
IEC60730_B_CM33_Library_UG_v4_0
IEC60730B Library User's Guide

NXP Semiconductors Document identifier: IEC60730BCM33LUG40
User's Guide Rev. 0, 01/2020

Contents
Chapter 1 Core self-test library.. 3

Chapter 2 Analog Input/Output (IO) test.. 8

Chapter 3 Clock test.. 19

Chapter 4 Digital input/output test..24

Chapter 5 Invariable memory test..46

Chapter 6 CPU program counter test.. 53

Chapter 7 Variable memory test.. 57

Chapter 8 CPU register test...65

Chapter 9 Stack test.. 82

Chapter 10 Watchdog test .. 85

Contents

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
2 NXP Semiconductors

Chapter 1
Core self-test library
The core self-test library provides functions performing the MCU core self-test. The library consists of independent functions
performing tests compliant with international standards (IEC 60730, IEC 60335 UL 60730, UL 1998). The library supports the
IAR, Keil, and MCUXpresso IDEs. The NXP core self-test library performs the following tests:

• CPU registers test

• CPU program counter test

• Variable memory test

• Invariable memory test

• Stack test

• Clock test

• Digital input/output test

• Analog input/output test

• Watchdog test

The test architecture, implementation, test, and validation of corresponding tests are comprehensively described in independent
sections for each test.

The library supports the LPC55Sxx device based on the Arm-M33 core.

The core self-test library has two versions: source code version and object code version. Three object codes (one for each IDE)
were compiled from the common source code version. The header files are the same for both versions.

1.1 Core self-test library – object code version
The object code version of the library consists of the precompiled binary file and the same list of header files as for the source-
code version of the library.

The following are the object files for the given IDEs:

• IAR: IEC60730B_CM33_IAR_v4_0.a

• Keil: IEC60730B_CM33_Keil_v4_0.lib

• MCUXpresso: libIEC60730B_CM33_MCUX_v4_0.a

1.2 Core self-test library – source code version
The library name is IEC60730B_CM33 . The main header files are iec60730b.h and iec60730b_core.h.

Each source file (*.c or *.S) has a corresponding header (*.h) file.

Table 1. List of library items

File Name Test Type Function Name

iec60730b.h Library header file -

iec60730b_core.h Core depend library header file -

asm_mac_common.h Common assembler directives -

iec60730b_aio.c Analog I/O test FS_AIO_InputInit()

Table continues on the next page...

Core self-test library – object code version

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 3

Table 1. List of library items (continued)

File Name Test Type Function Name

Analog I/O test FS_AIO_InputInit_CYCLIC()

Analog I/O test FS_AIO_InputInit_LPC_ADC16()

Analog I/O test FS_AIO_InputInit_LPC_ADC12()

Analog I/O test FS_AIO_InputTrigger()

Analog I/O test FS_AIO_InputSet()

Analog I/O test FS_AIO_InputSet_K3S()

Analog I/O test FS_AIO_InputSet_CYCLIC()

Analog I/O test FS_AIO_InputSet_LPC8XX()

Analog I/O test FS_AIO_InputSet_LPC55SXX()

Analog I/O test FS_AIO_InputCheck()

Analog I/O test FS_AIO_InputCheck_KE()

Analog I/O test FS_AIO_InputCheck_K3S()

Analog I/O test FS_AIO_InputCheck_CYCLIC()

Analog I/O test FS_AIO_InputCheck_LPC8XX()

Analog I/O test FS_AIO_InputCheck_LPC55SXX()

iec60730b_clock.c Clock test FS_CLK_Check()

Clock test FS_CLK_Init()

Clock test FS_CLK_LPTMR()

Clock test FS_CLK_RTC()

Clock test FS_CLK_GPT()

Clock test FS_CLK_WKT_LPC()

Clock test FS_CLK_CTIMER_LPC()

iec60730b_dio.c Digital I/O test FS_DIO_Input()

Digital I/O test FS_DIO_Output()

Digital I/O test FS_DIO_Output_RT()

Digital I/O test FS_DIO_Output_LPC()

iec60730b_dio_ext.c Extended Digital I/O test FS_DIO_InputExt()

Extended Digital I/O test FS_DIO_ShortToSupplySet()

Extended Digital I/O test FS_DIO_ShortToAdjSet()

Extended Digital I/O test FS_DIO_InputExt_RT()

Extended Digital I/O test FS_DIO_ShortToAdjSet_RT()

Extended Digital I/O test FS_DIO_InputExt_LPC()

Table continues on the next page...

Core self-test library

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
4 NXP Semiconductors

Table 1. List of library items (continued)

File Name Test Type Function Name

Extended Digital I/O test FS_DIO_ShortToSupplySet_LPC()

Extended Digital I/O test FS_DIO_ShortToAdjSet_LPC()

iec60730b_cm33_flash.S Invariable memory test (Flash) FS_CM33_FLASH_HW16()

Invariable memory test (Flash) FS_CM33_FLASH_HW32()

Invariable memory test (Flash) FS_CM33_FLASH_SW16()

Invariable memory test (Flash) FS_CM33_FLASH_SW32()

iec60730b_cm33_pc.S Program Counter test FS_CM33_PC_Test()

iec60730b_cm33_pc_object.S Program Counter test FS_PC_Object()

iec60730b_cm33_ram.S Variable memory test (RAM) FS_CM33_RAM_AfterReset()

Variable memory test (RAM) FS_CM33_RAM_Runtime()

Variable memory test (RAM) FS_CM33_RAM_CopyToBackup()

Variable memory test (RAM) FS_CM33_RAM_CopyFromBackup()

Variable memory test (RAM) FS_CM33_RAM_SegmentMarchC()

Variable memory test (RAM) FS_CM33_RAM_SegmentMarchX()

iec60730b_cm33_reg.S Register test FS_CM33_CPU_Register()

Register test FS_CM33_CPU_NonStackedRegister()

Register test FS_CM33_CPU_Primask_S()

Register test FS_CM33_CPU_Primask_NS()

Register test FS_CM33_CPU_SPmain_S()

Register test FS_CM33_CPU_SPmain_NS()

Register test FS_CM33_CPU_SPmain_Limit_S()

Register test FS_CM33_CPU_SPmain_Limit_NS()

Register test FS_CM33_CPU_SPprocess_S()

Register test FS_CM33_CPU_SPprocess_NS()

Register test FS_CM33_CPU_SPprocess_Limit_S()

Register test FS_CM33_CPU_SPprocess_Limit_NS()

Register test FS_CM33_CPU_Control_S()

Register test FS_CM33_CPU_Control_NS()

Register test FS_CM33_CPU_ControlFpu_S()

Register test FS_CM33_CPU_ControlFpu_NS()

Register test FS_CM33_CPU_Special8PriorityLevels_S()

Register test FS_CM33_CPU_Special8PriorityLevels_NS()

Table continues on the next page...

Core self-test library – source code version

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 5

Table 1. List of library items (continued)

File Name Test Type Function Name

iec60730b_cm33_reg_fpu.S Register test FS_CM33_CPU_Float1()

Register test FS_CM33_CPU_Float2()

iec60730b_cm33_Stack.S Stack test FS_CM33_STACK_Init()

Stack test FS_CM33_STACK_Test()

iec60730b_wdg.c Watchdog test FS_WDOG_Setup()

Watchdog test FS_WDOG_Check()

Watchdog test FS_WDOG_Setup_KE0XZ()

Watchdog test FS_WDOG_Check_KE0XZ()

Watchdog test FS_WDOG_Setup_COP()

Watchdog test FS_WDOG_Setup_KE1XZ()

Watchdog test FS_WDOG_Check_KE1XZ()

Watchdog test FS_WDOG_Setup_KE1XF()

Watchdog test FS_WDOG_Check_KE1XF()

Watchdog test FS_CM0_WDOG_Setup_K32W()

Watchdog test FS_CM0_WDOG_Check_K32W()

Watchdog test FS_CM4_WDOG_Setup_K32W()

Watchdog test FS_CM4_WDOG_Check_K32W()

Watchdog test FS_WDOG_Setup_RT()

Watchdog test FS_WDOG_Check_RT()

Watchdog test FS_WDOG_Setup_WWDT_LPC()

Watchdog test FS_WDOG_Setup_WWDT_LPC_mrt()

Watchdog test FS_WDOG_Check_WWDT_LPC()

Watchdog test FS_WDOG_Check_WWDT_LPC55SXX()

1.2.1 LPC55Sxx dedicated functions
The following table shows the list of functions dedicated for the LPC55Sxx device family.

Table 2. LPC55Sxx dedicated functions

File Suitable function Functions size Functions
duration[µS]

iec60730b_aio.c FS_AIO_InputInit_LPC_ADC16() 29 bytes1 0.731

FS_AIO_InputTrigger() 12 bytes1 0.161

FS_AIO_InputSet_LPC55SXX() 36 bytes1 0.681

FS_AIO_InputCheck_LPC55SXX() 120 bytes1 0.531

Table continues on the next page...

Core self-test library

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
6 NXP Semiconductors

Table 2. LPC55Sxx dedicated functions (continued)

File Suitable function Functions size Functions
duration[µS]

iec60730b_clock.c FS_CLK_Check() 38 bytes1 0.331

FS_CLK_Init() 8 bytes1 0.141

FS_CLK_WKT_LPC() TBD bytes1 TBD1

FS_CLK_CTIMER_LPC() 24 bytes1 12.041

iec60730b_dio.c FS_DIO_Output_LPC() 128 bytes1 15.591

iec60730b_dio_ext.c FS_DIO_InputExt_LPC() 150 bytes1 1.621

FS_DIO_ShortToSupplySet_LPC() 110 bytes1 1.171

FS_DIO_ShortToAdjSet_LPC() 184 bytes1 1.831

iec60730b_wdg.c FS_WDOG_Setup_WWDT_LPC() 52 bytes1 -

FS_WDOG_Check_WWDT_LPC55SX
X()

72 bytes1 1

iec60730b_flash.S Function are described in dedicated
chapter

See the function dedicated chapter

iec60730b_pc.S Functions are common for all CM33
devices

See the function dedicated chapter

iec60730b_ram.S Functions are common for all CM33
devices

See the function dedicated chapter

iec60730b_reg.S Functions are common for all CM33
devices

See the function dedicated chapter

iec60730b_Stack.S Functions are common for all CM33
devices

See the function dedicated chapter

1.3 Functions performance measurement
This section contains remarks about the functons' informative size and approximate time of execution. The numbers in the
following list are used as remark links from the corresponding sections.

1. The function parameter was measured in the IAR 8.40.1. IDE on LPC55S69 with a clock frequency of 96 MHz.

Functions performance measurement

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 7

Chapter 2
Analog Input/Output (IO) test
The analog IO test procedure performs the plausibility check of the digital IO interface of the processor. The analog IO test can
be performed once after the MCU reset and also during runtime.

The identification of a safety error is ensured by the specific FAIL return if an analog IO error occurs. Compare the return value
of the test function with the expected value. If it is equal to the FAIL return, then a jump into the safety error handling function
occurs. The safety error handling function may be specific to the application and it is not a part of the library. The main purpose
of this function is to put the application into a safety state.

The principle of the analog IO test is based on sequence execution, where a certain analog level is connected to a defined analog
input. The test function checks whether the converted value is within the tolerance. The test checks the analog input interface
and three reference values: reference high, reference low, and bandgap voltage. See the device specification document to set
up the correct values. The block diagram for the analog IO test is shown in the following figure:

Figure 1. Block diagram for analog input test

Analog Input/Output (IO) test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
8 NXP Semiconductors

2.1 Analog input/output test in compliance with IEC/UL standards
The performed overload test fulfils the safety requirements according to the IEC 60730-1, IEC 60335, UL 60730, and UL 1998
standards, as described in the following table:

Table 3. Analog input/output test in compliance with IEC and UL standards

Test Component Fault / Error Software / Hardware
Class

Acceptable Measures

Input/Output periphery 7. Input/Output
periphery (7.2 – A/D
conversion)

Abnormal operation B/R.1 Plausibility check

2.2 Analog input/output test implementation
The test functions for the analog IO test are placed in the iec60730b_aio.c file and written as "C" functions. The header file with
the function prototypes is iec60730b_aio.h. iec60730b.h is the common header file for the safety library.

The following functions are called to test the analog input:

• FS_AIO_InputInit () /FS_AIO_InputInit_K3SW() / FS_AIO_InputInit_CYCLIC() / FS_AIO_InputInit_LPC_ADC16() /
FS_AIO_InputInit_LPC_ADC12() /

• FS_AIO_InputTrigger()

• FS_AIO_InputSet() / FS_AIO_InputSet_K3S() / FS_AIO_InputSet_CYCLIC() / FS_AIO_InputSet_LPC8XX() /
FS_AIO_InputSet_LPC55SXX()

• FS_AIO_InputCheck() / FS_AIO_InputCheck_KE() / FS_AIO_InputCheck_K3S() / FS_AIO_InputCheck_CYCLIC() /
FS_AIO_InputCheck_LPC8XX() / FS_AIO_InputCheck_LPC55SXX()

The analog input test is based on a conversion of three analog inputs with known voltage values and checks if the converted
values fit into the specified limits. Normally, the limits should be about 10 % around the desired reference values. The test is
triggered by the FS_AIO_InputTrigger() function. The test is divided into three parts: initialization, test execution, and the end of
the test.

Throughout all supported devices, the ADC module has a slightly different arrangement of the registers that are involved in the
test. Therefore, a standalone check function is created for the ADC module. See Core self-test library – source code version for
the function dedicated for your device.

The following is an example of a function call:

Configuration of parameters

#define TESTED_ADC ADC0

#define ADC_RESOLUTION 12

#define ADC_MAX ((1<<(ADC_RESOLUTION))-1)

#define ADC_REFERENCE 3.06

#define ADC_BANDGAP_LEVEL 1.7

#define ADC_BANDGAP_LEVEL_RAW (((ADC_BANDGAP_LEVEL)*(ADC_MAX))/(ADC_REFERENCE))

#define ADC_DEVIATION_PERCENT 10

#define ADC_MIN_LIMIT(val) (((val) * (100 - ADC_DEVIATION_PERCENT)) / 100)

#define ADC_MAX_LIMIT(val) (((val) * (100 + ADC_DEVIATION_PERCENT)) / 100)

#define FS_CFG_AIO_CHANNELS_CNT 3

#define FS_CFG_AIO_CHANNELS_LIMITS_INIT\

Analog input/output test in compliance with IEC/UL standards

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 9

{\

{ADC_MIN_LIMIT(0), ADC_MAX_LIMIT(10)}, \

{ADC_MIN_LIMIT(ADC_MAX), ADC_MAX_LIMIT(ADC_MAX)},\

{ADC_MIN_LIMIT(ADC_BANDGAP_LEVEL_RAW), ADC_MAX_LIMIT(ADC_BANDGAP_LEVEL_RAW)}\

}

#define FS_CFG_AIO_CHANNELS_INIT {30, 29, 27}

Variables definition

fs_aio_test_t aio_Str;

fs_aio_limits_t FS_ADC_Limits[FS_CFG_AIO_CHANNELS_CNT] = FS_CFG_AIO_CHANNELS_LIMITS_INIT;

unsigned char FS_ADC_inputs[FS_CFG_AIO_CHANNELS_CNT] = FS_CFG_AIO_CHANNELS_INIT;

Initialization of the test

FS_AIO_InputInit(&aio_Str, (fs_aio_limits_t*)FS_ADC_Limits, (unsigned char*)FS_ADC_inputs,
FS_CFG_AIO_CHANNELS_CNT);

FS_AIO_InputTrigger(&aio_Str);

The test

for(uint8_t i=0;i<4;i++)

{

psSafetyCommon->AIO_test_result = FS_AIO_InputCheck(&aio_Str, (unsigned long*)TESTED_ADC);

switch(psSafetyCommon->AIO_test_result)

{

case FS_AIO_START:

FS_AIO_InputSet(&aio_Str, (unsigned long*)TESTED_ADC);

break;

case FS_AIO_FAIL:

psSafetyCommon->ui32SafetyErrors |= AIO_TEST_ERROR;

SafetyErrorHandling(psSafetyCommon);

break;

case FS_AIO_INIT:

FS_AIO_InputTrigger(&aio_Str);

break;

case FS_AIO_PASS:

FS_AIO_InputTrigger(&aio_Str);

break;

default:

__asm("NOP");

Analog Input/Output (IO) test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
10 NXP Semiconductors

break;

}

}

2.2.1 FS_AIO_InputTrigger()
This function sets up the analog input test to start the execution of the test (sets state FS_AIO_START for pObj).

Function prototype:

void FS_AIO_InputTrigger(fs_aio_test_t *pObj);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

2.2.2 FS_AIO_InputInit()
This function initializes one instance of the analog input test.

Function prototype:

void FS_AIO_InputInit(fs_aio_test_t *pObj, fs_aio_limits_t *pLimits, uint8_t *pInputs, uint8_t cntMax);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pLimits - The input argument is the pointer to the array of limits used in the test.

*pInputs - The input argument is the pointer to the array of input numbers used in the test.

*cntMax - The input argument is the size of the input and the limits arrays.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

2.2.3 FS_AIO_InputInit_CYCLIC()
This function initializes an instance of the analog input test.

Function prototype:

void FS_AIO_InputInit_CYCLIC(fs_aio_test_t *pObj, fs_aio_limits_t *pLimits, uint8_t *pInputs, uint8_t *pSamples, uint8_t cntMax);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pLimits - The input argument is the pointer to the array of limits used in the test.

*pInputs - The input argument is the pointer to the array of input numbers used in the test.

*pSamples - The input argument is the pointer to the array of sample numbers used in the test.

