
elftosb User's Guide

by: NXP Semiconductors

1 Overview

The elftosb tool creates a binary output file that contains the user's application
image along with a series of bootloader commands. The output file is known
as a "Secure Binary" or SB file for short. These files typically have a .sb
extension. The tool uses an input command file to control the sequence of
bootloader commands present in the output file. This command file is called a
"boot descriptor file" or BD file for short.

The elftosb tool is command line driven and can be separately built to run on
Windows

®
 OS, Linux

®
 OS, and Apple Mac

®
 OS. Currently, elftosb tool on Mac

OS can only support non-secure boot images for i.MX devices because code
signing tool (CST) is not supported on Mac OS.The MCU bootloader package
contains the executable for all the three targets.

This document describes the usage of elftosb in terms of its command-line
parameters, input command file (.bd) structure, and contents of the output (.sb)
file. In the figure below, the block diagram describes the operation of elftosb at
a high level. Elftosb utility uses the three inputs; Input file (elf/srec/binary), Key
file, and BD file to process contents of the BD file in order to generate the output
SB file.

Contents

1 Overview...................... 1

2 Command line
interface.......................2

3 Command file...............4

4 elftosb key file
format.........................23

5 Appendix A:
Command file
grammar.................... 24

6 Appendix B: SB boot
image file format....... 27

7 Revision history........ 44

NXP Semiconductors Document Number: MBOOTELFTOSBUG

User's Guide Rev. 5, June 2019

Figure 1. elftosb diagram

2 Command line interface

The elftosb has a set of command-line options listed in the following table. Only the options that directly interface with what is
described in the document are listed.

Table 1. Command-line options

Option Description

-p PATH, --search-path PATH Adds a path to the end of the list of search paths

-f CHIP, --chip-family CHIP Selects output boot image format. For generating boot image
for Kinetis device specify "kinetis"

-c FILE, --command FILE Specify the command file to use. This option is mandatory

-o FILE, --output FILE Set the output file path. This option is mandatory

-P VERS, --product VERS Set product version

-C VERS, --component VERS Set component version

-k FILE, --key FILE Add a key file and enable encryption

-z, --zero-key Add a key of all zeros and enable encryption

-D NAME=INT, --define NAME=INT Override or set a constant value

-O OPTION=VALUE, --option NAME=VALUE Set a global option value

-V, --verbose Print detailed output

Table continues on the next page...

Command line interface

elftosb User's Guide, Rev. 5, June 2019
2 NXP Semiconductors

Table 1. Command-line options (continued)

Option Description

-q, --quiet Print only warnings and errors

-d, --debug Enable debug output

-v, --version Display tool version and print list

-?, --help Show usage information

-K/--keygen <option> Generate AES-128 or AES-256 key file based on option value
<128|256> (default <128>)

-n/--number <int> Number of keys to generate per file (default=1)(valid only when
-K is specified)

-x/--extract/--sbtool Extract a specified section

-i/--index <int> Section index to extract (default=None Section) (valid only
when -x is specified)

-b/--binary Extract section data as binary. It is valid only when -x is
specified. Warning: -q is enabled implicitly if -b is specified

The two command-line options required to set the command file and the output file paths are

-c FILE, --command FILE

-o FILE, --output FILE

These must be defined.

The -f or --chip-family option determines the format of the output (.sb) file elftosb utility will use. For generating boot image for
Kinetis device specify "kinetis". The case is ignored when comparing chip family names.

The output boot image is not encrypted by default. To encrypt the boot image, provide one or more keys. Use the -z option to add
a key that consists of all zeros. This is the default state of the hardware key in a chip if the key is not programmed yet.

One very useful option is -D or --define. This is used to set or override a constant value. The argument to the option is an identifier
and an integer value separated by an equals sign. The constant name identifier can be any constant name allowed in the command
files. The value can be any integer value allowed in the command files except for the multicharacter integer literals.

Before producing the output boot image, all constants set with the -D or --define options are set in the expression namespace
inside the elftosb. These special constants override any constants with the same name that are specified in the command file.
This enables the user to put a default value for a constant in the command file and override it with each invocation of elftosb.

