
MCUXpresso SDK 3-Phase PMSM Control
(LPC)

NXP Semiconductors Document identifier: 3PPMSMCLPCUG
User's Guide Rev. 2, 06/2020

Contents
Chapter 1 Introduction... 3

Chapter 2 Hardware setup...4

Chapter 3 LPC5500 series features and peripheral settings................................. 9

Chapter 4 Project file and IDE workspace structure.. 14

Chapter 5 Tools... 16

Chapter 6 Motor-control peripheral initialization.. 17

Chapter 7 User interface..19

Chapter 8 Remote control using FreeMASTER...20

Chapter 9 Identifying parameters of user motor using MCAT..............................27

Chapter 10 Conclusion.. 43

Chapter 11 Acronyms and abbreviations...44

Chapter 12 References..45

Chapter 13 Useful links..46

Chapter 14 Revision history...47

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 2 / 48

Chapter 1
Introduction
This user's guide describes the implementation of the sensorless Motor Control software for the 3-phase Permanent Magnet
Synchronous Motor (PMSM), including the motor parameters identification algorithm, on the NXP LPC55S6x MCU based on
the Arm® Cortex®-M33 architecture. The sensorless control software and PMSM control theory in general are described in
Sensorless PMSM Field-Oriented Control (documentDRM148). The NXP Freedom board (FRDM-MC-LVPMSM) is used as
hardware platform for the PMSM control reference solution. The hardware-dependent part of the sensorless control software,
including a detailed peripheral setup and the Motor Control (MC) peripheral drivers, is addressed as well. The motor parameters
identification theory and algorithms are described in this document. The last part of the document introduces and explains the
user interface represented by the Motor Control Application Tuning (MCAT) page based on the FreeMASTER run-time debugging
tool. These tools present a simple and user-friendly way for motor parameter identification, algorithm tuning, software control,
debugging, and diagnostics.

This document provides instructions for running and controlling the PMSM project using the LPCXpresso55S69 development
board with the Freedom development board. The software provides the sensorless field-oriented speed, torque, and scalar
control. You can control the application using the board buttons or the FreeMASTER application. The motor identification and
application tuning is done using the MCAT tool integrated in the FreeMASTER page. The required software, hardware setup,
jumper settings, project arrangement, and user interface is described in the following sections. For more information, visit
www.nxp.com/motorcontrol_pmsm.

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 3 / 48

https://www.nxp.com/webapp/Download?colCode=DRM148
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/nxp-freedom-development-platform-for-low-voltage-3-phase-pmsm-motor-control:FRDM-MC-LVPMSM
https://www.nxp.com/docs/en/application-note/AN4642.pdf
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc5500-cortex-m33/lpcxpresso55s69-development-board:LPC55S69-EVK
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc5500-cortex-m33/lpcxpresso55s69-development-board:LPC55S69-EVK
http://www.nxp.com/motorcontrol_pmsm

Chapter 2
Hardware setup
The PMSM Field-Oriented Control (FOC) application runs on the FRDM-MC-LVPMSM development platform with the LPC55S69-
EVK development tool, in combination with the Linix 45ZWN24-40 permanent magnet synchronous motors.

2.1 FRDM-MC-LVPMSM
This evaluation board, in a shield form factor, effectively turns an NXP Freedom development board into a complete motor-control
reference design, compatible with existing NXP Freedom development boards. The Freedom motor-control headers are
compatible with the Arduino™ R3 pin layout.

The FRDM-MC-LVPMSM low-voltage, 3-phase Permanent Magnet Synchronous Motor (PMSM) Freedom development platform
board has the power supply input voltage of 24-48 VDC with a reverse polarity protection circuitry. The auxiliary power supply of
5.5 VDC is created to supply the FRDM MCU boards. The output current is up to 5 A RMS. The inverter itself is realized by a 3-
phase bridge inverter (six MOSFETs) and a 3-phase MOSFET gate driver. The analog quantities (such as the 3-phase motor
currents, DC-bus voltage, and DC-bus current) are sensed on this board. There is also an interface for speed and position sensors
(encoder, hall). The block diagram of a complete NXP Freedom motor-control development kit is shown in Figure 1.

Figure 1. Motor-control development platform block diagram

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 4 / 48

Figure 2. FRDM-MC-LVPMSM

The FRDM-MC-LVPMSM does not require a complicated setup. For more information about the Freedom development
platform, see www.nxp.com.

2.2 Linix 45ZWN24-40 motor
The Linix 45ZWN24-40 motor is a low-voltage 3-phase permanent-magnet motor with hall sensor used in PMSM applications.
The motor parameters are listed in Table 1.

Table 1. Linix 45ZWN24-40 motor parameters

Characteristic Symbol Value Units

Rated voltage Vt 24 V

Rated speed - 4000 RPM

Rated torque T 0.0924 Nm

Rated power P 40 W

Continuous current Ics 2.34 A

Number of pole-pairs pp 2 -

NXP Semiconductors
Hardware setup

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 5 / 48

http://www.freescale.com

Figure 3. Linix 45ZWN24-40 permanent magnet synchronous motor

The motor has two types of connectors (cables). The first cable has three wires and is designated to power the motor. The second
cable has five wires and is designated for the hall sensors’ signal sensing. For the PMSM sensorless application, only the power
input wires are needed.

2.3 LPC55S69-EVK
The LPCXpresso55S69 development board is an ideal platform for evaluation and development with the LPC55S6x MCU based
on the Arm Cortex-M33 architecture. The Arm Cortex-M33 core operates at up to 150 MHz. The board includes the high-
performance on-board debug probe, audio subsystem, and accelerometer, with a possibility to add off-the-shelf add-on boards
for networking, sensors, displays, and other interfaces. Configure the jumper settings according to Table 2 for the motor-control
application to work properly.

Table 2. LPC55S69-EVK jumper settings

Jumper Setting Jumper Setting Jumper Setting

J3 1-2 J7 1-2 P1 open

J4 open J12 open P4 3.3V

J6 FS - - - -

NXP Semiconductors
Hardware setup

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 6 / 48

Figure 4. LPC55S69-EVK board with highlighted jumper settings

Hardware assembling

1. Wire the FRDM-MC-LVPMSM power stage to the LPC55S69-EVK board according to the pin assignment (Table 3) and
the interconnection diagram (Figure 5).

2. Connect the 3-phase motor wires to the screw terminals (J7) on the Freedom PMSM power stage.

3. Plug the USB cable from the USB host to the USB connector (Debug Link - P6) on the EVK board.

4. Plug the 24-V DC power supply to the DC power connector on the Freedom PMSM power stage.

Table 3. LPC55S69-EVK pin assignment

FRDM-MC-LVPMSM Connection LPC55S69-EVK

PWM_AT J3, 15 <-> P18, 5 LEDR/PWM_ARD PIO1_4

PWM_AB J3, 13 <-> P18, 20 PIO0_18_GPIO_ARD PIO0_18

PWM_BT J3, 11 <-> P18, 6 PLU_CLKIN/GPIO/SD1_D0 PIO1_25

PWM_BB J3, 9 <-> P18, 3 PIO1_10_GPIO_ARD PIO1_10

PWM_CT J3, 7 <-> P18, 19 SD1_CARD_DET PIO1_17

PWM_CB J3, 5 <-> P17, 13 LSPI_HS_MOSI PIO0_26

3V3 J3, 4 <-> P16, 12 VDD_TARGET -

GND J3, 14 <-> P16, 16 GND -

Table continues on the next page...