Analog input/output test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 11

cntMax - The input argument is the size of the input and the limits arrays.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

2.2.4 FS_AIO_InputInit_K3S()
This function initializes an instance of the analog input test.

Function prototype:

void FS_AIO_InputInit_K3S(fs_aio_test_t *pObj, fs_aio_limits_t *pLimits, uint8_t *pInputs, uint8_t cntMax, uint8_t cmdBuffer);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pLimits - The input argument is the pointer to the array of limits used in the test.

*pInputs - The input argument is the pointer to the array of input numbers used in the test.

cntMax - The input argument is the size of the input and the limits arrays.

cmdBuffer - Specifies the command buffer for the conversion. Has effect only in case of k3s devices.

Function output:

void

Function performance:

Information about function performance is mentioned in the chapter Core self-test library – source code version

2.2.5 FS_AIO_InputInit_LPC_ADC16()
This function initializes an instance of the analog input test.

Function prototype:

void FS_AIO_InputInit_LPC_ADC16(fs_aio_test_t *pObj, fs_aio_limits_t *pLimits, uint8_t *pInputs, uint8_t cntMax, uint8_t
sequence, uint8_t fifo);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pLimits - The input argument is the pointer to the array of limits used in the test.

*pInputs - The input argument is the pointer to the array of input numbers used in the test.

cntMax - The input argument is the size of the input and the limits arrays.

sequence - No effect, just because of compatibility.

fifo - The index of the used FIFO for result.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

Analog Input/Output (IO) test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
12 NXP Semiconductors

2.2.6 FS_AIO_InputInit_LPC_ADC12()
This function initializes an instance of the analog input test.

Function prototype:

void FS_AIO_InputInit_LPC_ADC12(fs_aio_test_t *pObj, fs_aio_limits_t *pLimits, uint8_t *pInputs, uint8_t cntMax, uint8_t
sequence);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pLimits - The input argument is the pointer to the array of limits used in the test.

*pInputs - The input argument is a pointer to the array of input numbers used in the test.

cntMax - The input argument is the size of the input and the limits arrays.

sequence - The input argument is the index of the sequence used.

Function output:

void

Function performance:

The Information about the function performance is in Core self-test library – source code version.

2.2.7 FS_AIO_InputSet()
This function executes the first part of the AIO test sequence. This part sets up the ADC input channel. When the ADC converter
is configured for a software trigger, this function also triggers the conversion. The state is changed to FS_AIO_PROGRESS. This
function can be called when the ADC module is idle and ready for the next conversion.

Function prototype:

FS_RESULT FS_AIO_InputSet(fs_aio_test_t *pObj, uint32_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

• FS_AIO_PROGRESS - A required return value. It eans that the input is set.

If any other value is returned, the function has no effect.

Function performance:

The information about the function performance is in Core self-test library – source code version.

2.2.8 FS_AIO_InputSet_CYCLIC()
This function executes the first part of the AIO test sequence. This part sets up the ADC input channel. When the ADC converter
is configured for a software trigger, this function also triggers the conversion. The state is changed to FS_AIO_PROGRESS. This
function can be called when the ADC module is idle and ready for the next conversion.

Function prototype:

FS_RESULT FS_AIO_InputSet_CYCLIC(fs_aio_test_t *pObj, uint32_t *pAdc);

Function inputs:

Analog input/output test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 13

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

• FS_AIO_PROGRESS - The required return value. It means that the input is set.

If any other value is returned, the function has no effect.

Function performance:

The information about the function performance is in Core self-test library – source code version.

2.2.9 FS_AIO_InputSet_K3S()
This function executes the first part of the AIO test sequence. This part sets up the ADC input channel. When the ADC converter
is configured for a software trigger, this function also triggers the conversion. The state is changed to FS_AIO_PROGRESS. This
function can be called when the ADC module is idle and ready for the next conversion.

Function prototype:

FS_RESULT FS_AIO_InputSet_K3S(fs_aio_test_t *pObj, uint32_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

• FS_AIO_PROGRESS - The required return value. It means that the input is set.

If any other value is returned, the function has no effect.

Function performance:

The information about the function performance is in Core self-test library – source code version.

2.2.10 FS_AIO_InputSet_LPC8XX()
This function executes the first part of the AIO test sequence. This part sets up the ADC input channel. When the ADC converter
is configured for a software trigger, this function also triggers the conversion. The state is changed to FS_AIO_PROGRESS. This
function can be called when the ADC module is idle and ready for the next conversion.

Function prototype:

FS_RESULT FS_AIO_InputSet_LPC8XX(fs_aio_test_t *pObj, uint32_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

• FS_AIO_PROGRESS - The required return value. It means that the input is set.

If any other value is returned, the function has no effect.

Function performance:

Analog Input/Output (IO) test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
14 NXP Semiconductors

The information about the function performance is in Core self-test library – source code version.

2.2.11 FS_AIO_InputSet_LPC55SXX()
This function executes the first part of the AIO test sequence. This part sets up the ADC input channel. When the ADC converter
is configured for a software trigger, this function also triggers the conversion. The state is changed to FS_AIO_PROGRESS. This
function can be called when the ADC module is idle and ready for the next conversion.

Function prototype:

FS_RESULT FS_AIO_InputSet_LPC55SXX(fs_aio_test_t *pObj, uint32_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

• FS_AIO_PROGRESS - The required return value. It means that the input was set.

If any other value is returned, the function has no effect.

Function performance:

The information about the function performance is in Core self-test library – source code version.

2.2.12 FS_AIO_InputCheck()
This function executes the second part of the AIO test sequence. This part reads the converted analog value and checks if the
value fits into the predefined limits. This function reads the converted value only if pObj->state == FS_AIO_PROGRESS. The
test is finished when this function reports FS_AIO_PASS or FS_AIO_FAIL.

Function prototype:

FS_RESULT FS_AIO_InputCheck(fs_aio_test_t *pObj, uint32_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS - A successfull execution of the test (all channels tested).

• FS_FAIL_AIO - The converted value does not fit into the limits.

• FS_AIO_START - A successfull conversion and a setup input for the next conversion.

• FS_AIO_PROGRESS - The input is not converted yet.

• FS_AIO_INIT - The function has no effect.

Function performance:

The information about the function performance is in Core self-test library – source code version.

Analog input/output test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 15

2.2.13 FS_AIO_InputCheck_CYCLIC()
This function executes the second part of the AIO test sequence. This part reads the converted analog value and checks if the
value fits into the predefined limits. This function reads the converted value only if pObj->state == FS_AIO_PROGRESS. The
test is finished when this function reports FS_AIO_PASS or FS_AIO_FAIL.

Function prototype:

FS_RESULT FS_AIO_InputCheck_CYCLIC(fs_aio_test_t *pObj, uint32_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS - A successfull execution of the test (all channels tested).

• FS_FAIL_AIO - The converted value does not fit into the limits.

• FS_AIO_START - A successfull conversion and a setup input for the next conversion.

• FS_AIO_PROGRESS - The input is not converted yet.

• FS_AIO_INIT - The function has no effect.

Function performance:

The information about the function performance is in Core self-test library – source code version.

2.2.14 FS_AIO_InputCheck_K3S()
This function executes the second part of the AIO test sequence. This part reads the converted analog value and checks if the
value fits into the predefined limits. This function reads the converted value only if pObj->state == FS_AIO_PROGRESS. The
test is finished when this function reports FS_AIO_PASS or FS_AIO_FAIL. It is dedicated for 12-bit low-power ADCs.

Function prototype:

FS_RESULT FS_AIO_InputCheck_K3S(fs_aio_test_t *pObj, uint32_t *pAdc, uint32_t resFifo);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

resFifo - A 32-bit value of the RESFIFO register.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS - A successfull execution of the test (all channels tested).

• FS_FAIL_AIO - The converted value does not fit into the limits.

• FS_AIO_START - A successful conversion and a setup input for the next conversion.

• FS_AIO_PROGRESS - The input is not converted yet.

• FS_AIO_INIT - The function has no effect.

Function performance:

The information about the function performance is in Core self-test library – source code version.

Analog Input/Output (IO) test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
16 NXP Semiconductors

2.2.15 FS_AIO_InputCheck_KE()
This function executes the second part of the AIO test sequence. This part reads the converted analog value and checks if the
value fits into the predefined limits. This function reads the converted value only if pObj->state == FS_AIO_PROGRESS. The
test is finished, when this function reports FS_AIO_PASS or FS_AIO_FAIL.

Function prototype:

FS_RESULT FS_AIO_InputCheck_KE(fs_aio_test_t *pObj, uint32_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS - A successfull execution of the test (all channels tested).

• FS_FAIL_AIO - The converted value does not fit into the limits.

• FS_AIO_START - A successfull conversion and a setup input for the next conversion.

• FS_AIO_PROGRESS - The input is not converted yet.

• FS_AIO_INIT - The function has no effect.

Function performance:

The information about the function performance is in Core self-test library – source code version.

2.2.16 FS_AIO_InputCheck_LPC55SXX()
This function executes the second part of the AIO test sequence. This part reads the converted analog value and checks if the
value fits into the predefined limits. This function reads the converted value only if pObj->state == FS_AIO_PROGRESS. The
test is finished when this function reports FS_AIO_PASS or FS_AIO_FAIL.

Function prototype:

FS_RESULT FS_AIO_InputCheck_LPC55SXX(fs_aio_test_t* pObj, uint32_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS - A successfull execution of the test (all channels tested).

• FS_FAIL_AIO - The converted value does not fit into the limits.

• FS_AIO_START - A successfull conversion and a setup input for the next conversion.

• FS_AIO_PROGRESS - The input is not converted yet.

• FS_AIO_INIT - The function has no effect.

Function performance:

The Information about the function performance is in Core self-test library – source code version.

Analog input/output test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 17

2.2.17 FS_AIO_InputCheck_LPC8XX()
This function executes the second part of the AIO test sequence. This part reads the converted analog value and checks if the
value fits into the predefined limits. This function reads the converted value only if pObj->state == FS_AIO_PROGRESS. The
test is finished when this function reports FS_AIO_PASS or FS_AIO_FAIL.

Function prototype:

FS_RESULT FS_AIO_InputCheck_LPC8XX(fs_aio_test_t* pObj, uint32_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS - A successfull execution of the test (all channels tested).

• FS_FAIL_AIO - The converted value does not fit into the limits.

• FS_AIO_START - A successfull conversion and a setup input for the next conversion.

• FS_AIO_PROGRESS - The input is not converted yet.

• FS_AIO_INIT - The function has no effect.

Function performance:

The information about the function performance is in Core self-test library – source code version.

Analog Input/Output (IO) test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
18 NXP Semiconductors

Chapter 3
Clock test
The clock test procedure tests the clock frequency of the processor for the "stuck-at" condition. The clock test can be performed
once after the MCU reset and also during runtime.

The identification of a safety error is ensured by the specific FAIL return in case of a clock fault. Assess the return value of the
test function. If it is equal to the FAIL return, then a jump into the safety error handling function should occur. The safety error
handling function is specific to the application and it is not a part of the library. The main purpose of this function is to put the
application into a safety state.

The clock test principle is based on the comparison of two independent clock sources. If the test routine detects a change in the
frequency ratio between the clock sources, a fail error code is returned. The test routine uses one timer and one periodical event
in the application. The periodical event could be also an interrupt from a different timer than that already involved.

The device supported by the library has many timer/counter modules. See Core self-test library – source code version for a
function suitable for your device.

The block diagram for the clock test is shown in the following figure:

Figure 2. Block diagram for clock test

3.1 Clock test in compliance with IEC/UL standards
The performed overload test fulfils the safety requirements according to the EC 60730-1, IEC 60335, UL 60730, and UL 1998
standards, as described in the following table:

Clock test in compliance with IEC/UL standards

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 19

Table 4. Clock test in compliance with IEC and UL standards

Test Component Fault / Error Software / Hardware
Class

Acceptable Measures

Clock test 3.Clock Wrong frequency B / R.1 Frequency monitoring

3.2 Clock test implementation
The test functions for the clock test are placed in the iec60730b_clock.c file and written as "C" functions. The header file with the
function prototypes is iec60730b_clock.h. The common library header file is iec60730b.h.

The following functions are called to test the clock frequency:

• FS_CLK_Init()

• FS_CLK_LPTMR() / FS_CLK_RTC() / FS_CLK_GPT() / FS_CLK_WKT_LPC() / FS_CLK_CTIMER_LPC()

• FS_CLK_Check()

Configure the reference timer, choose an appropriate periodical event and calculate the limit values. Declare the 32-bit global
variable for storing the content of the timer counter register. The clock source of the chosen timer must differ from the clock source
of the periodical event. The FS_CLK_Init() function is called once, normally before the while() loop. The FS_CLK_LPTMR() (to
choose the dedicated function for your device, see Core self-test library – source code version) function is then called within a
periodic event. The FS_CLK_Check() function for evaluation can be called at any given time. When the test is in the initialization
phase, the check function returns the “in progress” value. If the captured value from the reference counter is within the preset
limits, the check function returns a pass value. If not, a defined fail value is returned.

The example of the test implementation is as follows:

#include “iec60730b.h”

FS_RESULT st;

unsigned long clockTestContext;

#defineISR_FREQUENCY (100)

#define CLOCK_TEST_TOLERANCE (10)

#define REF_TIMER_CLOCK_FREQUENCY (32e03l)

RTC_SC = RTC_SC_RTCLKS(2)|RTC_SC_RTCPS(1);

SysTick->VAL = 0x0;

SysTick->LOAD = 100e6*0.01;

SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk | SysTick_CTRL_ENABLE_Msk|
SysTick_CTRL_TICKINT_Msk;

SysTick->VAL = 0x0;

FS_CLK_Init(&clockTestContext);

while(1) { st = FS_CLK_Check(clockTestContext,FS_CLK_FREQ_LIMIT_LO, FS_CLK_FREQ_LIMIT_HI);

if(FS_CLK_FAIL == st) SafetyError();

}

void timer_isr(void)

{

FS_CLK_RTC((uint32_t*)RTC_BASE_PTR, &clockTestContext);

Clock test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
20 NXP Semiconductors

}

3.2.1 FS_CLK_Init()
This function initializes one instance of the clock sync test. It sets the TestContext value to the “in progress” state.

Function prototype:

void FS_CLK_Init(uint32_t *pTestContext);

Function inputs:

*pTestContext - The pointer to the variable that holds the captured timer value.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

3.2.2 FS_CLK_Check()
This function handles the clock test. It evaluates the captured value stored in the testContext variable with predefined limits. Until
the first execution of the respective Isr function, the check function returns FS_CLK_PROGRESS.

Function prototype:

FS_RESULT FS_CLK_Check(uint32_t testContext, uint32_t limitLow, uint32_t limitHigh);

Function inputs:

testContext - The captured value of the timer.

limitLow - The low limit.

limitHigh - The high limit.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS - The testContext fits into the limits.

• FS_FAIL_CLK - The testContext value does not fit into the limits.

• FS_CLK_PROGRESS - The reference counter value is not read yet.

Function performance:

The information about the function performance is in Core self-test library – source code version.

3.2.3 FS_CLK_LPTMR()
This function is used only with the LPTMR module. The function reads the counter value from the timer and saves it into the
TestContext variable. After that, the function starts the LPTMR again.

Function prototype:

void FS_CLK_LPTMR(uint32_t *pSafetyTmr, uint32_t *pTestContext);

Function inputs:

*pSafetyTmr - The timer module address.

*pTestContext - The pointer to the variable that holds the captured timer value.

Clock test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 21

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

3.2.4 FS_CLK_CTIMER_LPC()
This function is used only with the CTimer module. This function reads the counter value from the timer and saves it into the
TestContext variable. After that, it starts the CTimer again.

Function prototype:

void FS_CLK_CTIMER_LPC(uint32_t *pSafetyTmr, uint32_t *pTestContext);

Function inputs:

*pSafetyTmr - The timer module address.

*pTestContext - The pointer to the variable that holds the captured timer value.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

3.2.5 FS_CLK_GPT()
This function is used only with the GPT module. This function reads the counter value from the timer and saves it into the
TestContext variable. After that, it starts the GPT again.

Function prototype:

void FS_CLK_GPT(uint32_t *pSafetyTmr, uint32_t *pTestContext);

Function inputs:

*pSafetyTmr - The timer module address.

*pTestContext - The pointer to the variable that holds the captured timer value.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

3.2.6 FS_CLK_RTC()
This function is used only with the RTC module. This function reads the counter value from the timer and saves it into the
TestContext variable. After that, it starts the RTC again.

Function prototype:

void FS_CLK_RTC(uint32_t *pSafetyTmr, uint32_t *pTestContext);

Function inputs:

*pSafetyTmr - The timer module address.

*pTestContext - The pointer to the variable that holds the captured timer value.

Clock test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
22 NXP Semiconductors

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

3.2.7 FS_CLK_WKT_LPC()
This function is used only with the WKT module. This function reads the counter value from the timer and saves it into the
TestContext variable. After that, it starts the WKT again.

Function prototype:

void FS_CLK_WKT_LPC(uint32_t *pSafetyTmr, uint32_t *pTestContext, uint32_t startValue);

Function inputs:

*pSafetyTmr - The timer module address.

*pTestContext - The pointer to the variable that holds the captured timer value.

startValue - The start value to decrease the WKT counter.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

Clock test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 23

Chapter 4
Digital input/output test
The Digital Input/Output (DIO) test procedure performs the plausibility check of the processor's digital IO interface.

The identification of the safety error is ensured by the specific FAIL return in case of the digital IO error. Assess the return value
of the test function and if it is equal to the FAIL return, the move into the safety error handling function should occur. The safety
error handling function may be specific to the application and it is not a part of the library. The main purpose of this function is to
put the application into a safe state.