Similar to -D is the -O or --option option that enables you to set or override the global option settings from the command line. The
argument value is again an option name and the value is separated by an equals sign. The value can be any integer or string
value allowed in the command file except for the multicharacter literals.

To extract the section content, use the -x/--extract/--sbtool option. Optionally, pass the index of the section required with the -i/--
index option. The section indices are printed under the "Section table" header in the output. The -x option causes a hex dump of
the section contents to be printed inline with the output under the "Sections" header. If additional option -b/--binary is passed in
the command line, then the binary contents of the section are instead echoed to stdout enabling the user to easily redirect the
data to a file. In this mode, no other output is produced. In all cases, the section contents are decrypted before being displayed.

To generate a random AES-128 or AES-256 key file in the format described in Chapter 4, elftosb key file format, use the -K/--
keygen <128|256> option.

The command-line usage for the elftosb tool is:

elftosb [-?|--help] [-v|--version] [-f|--chip-family <family>]
 [-c|--command <file>] [-o|--output <file>]

Command line interface

elftosb User's Guide, Rev. 5, June 2019
NXP Semiconductors 3

 [-P|--product <version>] [-C|--component <version>]
 [-k|--key <file>] [-z|--zero-key] [-D|--define <const>]
 [-O|--option <option>] [-K|--keygen <option>] [-n|--number <int>]
 [-x|--extract] [-x|--sbtool] [-i|--index <int>] [-b|--binary]
 [-d|--debug] [-q|--quiet] [-V|--verbose]
 [-p|--search-path <path>]
 files...

• There must be a space between the option (whether using short forms or long forms) and any value

• Any arguments listed after the options are the positional source files utilized by the extern() syntax (see Section

3.1.1.3, Sources).

 NOTE

3 Command file

The command files are text files in any encoding (including UTF-8) that use ASCII for the lower 128 characters. The line endings
do not matter. Unix, DOS, and Mac OS endings are also supported. Even the mixed line endings are accepted.

The standard extension for the command (boot descriptor) files is .bd.

The elftosb command file functions like a linker command file. It describes the output (.sb) file in terms of the input file(s). The
elftosb command file supports the ELF, S-record, and binary input files. The command file can either explicitly declare the input
files paths or can let the user provide the paths on the command line. This feature enables the command files to be generic and
reusable.

The command file declares a number of source files and assigns unique and easily referenced names to each. Each source can
either explicitly call out the path to its file or let the user provide the path on the command line. When a user enters a path in a
command line, the path leads to a file which can change each time the elftosb is called.

The command file then defines the sections required in the output (.sb) file. Each of these sections provides a definition for a
sequence of operations (such as load and call) that refer to the contents of the source files or constant values present in the
command file. These operations are mapped to the bootloader commands.

3.1 Blocks
The command file consists of different blocks: options, constants, sources, keyblob, and sections. All blocks are optional and there
can be more than one block of each type if required. The only rule is that all Section blocks must come after all other block types.
The syntax of the block is shown below.

Example 1. Basic block syntax

define the options block
options
{
 # content goes here
}

3.1.1 Block syntax
Blocks are arranged in two groups within a command file. The first are the configuration blocks: options, constants, sources, and
the keyblob. All configuration block types are optional, but at least one sources block is necessary for a useful command file.

The section definition blocks come after the configuration blocks. There can be more than one section block in a command file.
Their lexical order in the command file determines the logical order of the sections in the output boot image.

Command file

elftosb User's Guide, Rev. 5, June 2019
4 NXP Semiconductors

3.1.1.1 Options
An options block contains zero or more name/value pairs and the option settings that assign values to global options used by the
elftosb to control the generation of the output file.

Each entry in the options block takes the following form:

option_def ::= IDENT ‘=’ const_expr
 ;
const_expr ::= bool_expr
 | STRING_LITERAL
 ;

Within the block, each option definition must end with a semicolon. The value of an option can be a string, integer, or boolean
expression. The acceptable values depend on the particular option.

The option names are predefined by the elftosb utility and cannot be used in the command file for any other purpose. However,
it is possible to have a source with the same name as one of the options. The complete list of available options is in the following
table.