NXP Semiconductors
Hardware setup

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 7 / 48

Table 3. LPC55S69-EVK pin assignment (continued)

FRDM-MC-LVPMSM Connection LPC55S69-EVK

CUR_A J2, 1 <->P19, 4 ADC0_P PIO0_23

CUR_B J2, 3 <-> P19, 2 ADC0_N PIO0_16

CUR_C J2, 5 <->P18, 11 PIO0_15_GPIO_ARD PIO0_15

VOLT_DCB J2, 7 <->P17, 19 PIO1_8_GPIO_ARD PIO1_8

CUR_DCB J2, 9 <-> P19, 6 COMPARATOR PIO0_0

Figure 5. LPC55S69-EVK interconnection diagram

NXP Semiconductors
Hardware setup

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 8 / 48

Chapter 3
LPC5500 series features and peripheral settings
This section describes the peripheral settings and application timing. The LPC5500 MCU series contains Arm's newest Cortex-
M33 technology. It combines significant product architecture enhancements and greater integration over previous generations
with dramatic power consumption improvements and advanced security features, including the SRAM PUF-based root of trust
and provisioning, real-time execution from encrypted images (internal flash), and asset protection with Arm TrustZone-M. In
addition, the LPC5500 MCU series features seven scalable families with broad package and memory options, as well as the
comprehensive MCUXpresso software and tools ecosystem and low-cost development boards.

3.1 LPC-55S6x
The LPC55S6x MCU family is built upon the world’s first general-purpose Cortex-M33-based MCU introduced with the LPC5500
series. This high-efficiency family leverages the new Armv8-M architecture to introduce new levels of performance and advanced
security capabilities, including TrustZone-M and co-processor extensions. The LPC55S6x family enables these co-processors
extensions and leverages them to bring significant signal processing efficiency gains from a proprietary DSP accelerator offering
a 10x clock cycle reduction. An optional second Cortex-M33 core offers flexibility to balance high performance and power
efficiency.

In addition, the LPC55S6x MCU family provides benefits, such as the 40-nm NVM-based process technology cost advantages,
broad scalable packages, and memory options, as well as a robust enablement including the MCUXpresso Software and Tools
ecosystem and low-cost development boards.

Figure 6. LPC55S6x block diagram

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 9 / 48

3.1.1 LPC55S69 hardware timing and synchronization
Correct and precise timing is crucial for motor-control applications. Therefore, the motor-control-dedicated peripherals take care
of the timing and synchronization on the hardware layer. In addition, it is possible to set the PWM frequency as a multiple of the
ADC interrupt (ADC ISR) frequency where the FOC algorithm is calculated. In this case, the PWM frequency is equal to the FOC
frequency. The timing diagram is shown in Figure 7.

Figure 7. Hardware timing and synchronization on LPC55S69

• The top signal shows the SCT counter (SCT0 counter). The dead time is emphasized at the PWM top and PWM bottom
signals.

• The sct0_output[9] generates a trigger for the ADC with a short delay. This delay ensures correct current sampling at duty
cycles close to 100 %.

• When the ADC conversion is completed, the ADC ISR (ADC interrupt) is entered. The FOC calculation is done in this interrupt.

3.1.2 LPC55S69 peripheral settings
This section describes the peripherals used for the motor control. On LPC55S69, the SCTimer is used for 6-channel PWM
generation. The 16-bit ADC is used for the phase currents and DC-bus voltage measurement. The SCTimer and ADC are
synchronized via a trigger from "SCTimer sct0_output[9]". The following settings are in the mcdrv_lpcexpresso55s69.c and
board.c files and in their header files.

Clock select and control (SYSCON)
The clock source for the registers and memories is derived from the main clock. The main clock is selected from the FRO
high-speed output (fro_hf) of the 96-MHz internal oscillator.

NXP Semiconductors
LPC5500 series features and peripheral settings

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 10 / 48

Figure 8. LPC55S69 clock source for motor-control peripherals

The clock sources for the peripherals used for the motor control are listed in Table 4.

Table 4. LPC55S69 clock source for motor-control peripherals

Clock source Clock div Clock root frequency

SCTimer main_clk SCTCLKDIV 150 MHz

CTimer fro_hf - 96 MHz

ADC fro_hf ADCCLKDIV 48 MHz

For more details, see the LPC55S6x User Manual (document UM11126).

PWM generation - SCT0

• The SCT0 is clocked from "main_clk" (150 MHz).

• SDK initialization structures are used for the SCT0 initiallization.

• SCTIMER_Out_0 - SCTIMER_Out_5 are used for the 3-phase PWM generation.

• kSCTIMER_Out_9 is used for the ADC generation trigger.

• Dead time is inserted using the "ui16DeadTimePWM in g_sM1Pwm3ph" structure.

Analog sensing - ADC

• The clock frequency of the ADC is 48 MHz. It is taken from "fro_hf" and divided by two.

NXP Semiconductors
LPC5500 series features and peripheral settings

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 11 / 48

https://www.nxp.com/webapp/Download?colCode=UM11126

• The ADCs operate as 10-bit with the single-ended conversion and hardware trigger selected. The ADCs are triggered
from "sct0_output[9]".

• The watermark interrupt is enabled and serves the FOC fast loop algorithm generated after the last scan is completed.

Slow loop interrupt generation - CTIMER2
The standard timer 2 is used to generate the slow-loop interrupt.

• The CTIMER2 is clocked from the "fro_hf" divided with a clock frequency of 96 MHz.

• The slow loop is usually ten times slower than the fast loop. Therefore, the interrupt is generated after the counter counts
to CTIMER_CLK_FREQ / g_sClockSetup.ui16M1SpeedLoopFreq. The speed loop frequency is set in the
M1_SPEED_LOOP_FREQ macro and equals 1000 Hz.

• An interrupt (which serves the slow-loop period) is enabled and generated at the reload event.

Analog comparator - ACMP0

• The analog comparator is used for the over-current detection.

• SDK initialization structures are used for the SCT0 initiallization.

• Channel 1 is used as the positive input.

• Channel 0 is used as the negative input.

3.2 CPU load and memory usage
The following information apply to the application built using the MCUXpresso IDE in the Debug and Release configurations.
Table 5 shows the memory usage and CPU load. The memory usage is calculated from the .map linker file, including the 4-KB
FreeMASTER recorder buffer allocated in RAM. The CPU load is measured using the SysTick timer. The CPU load is dependent
on the fast-loop (FOC calculation) and slow-loop (speed loop) frequencies. In this case, it applies to the fast-loop frequency of
10 KHz and the slow-loop frequency of 1 KHz. The total CPU load is calculated using these equations:

Where:

CPUfast - the CPU load taken by the fast loop.

cyclesfast - the number of cycles consumed by the fast loop.

ffast - the frequency of the fast-loop calculation (10 KHz).

fCPU - CPU frequency.

CPUslow - the CPU load taken by the slow loop.

cyclesslow - the number of cycles consumed by the slow loop.

fslow - the frequency of the slow-loop calculation (1 KHz).

CPUtotal - the total CPU load consumed by the motor control.

NXP Semiconductors
LPC5500 series features and peripheral settings

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 12 / 48

Table 5. LPC-55S69 CPU load and memory usage

Debug configuration Release configuration

Program flash 78 604 B 42 096 B

SRAM 19 884 B 19 820 B

Maximum CPU load (core 0) 46.1 % 34.62 %

Memory usage and maximum CPU load can differ depending on the used IDEs and settings.

 NOTE

NXP Semiconductors
LPC5500 series features and peripheral settings

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 13 / 48

Chapter 4
Project file and IDE workspace structure
All the necessary files are included in one package, which simplifies the distribution and decreases the size of the final package.
The directory structure of this package is simple, easy to use, and organized in a logical manner. The folder structure used in the
IDE is different from the structure of the PMSM package installation, but it uses the same files. The different organization is chosen
due to a better manipulation with folders and files in workplaces and due to the possibility to add or remove files and directories.
The “pack_motor_board“ project includes the available functions and routines, MID functions, scalar and vector control of the
motor, FOC control, and FreeMASTER MCAT project. This project serves for development and testing purposes.