The DIO test functions are designed to check the digital input and output functionality and short circuit conditions between the
tested pin and the supply voltage, ground, or optional adjacent pin. The execution of the DIO tests must be adapted to the final
application. Be careful with the hardware connections and design. Be sure about which functions can be applied to a respective
pin. In most of cases, the tested (and sometimes also auxiliary) pin must be reconfigured during the application run. When testing
the digital output, reserve enough time between the test arrangement and the reading of results.

4.1 Digital input/output test in compliance with IEC/UL standards
The performed overload test fulfils the safety requirements according to the IEC 60730-1, IEC 60335, UL 60730, and UL 1998
standards, as described in the following table:

Table 5. Digital input/output test in compliance with IEC and UL standards

Test Component Fault / Error Software / Hardware
Class

Acceptable Measures

Input/Output periphery 7. Input/Output
periphery (7.1 – Digital
I/O)

Abnormal operation B/R.1 Plausibility check

4.2 Digital input/output test implementation
The test functions for the digital IO test are placed in the iec60730b_dio.c and iec60730b_dio_ext.c files. The header files with
the function prototypes are iec60730b_dio.h and iec60730b_dio_ext.h. The iec60730b.h file is a common file for all components
of the library.

The digital input/output tests can be executed using the following functions properly:

• FS_DIO_Input()

• FS_DIO_Output() / FS_DIO_Output_RT() / FS_DIO_Output_LPC()

• FS_DIO_InputExt() / FS_DIO_InputExt_RT() / FS_DIO_InputExt_LPC()

• FS_DIO_ShortToSupplySet() / FS_DIO_ShortToSupplySet_RT() / FS_DIO_ShortToSupplySet_LPC()

• FS_DIO_ShortToAdjSet() / FS_DIO_ShortToAdjSet_RT() / FS_DIO_ShortToAdjSet_LPC()

The pointer to the fs_dio_test_t structure type is a parameter of each function. The structure is defined in the iec60730b_dio.h file.

typedef struct

{

uint32_t pcr; /* Pin control register */

uint32_t pddr; /* Port data direction register */

uint32_t pdor; /* Port data output register */

} fs_dio_backup_t;

Digital input/output test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
24 NXP Semiconductors

typedef struct

{

uint32_t gpio;

fs_dio_backup_t pcr;

uint8_t pinNum;

uint8_t pinDir;

uint8_t pinMux;

fs_dio_backup_t sTestedPinBackup;

} fs_dio_test_t;

These variables must be initialized before calling a test function. The following is an example of initialization:

fs_dio_test_t dio_safety_test_item_0 =

{

.gpio = FS_DIO_PORTE,

.pinNum = 24,

.pinDir = PIN_DIRECTION_IN,

.pinMux = PIN_MUX_GPIO,

};

fs_dio_test_t dio_safety_test_item_1 =

{

.gpio = FS_DIO_PORTA,

.pinNum = 2,

.pinDir = PIN_DIRECTION_OUT,

.pinMux = PIN_MUX_GPIO,

};

fs_dio_test_t *dio_safety_test_items[] = { &dio_safety_test_item_0, &dio_safety_test_item_1, 0 };

if (dio_safety_test_item_0 .gpio == FS_DIO_PORTE)

dio_safety_test_item_0 .pcr = FS_DIO_PORTE_PCR;

if (dio_safety_test_item_1 .gpio == FS_DIO_PORTA)

dio_safety_test_item_1 .pcr = FS_DIO_PORTA_PCR;

4.2.1 FS_DIO_Input()
This function executes the digital input test. The test tests one digital pin. The pin is tested according to the block diagram in the
following figure:

Digital input/output test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 25

Figure 3. Block diagram for digital input test

Function prototype:

FS_RESULT FS_DIO_Input(fs_dio_test_t *pTestedPin, bool_t expectedValue);

Function inputs:

*pTestedPin - The pointer to the tested pin struct.

expectedValue - The expected input value. Adjust this parameter correctly.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO

Example of function call:

fs_dio_input_test_result = FS_DIO_Input(&dio_safety_test_items[0], DIO_EXPECTED_VALUE);

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The tested pin must be configured as a GPIO with input direction.

4.2.2 FS_DIO_InputExt()
This is a modified version of the previously mentioned digital input test. It cannot be used with MKE0x devices. This version is a
get function for the "short-to" tests. The function is applied to the pin that is already configured as a GPIO input and you know
what logical level is expected at the time of the test. The logical level can result from the actual configuration in the application
or it can be initialized for the test (if possible). The block diagram of the FS_DIO_InputExt() function is shown in the following
figure. Two function input parameters are related to an adjacent pin. For a simple input test functionality, these parameters are
not important. Enter the same inputs as for the tested pin (recommended). See the example code.

Digital input/output test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
26 NXP Semiconductors

Figure 4. Extended digital input test

Function prototype:

FS_RESULT FS_DIO_InputExt(fs_dio_test_t *pTestedPin, fs_dio_test_t *pAdjPin, bool_t testedPinValue, bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin struct.

*pAdjPin - The pointer to the adjacent pin struct.

testedPinValue - The expected value of the tested pin (logical 0 or logical 1). Adjust this parameter correctly.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO

Example of function call:

fs_dio_input_test_result = FS_DIO_InputExt(&dio_safety_test_item_0, &dio_safety_test_item_0, DIO_EXPECTED_VALUE,
BACKUP_ENABLE);

Function performance:

The information about the function performance is in Core self-test library – source code version.

Digital input/output test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 27

Calling restrictions:

The function cannot be used with MKE0x devices. The tested pin must be configured as a GPIO input before calling the function.
Even if no adjacent pin is involved in the test, specify the AdjacentPin parameter. It is recommended to enter the same input as
for the TestedPin.

4.2.3 FS_DIO_InputExt_RT()
This is a modified version of the previously mentioned digital input test. Use this version as a get function for the "short-to" tests.
Apply the function to the pin that is already configured as a GPIO input and you know what logical level is expected at the time
of the test. The logical level results from the actual configuration in the application or it is initialized for the test (if possible). The
block diagram of the FS_DIO_InputExt_RT() function is shown in the following figure. Two function input parameters are related
to an adjacent pin. For simple input test functionality, these parameters are not important. Enter the same inputs as for the tested
pin (recommended). See the example code.

Figure 5. Extended digital input test for RT

Function prototype:

FS_RESULT FS_DIO_InputExt_RT(fs_dio_test_rt_t *pTestedPin, fs_dio_test_rt_t *pAdjPin, bool_t testedPinValue, bool_t
backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin struct.

*pAdjPin - The pointer to the adjacent pin struct.

Digital input/output test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
28 NXP Semiconductors

testedPinValue - The expected value of the tested pin (logical 0 or logical 1). Adjust this parameter correctly.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO

Example of function call:

fs_dio_input_test_result = FS_DIO_InputExt_RT(&dio_safety_test_item_0, &dio_safety_test_item_0, DIO_EXPECTED_VALUE,
BACKUP_ENABLE);

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The function can be used only for the i.MXRT devices. Configure the tested pin as a GPIO input before calling the function. Even
if no adjacent pins are involved in the test, specify the AdjacentPin parameter. It is recommended is enter the same input as for
TestedPin.

4.2.4 FS_DIO_InputExt_LPC()
This is a modified version of the previously mentioned digital input test. This version is used as a get function for the "short-to"
tests. Apply the function to the pin that is already configured as a GPIO input and you know what logical level is expected at the
time of the test. The logical level can either result from the actual configuration in the application or it can be initialized for the
test (if possible). The block diagram of the FS_DIO_InputExt_LPC() function is shown in the following figure. Two function input
parameters are related to an adjacent pin. For simple input test functionality, these parameters are not important. Enter the same
inputs as for the tested pin (recommended). See the example code.

Digital input/output test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 29

Figure 6. Extended digital input test for LPC devices

Function prototype:

FS_RESULT FS_DIO_InputExt_LPC(fs_dio_test_lpc_t *pTestedPin, fs_dio_test_lpc_t *pAdjPin, bool_t testedPinValue, bool_t
backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin struct.

*pAdjPin - The pointer to the adjacent pin struct.

testedPinValue - The expected value of the tested pin (logical 0 or logical 1). Adjust this parameter correctly.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO

Example of function call:

fs_dio_input_test_result = FS_DIO_InputExt_LPC(&dio_safety_test_item_0, &dio_safety_test_item_0, DIO_EXPECTED_VALUE,
BACKUP_ENABLE);

Function performance:

Digital input/output test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
30 NXP Semiconductors

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

Configure the tested pin as a GPIO input before the function call. Even if no adjacent pins are involved in the test, specify the
AdjacentPin parameter. It is recommended to enter the same input as for the TestedPin.

4.2.5 FS_DIO_Output()
The digital output test tests the digital output functionality of the pin. The principle of the test is to set up and read both logical
values on the tested pin. Enter a suitable delay parameter. It must ensure a time interval that is long enough for the device to
reach the desired logical value on the pin. A very low delay parameter causes the fail return value of the function.

Figure 7. Block diagram for digital output test

Function prototype:

FS_RESULT FS_DIO_Output(fs_dio_test_t *pTestedPin, uint32_t delay);

Function inputs:

*pTestedPin - The pointer to the tested pin struct.

delay - The delay needed to recognize the value change on the tested pin.

Function output:

Digital input/output test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 31

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO

Example of function call:

fs_dio_output_test_result = FS_DIO_Output(&dio_safety_test_items[1], DIO_WAIT_CYCLE);

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The tested pin must be configured as the digital output. Define an appropriate delay for proper functionality.

4.2.6 FS_DIO_Output_RT()
This test tests the digital output functionality of the pin. The principle of this test is to set up and read both logical values on the
tested pin. Enter a suitable delay parameter. It must ensure a time interval that is long enough for the device to reach the desired
logical value on the pin. A very low delay parameter causes the fail return value of the function.

Figure 8. Block diagram for digital output test

Digital input/output test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
32 NXP Semiconductors

Function prototype:

FS_RESULT FS_DIO_Output_RT(fs_dio_test_rt_t *pTestedPin, uint32_t delay);

Function inputs:

*pTestedPin - The pointer to the tested pin struct.

delay - The delay needed to recognize the value change on the tested pin.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO

Example of function call:

fs_dio_output_test_result = FS_DIO_Output_RT(&dio_safety_test_items[1], DIO_WAIT_CYCLE);

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The tested pin must be configured as a digital output. Define an appropriate delay for proper functionality.

4.2.7 FS_DIO_Output_LPC()
This test tests the digital output functionality of the pin. The principle of the test is to set up and read both logical values on the
tested pin. A suitable delay parameter must be entered. It must ensure a time interval that is long enough for the device to reach
the desired logical value on the pin. A very low delay parameter causes the fail return value of the function.

Digital input/output test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 33

Figure 9. Block diagram for digital output test

Function prototype:

FS_RESULT FS_DIO_Output_LPC(fs_dio_test_lpc_t *pTestedPin, uint32_t delay);

Function inputs:

*pTestedPin - The pointer to the tested pin struct.

delay - The delay needed to recognize the value change on the tested pin.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO

Example of function call:

fs_dio_output_test_result = FS_DIO_Output_LPC(&dio_safety_test_items[1], DIO_WAIT_CYCLE);

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

Digital input/output test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
34 NXP Semiconductors

The tested pin must be configured as a digital output. Define an appropriate delay for proper functionality.

4.2.8 FS_DIO_ShortToAdjSet()
This function ensures the required conditions for the short-to-adjacent pin test. The purpose of this function is to configure the
tested pin and the adjacent pin properly. The adjacent pin is an optional pin that can be theoretically shorted with the tested pin.
The function block diagram is shown in the following figure. Similarly to the short-to-supply test, this test requires the use of two
functions. The second (get) function evaluates the test result. The FS_DIO_InputExt() function is described in the respective
section. Specify the tested pin and the adjacent pin for the input test function.

Figure 10. Block diagram of FS_DIO_ShortToAdjSet() function

Function prototype:

FS_RESULT FS_DIO_ShortToAdjSet(fs_dio_test_t *pTestedPin, fs_dio_test_t *pAdjPin, bool_t testedPinValue, bool_t
backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin struct.

*pAdjPin - The pointer to the adjacent pin struct.

testedPinValue - The value to be set on the tested pin.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

Digital input/output test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 35

• FS_PASS

• FS_FAIL_DIO

Example of function call:

The following is the code example of the short-to-adjacent pin test.

#define BACKUP_ENABLE 1

#define LOGICAL_ONE 1

#define LOGICAL_ZERO 0

dio_short_to_adj_test_result = FS_DIO_ShortToAdjSet(&dio_safety_test_items[0], &dio_safety_test_items[1],
LOGICAL_ONE, BACKUP_ENABLE);

dio_short_to_adj_test_result =FS_DIO_InputExt(&dio_safety_test_items[0], &dio_safety_test_items[1],
LOGICAL_ONE, BACKUP_ENABLE);

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The function cannot be used with MKE0x devices. The tested must be configured as GPIO input and adjacent pins must be
configured as a GPIO output before calling the function.If the backup functionality is enabled, the function sets directions for both
pins. If not, configure the directions (the tested pin as the input, the adjacent pin as the output). After the end of the function, the
application cannot manipulate neither the tested nor the adjacent pins until the FS_DIO_InputExt() function is called for these pins.

4.2.9 FS_DIO_ShortToAdjSet_RT()
This function ensures the required conditions for the short-to-adjacent pin test. The purpose of this function is to configure the
tested pin and the adjacent pin properly. The adjacent pin is an optional pin that can be theoretically shorted with the tested pin.
The function block diagram is shown in the following figure. Similarly to the short-to-supply test, this test requires the use of two
functions. The second (get) function evaluates the test result. The FS_DIO_InputExt_RT() function is described in the respective
chapter. Specify the tested pin and the adjacent pin for the input test function.

Digital input/output test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
36 NXP Semiconductors

Figure 11. Block diagram of FS_DIO_ShortToAdjSet_RT() function

Function prototype:

FS_RESULT FS_DIO_ShortToAdjSet_RT(fs_dio_test_rt_t *pTestedPin, fs_dio_test_rt_t *pAdjPin, bool_t testedPinValue, bool_t
backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin struct.

*pAdjPin - The pointer to the adjacent pin struct.

testedPinValue - The value that is set on the tested pin.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO

Example of function call:

The following is a code example of the short-to-adjacent pin test.

#define BACKUP_ENABLE 1

#define LOGICAL_ONE 1

Digital input/output test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 37

#define LOGICAL_ZERO 0

dio_short_to_adj_test_result = FS_DIO_ShortToAdjSet_RT(&dio_safety_test_items[0],
&dio_safety_test_items[1], LOGICAL_ONE, BACKUP_ENABLE);

dio_short_to_adj_test_result =FS_DIO_InputExt_RT(&dio_safety_test_items[0], &dio_safety_test_items[1],
LOGICAL_ONE, BACKUP_ENABLE);

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The tested pin must be configure as GPIO input and the adjacent pin must be configured as a GPIO output before calling the
function. If the backup functionality is enabled, the function sets the directions for both pins. If not, configure the directions (tested
pin as input, adjacent pin as output). After the end of the function, the application cannot manipulate neither the tested pin nor
the adjacent pin until the FS_DIO_InputExt_RT() function for these pins is called.

4.2.9.1 FS_DIO_ShortToAdjSet_LPC()
This function ensures the required conditions for the short-to-adjacent pin test. The purpose of this function is to configure the
tested pin and the adjacent pin properly. The adjacent pin is an optional pin that can be theoretically shorted with the tested pin.
The function block diagram is shown in the following figure. Similarly to the short-to-supply test, this test requires the use of two
functions. The second (get) function evaluates the test result. The FS_DIO_InputExt_LPC() function is described in the respective
section. Specify the tested pin and the adjacent pin for the input test function.

Figure 12. Block diagram of FS_DIO_ShortToAdjSet_LPC() function

Digital input/output test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
38 NXP Semiconductors

Function prototype:

FS_RESULT FS_DIO_ShortToAdjSet_LPC(fs_dio_test_lpc_t *pTestedPin, fs_dio_test_lpc_t *pAdjPin, bool_t testedPinValue,
bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin struct.

*pAdjPin - The pointer to the adjacent pin struct.

testedPinValue - The value that is set on the tested pin.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO

Example of function call:

The following is a code example of the short-to-adjacent pin test.

#define BACKUP_ENABLE 1

#define LOGICAL_ONE 1

#define LOGICAL_ZERO 0

dio_short_to_adj_test_result = FS_DIO_ShortToAdjSet_LPC(&dio_safety_test_items[0],
&dio_safety_test_items[1], LOGICAL_ONE, BACKUP_ENABLE);

dio_short_to_adj_test_result =FS_DIO_InputExt_LPC(&dio_safety_test_items[0], &dio_safety_test_items[1],
LOGICAL_ONE, BACKUP_ENABLE);

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The tested must be configured as GPIO input and adjacent pins must be configured as a GPIO output before calling the function.
If the backup functionality is enabled, the function sets the directions for both pins. If not, configure the directions (tested pin as
input, adjacent pin as output). After the end of the function, the application cannot manipulate neither the tested nor the adjacent
pins, until the FS_DIO_InputExt_LPC() function for these pins is called.

4.2.10 FS_DIO_ShortToAdjSet_LPC()
This function ensures the required conditions for the short-to-adjacent pin test. The purpose of this function is to configure the
tested pin and the adjacent pin properly. The adjacent pin is an optional pin that can be theoretically shorted with the tested pin.
The function block diagram is shown in the following figure. Similarly to the short-to-supply test, this test requires the use of two
functions. The second (get) function evaluates the test result. The FS_DIO_InputExt_LPC() function is described in the respective
section. Specify the tested pin and the adjacent pin for the input test function.

