide

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS I1S" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

6 Revision history

To provide the most up-to-date information, the revisions of our documents on the Internet are the most current.
Your printed copy may be an earlier revision.

This revision history table summarizes the changes contained in this document since the last release.

Table 5. Revision history

Revision Date Substantive changes
number
0 09/2015 Initial release
1 04/2016 Updated to Kinetis SDK v.2.0 and Multicore SDK v.1.1.0
2 09/2016 Updated to Kinetis SDK v.2.0 and Multicore SDK v.2.0.0
3 09/2016 Updated to Multicore SDK v.2.1.0 and eRPC v.1.3.0
Added new sections covering multiprocessor applications
4 03/2017 Updated to Multicore SDK v.2.2.0 and eRPC v.1.4.0
5 11/2017 Updated to Multicore SDK v.2.3.0 and eRPC v.1.5.0
MCUXpresso SDK 2.3.0 release
6 05/2018 Editorial updates for MCUXpresso SDK v2.3.1 and MCUXpresso SDK
v.2.4.0
7 12/2019 Editorial and other updates for MCUXpresso SDK v2.7.0
8 01 June 2021 Minor updates for MCUXpresso SDK v2.10.0
9 01 June 2022 Minor updates for MCUXpresso SDK v2.12.0
10 19 December 2022 Editorial and other updates for MCUXpresso SDK v2.13.0
11 27 July 2023 Editorial and other updates for MCUXpresso SDK v2.14.0
MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 11 — 27 July 2023

24127

NXP Semiconductors

MCSDKERPCGSUG

7 Legal information

eRPC Getting Started User Guide

7.1 Definitions

Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

7.2 Disclaimers

Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to

make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default

in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

MCSDKERPCGSUG

All information provided in this document is subject to legal disclaimers.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless

this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.

In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles

to reduce the effect of these vulnerabilities on customer’s applications

and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. - NXP B.V. is not an operating company and it does not distribute
or sell products.

7.3 Trademarks

Notice: All referenced brands, product names, service names, and

trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 11 — 27 July 2023

25/27

mailto:PSIRT@nxp.com

NXP Semiconductors MCSDKERPCGSUG

eRPC Getting Started User Guide

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamlQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, pVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

MCSDKERPCGSUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 11 — 27 July 2023

26 /27

NXP Semiconductors

MCSDKERPCGSUG

eRPC Getting Started User Guide

Contents
1 OVEIVIEW ...eoiiiiiee e e e e s sme e semn e 2
2 Create an eRPC applicationcccceeeeccecinnnees 2
3 eRPC examplecccimimiiiiiiiccccccccseneeceeree e 2
3.1 Designing the eRPC application 3
3.2 Creating the IDL filec.coocoiiiiiiiee 3
3.3 Using the eRPC generator tool 4
34 Create an eRPC application
3.41 Multicore server application
3.4.1.1 Server project basic source filescccceee.. 5
3.4.1.2 Server related generated filescccccceeeie 6
3.4.1.3 Server infrastructure filescccoociiiiiiiis 9
3.4.1.4 Server multicore infrastructure files 10
3.4.1.5 Server user codecccoiiiiiiiiiiiiiiie e 11
342 Multicore client applicationccccccvvveeeees 13
3.4.2.1 Client project basic source filesccccee.... 13
3.4.2.2 Client-related generated filesccccceeenne 14
3.4.2.3 Client infrastructure filesccccciiiiiies 16
3.4.2.4 Client multicore infrastructure files 17
3.4.25 Client user codeccceeviiiveennnne
343 Multiprocessor server application
3.4.31 Server user COdecocvieiiiiiiieeiee e
3.4.3.2 Multiprocessor client application
344 Running the eRPC application
4 Other uses for an eRPC implementation 23
5 Note about the source code in the

document ... e 23
6 Revision history ... 24
7 Legal information ... 25

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2023 NXP B.V. All rights reserved.

For more information, please visit: http://www.nxp.com

Date of release: 27 July 2023
Document identifier: MCSDKERPCGSUG

	1 Overview
	2 Create an eRPC application
	3 eRPC example
	3.1 Designing the eRPC application
	3.2 Creating the IDL file
	3.3 Using the eRPC generator tool
	3.4 Create an eRPC application
	3.4.1 Multicore server application
	3.4.1.1 Server project basic source files
	3.4.1.2 Server related generated files
	3.4.1.3 Server infrastructure files
	3.4.1.4 Server multicore infrastructure files
	3.4.1.5 Server user code

	3.4.2 Multicore client application
	3.4.2.1 Client project basic source files
	3.4.2.2 Client-related generated files
	3.4.2.3 Client infrastructure files
	3.4.2.4 Client multicore infrastructure files
	3.4.2.5 Client user code

	3.4.3 Multiprocessor server application
	3.4.3.1 Server user code
	3.4.3.2 Multiprocessor client application
	3.4.3.2.1 Client user code

	3.4.4 Running the eRPC application

	4 Other uses for an eRPC implementation
	5 Note about the source code in the document
	6 Revision history
	7 Legal information
	Contents