4.1 PMSM project structure
The directory tree of the PMSM project is shown in Figure 9.

Figure 9. Directory tree

The main project folder pack_motor_lpcxx\boards\lpcxpressoxx\demo_apps\mc_pmsm\pmsm_snsless\cm33_corex contains the
following folders and files:

• iar—for the IAR Embedded Workbench IDE.

• armgcc—for the GNU Arm IDE.

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 14 / 48

• mdk—for the uVision Keil IDE.

• m1_pmsm_appconfig.h—contains the definitions of constants for the application control processes, parameters of the motor
and regulators, and the constants for other vector control-related algorithms. When you tailor the application for a different
motor using the Motor Control Application Tuning (MCAT) tool, the tool generates this file at the end of the tuning process.

• main.c and .h—contains the basic application initialization (enabling interrupts), subroutines for accessing the MCU
peripherals, and interrupt service routines. The FreeMASTER communication is performed in the background infinite loop.

• board.c—contains the functions for the UART, GPIO, and SysTick initialization.

• board.h—contains the definitions of the board LEDs, buttons, UART instance used for FreeMASTER, and so on.

• clock_config.c and .h—contains the CPU clock setup functions. These files are going to be generated by the clock tool in the
future.

• mcdrv.h—this file ensures the abstraction of the mcdrv_lpcxpressoxx.h file inclusion.

• mcdrv_lpcxpressoxx.c—contains the motor-control driver peripherals initialization functions that are specific for the board
and MCU used.

• mcdrv_lpcxpressoxx.h—header file for mcdrv_lpcxpressoxx.c. This file contains the macros for changing the PWM period
and the ADC channels assigned to the phase currents and board voltage.

• freemaster_cfg.h—the FreeMASTER configuration file containing the FreeMASTER communication and features setup.

• pin_mux.c and .h—port configuration files. It is recommended to generate these files in the pin tool.

The main motor-control folder pack_motor_lpcxx\middleware\motor_control\ contains these subfolders:

• pmsm—contains main pmsm motor-control functions

• freemaster—contains the FreeMASTER project file pmsm_float.pmp. Open this file in the FreeMASTER tool and use it to
control the application. The folder also contains the auxiliary files for the MCAT tool.

The pack_motor_lpcxx\middleware\motor_control\pmsm\pmsm_float folder contains the following subfolders common to the
other motor-control projects:

• mc_algorithms—contains the main control algorithms used to control the FOC and speed control loop.

• mc_drivers—contains the source and header files used to initialize and run motor-control applications.

• mc_identification—contains the source code for the automated parameter-identification routines of the motor.

• mc_state_machine—contains the software routines that are executed when the application is in a particular state or state
transition.

• state_machine—contains the state machine functions for the FAULT, INITIALIZATION, STOP, and RUN states.

NXP Semiconductors
Project file and IDE workspace structure

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 15 / 48

Chapter 5
Tools
Install the FreeMASTER Run-Time Debugging Tool 3.0. and one of the following IDEs on your PC to run and control the PMSM
application properly:

• IAR Embedded Workbench IDE v8.50.1 or higher.

• MCUXpresso v11.2.0.

• ARM-MDK - Keil μVision version 5.30

For information on how to build and run the application in your IDE, see the Getting Started with MCUXpresso
SDK document located in the pack_motor_<booard>\docs folder or find the related documentation at MCUXpresso
SDK builder.

 NOTE

5.1 Compiler warnings
Warnings are diagnostic messages that report constructions that are not inherently erroneous and warn about potential runtime,
logic, and performance errors. In some cases, warnings can be suspended and these warnings do not show during the compiling
process. One of such special cases is the “unused function” warning, where the function is implemented in the source code with
its body, but this function is not used. This case occurs in situations where you implement the function as a supporting function
for better usability, but you do not use the function for any special purposes for a while.

The IAR Embedded Workbench IDE suppresses these warnings:

• Pa082—undefined behavior; the order of volatile accesses is not defined in this statement.

• Ta022—possible ROM access (<ptr>) from within a __ramfunc function.

• Ta023—call to a non __ramfunc function (somefunction) from within a __ramfunc function.

The Arm-MDK Keil μVision IDE suppresses these warnings:

• 66—the enumeration value is out of the “int” range.

• 1035—a single-precision operand is implicitly converted to a double-precision operand.

• 1296—the extended constant initializer is used.

By default, there are no other warnings shown during the compiling process.

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 16 / 48

https://www.nxp.com/freemaster
https://www.iar.com/iar-embedded-workbench/
https://www.nxp.com/mcuxpresso
http://www2.keil.com/mdk5/
https://mcuxpresso.nxp.com/en/welcome
https://mcuxpresso.nxp.com/en/welcome

Chapter 6
Motor-control peripheral initialization
The motor-control peripherals are initialized by calling the MCDRV_Init_M1() function during the MCU startup and before the
peripherals are used. All initialization functions are in the mcdrv_lpcxx.c source file and the mcdrv_lpcxx.h header file. The
definitions specified by the user are also in these files. The features provided by the functions are the 3-phase PWM generation
and 3-phase current measurement, as well as the DC-bus voltage and auxiliary quantity measurement. The principles of both
the 3-phase current measurement and the PWM generation using the Space Vector Modulation (SVM) technique are described
in Sensorless PMSM Field-Oriented Control (document DRM148).

The mcdrv_lpcxx.h header file provides several macros that can be defined by the user:

• M1_MCDRV_ADC—this macro specifies which ADC periphery is used. If you select an unsupported periphery, a
preprocessor error is issued.

• M1_MCDRV_PWM3PH—this macro specifies which PWM periphery is used. If you select an unsupported periphery, a
preprocessor error is issued.

• M1_PWM_FREQ—the value of this definition sets the PWM frequency.

• M1_FOC_FREQ_VS_PWM_FREQ—enables you to call the fast loop interrupt at every first, second, third, or nth PWM reload.
This is convenient when the PWM frequency must be higher than the maximal fast-loop interrupt.

• M1_SPEED_LOOP_FREQ—the value of this definition sets the speed-loop frequency.

• M1_PWM_DEADTIME—the value of the PWM dead time in nanoseconds.

• M1_PWM_PAIR_PH[A..C]—these macros enable a simple assignment of the physical motor phases to the PWM periphery
channels (or submodules). Change the order of the motor phases this way.

• M1_ADC[1,2]_PH_[A..C]—these macros are used to assign the ADC channels for the phase current measurement. The
general rule is that at least one of the phase currents must be measurable on both ADC converters and the two remaining
phase currents must be measurable on different ADC converters. The reason for this is that the selection of the phase current
pair to measure depends on the current SVM sector. If this rule is broken, a preprocessor error is issued. For more information
about the 3-phase current measurement, see Sensorless PMSM Field-Oriented Control (document DRM148).

• M1_ADC[1,2]_UDCB—this define is used to select the ADC channel for the measurement of the DC-bus voltage.

In the motor-control software, these API-serving ADC and PWM peripherals are available:

• The available APIs for the ADC are:

— mcdrv_adc_t—MCDRV ADC structure data type.

— bool_t M1_MCDRV_ADC_PERIPH_INIT()—this function is by default called during the ADC peripheral initialization
procedure invoked by the MCDRV_Init_M1() function and should not be called again after the peripheral initialization
is done.

— bool_t M1_MCDRV_CURR_3PH_CHAN_ASSIGN(mcdrv_adc_t*)—calling this function assigns proper ADC channels
for the next 3-phase current measurement based on the SVM sector. The function always returns true.

— bool_t M1_MCDRV_CURR_3PH_CALIB_INIT(mcdrv_adc_t*)—this function initializes the phase-current channel-offset
measurement. This function always returns true.

— bool_t M1_MCDRV_CURR_3PH_CALIB(mcdrv_adc_t*)—this function reads the current information from the
unpowered phases of a stand-still motor and filters them using moving average filters. The goal is to obtain the value
of the measurement offset. The length of the window for moving the average filters is set to eight samples by default.
This function always returns true.