Digital input/output test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 39

Figure 13. Block diagram of FS_DIO_ShortToAdjSet_LPC() function

Function prototype:

FS_RESULT FS_DIO_ShortToAdjSet_LPC(fs_dio_test_lpc_t *pTestedPin, fs_dio_test_lpc_t *pAdjPin, bool_t testedPinValue,
bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin struct.

*pAdjPin - The pointer to the adjacent pin struct.

testedPinValue - The value that is set on the tested pin.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO

Example of function call:

The following is a code example of the short-to-adjacent pin test.

#define BACKUP_ENABLE 1

#define LOGICAL_ONE 1

Digital input/output test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
40 NXP Semiconductors

#define LOGICAL_ZERO 0

dio_short_to_adj_test_result = FS_DIO_ShortToAdjSet_LPC(&dio_safety_test_items[0],
&dio_safety_test_items[1], LOGICAL_ONE, BACKUP_ENABLE);

dio_short_to_adj_test_result =FS_DIO_InputExt_LPC(&dio_safety_test_items[0], &dio_safety_test_items[1],
LOGICAL_ONE, BACKUP_ENABLE);

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The tested must be configured as GPIO input and adjacent pins must be configured as a GPIO output before calling the function.
If the backup functionality is enabled, the function sets the directions for both pins. If not, configure the directions (tested pin as
input, adjacent pin as output). After the end of the function, the application cannot manipulate neither the tested nor the adjacent
pins, until the FS_DIO_InputExt_LPC() function for these pins is called.

4.2.11 FS_DIO_ShortToSupplySet()
This function creates the first part of the short-to-supply test. It can be used to test the short circuit between the tested pin and
the hardware supply voltage (Vcc, Vdd) or between the tested pin and the hardware ground (GND). Its block diagram is shown
in the following figure. The second part of the test (result evaluation) is ensured by the FS_DIO_InputExt() function that is described
in the respective section. The main purpose of the FS_DIO_InputExt() function is to set the pull-up (or pull-down) resistor
connection on the tested pin. It also ensures whether the pin is correctly configured and backs up its settings (if needed).

Figure 14. Block diagram of FS_DIO_ShortToSupplySet function

Digital input/output test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 41

Function prototype:

FS_RESULT FS_DIO_ShortToSupplySet(fs_dio_test_t *pTestedPin, bool_t shortToVoltage, bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin struct.

shortToVoltage - Specifies whether the pin is tested for the short against GND or Vdd. For GND, enter 1. For VDD, enter 0 or
non-zero.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO

Example of function call:

The following is a code example of the test for both the short-to-GND and short-to-VDD cases. Note that the implementation
difference is only in one parameter. If the short to GND is tested, the parameter must have non-zero value and vice versa.

#define DIO_SHORT_TO_GND_TEST 1

#define DIO_SHORT_TO_VDD_TEST 0

dio_short_to_vcc_test_result = FS_DIO_ShortToSupplySet(&dio_safety_test_items[0],
DIO_SHORT_TO_GND_TEST, BACKUP_ENABLE);

dio_short_to_vcc_test_result = FS_DIO_InputExt(&dio_safety_test_items[0], &dio_safety_test_items[0],
DIO_SHORT_TO_GND_TEST, BACKUP_ENABLE);

dio_short_to_vcc_test_result = FS_DIO_ShortToSupplySet(&dio_safety_test_items[0],
DIO_SHORT_TO_VDD_TEST, BACKUP_ENABLE);

dio_short_to_vcc_test_result = FS_DIO_InputExt(&dio_safety_test_items[0], &dio_safety_test_items[0],
DIO_SHORT_TO_VDD_TEST, BACKUP_ENABLE);

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The function cannot be used with MKE0x devices. The tested pin must be configured as a GPIO input before calling the function.
If the backup functionality is enabled, the function sets the input direction for the tested pin. If not, configure the input direction.
After the end of the function, the application cannot manipulate the tested pin until the FS_DIO_InputExt() function for the tested
pin is called.

4.2.12 FS_DIO_ShortToSupplySet_RT()
This function creates the first part of the short-to-supply test. It can be used to test the short circuit between the tested pin and
the hardware supply voltage (VCC, VDD) or between the tested pin and the hardware ground (GND). Its block diagram is shown
in the following figure. The second part of the test (result evaluation) is ensured by the FS_DIO_InputExt_RT() function described
in the respective section. The main purpose of the FS_DIO_InputExt_RT() function is to set the pull-up or pull-down resistor
connections on the tested pin. It also ensures whether the pin is correctly configured and makes a backup of its settings (if needed).

Digital input/output test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
42 NXP Semiconductors

Figure 15. Block diagram of FS_DIO_ShortToSupplySet_RT function

Function prototype:

FS_RESULT FS_DIO_ShortToSupplySet_RT(fs_dio_test_rt_t *pTestedPin, bool_t shortToVoltage, bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin struct.

shortToVoltage - Specifies whether the pin is tested for a short against GND or VDD. For GND, enter 1. For VDD, enter 0 or
non-zero.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO

Example of function call:

The following is a code example of the test for both the short-to-GND and short-to-VDD cases. Note that the implementation
difference is only in one parameter. If the short to the GND is tested, the parameter must have a non-zero value (vice versa).

#define DIO_SHORT_TO_GND_TEST 1

#define DIO_SHORT_TO_VDD_TEST 0

dio_short_to_vcc_test_result = FS_DIO_ShortToSupplySet_RT(&dio_safety_test_items[0],
DIO_SHORT_TO_GND_TEST, BACKUP_ENABLE);

Digital input/output test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 43

dio_short_to_vcc_test_result = FS_DIO_InputExt_RT(&dio_safety_test_items[0], &dio_safety_test_items[0],
DIO_SHORT_TO_GND_TEST, BACKUP_ENABLE);

dio_short_to_vcc_test_result = FS_DIO_ShortToSupplySet_RT(&dio_safety_test_items[0],
DIO_SHORT_TO_VDD_TEST, BACKUP_ENABLE);

dio_short_to_vcc_test_result = FS_DIO_InputExt_RT(&dio_safety_test_items[0], &dio_safety_test_items[0],
DIO_SHORT_TO_VDD_TEST, BACKUP_ENABLE);

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The tested pin must be configured as the GPIO input before calling the function. If the backup functionality is enabled, the function
sets the input direction for the tested pin. If not, configure the input direction. After the end of the function, the application cannot
manipulate the tested pin until the FS_DIO_InputExt_RT() function is called for the tested pin.

4.2.13 FS_DIO_ShortToSupplySet_LPC()
This function creates the first part of the short-to-supply test. It can be used to test the short circuit between the tested pin and
the hardware supply voltage (Vcc, Vdd) or between the tested pin and the hardware ground (GND). Its block diagram is shown
in the following figure. The second part of the test (result evaluation) is ensured by the FS_DIO_InputExt_LPC() function described
in the respective section. The main purpose of the FS_DIO_InputExt_LPC() function is to set the pull-up or pull-down resistor
connections on the tested pin. It also tests whether the pin is correctly configured and makes a backup of its settings (if needed).

Figure 16. Block diagram of FS_DIO_ShortToSupplySet_LPC function

Digital input/output test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
44 NXP Semiconductors

Function prototype:

FS_RESULT FS_DIO_ShortToSupplySet_LPC(fs_dio_test_lpc_t *pTestedPin, bool_t shortToVoltage, bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin struct.

shortToVoltage - Specifies whether the pin is tested for short against GND or VDD. For GND, enter 1. For VDD - enter 0 or
non-zero.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO

Example of function call:

The following is a code example of the test for both the short-to-GND and short-to-VDD cases. Note that the implementation
difference is only in one parameter. If the short to GND is tested, the parameter must have non-zero value (and vice versa).

#define DIO_SHORT_TO_GND_TEST 1

#define DIO_SHORT_TO_VDD_TEST 0

dio_short_to_vcc_test_result = FS_DIO_ShortToSupplySet_LPC(&dio_safety_test_items[0],
DIO_SHORT_TO_GND_TEST, BACKUP_ENABLE);

dio_short_to_vcc_test_result = FS_DIO_InputExt_LPC(&dio_safety_test_items[0], &dio_safety_test_items[0],
DIO_SHORT_TO_GND_TEST, BACKUP_ENABLE);

dio_short_to_vcc_test_result = FS_DIO_ShortToSupplySet_LPC(&dio_safety_test_items[0],
DIO_SHORT_TO_VDD_TEST, BACKUP_ENABLE);

dio_short_to_vcc_test_result = FS_DIO_InputExt_LPC(&dio_safety_test_items[0], &dio_safety_test_items[0],
DIO_SHORT_TO_VDD_TEST, BACKUP_ENABLE);

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The tested pin must be configured as a GPIO input before calling the function. If the backup functionality is enabled, the function
sets the input direction for the tested pin. If not, configure the input direction. After the end of the function, the application cannot
manipulate the tested pin until the FS_DIO_InputExt_LPC() function for the tested pin is called.

Digital input/output test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 45

Chapter 5
Invariable memory test
The invariable memory on the CM33-based MCUs is the on-chip flash. The principle of the invariable memory test is to check
whether there is a change in the memory content during the application run. Several checksum methods can be used for this
purpose. The checksum is an algorithm that calculates a signature of the data placed in the tested memory. The signature of this
memory block is then periodically calculated and compared with the original signature.

The signature of the assigned memory is calculated in the linking phase of an application. The signature must be saved into the
invariable memory, but in a different area than that the checksum is calculated for. In runtime and after the reset, the same
algorithm must be implemented in the application to calculate the checksum. The results are compared and if they are not equal,
a safety error state occurs.

The algorithm that calculates the checksum parameter (signature) by the IAR IDE linker must be the same as that used in runtime
(16-bit CRC polynomial (0x1021) for SW16 and HW16 or 0x04C11DB7 for HW32 and SW32) to generate a CRC code for error
detection. The same algorithm is implemented in the hardware CRC module.

If the hardware CRC module cannot be used for the invariable memory test, there is a possibility to use the software version of
test. It has same functionality and does not require hardware support, but it is much slower.

5.1 Invariable memory test in compliance with IEC/UL standards
The performed overload test fulfils the safety requirements according to the IEC 60730-1, IEC 60335, UL 60730, and UL 1998
standards, as described in the following table:

Table 6. Invariable memory test in compliance with IEC and UL standards

Test Component Fault / Error Software / Hardware
Class

Acceptable Measures

Invariable memory 4.1 – Invariable
memory

All single bit faults B/R.1 Periodic modified
checksum

5.2 Invariable memory test implementation
The test functions for the flash memory are placed in the iec60730b_cm33_flash.S file. The header file with definitions and function
prototypes is iec60730b_cm33_flash.h. The iec60730b.h and asm_mac_common.h files must be placed in the application as
well. The following functions are defined in the iec60730b_cm33_flash.S file:

• FS_CM33_FLASH_HW16()

• FS_CM33_FLASH_HW32()

• FS_CM33_FLASH_SW16()

• FS_CM33_FLASH_SW32()

5.2.1 Computing of CRC value in linking phase of application
The checksum of a memory block must be calculated before it is written into the flash memory. The checksum calculation is best
done with a linker. However, this is not possible in all compilers. The following example is valid only for the IAR IDE. For further
details, refer to the IAR documentation. For using the external tool in the Keil-uVision IDE, see Calculating Post-Build CRC in
Arm® Keil® (document AN12520).

The result of the CRC calculation must be stored in the flash memory. It must not be stored in the area where the checksum
occurs. A good method is to define a small block in the flash (ROM) memory, where the result of the checksum is stored. To do
this, modify the linker configuration file. The path to the linker configuration file can be found in "Project > Options > Linker >
Config". The file name extension is *.icf. The "CHECKSUM" block with the ".checksum" section is defined in this example.

Invariable memory test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
46 NXP Semiconductors

https://www.nxp.com/doc/AN12520

define symbol __FlashCRC_start__ = 0x6FF0;

define symbol __FlashCRC_end__ = 0x6FFF;

define region CRC_region = mem:[from __FlashCRC_start__ to __FlashCRC_end__] ;

define block CHECKSUM { section .checksum };

place in CRC_region { block CHECKSUM };

The input parameters for the CRC calculation must be set up in the linker option tabs "Project > Options > Linker". There are two
options to set up the calculation parameters. The first option is used to calculate the checksum for one block of memory in your
application. The parameters are filled in the "Checksum" subtab. In this example, the start and end addresses are 0x510 and
0x3000. The unused memory is filled with 0xFF. The checksum is stored as 16 bits. The checksum algorithm is CRC16 with the
standard 0x1021 polynomial. The initial seed is zero. The block size for the particular calculation is 8 bits. The variable for the
result is __checksum.

Figure 17. Checksum settings for linker

The constant variable name (__checksum) must be written into "Project > Options > Linker > Input > Keep symbols".

The following lines must be placed into the source code to have the __checksum variable available in the application:

#pragma section = ".checksum"

#pragma location = ".checksum"

extern unsigned short const __checksum;

Invariable memory test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 47

If you need a CRC calculation for more memory blocks, use the following approach. There must be enough space in the block
defined in the linker configuration file. For this example, the parameters for the calculations are the same as in the previous
example and the addresses of blocks are 0x510 – 0x610, 0x620 – 0x720, and 0x730 – 0x830. The variables are __checksum_first,
__checksum_second, and __checksum_third). In this case, the linker command line directives are used (Project > Options >
Linker > Extra Options). Allow the use of command-line options and enter the following lines there. Note that the options in the
"Checksum" subtab must be unchecked.

—fill 0xFF;0x510-0x610

—checksum __checksum_first:2,crc16,0x0;0x510-0x610

—place_holder __checksum_first,2,.checksum,4

—fill 0xFF;0x620-0x720

—checksum __checksum_second:2,crc16,0x0;0x620-0x720

—place_holder __checksum_second,2,.checksum,4

—fill 0xFF;0x730-0x830

—checksum __checksum_third:2,crc16,0x0;0x730-0x830

—place_holder __checksum_third,2,.checksum,4

Project > Options > Linker > Input

Write:

__checksum_first

__checksum_second

__checksum_third

to the "Keep symbols" block.

Add the following lines into the source code, such that the __checksum_first, __checksum_second, and __checksum_third
variables are available in the application.

#pragma section = ".checksum"

#pragma location = ".checksum"

extern unsigned short const __checksum_first;

extern unsigned short const __checksum_second;

extern unsigned short const __checksum_third;

5.2.2 Test performed once after MCU reset
When implemented after the reset or when there is no restriction to the execution time, the function call can be as follows:

#include “iec60730b.h”

#pragma section = ".checksum"

#pragma location = ".checksum"

extern unsigned short const __checksum;

Invariable memory test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
48 NXP Semiconductors

if((uint16_t)__checksum != FS_CM33_FLASH_HW166(start_address, size, CRC_BASE, start_seed))

SafetyError();

Where:

__checksum - The constant variable with the CRC value computed in the linking phase of the application.

start_address - The initial address of the memory block to be tested.

size - The size of the memory block to be tested (first address – end address + 1).

CRC_BASE - The base address of the CRC hardware module.

start_seed - The start condition seed. It shall be zero for the algorithm used.

5.2.3 Runtime test
In application runtime with limited time for execution, the CRC is computed in a sequence. It means that the input parameters
have different meanings in comparison with calling after reset. The implementation is as follows:

#include “iec60730b.h”

#pragma section = ".checksum"

#pragma location = ".checksum"

extern unsigned short const __checksum;

flash_crc.part_crc = FS_CM33_FLASH_HW16(flash_crc.actual_address, flash_crc.block_size, CRC_BASE,
flash_crc.part_crc);

if(FS_FLASH_FAIL == Flash_test_handling(__checksum, &flash_crc))

SafetyError();

Where:

__checksum - The constant variable with the CRC value computed in the linking phase of the application.

flash_crc.part_crc - The particular CRC result and seed parameter for the next iteration.

flash_crc.actual_address - The actual address of the memory block to be tested.

CRC_BASE - The base address of the CRC module.

flash_crc.block_size - The size of the memory block to be tested.

Carry out the handling of the function. When the checksum of a block is calculated in more iterations, the result from the first
iteration (function call) is the seed value for the next function call. After the last part of memory is processed with the test function,
the result is the final checksum of the whole tested memory block.

5.2.4 FS_CM33_FLASH_HW16()
This function generates the 16-bit CRC value using the hardware CRC module.

Function prototype:

uint16_t FS_CM33_FLASH_HW16(uint32_t startAddress, uint32_t size, uint32_t moduleAddress, uint16_t crcVal);

Function inputs:

startAddress - The first address of the tested memory.

size - The size of the tested memory.

Invariable memory test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 49

moduleAddress - The address of the CRC module.

crcVal - The start condition seed. For the first iteration, it is typically a user-defined value. For the next iterations, it is the result
of the previous function call.

Function output:

uint16_t - The 16-bit CRC value of the memory range (CRC-16-CCITT - normal 0x1021).

Function performance:

The function size is 40 B.1

The function duration depends on the defined block size. Several examples are shown in the following table:

Table 7. Duration of FS_CM33_FLASH_HW16() in dependence of tested block size

Block size (Bytes) Clock cycles Execution time (approximately)

0x10 205 2.14 µs

0x20 341 3.55 µs

0x50 749 7.80 µs

Calling restrictions:

The function cannot be interrupted by a function that changes the content or setup of the hardware CRC module.

5.2.5 FS_CM33_FLASH_SW16()
This function generates the 16-bit CRC value using software.

Function prototype:

uint16_t FS_CM33_FLASH_SW16(uint32_t startAddress, uint32_t size, uint32_t moduleAddress, uint16_t crcVal);

Function inputs:

startAddress - The first address of the tested memory.

size - The size of the tested memory.

moduleAddress - It has no effect. It is here only due to the compatibility with the hardware function.

crcVal - The start condition seed. For the first iteration, it is typically a user-defined value. For the next iterations, it is the result
from the previous function call.