Table 2. Option names for elftosb

Option name Applies to Description

alignment Section Power of 2 integer alignment requirement
to start the boot image section.

cleartext Section Integer Boolean value. Makes a section
unencrypted even in an encrypted image.

componentVersion Boot image Version string as "xxx.yyy.zzz".

driveTag Boot image Integer value that sets drive tag field of
the image header.

flags Boot image Integer value that is used for image-wide
flags.

productVersion Boot image Version string as "xxx.yyy.zzz".

secinfoClear GHS ELF source files "default", "ignore", "rom", or "c" where
"default" is equal to "c".

sectionFlags Section Integer value used to set flags for boot
image sections or-ed with implicit flags.

toolset ELF source files "GHS", "GCC", or "ADS".

The two version options is used to set the default product and component version numbers. Both the versions can be overridden
from the command line.

The flags option sets the flags field in the header of a boot image file. See the appendix describing the boot image format for the
possible values of this field. The same applies to the section flagsoption except that it sets the flags field in the boot image section
header.

3.1.1.2 Constants
Similar to the options block, the constants block contains a sequence of zero or more constant definition statements which is
followed by a semicolon. Each constant definition statement is simply a name/value assignment.

Command file

elftosb User's Guide, Rev. 5, June 2019
NXP Semiconductors 5

The constant definition syntax is shown below:

constant_def ::= IDENT ‘=’ bool_expr
 ;

The constant values retain the integer word size when used in another expression.

The constant defined earlier in the constants block can be used in the definition of constants that follow it as shown in the following
example.

Example 2: Constants block

this is an example constants block
constants {
 ocram_start = 0;
 ocram_size = 256K;
 ocram_end = ocram_start + ocram_size -- 1;
}

3.1.1.3 Sources
The sources block is where the input files are listed and assigned the identifier which is referenced in the rest of the command
file. Each statement in the sources block consists of an assignment operator (the "=" character) with the source name identifier
on the left-hand side, and the source path value on the right-hand side. Each source definition ends with a semicolon.

The syntax for the source value depends on the type of the source definition. The two types are explicit paths and externally
provided paths. The sources with explicit paths list the path to the file as a quoted string literal.

The external sources use an integer expression to select one of the positional parameters from the command line. It enables the
user to change the input file by changing the command-line arguments.

The source definition syntax is as follows:

source_def ::= IDENT ‘=’ source_value (‘(‘ source_attr_list? ‘)’)?
 ;
source_value ::= STRING_LITERAL
 | ‘extern’ ‘(‘ int_const_expr ‘)’
 ;
source_attr_list
 ::= source_attr (‘,’ source_attr)*
 ;
source_attr ::= IDENT ‘=’ const_expr
 ;

The source definition can also be a list of source attributes in parentheses at the end of the definition. These attributes are the
same as the options in an options block. However, only a few options apply to the sources. See Table 2 for the complete list of
options.

3.1.1.4 Keyblob
The keyblob blocks must be defined before section block types within a command file. A keyblob block must be referenced in a
keywrap statement to be useful. The syntax for a keyblob block is shown below.

keyblob_block ::= ‘keyblob’ ‘(‘ int_const_expr ‘)’ keyblob_contents
 ;
keyblob_contents
 ::= ‘{‘ (‘(‘ keyblob_options_list ‘)‘)* ‘}’
 ;
keyblob_options_list

Command file

elftosb User's Guide, Rev. 5, June 2019
6 NXP Semiconductors

 ::= keyblob_option (‘,’ keyblob_option)*
 ;
keyblob_option ::= (IDENT ‘=’ const_expr)?
 ;

If the options list is empty, the corresponding keyblob entry is allocated but not populated. The supported keyblob option identifiers
are:

• start: The start address of the encrypted region.

• end: The end address of the encrypted region.

• key: The AES-128 counter mode encrypted key for a region.

• counter: The initial counter value for a region.

Keyblob Block

keyblob (0)
{
 (
 start=0x68001000,
 end=0x68001fff,
 key="00112233445566778899AABBCCDDEEFF",
 counter="0011223344556677"
)
 ()
 ()
 ()
}

The region addresses that appear in the keyblob block must be supported by the underlying hardware. For example,

an alias address may not be supported. See the corresponding chip reference manual for details.