— bool_t M1_MCDRV_CURR_3PH_CALIB_SET(mcdrv_adc_t*)—this function asserts the phase-current measurement
offset values to the internal registers. Call this function after a sufficient number of M1_MCDRV_CURR_3PH_CALIB()
calls. This function always returns true.

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 17 / 48

https://www.nxp.com/doc/DRM148
https://www.nxp.com/doc/DRM148

— bool_t M1_MCDRV_ADC_GET(mcdrv_adc_t*)—this function reads and calculates the actual values of the 3-phase
currents, DC-bus voltage, and auxiliary quantity. This function always returns true.

• The available APIs for the PWM are:

— mcdrv_pwma_pwm3ph_t—MCDRV PWM structure data type.

— bool_t M1_MCDRV_PWM_PERIPH_INIT()—this function is by default called during the PWM periphery initialization
procedure invoked by the MCDRV_Init_M1() function.

— bool_t M1_MCDRV_PWM3PH_SET(mcdrv_pwma_pwm3ph_t*)—this function updates the PWM phase duty cycles.
This function always returns true.

— bool_t M1_MCDRV_PWM3PH_EN(mcdrv_pwma_pwm3ph_t*)—calling this function enables all PWM channels. This
function always returns true.

— bool_t M1_MCDRV_PWM3PH_DIS (mcdrv_pwma_pwm3ph_t*)—calling this function disables all PWM channels. This
function always returns true.

— bool_t M1_MCDRV_PWM3PH_FLT_GET(mcdrv_pwma_pwm3ph_t*)—this function returns the state of the over-
current fault flags and automatically clears the flags (if set). This function returns true when an over-current event occurs.
Otherwise, it returns false.

NXP Semiconductors
Motor-control peripheral initialization

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 18 / 48

Chapter 7
User interface
The application contains the demo mode to demonstrate motor rotation. You can operate it using FreeMASTER. The
FreeMASTER application consists of two parts: the PC application used for variable visualization and the set of software drivers
running in the embedded application. Data is transferred between the PC and the embedded application via the serial interface.
This interface is provided by the debugger included in the boards.

The application can be remotely controlled using FreeMASTER (chapter Remote control using FreeMASTER):

• Using the Motor Control Application Tuning (MCAT) interface in the “Control Structure” tab or the “Application control” tab
(controlling the demo mode).

• Setting a variable in the FreeMASTER Variable Watch.

If you are using your own motor (different from the default motors), make sure to identify all motor parameters. The automated
parameter identification is described in the following sections.

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 19 / 48

Chapter 8
Remote control using FreeMASTER
This section provides information about the tools and recommended procedures to control the sensorless PMSM Field-Oriented
Control (FOC) application using FreeMASTER. The application contains the embedded-side driver of the FreeMASTER real-time
debug monitor and data visualization tool for communication with the PC. It supports non-intrusive monitoring, as well as the
modification of target variables in real time, which is very useful for the algorithm tuning. Besides the target-side driver, the
FreeMASTER tool requires the installation of the PC application as well. You can download FreeMASTER 3.0 at www.nxp.com/
freemaster. To run the FreeMASTER application including the MCAT tool, double-click the pmsm_float.pmp file located in the
pack_motor_lpcxx\middleware\motor_control\freemaster folder. The FreeMASTER application starts and the environment is
created automatically, as defined in the *.pmp file.

In MCUXpresso can be FreeMASTER application run directly from IDE in motor_control/freemaster folder

 NOTE

8.1 Establishing FreeMASTER communication
The remote operation is provided by FreeMASTER via the USB interface. Perform these steps to control a PMSM motor using
FreeMASTER:

1. Download the project from your chosen IDE to the MCU and run it.

2. Open the FreeMASTER file pmsm_x.pmp. The PMSM project uses the TSA by default, so it is not necessary to select a
symbol file for FreeMASTER.

3. Click the communication button (the red “STOP” button in the top left-hand corner) to establish the communication.

Figure 10. Red “STOP” button placed in top left-hand corner

4. If the communication is established successfully, the FreeMASTER communication status in the bottom right-hand corner
changes from “Not connected” to “RS232 UART Communication; COMxx; speed=115200”. Otherwise, the FreeMASTER
warning popup window appears.

Figure 11. FreeMASTER—communication is established successfully

5. Press F5 to reload the MCAT html page and check the App ID.

6. Control the PMSM motor using the MCAT “Control structure” tab, the MCAT “Application demo control” tab, or by directly
writing to a variable in a variable watch.

7. If you rebuild and download the new code to the target, turn the FreeMASTER application off and on.

If the communication is not established successfully, perform these steps:

1. Go to the “Project -> Options -> Comm” tab and make sure that “SDA” is set in the “Port” option and the communication
speed is set to 115200 bps.

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 20 / 48

http://www.nxp.com/freemaster
http://www.nxp.com/freemaster

Figure 12. FreeMASTER communication setup window

2. If “OpenSDA-CDC Serial Port” is not printed out in the message box next to the “Port” drop-down menu, unplug and then
plug in the USB cable and reopen the FreeMASTER project.

Make sure to supply your development board from a sufficient energy source. Sometimes the PC USB port is not sufficient to
supply the development board.

8.2 MCAT FreeMASTER interface (Motor Control Application Tuning)
The PMSM sensor/sensorless FOC application can be easily controlled and tuned using the Motor Control Application Tuning
(MCAT) plug-in for PMSM. The MCAT for PMSM is a user-friendly modular page, which runs within FreeMASTER. The tool
consists of the tab menu, tuning mode selector, and workspace shown in Figure 13. Each tab from the tab menu represents one
sub-module which enables you to tune or control different aspects of the application. Besides the MCAT page for PMSM, several
scopes, recorders, and variables in the project tree are predefined in the FreeMASTER project file to further simplify the motor
parameter tuning and debugging. When the FreeMASTER is not connected to the target, the “App ID” line shows “offline”. When
the communication with the target MCU is established using a correct software, the “App ID” line displays the board name
“pmsm_used_board” and all stored parameters for the given MCU are loaded. If the connection is established and the board ID
is not shown, press F5 to reload the MCAT html page.

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 21 / 48

Figure 13. MCAT layout

In the default configuration, these tabs are available:

• “Introduction”—welcome page with the PMSM sensor/sensorless FOC diagram and a short description of the application.

• “Motor Identif”—PMSM semi-automated parameter measurement control page. The PMSM parameter identification is more
closely described further on in this document.

• “Parameters”—this page enables you to modify the motor parameters, specification of hardware and application scales,
alignment, and fault limits.

• “Current Loop”—current loop PI controller gains and output limits.

• “Speed & Pos”—this tab contains fields for the specification of the speed controller proportional and integral gains, as well
as the output limits and parameters of the speed ramp. The position proportional controller constant is also set here.

• “Sensors”—this page contains the encoder parameters and position observer parameters.

• “Sensorless”—this page enables you to tune the parameters of the BEMF observer, tracking observer, and open-loop startup.

• “Control Struc”—this application control page enables you to select and control the PMSM using different techniques (scalar
—Volt/Hertz control, voltage FOC, current FOC, speed FOC, and position FOC). The application state is also shown in this
tab.

• “Output file”—this tab shows all the calculated constants that are required by the PMSM sensor/sensorless FOC application.
It is also possible to generate the m1_acim_appconfig.h file, which is then used to preset all application parameters
permanently at the project rebuild.

• “App page”—this tab contains the graphical elements like the speed gauge, DC-bus voltage measurement bar, and variety
of switches which enable a simple, quick, and user-friendly application control. The fault clearing and the demo mode (which
sets various predefined required speeds and positions over time) can be also controlled from here.