Function output:

uint16_t - The 16-bit CRC value of the memory range (CRC-16-CCITT - normal 0x1021).

Function performance:

The function size is 54 B.1

The function duration depends on the defined block size. Several examples are shown in the following table:1

Table 8. Duration of IEC60730B_Flash_SWTest() in dependence of tested block size

Block size (Bytes) Clock cycles Execution time (approximately)

0x4 1907 19.87 µs

0x8 3687 38.41 µs

0x10 9091 94.70 µs

Invariable memory test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
50 NXP Semiconductors

Calling restrictions:

None.

5.2.6 FS_CM33_FLASH_HW32()
This function generates the 32-bit CRC value using the hardware CRC module.

Function prototype:

uint32_t FS_CM33_FLASH_HW32(uint32_t startAddress, uint32_t size, uint32_t moduleAddress, uint32_t crcVal);

Function inputs:

startAddress - The first address of the tested memory.

size - The size of the tested memory.

moduleAddress - The address of the CRC module.

crcVal - The start condition seed. For the first iteration, it is typically a user-defined value. For the next iterations, it is the result
from the previous function call.

Function output:

uint32_t - The 32-bit CRC value of the memory range (CRC-32/MPEG-2 - 0x04C11DB7).

Function performance:

The function size is 40 B.1

The function duration depends on the defined block size. Several examples are shown in the following table:1

Table 9. Duration of FS_CM33_FLASH_HW32() in dependence of tested block size

Block size (Bytes) Clock cycles Execution time (approximately)

0x10 192 2.00 µs

0x20 336 3.50 µs

0x50 744 7.75 µs

Calling restrictions:

The function cannot be interrupted by a function that changes the content or setup of the hardware CRC module.

5.2.7 FS_CM33_FLASH_SW32()
This function calculates the 32-bit CRC polynomial (0x04C11DB7) without using hardware.

Function prototype:

uint32_t FS_CM33_FLASH_SW32(uint32_t startAddress, uint32_t size, uint32_t moduleAddress, uint32_t crcVal);

Function inputs:

startAddress - The first address of the tested memory.

size - The size of the tested memory.

moduleAddress - It has no effect. It is here only due to the compatibility with the hardware function.

crcVal - The start condition seed. For the first iteration, it is typically a user-defined value. For the next iterations, it is the result
from the previous function call).

Function output:

uint32_t - The 32-bit CRC value of the memory range (CRC-32/MPEG-2 - 0x04C11DB7).

Invariable memory test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 51

Function performance:

The function size is 65 B.1

The function duration depends on the defined block size. Several examples are shown in the following table:1

Table 10. Duration of FS_CM33_FLASH_SW32() in dependence of tested block size

Block size (Bytes) Clock cycles Execution time (approximately)

0x4 1725 17.97 µs

0x8 3405 35.47 µs

0x10 8369 87.18 µs

Calling restrictions:

None.

Invariable memory test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
52 NXP Semiconductors

Chapter 6
CPU program counter test
The CPU program counter register test procedure tests the CPU program counter register for the "stuck-at" condition. The
program counter register test can be performed once after the MCU reset and also during runtime.

The identification of the safety error is ensured by the specific FAIL return if the CPU program counter register does not work
correctly. Assess the return value of the test function. If it is equal to the FAIL return, then the jump into the safety error handling
function occurs. The safety error handling function may be specific to the application and it is not a part of our library. The main
purpose of this function is to put the application into a safety state.

By contrast to the other CPU registers, the program counter cannot be simply filled with a test pattern. It is necessary to force
the CPU (program flow) to access the corresponding address that is testing the pattern to verify the program counter functionality.

The program counter test works without an initialization function. The short function (another object) is written in a separate file.
Place this object to an appropriate address in the flash memory by declaring it in the linker configuration file. The test function
uses the address of this routine and also the appropriate address in the RAM memory to test the program counter.

The block diagrams for the program counter register tests are shown in the following figure:

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 53

Figure 18. Block diagram for PC_Test

6.1 CPU program counter test in compliance with IEC/UL
standards

The performed overload test fulfils the safety requirements according to the IEC 60730-1, IEC 60335, UL 60730, and UL 1998
standards, as described in the following table:

CPU program counter test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
54 NXP Semiconductors

Table 11. CPU program counter test in compliance with IEC/UL standards

Test Component Fault / Error Software / Hardware
Class

Acceptable Measures

CPU CPU (1.3 – Programme
Counter)

Stuck at B/R.1 Periodic self test

6.2 CPU program counter test implementation
The test functions for the CPU registers are placed in the iec60730b_cm33_pc.S file and written as assembler functions. The
header file with the test patterns and function prototypes is iec60730b_cm33_pc.h. The iec60730b.h and asm_mac_common.h
files are included in the iec60730b_cm33_pc.S file. Therefore, they must be also placed in the application. For the second test
type, place the iec60730b_cm33_pc_object.S file to the appropriate address in the flash memory.

Implementation example of PC test:

The only function that is handled in the application is:

FS_CM33_PC_Test()

Place an appropriate pattern as the first input. If needed, call the function more times in a sequence with different patterns. The
test pattern must be a real address in the RAM and it must be even-numbered. The iec60730b_cm33_pc_object.S file must be
placed to an appropriate address in the flash memory.

The following is an example of a function call:

#include “iec60730b.h”

extern unsigned long PC_test_flag; /* from Linker configuration file */

const unsigned long Program_Counter_test_flag = (unsigned long)&PC_test_flag;

#define PC_TEST_FLAG ((unsigned long *) Program_Counter_test_flag)

fs_pc_test_result = FS_CM33_PC_Test(0x20000013, FS_PC_object, PC_TEST_FLAG);

if(FS_PC_FAIL == fs_pc_test_result)

SafetyError();

6.2.1 FS_CM33_PC_Test()
The program counter register is tested according to the block diagram in CPU program counter test.

Function prototype:

FS_RESULT FS_CM33_PC_Test(uint32_t pattern1, tFcn_pc pObjectFunction, uint32_t *pFlag);

Function inputs:

pattern1 - The address from the RAM memory, adequate as a pattern for the program counter.

pObjectFunction - The address of the FS_PC_Object() function.

*pFlag - The address of the variable/place in the memory used as a flag. If the flag is "0", the test is successful ("1" if the test failed).

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_PC - In case of incorrect test execution, PC_flag has a value of "1".

CPU program counter test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 55

Function performance:

The function takes approximately 99 cycles (1.03 µs).1

The function size is 48 B.1

Calling restrictions:

This function cannot be interrupted.

6.2.2 FS_PC_Object()
This function is internally used by the FS_CM33_PC_Test() function. Function is used for performing PC test, it should be called
only by FS_CM33_PC_Test() function. It should be placed in reliable address - by editing the linker file.

The following example shows how to place the function at the desired address in the linker configuration file for the IAR tool:

define symbol __PC_test_start__ = 0x00008FE0;

define symbol __PC_test_end__ = 0x00008FFF;

define region PC_region = mem:[from __PC_test_start__ to __PC_test_end__];

define block PC_TEST { section .text object iec60730b_cm33_pc_object.o};

place in PC_region { block PC_TEST};

Function prototype:

void FS_PC_Object(void);

Function inputs:

void

Function output:

void

Function performance:

The function duration is included in the duration of the FS_CM33_PC_Test() function. Its size is 20 bytes.1

Calling restrictions:

This function is used to perform the PC test, it should be called only by the FS_CM33_PC_Test() function.

CPU program counter test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
56 NXP Semiconductors

Chapter 7
Variable memory test
The variable memory test for CM33 devices checks the on-chip RAM for DC faults. The application stack area can also be tested.
The March C and March X schemes are used as the control mechanisms. Choose whether to use the March C or March X
scheme. The handling functions for the after-reset test and the runtime test are different. Both functions must have a backup area
defined in the RAM and reserved by the application developer. The size of this area must be at least the same as the size of the
tested block. A RAM test is considered destructive. This is because the data from the memory area with the variables, stack area,
and functions placed in the RAM are moved away, rewritten multiple times, and then moved back to the original memory area.
The test procedure is very sensitive and cannot be interrupted. The block diagrams for the RAM tests are shown in the following
figures:

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 57

Figure 19. Block diagram for after-reset test of RAM

Variable memory test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
58 NXP Semiconductors

Figure 20. Block diagram for runtime test of RAM

7.1 Variable memory test in compliance with IEC/UL standards
The performed overload test fulfils the safety requirements according to to the IEC 60730-1, IEC 60335, UL 60730, and UL 1998
standards, as shown in the following table:

Variable memory test in compliance with IEC/UL standards

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 59

Table 12. Variable memory test in compliance with IEC and UL standards

Test Component Fault / Error Software / Hardware
Class

Acceptable Measures

Variable memory 4.2 – Variable memory DC fault B/R.1 Periodic self-test using
March test

7.2 Variable memory test implementation
The test functions for the variable memory (RAM) test are placed in the FS_B_CM33_ram.S file and written as assembler
functions. The header file with return values and function prototypes is FS_B_CM33_ram.h. The FS_B_CM33.h and
asm_mac_common.h files are included in the FS_B_ram.S file. Therefore, they must be also placed in the application.

The RAM test consists of the following public functions:

• FS_CM33_RAM_RuntimeTest()

• FS_CM33_RAM_AfterResetTest()

• FS_CM33_RAM_SegmentMarchC()

• FS_CM33_RAM_SegmentMarchX()

• FS_CM33_RAM_CopyToBackup()

• FS_CM33_RAM_CopyFromBackup()

The first two functions provide a complex RAM test. You do not have to work directly with the remaining functions.

7.2.1 FS_CM33_RAM_AfterReset()
The after-reset test is done by the FS_CM33_RAM_AfterReset() function. This function is called once after the reset, when the
execution time is not critical. Reserve free memory space for the backup area. The block size parameter cannot be larger than
the size of the backup area. The function firstly checks the backup area. Then the loop begins. Blocks of memory are copied to
the backup area and their locations are checked by the respective March test. The data is copied back to the original memory
area and the actual address with the block size is updated. This is repeated until the last block of memory is tested. If a DC fault
is detected, the function returns a fail pattern. The block diagram is shown in Figure 19.

The following is an example of a function call:

#include “iec60730b.h”

if(FS_RAM_FAIL == FS_CM33_RAM_AfterReset(start_address, end_address, block_size, backup_address,
FS_CM33_RAM_SegmentMarchC))

SafetyError();

Function prototype:

FS_RESULT FS_CM33_RAM_AfterReset(uint32_t startAddress, uint32_t endAddress, uint32_t blockSize, uint32_t
backupAddress, tFcn pMarchType);

Function inputs:

startAddress - The first adress of the tested RAM area.

endAddress - The address of the first byte after the tested RAM area.

blockSize - The tested block size.

backupAddress - The address of the backup area.

*pMarchType - The address of the March function (March X or March C).

Variable memory test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
60 NXP Semiconductors

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_RAM

Function performance:

The function size is 98 B.1

The execution time depends on the memory size. It also varies with different block sizes and the March method used.1

Table 13. FS_CM33_RAM_AfterReset duration

Memory Size (Bytes) Block S Size (Bytes) Cycles - March X Cycles - March C

0x100 0x20 4212 5686

0x100 0x40 3882 5354

0x100 0x80 4042 5708

0x200 0x20 4218 10766

0x200 0x40 3882 9750

0x200 0x80 4042 9770

0x400 0x20 4218 20926

0x400 0x40 3882 18542

0x400 0x80 4042 17878

Calling restrictions:

This function is used once after the MCU reset, when the execution time is not critical. It cannot be interrupted. The backup area
must be at least the same size as the tested block size defined by the block_size parameter.

7.2.2 FS_CM33_RAM_Runtime()
The runtime test is done by the FS_CM33_RAM_Runtime() function. Reserve free memory space dedicated for the backup. The
block size parameter cannot be larger than the size of the backup area. During the first call, the function checks the backup area.
After the call, the blocks of memory are processed in a sequence. They are copied to the backup area and their locations are
checked with the respective March test. The data is copied back to the original memory area and the actual address and the
block size are updated. This is repeated until the last block of memory is tested. If a DC fault is detected, the function returns a
fail pattern. The block diagram is shown in the above figure. This is an example of the function call:

#include “iec60730b.h”

if(FS_RAM_FAIL == FS_RESULT FS_CM33_RAM_Runtime(start_address, end_address, &actual_address,
block_size, backup_address,IEC60730B_RAM_SegmentMarchX))

SafetyError();

Function prototype:

FS_RESULT FS_CM33_RAM_Runtime(uint32_t startAddress, uint32_t endAddress, uint32_t *pActualAddress, uint32_t
blockSize, uint32_t backupAddress, tFcn pMarchType);

Function inputs:

startAddress - The first address of the tested RAM area.

Variable memory test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 61

endAddress - The address of the first byte after the tested RAM area.

*pActualAddress - The address of the variable that holds the actual address value.

blockSize - The tested block size.

backupAddress - The address of the backup area.

*pMarchType - The address of the March function (March X or March C).

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_RAM

Function performance:

The function size is 118 B. 1

The execution time depends on the block size and it is different for the March C and March X methods. 1

Table 14. FS_CM33_RAM_Runtime duration

Block size (Bytes) Cycles - March X Cycles - March C

0x4 198 224

0x8 249 313

0x20 417 577

0x40 641 929

Calling restrictions:

The function cannot be interrupted. The backup area must have at least the same size as the tested block size defined by the
"block_size" parameter. The execution time depends on the block size.

7.2.3 FS_CM33_RAM_CopyToBackup()
This function copies a block of memory to the dedicated backup area.

Function prototype:

void FS_CM33_RAM_CopyToBackup(uint32_t startAddress, uint32_t blockSize, uint32_t backupAddress);

Function inputs:

startAddress - The first address of the source.

blockSize - The size of the memory block.

backupAddress - The address of the backup area.

Function output:

void

Function performance:

The function size is 20 B.1

7.2.4 FS_CM33_RAM_CopyFromBackup()
This function copies a block of memory from the backup area to the dedicated place.

Variable memory test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
62 NXP Semiconductors

Function prototype:

void FS_CM33_RAM_CopyFromBackup(uint32_t startAddress, uint32_t blockSize, uint32_t backupAddress);

Function inputs:

startAddress - The first adress of the destination.

blockSize - The size of the memory block.

backupAddress - The address of the backup area.

Function output:

void

Function performance:

The function size is 20 B.1

7.2.5 FS_CM33_RAM_SegmentMarchC()
This function performs a March C test of the memory block that is given by the start address and the block size. The content of
the tested memory remains changed after the execution of this function.

Function prototype:

FS_RESULT FS_CM33_RAM_SegmentMarchC(uint32_t startAddress, uint32_t blockSize);

Function inputs:

startAddress - The first adress of the tested memory block.

blockSize - The size of the tested memory block.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_RAM

Function performance:

The function size is 124 B.1

7.2.6 FS_CM33_RAM_SegmentMarchX()
This function performs a March X test of the memory block that is given by the start address and the block size. The content of
the tested memory remains changed after the execution of this function.

Function prototype:

FS_RESULT FS_CM33_RAM_SegmentMarchX(uint32_t startAddress, uint32_t blockSize);

Function inputs:

startAddress - The first address of the tested memory block.

blockSize - The size of the tested memory block.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_RAM

Function performance:

Variable memory test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 63

The function size is 114 B.1

Variable memory test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
64 NXP Semiconductors

Chapter 8
CPU register test
The CPU register test procedure tests all CM33 CPU registers (except for the program counter register for the "stuck-at" condition.
The program counter test is implemented as a standalone safety routine. There is a set of tests performed once after the MCU
reset and also during runtime.

The CPU register test functions cover the tests of the following registers:

General-purpose registers:

• R0–R12

Stack pointer registers:

• MSP + MSPLIM (secure/non-secure)

• PSP + PSPLIM (secure/non-secure)

Link register:

• LR

Special registers:

• PRIMASK (secure/non-secure)

• FAULTMASK (secure/non-secure)

• BASEPRI (secure/non-secure)

• CONTROL (secure/non-secure)

• APSR

FPU registers:

• FPSCR

• S0–S31

The identification of safety errors is ensured by the specific FAIL return if some registers have the "stuck-at" fault. Assess the
return value of every function. If it is equal to the FAIL return, then a jump into the safety error handling function should occur.
The safety error handling function may be specific to the application and it is not a part of the library. The main purpose of this
function is to put the application into a safe state.

In some special cases, the error is not reported by the fail return, because it would require the action of a corrupted register. In
that case, the function waits in an endless loop for reset.

The principle of the "stuck-at" error test of the CPU registers is to write and compare two test patterns into every register. The
content of the register is compared with the constant or value written into another register which was tested before. Most of the
time, R0, R1, and R2 are used as auxiliary registers. The patterns are defined to check the logical one and logical zero values
in all register bits.

Due to the Arm® TrustZone® support, some core registers are banked between the security states. The Secure (S) or Non-Secure
(NS) sets of the corresponding registers are accessible during execution (depending on the current security state). Both register
versions are accessible during the S state, but not during the NS state. This is the reason why the NXP Safety Library must be
executed in a secure mode. All of the banked registers are listed above.