Most tabs offer the possibility to immediately load the parameters specified in the MCAT into the target using the “Update target”
button and save (or restore) them from the hard drive file using the “Reload Data” and “Store Data” buttons.

The following sections provide simple instructions on how to identify the parameters of a connected PMSM motor and how to
appropriately tune the application.

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 22 / 48

Control structure—“Control Struc” tab

The application can be controlled through the “Control Struc” tab, which is shown in Figure 14. The state control area on the left
side of the screen shows the current application state and enables you to turn the main application switch on or off (turning a
running application off disables all PWM outputs). The “Cascade Control Structure” area is placed in the right-hand side of the
screen. Here you can choose between the scalar control and the FOC control using the appropriate buttons. The selected parts
of the FOC cascade structure can be enabled by selecting “Voltage FOC”, “Current FOC”, and “Speed FOC” (sensor/sensorless).
This is useful for application tuning and debugging.

Figure 14. MCAT for PMSM control page

The scalar control diagram is shown in Figure 15. It is the simplest type of motor-control techniques. The ratio between the
magnitude of the stator voltage and the frequency must be kept at the nominal value. Hence, the control method is sometimes
called Volt per Hertz (or V/Hz). The position estimation BEMF observer and tracking observer algorithms (see Sensorless PMSM
Field-Oriented Control (document DRM148) for more information) run in the background, even if the estimated position
information is not directly used. This is useful for the BEMF observer tuning.

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 23 / 48

https://www.nxp.com/doc/DRM148

Figure 15. Scalar control mode

The block diagram of the voltage FOC is in Figure 16. Unlike the scalar control, the position feedback is closed using the BEMF
observer and the stator voltage magnitude is not dependent on the motor speed. Both the d-axis and q-axis stator voltages can
be specified in the “Ud_req” and “Uq_req” fields. This control method is useful for the BEMF observer functionality check.

Figure 16. Voltage FOC control mode

The current FOC (or torque) control requires the rotor position feedback and the currents transformed into a d-q reference frame.
There are two reference variables (“Id_req” and “Iq_req”) available for the motor control, as shown in the block diagram in Figure
17. The d-axis current component isd_req is responsible for the rotor flux control. The q-axis current component of the current
isq_req generates torque and, by its application, the motor starts running. By changing the polarity of the current isq_req, the
motor changes the direction of rotation. Supposing that the BEMF observer is tuned correctly, the current PI controllers can be
tuned using the current FOC control structure.

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 24 / 48

Figure 17. Current (torque) control mode

The speed PMSM sensor/sensorless FOC (its diagram is shown in Figure 18) is activated by enabling the speed FOC control
structure. Enter the required speed into the “Speed_req” field. The d-axis current reference is held at 0 during the entire FOC
operation.

Figure 18. Speed FOC control mode

Application demo control—“App control” tab

After launching the application and performing all necessary settings, you can control the PMSM motor using the FreeMASTER
application demo control page. This page contains:

• Speed gauge—shows the actual and required speeds.

• Required speed slider—sets up the required speed.

• DC-bus voltage—shows the actual DC-bus voltage.

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 25 / 48

• Current iq—shows the actual torque-producing current.

• Current limitation—sets up the torque-producing current limit.

• Demo mode on/off button—turns the demonstration mode on/off.

• RUN/STOP PWM button—runs/stops the whole application (sets the PWM on and off).

• Notification—shows the notification about the actual application state (or faults).

Figure 19. FreeMASTER control page

These are the basic instructions for controlling a motor:

• To start the motor, set the required speed using the speed slider.

• In case of a fault, click on the fault notification to clear the fault.

• Click the “Demo Mode On/Off” button to turn the demonstration mode on/off.

• Click the “RUN/STOP” button to stop the motor.

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 26 / 48

Chapter 9
Identifying parameters of user motor using MCAT
This section provides a guide on how to run your own motor or tune the default motor in several steps. It is highly recommended
to go through all the steps carefully to eliminate any possible issues during the tuning process. The state diagram in Figure 20
shows a typical PMSM sensor/sensorless control tuning process.

Because the model-based control methods of the PMSM drives are the most effective and usable, obtaining an accurate model
of a motor is an important part of the drive design and control. For the implemented FOC algorithms, it is necessary to know the
value of the stator resistance Rs, direct inductance Ld, quadrature inductance Lq, and BEMF constant Ke. If your connected
PMSM motor is not the default Teknic or Linix motor described in the previous sections, identify the parameters of your motor
first. Each tuning phase is described in more detail in the following sections.

Figure 20. Running a new PMSM

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 27 / 48

Power stage characterization

Each inverter introduces the total error voltage Uerror, which is caused by the dead time, current clamping effect, and transistor
voltage drop. The total error voltage Uerror depends on the phase current is and this dependency is measured during the power
stage characterization process. An example of the inverter error characteristic is shown in Figure 21. The power stage
characterization is a part of the MCAT and it can be controlled from the “Motor Identif” tab. To perform the characterization,
connect the motor with a known stator resistance Rs and enter this value into the “Calib Rs” field. Then specify the “Calibration
Range”, which is the range of the stator current is, in which the measurement of Uerror is performed. Start the characterization by
pressing the “Calibrate” button. The characterization gradually performs 65 isd current steps (from is = -Is,calib to is = Is,calib) with
each taking 300 ms, so be aware that the process takes about 20 seconds and the motor must withstand this load. The acquired
characterization data is saved to a file and used later for the phase voltage correction during the Rs measurement process. The
following Rs measurement can be done with the Is,calib maximum current. It is recommended to use a motor with a low Rs for
characterization purposes.

Figure 21. Example power stage characteristic

The power stage characterization is necessary only for the user hardware board. When the NXP power stages (TWR, FRDM, or
HVP) are used with the application, the characterization process can be omitted. The acquired characterization data is saved
into a file, so it is necessary to do it only once for a given hardware.

Stator resistance measurement

The stator resistance Rs is measured using the DC current IphN value, which is applied to the motor for 1200 ms. The DC voltage
UDC is held using current controllers. Their parameters are selected conservatively to ensure stability. The stator resistance Rs
is calculated using the Ohm’s law as:

Stator inductance

For the stator inductance (Ls) identification purposes, a sinusoidal measurement voltage is applied to the motor. During the LS
measurement, the voltage control is enabled. The frequency and amplitude of the sinusoidal voltage are obtained before the
actual measurement, during the tuning process. The tuning process begins with a 0-V amplitude and the F start frequency, which

NXP Semiconductors
Identifying parameters of user motor using MCAT

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 28 / 48

are applied to the motor. The amplitude is gradually increased by Ud inc up to a half of the DC-bus voltage (DCbus/2), until Id
ampl is reached. If Id ampl is not reached even with the DCbus/2 and F start, the frequency of the measuring signal is gradually
decreased by F dec down to F min again, until Id ampl is reached. If Id ampl is still not reached, the measurement continues with
DCbus/2 and F min. The tuning process is shown in Figure 22.

Figure 22. Tuning Ls measuring signal

When the tuning process is complete, the sinusoidal measurement signal (with the amplitude and frequency obtained during the
tuning process) is applied to the motor. The total impedance of the RL circuit is then calculated from the voltage and current
amplitudes and LS is calculated from the total impedance of the RL circuit.

The direct inductance Ld and quadrature inductance Lq measurements are made in the same way as LS. Before the Ld and Lq
measurement is made, DC current is applied to the D-axis, which aligns the rotor. For the Ld measurement, the sinusoidal
voltage is applied in the D-axis. For the Lq measurement, the sinusoidal voltage is applied in the Q-axis.

BEMF constant measurement

Before the actual BEMF constant (Ke) measurement, the MCAT tool calculates the current controllers and BEMF observer
constants from the previously measured Rs, Ld, and Lq. To measure Ke, the motor must spin. Id is controlled through Id meas and
the electrical open-loop position is generated by integrating the required speed, which is derived from Nnom. When the motor
reaches the required speed, the BEMF voltages obtained by the BEMF observer are filtered and Ke is calculated:

NXP Semiconductors
Identifying parameters of user motor using MCAT

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 29 / 48

When Ke is being measured, you have to visually check to determine whether the motor is spinning properly. If the motor is not
spinning properly, perform these steps:

• Ensure that the number of pp is correct. The required speed for the Ke measurement is also calculated from pp.
Therefore, inaccuracy in pp causes inaccuracy in the resulting Ke.

• Increase Id meas to produce higher torque when spinning during the open loop.

• Decrease Nnom to decrease the required speed for the Ke measurement.

Number of pole-pair assistant

The number of pole-pairs cannot be measured without a position sensor. However, there is a simple assistant to determine the
number of pole-pairs (pp). The number of the pp assistant performs one electrical revolution, stops for a few seconds, and then
repeats it. Because the pp value is the ratio between the electrical and mechanical speeds, it can be determined as the number
of stops per one mechanical revolution. It is recommended not to count the stops during the first mechanical revolution because
the alignment occurs during the first revolution and affects the number of stops. During the pp measurement, the current loop is
enabled and the Id current is controlled to Id meas. The electrical position is generated by integrating the open-loop speed. If the
rotor does not move after the start of the number of pp assistant, stop the assistant, increase Id meas, and restart the assistant.

Mechanical parameters measurement
The moment of inertia J and the viscous friction B can be identified using a test with the known generated torque T and the
loading torque Tload.

The ωm character in the equation is the mechanical speed. The mechanical parameter identification software uses the torque
profile. The loading torque is (for simplicity reasons) said to be 0 during the whole measurement. Only the friction and the
motor-generated torque are considered. During the first phase of measurement, the constant torque Tmeas is applied and the
motor accelerates to 50 % of its nominal speed in time t1. These integrals are calculated during the period from t0 (the speed
estimation is accurate enough) to t1:

During the second phase, the rotor decelerates freely with no generated torque, only by friction. This enables you to simply
measure the mechanical time constant τm=J/B as the time in which the rotor decelerates from its original value by 63 %.

The final mechanical parameter estimation can be calculated by integrating:

Te moment of inertia is:

NXP Semiconductors
Identifying parameters of user motor using MCAT

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 30 / 48

The viscous friction is then derived from the relation between the mechanical time constant and the moment of inertia. To use
the mechanical parameters measurement, the current control loop bandwidth f0,Current, the speed control loop bandwidth f0,Speed,
and the mechanical parameters measurement torque Trqm must be set.

Figure 23. PMSM identification tab

9.1 PMSM electrical and mechanical parameters measurement process
If the parameters of your own motor are known from the datasheet, you can enter them in the "Parameters" tab. If you don't know
the parameters of your motor, you have to use automatic parameter identification.

The motor identification process can be controlled and set up in the MCAT “Motor Identif” tab, which is shown in Figure 24. To
measure your own motor, follow these steps:

• Select your hardware board. Choose between the standard NXP hardware or use your own. If you use your own
hardware, specify its scales (“I max” and “U DCB max” in the “Parameters” menu tab).

• If you don’t know the number of motor’s pole-pairs, use the number of pole-pair assistant and compute the number of
motor rotor stops in one turn.

• If you use your own hardware for the first time (other than NXP boards), perform the power stage characterization.

• Enter the motor measurement parameters and start the measurement by pressing the “Measure electrical” or “Measure
mechanical” buttons. You can observe which parameter is being measured in the “Status” bar.

NXP Semiconductors
Identifying parameters of user motor using MCAT

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 31 / 48

Figure 24. PMSM identification tab

NXP Semiconductors
Identifying parameters of user motor using MCAT

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 32 / 48

Figure 25. Measurement process diagram

During the measurement, faults and warnings may occur. Do not confuse these faults for the application faults, such as
overcurrent, undervoltage, and so on. The list of these faults with their description and possible troubleshooting is shown in Table
6.

Table 6. Measurement faults and warnings

Fault no. Fault description Fault reason Troubleshooting

1 Motor not connected Id > 50 mA cannot be
reached with the available

DC-bus voltage.

Check that the motor is
connected.

2 Rs too high for calibration The calibration cannot be
reached with the available

DC-bus voltage.

Use a motor with a lower Rs
for the power stage

characterization.

3 Current measurement Is DC
not reached

The user-defined Is DC was
not reached, so the

measurement was taken with
a lower Is DC.

Raise the DC-bus voltage to
reach the Is DC or lower the
Is DC to avoid this warning.

4 Current amplitude
measurement Is AC not

reached

The user-defined Is AC was
not reached, so the

measurement was taken with
a lower Is AC.

Raise the DC-bus voltage or
lower the Fmin to reach the Is

AC or lower the Is AC to
avoid this warning.

5 Wrong characteristic data The characteristic data, which
is used for the voltage
correction, does not

correspond to the actual
power stage.

Select the user hardware and
perform the calibration.

Table continues on the next page...

NXP Semiconductors
Identifying parameters of user motor using MCAT

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 33 / 48

Table 6. Measurement faults and warnings (continued)

Fault no. Fault description Fault reason Troubleshooting

6 Mechanical measurement
timeout

The mechanical
measurement takes too long.

Repeat the measurement
process with a different

setup.

9.2 Initial configuration setting and update
1. Open the PMSM control application FreeMASTER project containing the dedicated MCAT plug-in module.

2. Select the “Parameters” tab.

3. Leave the measured motor parameters or specify the parameters manually. The motor parameters can be obtained from
the motor data sheet or using the PMSM parameters measurement procedure described in PMSM Electrical Parameters
Measurement (document AN4680). All parameters provided in Table 7 are accessible. The motor inertia J expresses the
overall system inertia and can be obtained using a mechanical measurement. The J parameter is used to calculate the
speed controller constant. However, the manual controller tuning can also be used to calculate this constant.

Table 7. MCAT motor parameters

Parameter Units Description Typical range

pp [-] Motor pole pairs 1-10

Rs [Ω] 1-phase stator resistance 0.3-50

Ld [H] 1-phase direct inductance 0.00001-0.1

Lq [H] 1-phase quadrature
inductance

0.00001-0.1

Ke [V.sec/rad] BEMF constant 0.001-1

J [kg.m2] System inertia 0.00001-0.1

Iph nom [A] Motor nominal phase current 0.5-8

Uph nom [V] Motor nominal phase voltage 10-300

N nom [rpm] Motor nominal speed 1000-2000

4. Set the hardware scales—the modification of these two fields is not required when a reference to the standard power stage
board is used. These scales express the maximum measurable current and voltage analog quantities.

5. Check the fault limits—these fields are not accessible in the “Basic” mode and are calculated using the motor parameters
and hardware scales (see Table 8).

Table 8. Fault limits

Parameter Units Description Typical range

U DCB trip [V] Voltage value at which the
external braking resistor
switch turns on

U DCB Over ~ U DCB max

U DCB under [V] Trigger value at which the
undervoltage fault is detected

0 ~ U DCB Over

U DCB over [V] Trigger value at which the
overvoltage fault is detected

U DCB Under ~ U max

Table continues on the next page...

NXP Semiconductors
Identifying parameters of user motor using MCAT

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 34 / 48

https://www.nxp.com/doc/AN4680

Table 8. Fault limits (continued)

Parameter Units Description Typical range

N over [rpm] Trigger value at which the
overspeed fault is detected

N nom ~ N max

N min [rpm] Minimal actual speed value for
the sensorless control

(0.05~0.2) *N max

6. Check the application scales—these fields are not accessible in the “Basic” mode and are calculated using the motor
parameters and hardware scales.