For the tests of PRIMASK, FAULTMASK, BASEPRI, CONTROL, SP_main, and SP_process, the original contents must be backed
up. In the case of the FPU register test, the content of FPSCR is backed up. The system register CPACR contains one bit to
enable the FPU. Its content is backed up as well. The block diagrams for the respective registers are shown in the following figures:

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 65

Figure 21. Block diagram for R2–R12 registers test

Figure 22. Block diagram for R0, R1, LR, APSR registers test

CPU register test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
66 NXP Semiconductors

Figure 23. Block diagram for PRIMASK, FAULTMASK, BASEPRI, CONTROL registers test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 67

Figure 24. Block diagram for stack pointer registers test

CPU register test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
68 NXP Semiconductors

Figure 25. Block diagram for FPSCR register test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 69

Figure 26. Block diagram for S0-S31 registers test

8.1 CPU register test in compliance with IEC/UL standards
The performed overload test fulfils the safety requirements according to the IEC 60730-1, IEC 60335, UL 60730, and UL 1998
standards, as described in the following table:

Table 15. CPU registers test in compliance with IEC and UL standards

Test Component Fault / Error Software / Hardware
Class

Acceptable Measures

CPU registers test CPU (1.1 – Registers) Stuck at B/R.1 Periodic self test

8.2 CPU register test implementation
The test functions for the CPU registers are placed in the iec60730b_cm33_reg.S file and written as assembler functions. The
header file with the return values and function prototypes is iec60730b_cm33_reg.h.

The iec60730b.h, iec60730b_core.h, and asm_mac_common.h files are included in the iec60730b_cm33_reg.S file. Therefore,
they must be also placed in the application. For devices containing the FPU, iec60730b_cm33_reg_fpu.S is an additional file with
the tests of FPU-related registers.

CPU register test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
70 NXP Semiconductors

The following functions are called to test the corresponding registers:

• FS_CM33_CPU_Register()

• FS_CM33_CPU_NonStackedRegister()

• FS_CM33_CPU_Primask_S()

• FS_CM33_CPU_Primask_NS()

• FS_CM33_CPU_SPmain_S()

• FS_CM33_CPU_SPmain_NS()

• FS_CM33_CPU_SPmain_Limit_S()

• FS_CM33_CPU_SPmain_Limit_NS()

• FS_CM33_CPU_SPprocess_S()

• FS_CM33_CPU_SPprocess_NS()

• FS_CM33_CPU_SPprocess_Limit_S()

• FS_CM33_CPU_SPprocess_Limit_NS()

• FS_CM33_CPU_Control()

• FS_CM33_CPU_Control_S()

• FS_CM33_CPU_Control_NS()

• FS_CM33_CPU_Special8PriorityLevels_S()

• FS_CM33_CPU_Special8PriorityLevels_NS()

Functions with _S postfix are intended to test Secure part of the tested register. Functions with _NS postfix are intended to test
Non-Secure part of the tested register. Functions FS_CM33_CPU_Register() and FS_CM33_CPU_NonStackedRegister() haven't
postfix because registers R0-R12, LR and APSR are not banked between security states.

In case that TrustZone is supported on the tested device, CONTROL register is banked between security states. Therefore it
must be tested by FS_CM33_CPU_Control_S() and FS_CM33_CPU_Control_NS() functions. But when the TrustZone is not
supported, CONTROL register must be tested by FS_CM33_CPU_Control() function.

When the device has an FPU (the following functions are placed in the iec60730b_cm33_reg_fpu.S file):

• FS_CM33_CPU_Float1()

• FS_CM33_CPU_Float2()

The error detection is recognized by a specific return value, as described in the following chapters. There are several exceptions.
If some of the R0, R1, LR, APSR, and SP registers are corrupted, the application is in an endless loop instead of returning an
error value. If some of these registers are corrupted, the application is not able to make standard operations to identify the safety
error (to compare something, to move out from the function, or to return a value).

The use of functions after the reset and during runtime is the same. Be careful when using functions during runtime, as described
in the following sections.

This is an example of a function call:

#include “iec60730b.h”

if(FS_CPU_REGISTER_FAIL== FS_CM33_CPU_Register())

SafetyError();

CPU register test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 71

8.2.1 FS_CM33_CPU_Control()
This function tests the CONTROL register according to the Figure 23. This function is intended to be executed only on devices
without TrustZone support.

Function prototype:

FS_RESULT FS_CM33_CPU_Control(void);

Test pattern:

CONTROL: 0x00000002, 0x00000004

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_CPU_CONTROL

Function performance:

The function takes approximately 47 cycles (0.49 µs). 1

The function size is 50 B.1

Calling restrictions:

This function cannot be interrupted.

This test must be executed only on devices without TrustZone support.

8.2.2 FS_CM33_CPU_Control_NS()
This function tests the CONTROL_NS (Non-Secure) register according to the Figure 23.

Function prototype:

FS_RESULT FS_CM33_CPU_Control_NS(void);

Test pattern:

CONTROL_NS: 0x00000002, 0x00000004

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_CPU_CONTROL

Function performance:

The function takes approximately 37 cycles (0.39 µs). 1

The function size is 52 B.1

Calling restrictions:

This function cannot be interrupted.

The core must be in the non-secure state.

CPU register test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
72 NXP Semiconductors

8.2.3 FS_CM33_CPU_Control_S()
This function tests the CONTROL (secure) register according to the Figure 23.

Function prototype:

FS_RESULT FS_CM33_CPU_Control_S(void);

Test pattern:

CONTROL: 0x0000000A, 0x00000004

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_CPU_CONTROL

Function performance:

The function takes approximately 47 cycles (0.49 µs). 1

The function size is 50 B.1

Calling restrictions:

This function cannot be interrupted.

The core must be in the secure state.

8.2.4 FS_CM33_CPU_NonStackedRegister()
This function tests the following CPU registers in a sequence: R8, R9, R10, R11. Each register is tested according to the
Figure 21

Function prototype:

FS_RESULT FS_CM33_CPU_NonStackedRegister(void);

Test patterns for respective registers:

R8 – R11: 0x55555555, 0xAAAAAAAA

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_CPU_NONSTACKED_REGISTER

Function performance:

The function takes approximately 75 cycles (0.78 µs). 1

The function size is 80 B.1

Calling restrictions:

Can be executed in both the secure and non-secure modes.

CPU register test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 73

8.2.5 FS_CM33_CPU_Primask_NS()
This function tests the PRIMASK_NS (Non-Secure) register according to the Figure 23.

Function prototype:

FS_RESULT FS_CM33_CPU_Primask_NS(void);

Test pattern:

PRIMASK: 0x00000001, 0x00000000

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_CPU_PRIMASK

Function performance:

The function takes approximately 44 cycles (0.46 µs). 1

The function size is 44 B.1

Calling restrictions:

This function cannot be interrupted by an interrupt where the global interrupts are disabled.

The core must be in the non-secure state.

8.2.6 FS_CM33_CPU_Primask_S()
This function tests the PRIMASK_S (secure) register according to the Figure 23.

Function prototype:

FS_RESULT FS_CM33_CPU_Primask_S(void);

Test pattern:

PRIMASK: 0x00000001, 0x00000000

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_CPU_PRIMASK

Function performance:

The function takes approximately 38 cycles (0.40 µs). 1

The function size is 44 B.1

Calling restrictions:

This function cannot be interrupted by an interrupt where the global interrupts are disabled.

The core must be in the secure state.

CPU register test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
74 NXP Semiconductors

8.2.7 FS_CM33_CPU_Register()
This function tests the following CPU registers in a sequence: R0-R7, R12, LR, APSR. Each register is tested according to the
Figure 21 and Figure 22.

Function prototype:

FS_RESULT FS_CM33_CPU_Register(void);

Test patterns for respective registers:

R0–R7, R12, LR: 0x55555555, 0xAAAAAAAA

APSR: 0x50050000, 0xA80A0000

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_CPU_REGISTER

If R0, R1, LR, or APSR are corrupted, the function stucks in an endless loop with the interrupts disabled. This state must be
observed by another safety mechanism (for example, watchdog).

Function performance:

The function takes approximately 201 cycles (2.1 µs). 1

The function size is 204 B.1

Calling restrictions:

Can be executed in both the secure and non-secure modes.

8.2.8 FS_CM33_CPU_Special8PriorityLevels_NS()
This function tests the BASEPRI_NS and FAULTMASK_NS (Non-Secure) registers according to the Figure 23.

Function prototype:

FS_RESULT FS_CM33_CPU_Special8PriorityLevels_NS(void);

Test pattern:

BASEPRI: 0xA0, 0x40

FAULTMASK: 0x1, 0x0

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_CPU_SPECIAL

Function performance:

The function takes approximately 81 cycles (0.84 µs). 1

The function size is 88 bytes.1

CPU register test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 75

Calling restrictions:

This function cannot be interrupted.

For devices with eight priority levels for interrupts.

The core must be in the non-secure state.

8.2.9 FS_CM33_CPU_Special8PriorityLevels_S()
This function tests the BASEPRI and FAULTMASK (secure) registers according to the Figure 23.

Function prototype:

FS_RESULT FS_CM33_CPU_Special8PriorityLevels_S(void);

Test pattern:

BASEPRI: 0xA0, 0x40

FAULTMASK: 0x1, 0x0

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_CPU_SPECIAL

Function performance:

The function takes approximately 81 cycles (0.84 µs). 1

The function size is 88 B.1

Calling restrictions:

This function cannot be interrupted.

The core must be in the secure state.

For devices with eight priority levels for interrupts.

8.2.10 FS_CM33_CPU_SPmain_Limit_NS()
This function tests the MSPLIM_NS (Main Stack Pointer Limit, Non-Secure) register according to the Figure 24.

Function prototype:

FS_RESULT FS_CM33_CPU_SPmain_Limit_NS(void);

Test pattern:

MSPLIM_NS: 0x55555550, 0xAAAAAAA8

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

CPU register test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
76 NXP Semiconductors

If MSPLIM_NS is corrupted, the function stucks in an endless loop with interrupts disabled. This state must be observed by
another safety mechanism (for example, watchdog).

Function performance:

The function takes approximately 49 cycles (0.51 µs). 1

The function size is 56 B.1

Calling restrictions:

This function cannot be interrupted.

The core must be in the non-secure state.

8.2.11 FS_CM33_CPU_SPmain_Limit_S()
This function tests the MSPLIM (Main Stack Pointer Limit, secure) register according to the Figure 24.

Function prototype:

FS_RESULT FS_CM33_CPU_SPmain_Limit_S(void);

Test pattern:

MSPLIM: 0x55555550, 0xAAAAAAA8

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

If MSPLIM is corrupted, the function stucks in an endless loop with interrupts disabled. This state must be observed by another
safety mechanism (for example, watchdog).

Function performance:

The function takes approximately 57 cycles (0.59 µs). 1

The function size is 56 B.1

Calling restrictions:

This function cannot be interrupted.

The core must be in the secure state.

8.2.12 FS_CM33_CPU_SPmain_NS()
This function tests the MSP_NS (Main Stack Pointer, Non-Secure) register according to the Figure 24.

Function prototype:

FS_RESULT FS_CM33_CPU_SPmain_NS(void);

Test pattern:

MSP_NS: 0x55555554, 0xAAAAAAA8

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

CPU register test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 77

• FS_PASS

If MSP_NS is corrupted, the function stucks in an endless loop with interrupts disabled. This state must be observed by another
safety mechanism (for example, watchdog).

Function performance:

The function takes approximately 34 cycles (0.35 µs). 1

The function size is 56 B.1

Calling restrictions:

This function cannot be interrupted.

The core must be in the non-secure state.

8.2.13 FS_CM33_CPU_SPmain_S()
This function tests the MSP (Main Stack Pointer, secure) register according to the Figure 24.

Function prototype:

FS_RESULT FS_CM33_CPU_SPmain_S(void);

Test pattern:

MSP: 0x55555554, 0xAAAAAAA8

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

If the MSP is corrupted, the function stucks in an endless loop with interrupts disabled. This state must be observed by another
safety mechanism (for example, watchdog).

Function performance:

The function takes approximately 60 cycles (0.63 µs). 1

The function size is 62 B.1

Calling restrictions:

This function cannot be interrupted.

The core must be in the secure state.

8.2.14 FS_CM33_CPU_SPprocess_Limit_NS()
This function tests the PSPLIM_NS (Process Stack Pointer Limit, Non-Secure) register according to the Figure 24.

Function prototype:

FS_RESULT FS_CM33_CPU_SPprocess_Limit_NS(void);

Test pattern:

PSPLIM_NS: 0x55555550, 0xAAAAAAA8

Function inputs:

void

Function output:

CPU register test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
78 NXP Semiconductors

typedef uint32_t FS_RESULT;

• FS_PASS

If the PSPLIM_NS is corrupted, the function stucks in an endless loop with interrupts disabled. This state must be observed by
another safety mechanism (for example, watchdog).

Function performance:

The function duration is approximately 49 cycles (0.51 µs). 1

The function size is 56 B.1

Calling restrictions:

This function cannot be interrupted.

The core must be in the non-secure state.

8.2.15 FS_CM33_CPU_SPprocess_Limit_S()
This function tests the PSPLIM (Process Stack Pointer Limit, secure) register according to the Figure 24.

Function prototype:

FS_RESULT FS_CM33_CPU_SPprocess_Limit_S(void);

Test pattern:

PSPLIM: 0x55555550, 0xAAAAAAA8

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

If the PSPLIM is corrupted, the function stucks in an endless loop with interrupts disabled. This state must be observed by another
safety mechanism (for example, watchdog).

Function performance:

The function takes approximately 57 cycles, including the result comparison (0.59 µs). 1

The function size is 56 B.1

Calling restrictions:

This function cannot be interrupted.

The core must be in the secure state.

8.2.16 FS_CM33_CPU_SPprocess_NS()
This function tests the PSP_NS (Process Stack Pointer, Non-Secure) register according to the Figure 24.

Function prototype:

FS_RESULT FS_CM33_CPU_SPprocess_NS(void);

Test pattern:

PSP_NS: 0x55555554, 0xAAAAAAA8

Function inputs:

void

CPU register test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 79

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

If the PSP_NS is corrupted, the function stucks in an endless loop with interrupts disabled. This state must be observed by another
safety mechanism (for example, watchdog).

Function performance:

The function takes approximately 49 cycles, including the result comparison (0.51 µs). 1

The function size is 56 B.1

Calling restrictions:

This function cannot be interrupted.

The core must be in the non-secure state.

8.2.17 FS_CM33_CPU_SPprocess_S()
This function tests the PSP (secure) register according to the Figure 24.

Function prototype:

FS_RESULT FS_CM33_CPU_SPprocess_S(void);

Test pattern:

PSP: 0x55555554, 0xAAAAAAA8

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

If the PSP is corrupted, the function stucks in an endless loop with interrupts disabled. This state must be observed by another
safety mechanism (for example, watchdog).

Function performance:

The function takes approximately 57 cycles, including the result comparison (0.59 µs). 1

The function size is 56 B.1

Calling restrictions:

This function cannot be interrupted.

The core must be in the secure state.

8.2.18 FS_CM33_CPU_Float1()
This function checks the FPSCR and S0-S15 registers according to the Figure 25 and Figure 26. Within the function, the FPU is
enabled in the CPACR register. At the end of the function, the original content of CPACR is restored.

Function prototype:

FS_RESULT FS_CM33_CPU_Float1(void);

Test patterns for respective registers:

FPSCR: 0x55400015, 0xA280008A

CPU register test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
80 NXP Semiconductors

S0-S15: 0x55555555, 0xAAAAAAAA

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_CPU_FLOAT_1

Function performance:

The function takes approximately 201 cycles (2.1 µs). 1

The function size is 204 B.1

Calling restrictions:

The core must be in the secure state.

Only for devices with the Floating Point Unit (FPU).

8.2.19 FS_CM33_CPU_Float2()
This function checks the S16-S31 registers according to the Figure 26. Within the function, the FPU is enabled in the CPACR
register. At the end of the function, the original content of the CPACR is restored.

Function prototype:

FS_RESULT FS_CM33_CPU_Float2(void);

Test patterns for respective registers:

S16-S31: 0x55555555, 0xAAAAAAAA

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_CPU_FLOAT_2

Function performance:

The function takes approximately 201 cycles (2.1 µs). 1

The function size is 204 B.1

Calling restrictions:

The core must be in the secure state.

Only for devices with the Floating Point Unit (FPU).

CPU register test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 81

Chapter 9
Stack test
This test routine is used to test the overflow and underflow conditions of the application stack. The testing of the "stuck-at" faults
in the memory area occupied by the stack is covered by the variable memory test. The overflow or underflow of the stack can
occur if the stack is incorrectly controlled, or by defining a very small stack area for the given application.

The principle of the test is to fill an area below and above the stack with a known pattern. Define these areas in the linker
configuration file, just like the stack. The initialization function then fills these areas with a pattern defined by the application
developer. The pattern must have a value that does not appear elsewhere in the application. The test is performed after the reset
and during application runtime in the same way. The purpose is to check if the exact pattern is still written in these areas. If it is
not, it is a sign of incorrect stack behavior. If this occurs, the fail return value from the test function must be processed as a safety
error.

9.1 Stack test in compliance with IEC/UL standards
The stack test is an additional test. It is not directly specified in the IEC60730 annex H table.

9.2 Stack test implementation
The test function for the stack and the initialization function are placed in the IEC60730_B_CM33_stack.S file and written as
assembler functions. The header file with the return values and function prototypes is IEC60730_B_CM33_stack.h.

The IEC60730_B_CM33_.h and asm_mac_common.h files are included in the IEC60730_B_CM33_stack.S file. Therefore, they
must be also placed in the application. The example for the linker setup, process of initialization, and implementation are shown
in the following sections.