Table 9. Application scales

Parameter Units Description Typical range

N max [rpm] Speed scale >1.1 * N nom

E max [V] BEMF scale ke* Nmax

kt [Nm/A] Motor torque constant -

7. Check the alignment parameters—these fields are not accessible in the “Basic” mode and they are calculated using the
motor parameters and hardware scales. The parameters express the required voltage value applied to the motor during
the rotor alignment and its duration.

8. Click the “Store Data” button to save the modified parameters into the inner file.

9.3 Control structure modes
1. Select the scalar control by clicking the “DISABLED” button in the “Scalar Control” section. The button color changes to

red and the text changes to “ENABLED”.

2. Turn the application switch on. The application state changes to “RUN”.

3. Set the required frequency value in the “Freq_req” field; for example, 15 Hz in the “Scalar Control” section. The motor
starts running (Figure 26).

Figure 26. MCAT scalar control

NXP Semiconductors
Identifying parameters of user motor using MCAT

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 35 / 48

4. Select the “Phase Currents” recorder from the “Scalar & Voltage Control” FreeMASTER project tree.

5. The optimal ratio for the V/Hz profile can be found by changing the V/Hz factor directly or using the “UP/DOWN” buttons.
The shape of the motor currents should be close to a sinusoidal shape (Figure 27).

Figure 27. Phase currents

6. Select the “Position” recorder to check the observer functionality. The difference between the “Position Electrical Scalar”
and the “Position Estimated” should be minimal (see Figure 28) for the Back-EMF position and speed observer to work
properly. The position difference depends on the motor load. The higher the load, the bigger the difference between the
positions due to the load angle.

Figure 28. Generated and estimated positions

7. If an opposite speed direction is required, set a negative speed value into the “Freq_req” field.

8. The proper observer functionality and the measurement of analog quantities is expected at this step.

9. Enable the voltage FOC mode by clicking the “DISABLED” button in the “Voltage FOC” section while the main application
switch is turned off.

10. Switch the main application switch on and set a non-zero value in the “Uq_req” field. The FOC algorithm uses the estimated
position to run the motor.

NXP Semiconductors
Identifying parameters of user motor using MCAT

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 36 / 48

9.4 Alignment tuning
For the alignment parameters, navigate to the “Tab” menu and select “Parameters”. The alignment procedure sets the rotor to
an accurate initial position and enables you to apply full start-up torque to the motor. The rotor-alignment parameters are available
for editing in the “Expert” mode. A correct initial position is needed mainly for high start-up loads (compressors, washers, and so
on). The aim of the alignment is to have the rotor in a stable position, without any oscillations before the startup.

1. The alignment voltage is the value applied to the d-axis during the alignment. Increase this value for a higher shaft load.

2. The alignment duration expresses the time when the alignment routine is called. Tune this parameter to eliminate rotor
oscillations or movement at the end of the alignment process.

9.5 Current loop tuning
The parameters for the current D, Q, and PI controllers are fully calculated in the “Basic” mode using the motor parameters and
no action is required in this mode. If the calculated loop parameters do not correspond to the required response, the bandwidth
and attenuation parameters can be tuned.

1. Lock the motor shaft.

2. Set the required loop bandwidth and attenuation and click the “Update Target” button in the “Current Loop” tab. The tuning
loop bandwidth parameter defines how fast the loop response is whilst the tuning loop attenuation parameter defines the
actual quantity overshoot magnitude.

3. Select the “Current Controller Id” recorder.

4. Select the “Control Structure” tab, switch to “Current FOC”, set the “Iq_req” field to a very low value (for example 0.01),
and set the required step in “Id_req”. The control loop response is shown in the recorder.

5. Tune the loop bandwidth and attenuation until you achieve the required response. The example waveforms show the
correct and incorrect settings of the current loop parameters:

• The loop bandwidth is low (110 Hz) and the settling time of the Id current is long (Figure 29).

Figure 29. Slow step response of the Id current controller

• The loop bandwidth (400 Hz) is optimal and the response time of the Id current is sufficient (see Figure 30).

NXP Semiconductors
Identifying parameters of user motor using MCAT

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 37 / 48

Figure 30. Optimal step response of the Id current controller

• The loop bandwidth is high (700 Hz) and the response time of the Id current is very fast, but with oscillation and
overshoot (see Figure 31).

Figure 31. Fast step response of the Id current controller

9.6 Speed ramp tuning
1. The speed command is applied to the speed controller through a speed ramp. The ramp function contains two increments

(up and down) which express the motor acceleration and deceleration per second. If the increments are very high, they
can cause an overcurrent fault during acceleration and an overvoltage fault during deceleration. In the “Speed” scope, you
can see whether the “Speed Actual Filtered” waveform shape equals the “Speed Ramp” profile.

2. The increments are common for the scalar and speed control. The increment fields are in the “Speed & Pos” tab and
accessible in both tuning modes. Clicking the “Update Target” button applies the changes to the MCU. An example speed
profile is shown in Figure 32. The ramp increment down is set to 500 rpm/sec and the increment up is set to 3000 rpm/sec.

3. The start-up ramp increment is in the “Sensorless” tab and its value is usually higher than that of the speed loop ramp.

NXP Semiconductors
Identifying parameters of user motor using MCAT

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 38 / 48

Figure 32. Speed profile

9.7 Open loop startup
1. The start-up process can be tuned by a set of parameters located in the “Sensorless” tab. Two of them (ramp increment

and current) are accessible in both tuning modes. The start-up tuning can be processed in all control modes besides the
scalar control. Setting the optimal values results in a proper motor startup. An example start-up state of low-dynamic drives
(fans, pumps) is shown in Figure 33.

2. Select the “Startup” recorder from the FreeMASTER project tree.

3. Set the start-up ramp increment typically to a higher value than the speed-loop ramp increment.

4. Set the start-up current according to the required start-up torque. For drives such as fans or pumps, the start-up torque is
not very high and can be set to 15 % of the nominal current.

5. Set the required merging speed—when the open-loop and estimated position merging starts, the threshold is mostly set
in the range of 5 % ~ 10 % of the nominal speed.

6. Set the merging coefficient—in the position merging process duration, 100 % corresponds to a half of an electrical
revolution. The higher the value, the faster the merge. Values close to 1 % are set for the drives where a high start-up
torque and smooth transitions between the open loop and the closed loop are required.

7. Click the “Update Target” button to apply the changes to the MCU.

8. Switch to the “Control Structure” tab, and enable the “Speed FOC”.

9. Set the required speed higher than the merging speed.

10. Check the start-up response in the recorder.

11. Tune the start-up parameters until you achieve an optimal response.

12. If the rotor does not start running, increase the start-up current.

13. If the merging process fails (the rotor is stuck or stopped), decrease the start-up ramp increment, increase the merging
speed, and set the merging coefficient to 5 %.

NXP Semiconductors
Identifying parameters of user motor using MCAT

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 39 / 48

Figure 33. Motor startup

9.8 BEMF observer tuning
1. In the “Basic” mode, the parameters of the BEMF observer and the tracking observer are fully calculated using the motor

parameters and no action is required. If the calculated loop parameters do not correspond to the optimal response, the
bandwidth and attenuation parameters can be tuned.

2. Select the “Observer” recorder from the FreeMASTER project tree.

3. Set the required bandwidth and attenuation of the BEMF observer—the bandwidth is typically set to a value close to the
current loop bandwidth.

4. Set the required bandwidth and attenuation of the tracking observer—the bandwidth is typically set in the range of 10 – 20
Hz for most low-dynamic drives (fans, pumps).

5. Click the “Update Target” button to apply the changes to the MCU.

6. Check the observer response in the recorder.

9.9 Speed PI controller tuning
The motor speed control loop is a first-order function with a mechanical time constant that depends on the motor inertia and
friction. If the mechanical constant is available, the PI controller constants can be tuned using the loop bandwidth and attenuation.
Otherwise, the manual tuning of the P and I portions of the speed controllers is available to obtain the required speed response
(see the example response in Figure 34). There are dozens of approaches to tune the PI controller constants. The following steps
provide an approach to set and tune the speed PI controller for a PM synchronous motor:

1. Select the “Speed Controller” option from the FreeMASTER project tree.

2. Select the “Speed & Pos” tab.

3. Check the “Manual Constant Tuning” option—that is, the “Bandwidth” and “Attenuation” fields are disabled and the
“SL_Kp” and “SL_Ki” fields are enabled.

4. Tune the proportional gain:

• Set the “SL_Ki” integral gain to 0.

• Set the speed ramp to 1000 rpm/sec (or higher).

• Switch to the “Control Structure” tab and run the motor at a convenient speed (about 30 % of the nominal speed).

NXP Semiconductors
Identifying parameters of user motor using MCAT

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 40 / 48

• Set a step in the required speed to 40 % of Nnom.

• Switch back to the “Speed loop” tab.

• Adjust the proportional gain “SL_Kp” until the system responds to the required value properly and without any
oscillations or excessive overshoot:

— If the “SL_Kp” field is set low, the system response is slow.

— If the “SL_Kp” field is set high, the system response is tighter.

— When the “SL_Ki” field is 0, the system most probably does not achieve the required speed.

— Click the “Update Target” button to apply the changes to the MCU.

5. Tune the integral gain:

• Increase the “SL_Ki” field slowly to minimize the difference between the required and actual speeds to 0.

• Adjust the “SL_Ki” field such that you do not see any oscillation or large overshoot of the actual speed value while
the required speed step is applied.

• Click the “Update Target” button to apply the changes to the MCU.

6. Tune the loop bandwidth and attenuation until the required response is received. The example waveforms with the
correct and incorrect settings of the speed loop parameters are shown in the following figures:

• The “SL_Ki” value is low and the “Speed Actual Filtered” does not achieve the “Speed Ramp” (see Figure 34).

Figure 34. Speed controller response—SL_Ki value is low, Speed Ramp is not achieved

• The “SL_Kp” value is low, the “Speed Actual Filtered” greatly overshoots, and the long settling time is unwanted
(see Figure 35).

NXP Semiconductors
Identifying parameters of user motor using MCAT

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 41 / 48

Figure 35. Speed controller response—SL_Kp value is low, Speed Actual Filtered greatly overshoots

• The speed loop response has a small overshoot and the “Speed Actual Filtered” settling time is sufficient. Such
response can be considered optimal (see Figure 36).

Figure 36. Speed controller response—speed loop response with a small overshoot

NXP Semiconductors
Identifying parameters of user motor using MCAT

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 42 / 48

Chapter 10
Conclusion
This application note describes the implementation of the sensor and sensorless Field-Oriented Control of a 3-phase PMSM on
the NXP LPC55S69 with the FRDM-MC-LVPMSM NXP Freedom Development Platform. The hardware-dependent part of the
control software is described in Hardware setup. The motor-control application timing is described in LPC55S69 hardware timing
and synchronization and the peripheral initialization is described in Motor-control peripheral initialization. The motor user interface
and remote control using FreeMASTER are as follows. The motor parameters identification theory and the identification algorithms
are described in Identifying parameters of user motor using MCAT.

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 43 / 48

Chapter 11
Acronyms and abbreviations
Table 10. Acronyms and abbreviations

Acronym Meaning

ADC Analog-to-Digital Converter

ACIM Asynchronous Induction Motor

ADC_ETC ADC External Trigger Control

AN Application Note

BLDC Brushless DC motor

CCM Clock Controller Module

CPU Central Processing Unit

DC Direct Current

DRM Design Reference Manual

ENC Encoder

FOC Field-Oriented Control

GPIO General-Purpose Input/Output

LPUART Low-Power Universal Asynchronous Receiver/Transmitter

MCAT Motor Control Application Tuning tool

MCDRV Motor Control Peripheral Drivers

MCU Microcontroller

PI Proportional Integral controller

PLL Phase-Locked Loop

PMSM Permanent Magnet Synchronous Machine

PWM Pulse-Width Modulation

QD Quadrature Decoder

TMR Quad Timer

USB Universal Serial Bus

XBAR Inter-Peripheral Crossbar Switch

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 44 / 48

Chapter 12
References
These references are available on www.nxp.com:

1. Sensorless PMSM Field-Oriented Control (document DRM148).

2. Motor Control Application Tuning (MCAT) Tool for 3-Phase PMSM (document AN4642).

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 45 / 48

http://www.nxp.com
https://www.nxp.com/doc/DRM148
https://www.nxp.com/doc/AN4642

Chapter 13
Useful links

1. PMSM Control Reference Design www.nxp.com/motorcontrol_pmsm

2. BLDC Control Reference Design www.nxp.com/motorcontrol_bldc

3. ACIM Control Reference Design www.nxp.com/motorcontrol_acim

4. LPC55S69-EVK

5. FRDM-MC-PMSM Freedome Development Platform

6. Get Started with the LPC55S69-EVK

7. SCTimer/PWM Cookbook (document AN11538)

8. MCUXpresso IDE - Importing MCUXpresso SDK

9. MCUXpresso SDK Builder (SDK examples in several IDEs) https://mcuxpresso.nxp.com/en/welcome

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 46 / 48

http://www.nxp.com/motorcontrol_pmsm
http://www.nxp.com/motorcontrol_bldc
http://www.nxp.com/motorcontrol_acim
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc5500-cortex-m33/lpcxpresso55s69-development-board:LPC55S69-EVK
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/nxp-freedom-development-platform-for-low-voltage-3-phase-pmsm-motor-control:FRDM-MC-LVPMSM
https://www.nxp.com/document/guide/get-started-with-the-lpc55s69-evk:GS-LPC55S69-EVK
https://www.nxp.com/doc/AN11538
https://www.nxp.com/video/mcuxpresso-ide-importing-mcuxpresso-sdk:MCUXPRESSO-IDE-IMPORTING-SDK
https://mcuxpresso.nxp.com/en/welcome

Chapter 14
Revision history
Table 11 summarizes the changes done to the document since the initial release.

Table 11. Revision history

Revision number Date Substantive changes

0 02/2020 Initial release

1 03/2020 Fixed the LPC55S69-EVK pin
assignment and LPC55S69-EVK
interconnection diagram.

2 06/2020 Updated new clock settings

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control (LPC), Rev. 2, 06/2020
User's Guide 47 / 48

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, UMEMS, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V.
All other product or service names are the property of their respective owners. AMBA, Arm,
Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,
DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,
SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro,
µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks
and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 06/2020
Document identifier: 3PPMSMCLPCUG

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Hardware setup
	2.1 FRDM-MC-LVPMSM
	2.2 Linix 45ZWN24-40 motor
	2.3 LPC55S69-EVK

	3 LPC5500 series features and peripheral settings
	3.1 LPC-55S6x
	3.1.1 LPC55S69 hardware timing and synchronization
	3.1.2 LPC55S69 peripheral settings

	3.2 CPU load and memory usage

	4 Project file and IDE workspace structure
	4.1 PMSM project structure

	5 Tools
	5.1 Compiler warnings

	6 Motor-control peripheral initialization
	7 User interface
	8 Remote control using FreeMASTER
	8.1 Establishing FreeMASTER communication
	8.2 MCAT FreeMASTER interface (Motor Control Application Tuning)

	9 Identifying parameters of user motor using MCAT
	9.1 PMSM electrical and mechanical parameters measurement process
	9.2 Initial configuration setting and update
	9.3 Control structure modes
	9.4 Alignment tuning
	9.5 Current loop tuning
	9.6 Speed ramp tuning
	9.7 Open loop startup
	9.8 BEMF observer tuning
	9.9 Speed PI controller tuning

	10 Conclusion
	11 Acronyms and abbreviations
	12 References
	13 Useful links
	14 Revision history