9.2.1 Linker setup
The size and placement of the application stack is generally defined in the linker configuration file. Therefore, you must define
the areas below and under the stack here as well. There are other methods to achieve this, but only one example is shown here.
The size of the areas must be a multiple of 0x4. The minimal size is 0x4.

define symbol __ICFEDIT_region_RAM_start__ = 0x1FFFC410;

define symbol __ICFEDIT_region_RAM_end__ = 0x1FFFFFF7;

define symbol __region_RAM2_start__ = 0x20000014;

define symbol __region_RAM2_end__ = 0x20003FDB;

define symbol __ICFEDIT_size_cstack__ = 512;

define exported symbol STACK_TEST_BLOCK_SIZE = 0x10;

define exported symbol STACK_TEST_P_4 = __region_RAM2_end__ - 0x3;

define exported symbol STACK_TEST_P_3 = STACK_TEST_P_4 - STACK_TEST_BLOCK_SIZE +0x4;

define exported symbol __BOOT_STACK_ADDRESS = STACK_TEST_P_3 - 0x4;

define exported symbol STACK_TEST_P_2 = __BOOT_STACK_ADDRESS - __ICFEDIT_size_cstack__ -0x4;

define exported symbol STACK_TEST_P_1 = STACK_TEST_P_2 - STACK_TEST_BLOCK_SIZE;

define region RAM_region = mem:[from __ICFEDIT_region_RAM_start__ to __region_RAM2_end__] - mem:[from
STACK_TEST_P_1 size 0x10] - mem:[from STACK_TEST_P_3 size 0x10];

// ____________

// |____________| --> STACK_TEST_P_1ADR

Stack test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
82 NXP Semiconductors

// |____________|ADR + 0x4

// |____________|ADR + 0x8

// |____________| --> STACK_TEST_P_2ADR + 0xC

// ||

// ||

// ||

// | . . STACK . . .|

// ||

// ||

// ||

// ||

// |____________| --> __BOOT_STACK_ADDRESS

// |____________| --> STACK_TEST_P_3

// |____________|

// |____________|

// |____________| --> STACK_TEST_P_4

In the example, the size is set to 0x10. The STACK_TEST_P_2 and STACK_TEST_P_3 symbols define the first addresses under
and above the stack and they are defined as exported symbols. This means that they are also visible in the application. The areas
are not included in the RAM region, so the compiler cannot reserve this place for any variables or other parameters.

9.2.2 FS_CM33_STACK_Init()
The purpose of initialization is to fill the defined areas with a given pattern. Put the values from the linker configuration file into
the variables. Then define the rest of the parameters needed for the initialization function.

Example of initialization:

#include "iec60730b.h"

extern unsigned long STACK_TEST_P_2;

extern unsigned long STACK_TEST_P_3;

const unsigned long stack_test_first_address = (unsigned long)&STACK_TEST_P_2;

const unsigned long stack_test_second_address = (unsigned long)&STACK_TEST_P_3;

const unsigned long stack_test_pattern = 0x77777777;

const unsigned long stack_test_block_size = 0x10;

Function prototype:

void FS_CM33_STACK_Init(uint32_t stackTestPattern, uint32_t firstAddress, uint32_t secondAddress, uint32_t blockSize);

Function inputs:

stackTestPattern - The pattern to be written into the areas (for example, 0x77777777).

firstAddress - The first address of the block under the stack area.

secondAddress - The first address of the block above the stack area.

Stack test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 83

blockSize - The size of the areas under and above the stack.

Function output:

void

Function performance:

The function takes approximately 105 cycles (1.10 µs) for a block size of 0x10.1

The function size is 26 B.1

Calling restrictions:

None.

9.2.3 FS_CM33_STACK_Test()
The testing procedure is the same after the reset and during runtime. The function checks if the areas are not rewritten with
content different than that of the defined pattern. The inputs for the testing functions must be the same as for the initialization
function.

Function prototype:

FS_RESULT FS_CM33_STACK_Test(uint32_t stackTestPattern, uint32_t firstAddress, uint32_t secondAddress, uint32_t
blockSize);

Function inputs:

stackTestPattern - The pattern to be checked in the areas (for example, 0x77777777).

firstAddress - The first address of the block under the stack area.

secondAddress - The first address of the block above the stack area.

blockSize - The size of the areas under and above the stack.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_STACK

Function performance:

The function takes approximately 139 cycles (1.45 µs) for a block size of 0x10.1

The function size is 41 B.1

Calling restrictions:

None.

Stack test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
84 NXP Semiconductors

Chapter 10
Watchdog test
The watchdog test provides the testing of the watchdog timer functionality. The test checks whether the watchdog timer can
cause a reset and whether the reset happens at the expected time. Before the start of the test, the watchdog must be configured
for use in the respective application. The next step before the test is the setup of the independent device timer, which is used for
the watchdog timeout comparison. The first function for watchdog testing is called after that. This function refreshes the watchdog
timer, activates the device timer, and captures the device timer counter value during an endless loop. This function should be
called only once after the Power-On Reset (POR). After the watchdog reset, the second function must be called. This function
should be called after every reset, except for the POR. This function checks whether the captured device timer counter value
corresponds to the expected watchdog timeout value. The next check is whether the number of watchdog resets does not exceed
the limit value. You can choose what action must be made after an incorrect result. Due to safety requirements, you have limited
options for choosing the clock source for the watchdog and the device timer. The first condition is that the watchdog timer clock
cannot be the same as the watchdog bus interface clock. Check the device reference manual for the watchdog timer clock source
options. The second condition is that the watchdog timer clock cannot be the same as the device timer clock.

10.1 Watchdog test in compliance with IEC/UL standards
The watchdog test is not directly specified in the IEC60730 - annex H table, but it partially fulfils the safety requirements according
to IEC 60730-1, IEC 60335, UL 60730, and UL 1998 standards, as described in the following table:

Table 16. Watchdog test in compliance with the standards

Test Component Fault / Error Software / Hardware
Class

Acceptable Measures

Watchdog test 3. Clock Wrong frequency B/R.1 Frequency monitoring

Watchdog test 8. Monitoring devices
and comparators

Any output outside the
static and dynamic
functional specification

B/R.1 Tested monitoring

10.2 Watchdog test implementation
The test functions for the watchdog are placed in the iec60730b _wdg.c file. The header file is iec60730b_wdg.h. The iec60730b.h
and asm_mac_common.h files must be placed in the application as well.

You must have available space in the RAM memory, which is not corrupted after the non-POR.

This memory is used for your variable of the fs_wdog_test type, which is a structure with three members. It is defined in the
iec60730b _wdg.h file.

It is important to configure the watchdog module and the device timer before starting the watchdog test.

The watchdog timer module is different for the supported devices. For a correct function for the corresponding device, see the
device implementation chapter.

Ensure the handling of the functions. To identify the source of the reset, use the reset control module. The common configuration
is that if an unwanted result is found by the check function, the program stays in an endless loop in the function. This causes the
application to stay in the loop of watchdog resets. By entering zero as the fourth input value of the check function, the endless
loop is not activated. In that case, ensure that the application is put into a safe state.

The following is an example of the watchdog test implementation (MKV1x):

#include “iec60730b.h”

#define WATCHDOG_ON

Watchdog test in compliance with IEC/UL standards

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 85

#define Watchdog_refresh WDOG_REFRESH = 0xA602;WDOG_REFRESH = 0xB480

extern unsigned long WD_TEST_BACKUP; /* from Linker configuration file */

const unsigned long WD_backup_address = (unsigned long)&WD_TEST_BACKUP;

#define WATCHDOG_TEST_VARIABLES ((WD_Test_Str *) WD_backup_address)

#define WD_TEST_LIMIT_HIGH 3400

#define WD_TEST_LIMIT_LOW 3000

#define ENDLESS_LOOP_ENABLE 1 /* set 1 or 0 */

#define WATCHDOG_RESETS_LIMIT 1000

#define WATCHDOG_TIMEOUT_VALUE 100

MCG_C1 |= MCG_C1_IRCLKEN_MASK; /* MCGIRCLK active */

MCG_C2 &= (~MCG_C2_IRCS_MASK); /* slow reference clock selected */

SIM_SCGC5 |= SIM_SCGC5_LPTMR_MASK; /* enable clock gate to LPTMR */

LPTMR0_CSR = 0; /* time counter mode */

LPTMR0_CSR = LPTMR_CSR_TCF_MASK|LPTMR_CSR_TFC_MASK; /* CNR reset on overflow */

LPTMR0_PSR |= LPTMR_PSR_PBYP_MASK; /* prescaler bypassed, */

LPTMR0_PSR &= (~LPTMR_PSR_PCS_MASK); /* clear prescaler clock */

LPTMR0_PSR |= LPTMR_PSR_PCS(0); /* select the clock input */

LPTMR0_CMR = 0; /* clear the compare register */

LPTMR0_CSR |= LPTMR_CSR_TEN_MASK; /* enable timer */

WatchdogEnable();

if(RCM_SRS0_POR_MASK==(RCM_SRS0_POR_MASK &RCM_SRS0)) /* if POR reset */

{

FS_WDOG_Setup(WATCHDOG_TEST_VARIABLES);

}

if(RCM_SRS0_POR_MASK!=(RCM_SRS0_POR_MASK &RCM_SRS0)) /* if non-POR reset */

{

FS_WDOG_Check(WD_TEST_LIMIT_HIGH, WD_TEST_LIMIT_LOW, WATCHDOG_RESETS_LIMIT,
ENDLESS_LOOP_ENABLE, WATCHDOG_TEST_VARIABLES);

}

10.2.1 FS_WDOG_Setup()
This function clears the reset counter, which is a member of the fs_wdog_test_t structure. It refreshes the watchdog to start
counting from zero. It starts the LPTMR, which must be configured before the function call occurs. Within the waiting endless
loop, the value from the LPTMR is periodically stored in the reserved area in the RAM.

Function prototype:

void FS_WDOG_Setup(fs_wdog_test_t *pWatchdogBackup);

Watchdog test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
86 NXP Semiconductors

Function inputs:

*pWatchdogBackup - The pointer to the structure with fs_wdog_test_t variables.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The watchdog timer and the LPTMR must be configured correctly. A variable of the fs_wdog_test_t type must be declared and
placed into a reliable place. Interrupts should be disabled.

10.2.2 FS_WDOG_Setup_COP()
This function can be used for the MKLxx devices. This function clears the reset counter, which is a member of the fs_wdog_test_t
structure. It refreshes the watchdog to start counting from zero. It starts the LPTMR, which must be configured before the function
call occurs. Within the waiting endless loop, the value from the LPTMR is periodically stored in the reserved area in the RAM.

Function prototype:

void FS_WDOG_Setup_COP(fs_wdog_test_t *pWatchdogBackup);

Function inputs:

*pWatchdogBackup - The pointer to a structure with the fs_wdog_test_t variables.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The watchdog timer and the LPTMR must be configured correctly. A variable of the fs_wdog_test type must be declared and
placed into a reliable place. Interrupts should be disabled.

10.2.3 FS_WDOG_Setup_KE0XZ()
Can be used for the KE0xZ devices. This function clears the reset counter, which is a member of the fs_wdog_test_t structure.
It refreshes the watchdog to start counting from zero. It starts the RTC, which must be configured before the function call occurs.
Within the waiting endless loop, the value from the RTC is periodically stored in the reserved area in the RAM.

Function prototype:

void FS_WDOG_Setup_KE0XZ(fs_wdog_test_t *pWatchdogBackup);

Function inputs:

*pWatchdogBackup - The pointer to the structure with fs_wdog_test_t variables.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

Watchdog test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 87

The watchdog timer and the RTC must be configured correctly. A variable of the fs_wdog_test type must be declared and placed
into a reliable place. Interrupts should be disabled.

10.2.4 FS_WDOG_Setup_KE1XF()
Can be used for the MKE1xF devices. This function clears the reset counter, which is a member of the fs_wdog_test_t structure.
It refreshes the watchdog to start counting from zero. It starts the LPTMR, which must be configured before the function call
occurs. Within the waiting endless loop, the value from the LPTMR is periodically stored in the reserved area in the RAM.

Function prototype:

void FS_WDOG_Setup_KE1XF(fs_wdog_test_t *pWatchdogBackup);

Function inputs:

*pWatchdogBackup - The pointer to the structure with fs_wdog_test_t variables.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The watchdog timer and the LPTMR must be configured correctly. A variable of the fs_wdog_test type must be declared and
placed into a reliable place. Interrupts should be disabled.

10.2.5 FS_WDOG_Setup_KE1XZ()
This function can be used for the KE1xZ devices. This function clears the reset counter, which is a member of the fs_wdog_test_t
structure. It refreshes the watchdog to start counting from zero. It starts the LPTMR, which must be configured before the function
call occurs. Within the waiting endless loop, the value from the LPTMR is periodically stored in the reserved area in the RAM.

Function prototype:

void FS_WDOG_Setup_KE1XZ(fs_wdog_test_t *pWatchdogBackup);

Function inputs:

*pWatchdogBackup - The pointer to the structure with fs_wdog_test_t variables.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The watchdog timer and the LPTMR must be configured correctly. A variable of the fs_wdog_test type must be declared and
placed into the RAM area that is not overwritten during the application startup. Interrupts should be disabled.

10.2.6 FS_WDOG_Setup_WWDT_LPC_mrt()
This function can be used for the LPC devices with WWDT and MRT. This function clears the reset counter, which is a member
of the fs_wdog_test_t structure. It refreshes the watchdog to start counting from zero. It starts the MRT, which must be configured
before the function call occurs. Within the waiting endless loop, the value from the MRT is periodically stored in the reserved area
in the RAM.

Function prototype:

Watchdog test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
88 NXP Semiconductors

void FS_WDOG_Setup_WWDT_LPC_mrt(fs_wdog_test_t *pWatchdogBackup, uint32_t *pMRTimerBase, uint8_t channel);

Function inputs:

*pWatchdogBackup - The pointer to the structure with fs_wdog_test_t variables.

*pMRTimerBase - The pointer to the Ctimer used.

channel - The channel index of the MRT timer.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The watchdog timer and the MRT must be configured correctly. A variable of the fs_wdog_test type must be declared and placed
into the RAM area that is not overwritten during application startup. Interrupts should be disabled.

10.2.7 FS_WDOG_Setup_WWDT_LPC()
This function can be used for the LPC devices with WWDT. This function clears the reset counter, which is a member of the
fs_wdog_test_t structure. It refreshes the watchdog to start counting from zero. It starts the CTimer, which must be configured
before the function call occurs. Within the waiting endless loop, the value from the CTimer is periodically stored in the reserved
area in the RAM.

Function prototype:

void FS_WDOG_Setup_WWDT_LPC(fs_wdog_test_t *pWatchdogBackup, uint32_t *pCtimerBase);

Function inputs:

*pWatchdogBackup - The pointer to the structure with fs_wdog_test_t variables.

*pCtimerBase - The pointer to the CTIMER base address.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The watchdog timer and the Ctimer must be configured correctly. A variable of the fs_wdog_test type must be declared and placed
into the RAM area that is not overwritten during application startup. Interrupts should be disabled.

10.2.8 FS_WDOG_Setup_RT()
This function can be used for the MIMXRT10xx devices. This function clears the reset counter, which is a member of the
fs_wdog_test_tstructure. It refreshes the watchdog to start counting from zero. It starts the GPT, which must be configured before
the function call occurs. Within the waiting endless loop, the value from the GPT is periodically stored in the reserved area in the
RAM.

Function prototype:

void FS_WDOG_Setup_RT(fs_wdog_test_t *pWatchdogBackup, uint32_t *pGPT);

Function inputs:

*pWatchdogBackup - The pointer to the structure with fs_wdog_test_t variables.

*pGPT - The pointer to the GPT base address.

Watchdog test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 89

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The watchdog timer and the GPT must be configured correctly. A variable of the fs_wdog_test type must be declared and placed
into a reliable place. Interrupts should be disabled.

10.2.9 FS_CM0_WDOG_Setup_K32W()
This function can be used for the CM0+ core on MK32W0x devices. This function clears the reset counter, which is a member
of the fs_wdog_test_t structure. It refreshes the watchdog to start counting from zero. It starts the LPTMR, which must be
configured before the function call occurs. Within the waiting endless loop, the value from the LPTMR is periodically stored in the
reserved area in the RAM.

Function prototype:

void FS_CM0_WDOG_Setup_K32W(fs_wdog_test_t *pWatchdogBackup, uint32_t *pWDOG, uint32_t *pLPTMR);

Function inputs:

*pWatchdogBackup - The pointer to the structure with fs_wdog_test_t variables.

*pWDOG - The pointer to the WDOG base address.

*pLPTMR - The pointer to the LPTMR base address.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The watchdog timer and the LPTMR must be configured correctly. The variable of the fs_wdog_test type must be declared and
placed into a reliable place. Interrupts should be disabled.

10.2.10 FS_CM4_WDOG_Setup_K32W()
This function can be used for the CM4 core of MK32W0x devices. This function compares the captured value of the LPTMR
counter with precalculated limit values and checks whether the watchdog reset counter overflows. If the function is called after
a non-watchdog reset, wd_test_uncomplete_flag is set. With the endless_loop_enable parameter, the endless loop within the
function is enabled or disabled (by setting it to 1 or 0). If enabled, the function ends up in an endless loop under these conditions:

• Entering after non-watchdog or non–POR resets.

• The counter from the watchdog test does not fit the limit values.

• The watchdog resets exceed the defined limit value.

Function prototype:

void FS_CM4_WDOG_Setup_K32W(fs_wdog_test_t *pWatchdogBackup, uint32_t *pWDOG, uint32_t *pLPTMR);

Function inputs:

*pWatchdogBackup - The pointer to the structure with fs_wdog_test_t variables.

*pWDOG - The pointer to the WDOG base address.

*pLPTMR - The pointer to the LPTMR base address.

Watchdog test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
90 NXP Semiconductors

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The respective setup function must be executed first.

10.2.11 FS_WDOG_Check()
This function can be used for the MKV1x and MKLxx devices. This function compares the captured value of the LPTMR counter
with precalculated limit values and checks whether the watchdog reset counter overflows. If the function is called after a non-
watchdog reset, wd_test_uncomplete_flag is set. With the endless_loop_enable parameter, the endless loop within the function
is enabled or disabled, (by setting it to 1 or 0). If enabled, the function ends up in an endless loop under these conditions:

• Entering after non-watchdog or non-POR resets.

• The counter from the watchdog test does not fit the limit values.

• The watchdog resets exceed the defined limit value.

Function prototype:

void FS_WDOG_Check(uint32_t limitHigh, uint32_t limitLow, uint32_t limitResets, bool_t endlessLoopEnable, fs_wdog_test_t
*pWatchdogBackup);

Function inputs:

limitHigh - The precalculated limit value for the reference counter.

limitLow - The precalculated limit value for the reference counter.

limitResets - The limit value for watchdog resets.

endlessLoopEnable - Enables or disables the endless loop within the function.

*pWatchdogBackup - The pointer to the structure with fs_wdog_test_t variables.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The respective setup function must be executed first.

10.2.12 FS_WDOG_Check_KE0XZ()
This function can be used for MKE0XZ devices. This function compares the captured value of the RTC counter with precalculated
limit values and checks whether the watchdog reset counter overflows. If the function is called after a non-watchdog reset,
wd_test_uncomplete_flag is set. The endless loop within the function is enabled or disabled with the endless_loop_enable
parameter (by setting it to 1 or 0). If enabled, the function ends up in an endless loop under these conditions:

• Entering after non-watchdog or non-POR resets.

• The counter from the watchdog test does not fit within the limit values.

• The watchdog resets exceed the defined limit value.

Function prototype:

Watchdog test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 91

void FS_WDOG_Check_KE0XZ(uint32_t limitHigh, uint32_t limitLow, uint32_t limitResets, bool_t endlessLoopEnable,
fs_wdog_test_t *pWatchdogBackup);

Function inputs:

limitHigh - The precalculated limit value for the reference counter.

limitLow - The precalculated limit value for the reference counter.

limitResets - The limit value for the watchdog resets.

endlessLoopEnable - Enable or disable the endless loop within the function.

*pWatchdogBackup - The pointer to the structure with fs_wdog_test_t variables.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The respective setup function must be executed first.

10.2.13 FS_WDOG_Check_KE1XF()
This function can be used for the KE1xF devices. This function compares the captured value of the LPTMR counter with
precalculated limit values and checks whether the watchdog reset counter overflows. If the function is called after a non-watchdog
reset, wd_test_uncomplete_flag is set. The endless loop within the function is enabled or disabled with the endless_loop_enable
parameter (by setting it to 1 or 0). If enabled, the function ends up in an endless loop under these conditions:

• Entering after non-watchdog or non-POR resets.

• The counter from the watchdog test does not fit within the limit values.

• The watchdog resets exceed the defined limit value.

Function prototype:

void FS_WDOG_Check_KE1XF(uint32_t limitHigh, uint32_t limitLow, uint32_t limitResets, bool_t endlessLoopEnable,
fs_wdog_test_t *pWatchdogBackup);

Function inputs:

limitHigh - The precalculated limit value for the reference counter.

limitLow - The precalculated limit value for the reference counter.

limitResets - The limit value for the watchdog resets.

endlessLoopEnable - Enable or disable the endless loop within the function.

*pWatchdogBackup - The pointer to the structure with fs_wdog_test_t variables.

Function output:

void

Function performance:

The information about the function performance is mentioned in Core self-test library – source code version.

Calling restrictions:

The respective setup function must be executed first.

Watchdog test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
92 NXP Semiconductors

10.2.14 FS_WDOG_Check_KE1XZ()
This function can be used for MKE1xZ devices. This function compares the captured value of the LPTMR counter with
precalculated limit values and checks whether the watchdog reset counter overflows. If the function is called after a non-watchdog
reset, wd_test_uncomplete_flag is set. The endless loop within the function is enabled or disabled with the endless_loop_enable
parameter (by setting it to 1 or 0). If enabled, the function ends up in an endless loop under these conditions:

• Entering after non-watchdog or non-POR resets.

• The counter from the watchdog test does not fit within the limit values.

• The watchdog resets exceed the defined limit value.

Function prototype:

void FS_WDOG_Check_KE1XZ(uint32_t limitHigh, uint32_t limitLow, uint32_t limitResets, bool_t endlessLoopEnable,
fs_wdog_test_t *pWatchdogBackup);

Function inputs:

limitHigh - The precalculated limit value for the reference counter.

limitLow - The precalculated limit value for the reference counter.

limitResets - The limit value for watchdog resets.

endlessLoopEnable - Enable or disable the endless loop within the function.

*pWatchdogBackup - The pointer to the structure with fs_wdog_test_t variables.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The respective setup function must be executed first.

10.2.15 FS_WDOG_Check_WWDT_LPC()
This function can be used for the LPC8xx devices. This function compares the captured value of the target counter with
precalculated limit values and checks whether the watchdog reset counter overflows. If the function is called after a non-watchdog
reset, wd_test_uncomplete_flag is set. The endless loop within the function is enabled or disabled with the endless_loop_enable
parameter (by setting it to 1 or 0). If enabled, the function ends up in an endless loop under these conditions:

• Entering after non-watchdog or non-POR resets.

• The counter from the watchdog test does not fit within the limit values.

• The watchdog resets exceed the defined limit value.

Function prototype:

void FS_WDOG_Check_WWDT_LPC(uint32_t limitHigh, uint32_t limitLow, uint32_t limitResets, bool_t endlessLoopEnable,
fs_wdog_test_t *pWatchdogBackup);

Function inputs:

limitHigh - The precalculated limit value for the reference counter.

limitLow - The precalculated limit value for the reference counter.

limitResets - The limit value for watchdog resets.

endlessLoopEnable - Enable or disable endless loop within the function.

Watchdog test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 93

*pWatchdogBackup - The pointer to the structure with fs_wdog_test_t variables.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The respective setup function must be executed first.

10.2.16 FS_WDOG_Check_RT()
This function can be used for MIMXRT10xx devices. This function compares the captured value of the GPT counter with
precalculated limit values and checks whether the watchdog reset counter overflows. If the function is called after a non-watchdog
reset, wd_test_uncomplete_flag is set. The endless loop within the function is enabled or disabled with the endless_loop_enable
parameter (by setting it to 1 or 0). If enabled, the function ends up in an endless loop under these conditions:

• Entering after non-watchdog or non-POR resets.

• The counter from the watchdog test does not fit the limit values.

• The watchdog resets exceed the defined limit value.

Function prototype:

void FS_WDOG_Check_RT(uint32_t limitHigh, uint32_t limitLow, uint32_t limitResets, bool_t endlessLoopEnable, fs_wdog_test_t
*pWatchdogBackup);

Function inputs:

limitHigh - The precalculated limit value for the reference counter.

limitLow - The precalculated limit value for the reference counter.

limitResets - The limit value for the watchdog resets.

endlessLoopEnable - Enable or disable the endless loop within the function.

*pWatchdogBackup - The pointer to the structure with fs_wdog_test_t variables.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The respective setup function must be executed first.

10.2.17 FS_CM0_WDOG_Check_K32W()
This function can be used for the CM0+ core on MK32W0x devices. This function compares the captured value of the LPTMR
counter with pre-calculated limit values and checks whether the watchdog reset counter overflows. If the function is called after
a non-watchdog reset, the wd_test_uncomplete_flag is set. With the endless_loop_enable parameter, the endless loop within the
function is enabled or disabled (by setting it to 1 or 0). If it is enabled, the function ends up in an endless loop under these
conditions:

• Entering after non-watchdog or non–POR resets.

• The counter from the watchdog test does not fit within the limit values.

• The watchdog resets exceed the defined limit value.

Watchdog test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
94 NXP Semiconductors

Function prototype:

void FS_CM0_WDOG_Check_K32W(uint32_t limitHigh, uint32_t limitLow, uint32_t limitResets, bool_t endlessLoopEnable,
fs_wdog_test_t *pWatchdogBackup);

Function inputs:

limitHigh - The precalculated limit value for the reference counter.

limitLow - The precalculated limit value for the reference counter.

limitResets - The limit value for the watchdog resets.

endlessLoopEnable - Enables or disables the endless loop within the function.

*pWatchdogBackup - The pointer to a structure with the fs_wdog_test_t variables.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The respective setup function must be executed first.

10.2.18 FS_CM4_WDOG_Check_K32W()
This function can be used for the CM4 core of MK32W0x devices. This function compares the captured value of the LPTMR
counter with pre-calculated limit values and checks whether the watchdog reset counter overflows. If the function is called after
a non-watchdog reset, the wd_test_uncomplete_flag is set. With the endless_loop_enable parameter, the endless loop within the
function is enabled or disabled (by setting it to 1 or 0). If enabled, the function ends up in an endless loop under these conditions:

• Entering after non-watchdog or non–POR resets.

• The counter from the watchdog test does not fit within the limit values.

• The watchdog resets exceeds the defined limit value.

Function prototype:

void FS_CM4_WDOG_Check_K32W(uint32_t limitHigh, uint32_t limitLow, uint32_t limitResets, bool_t endlessLoopEnable,
fs_wdog_test_t *pWatchdogBackup);

Function inputs:

limitHigh - The precalculated limit value for the reference counter.

limitLow - The precalculated limit value for the reference counter.

limitResets - The limit value for the watchdog resets.

endlessLoopEnable - Enable or disable the endless loop within the function.

*pWatchdogBackup - The pointer to the structure with fs_wdog_test_t variables.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The respective setup function must be executed first.

Watchdog test implementation

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
NXP Semiconductors 95

10.2.19 FS_WDOG_Check_WWDT_LPC55SXX()
This function can be used for the LPC55Sxx devices. This function compares the captured value of the target counter with
precalculated limit values and checks whether the watchdog reset counter overflows. If the function is called after a non-watchdog
reset, wd_test_uncomplete_flag is set. The endless loop within the function is enabled or disabled with the endless_loop_enable
parameter (by setting it to 1 or 0). If enabled, the function ends up in an endless loop under these conditions:

• Entering after non-watchdog or non-POR resets.

• The counter from the watchdog test does not fit within the limit values.

• The watchdog resets exceed the defined limit value.

Function prototype:

void FS_WDOG_Check_WWDT_LPC55SXX(uint32_t limitHigh, uint32_t limitLow, uint32_t limitResets, bool_t
endlessLoopEnable, fs_wdog_test_t *pWatchdogBackup);

Function inputs:

limitHigh - The precalculated limit value for the reference counter.

limitLow - The precalculated limit value for the reference counter.

limitResets - The limit value for watchdog resets.

endlessLoopEnable - Enable or disable the endless loop within the function.

*pWatchdogBackup - The pointer to the structure with fs_wdog_test_t variables.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The respective setup function must be executed first.

Watchdog test

IEC60730_B_CM33_Library_UG_v4_0, Rev. 0, 01/2020
96 NXP Semiconductors

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, UMEMS, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V.
All other product or service names are the property of their respective owners. AMBA, Arm,
Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,
DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,
SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro,
µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks
and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 01/2020
Document identifier: IEC60730BCM33LUG40

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Core self-test library
	1.1 Core self-test library – object code version
	1.2 Core self-test library – source code version
	1.2.1 LPC55Sxx dedicated functions

	1.3 Functions performance measurement

	2 Analog Input/Output (IO) test
	2.1 Analog input/output test in compliance with IEC/UL standards
	2.2 Analog input/output test implementation
	2.2.1 FS_AIO_InputTrigger()
	2.2.2 FS_AIO_InputInit()
	2.2.3 FS_AIO_InputInit_CYCLIC()
	2.2.4 FS_AIO_InputInit_K3S()
	2.2.5 FS_AIO_InputInit_LPC_ADC16()
	2.2.6 FS_AIO_InputInit_LPC_ADC12()
	2.2.7 FS_AIO_InputSet()
	2.2.8 FS_AIO_InputSet_CYCLIC()
	2.2.9 FS_AIO_InputSet_K3S()
	2.2.10 FS_AIO_InputSet_LPC8XX()
	2.2.11 FS_AIO_InputSet_LPC55SXX()
	2.2.12 FS_AIO_InputCheck()
	2.2.13 FS_AIO_InputCheck_CYCLIC()
	2.2.14 FS_AIO_InputCheck_K3S()
	2.2.15 FS_AIO_InputCheck_KE()
	2.2.16 FS_AIO_InputCheck_LPC55SXX()
	2.2.17 FS_AIO_InputCheck_LPC8XX()

	3 Clock test
	3.1 Clock test in compliance with IEC/UL standards
	3.2 Clock test implementation
	3.2.1 FS_CLK_Init()
	3.2.2 FS_CLK_Check()
	3.2.3 FS_CLK_LPTMR()
	3.2.4 FS_CLK_CTIMER_LPC()
	3.2.5 FS_CLK_GPT()
	3.2.6 FS_CLK_RTC()
	3.2.7 FS_CLK_WKT_LPC()

	4 Digital input/output test
	4.1 Digital input/output test in compliance with IEC/UL standards
	4.2 Digital input/output test implementation
	4.2.1 FS_DIO_Input()
	4.2.2 FS_DIO_InputExt()
	4.2.3 FS_DIO_InputExt_RT()
	4.2.4 FS_DIO_InputExt_LPC()
	4.2.5 FS_DIO_Output()
	4.2.6 FS_DIO_Output_RT()
	4.2.7 FS_DIO_Output_LPC()
	4.2.8 FS_DIO_ShortToAdjSet()
	4.2.9 FS_DIO_ShortToAdjSet_RT()
	4.2.9.1 FS_DIO_ShortToAdjSet_LPC()

	4.2.10 FS_DIO_ShortToAdjSet_LPC()
	4.2.11 FS_DIO_ShortToSupplySet()
	4.2.12 FS_DIO_ShortToSupplySet_RT()
	4.2.13 FS_DIO_ShortToSupplySet_LPC()

	5 Invariable memory test
	5.1 Invariable memory test in compliance with IEC/UL standards
	5.2 Invariable memory test implementation
	5.2.1 Computing of CRC value in linking phase of application
	5.2.2 Test performed once after MCU reset
	5.2.3 Runtime test
	5.2.4 FS_CM33_FLASH_HW16()
	5.2.5 FS_CM33_FLASH_SW16()
	5.2.6 FS_CM33_FLASH_HW32()
	5.2.7 FS_CM33_FLASH_SW32()

	6 CPU program counter test
	6.1 CPU program counter test in compliance with IEC/UL standards
	6.2 CPU program counter test implementation
	6.2.1 FS_CM33_PC_Test()
	6.2.2 FS_PC_Object()

	7 Variable memory test
	7.1 Variable memory test in compliance with IEC/UL standards
	7.2 Variable memory test implementation
	7.2.1 FS_CM33_RAM_AfterReset()
	7.2.2 FS_CM33_RAM_Runtime()
	7.2.3 FS_CM33_RAM_CopyToBackup()
	7.2.4 FS_CM33_RAM_CopyFromBackup()
	7.2.5 FS_CM33_RAM_SegmentMarchC()
	7.2.6 FS_CM33_RAM_SegmentMarchX()

	8 CPU register test
	8.1 CPU register test in compliance with IEC/UL standards
	8.2 CPU register test implementation
	8.2.1 FS_CM33_CPU_Control()
	8.2.2 FS_CM33_CPU_Control_NS()
	8.2.3 FS_CM33_CPU_Control_S()
	8.2.4 FS_CM33_CPU_NonStackedRegister()
	8.2.5 FS_CM33_CPU_Primask_NS()
	8.2.6 FS_CM33_CPU_Primask_S()
	8.2.7 FS_CM33_CPU_Register()
	8.2.8 FS_CM33_CPU_Special8PriorityLevels_NS()
	8.2.9 FS_CM33_CPU_Special8PriorityLevels_S()
	8.2.10 FS_CM33_CPU_SPmain_Limit_NS()
	8.2.11 FS_CM33_CPU_SPmain_Limit_S()
	8.2.12 FS_CM33_CPU_SPmain_NS()
	8.2.13 FS_CM33_CPU_SPmain_S()
	8.2.14 FS_CM33_CPU_SPprocess_Limit_NS()
	8.2.15 FS_CM33_CPU_SPprocess_Limit_S()
	8.2.16 FS_CM33_CPU_SPprocess_NS()
	8.2.17 FS_CM33_CPU_SPprocess_S()
	8.2.18 FS_CM33_CPU_Float1()
	8.2.19 FS_CM33_CPU_Float2()

	9 Stack test
	9.1 Stack test in compliance with IEC/UL standards
	9.2 Stack test implementation
	9.2.1 Linker setup
	9.2.2 FS_CM33_STACK_Init()
	9.2.3 FS_CM33_STACK_Test()

	10 Watchdog test
	10.1 Watchdog test in compliance with IEC/UL standards
	10.2 Watchdog test implementation
	10.2.1 FS_WDOG_Setup()
	10.2.2 FS_WDOG_Setup_COP()
	10.2.3 FS_WDOG_Setup_KE0XZ()
	10.2.4 FS_WDOG_Setup_KE1XF()
	10.2.5 FS_WDOG_Setup_KE1XZ()
	10.2.6 FS_WDOG_Setup_WWDT_LPC_mrt()
	10.2.7 FS_WDOG_Setup_WWDT_LPC()
	10.2.8 FS_WDOG_Setup_RT()
	10.2.9 FS_CM0_WDOG_Setup_K32W()
	10.2.10 FS_CM4_WDOG_Setup_K32W()
	10.2.11 FS_WDOG_Check()
	10.2.12 FS_WDOG_Check_KE0XZ()
	10.2.13 FS_WDOG_Check_KE1XF()
	10.2.14 FS_WDOG_Check_KE1XZ()
	10.2.15 FS_WDOG_Check_WWDT_LPC()
	10.2.16 FS_WDOG_Check_RT()
	10.2.17 FS_CM0_WDOG_Check_K32W()
	10.2.18 FS_CM4_WDOG_Check_K32W()
	10.2.19 FS_WDOG_Check_WWDT_LPC55SXX()