 NOTE

3.1.1.5 Sections
The section blocks must be defined after the other block types within a command file. Each section block corresponds directly to
a section created in the output (.sb) file. The syntax of section blocks has a section's unique identifier value and an option specific
to that section. It is shown below.

The statement non-terminal is described in detail in Section 3.12, "Statements".

section_block ::= ‘section’ ‘(‘ int_const_expr section_options? ‘)’ section_contents
 ;
section_options ::= ‘;’ section_option_list
 ;
section_option_list
 ::= source_option (‘,’ source_option)*
 ;
source_option ::= IDENT ‘=’ const_expr
 ;
section_contents
 ::= ‘{‘ statement* ‘}’
 | ‘<=’ SOURCE_NAME ‘;’
 ;

As is demonstrated in the following example, there are two forms of section contents.

Command file

elftosb User's Guide, Rev. 5, June 2019
NXP Semiconductors 7

The first one contains a sequence of statements enclosed within braces. A bootable section can be created with a sequence of
bootloader commands enclosed within braces. The syntax for statements in a bootable section are described in detail in Section
3.12, "Statements".

The second one creates an arbitrary data section. The raw binary contents of the listed source file are copied into that section of
the output file. There is no predefined format or data sections. The data sections can be used to hold resource files or a backing
store for virtual memory paging.

The output (.sb) file created for a MCU ROM must start with a bootable section. The ROM stops processing at the end of this
bootable section. Additional bootable and data sections are ignored.

Example 4: Two section blocks

create a bootable section
section (32)
{
 # statements...
}
create a data section
section (64) <= my_source_file;

The section identifier number that appears in the parentheses must be unique for that section. If two sections have the same
identifier, an error is reported.

Set options that apply only to a single section by inserting them after the section's unique identifier separated by a semicolon. In
the sections syntax above, options are described by the section_options non-terminal. If there is more than one option then the
options are separated by commas as in the options block.

Refer to Table 2 to check the options that apply to sections in output files.

alignment

This option takes an integer power of two as its value. The offset within the output (.sb) file to the first byte of a section with a
special alignment is guaranteed to be divisible by the alignment value. Alignment equal to or below 16 is ignored as that is the
minimum alignment guaranteed by the cipher block size of an output (.sb) file. Note, the section itself is aligned not the boot tag
for that section. Any padding inserted to align a section consists of "nop" bootloader commands.

cleartext

Set this option to a boolean value. The keywords "yes", "no", "true", and "false" are accepted, as is any integer expression that
evaluates to zero or non-zero. The default is false. If the output file is encrypted and the cleartext option is true, the section to
which the cleartext option applies is left unencrypted. However, ROM does not currently support unencrypted bootable sections
in an encrypted file. This option is most useful for data sections.

As with all options, these can be set globally using an options block instead of individually per section. The user can also set a
global default and override it with a section-specific option. For example, set the default section alignment to 2 K and then align
one particular section to 4 K.

Sections are always created in the output (.sb) file in the order they appear in the command file. In addition, the first bootable
section that is defined in the command file becomes the section that the bootloader starts processing first after it reviews the
output (.sb) file headers.

3.2 Lexical elements
This section describes the various textual components that go into a command file, their syntax, and how they are used. While
reading the sections below, check the following table to understand the usage of token in the command file.

Command file

elftosb User's Guide, Rev. 5, June 2019
8 NXP Semiconductors

Table 3. Example token values

Token Description

10000 Integer literal.

0x200 Integer with value of 512.

256K Integer with value of 262144.

0b001001 Integer with value of 9.

'q' Byte-sized integer with value of 0x71 or 113.

'dude' Word-sized integer with value of 0x64756465 or 1685415013.

"this is a test" String literal.

$.text Section name matching ".text".

$* Section name matching all sections.

$*.bss Another section name matching all .bss sections, such as
".sdram.bss".

appElfFile:main Symbol reference with explicit source file.

:printMessage Symbol reference using default source file.

{{ 01 02 03 0b }} A four byte long binary object.

3.3 Whitespace
The whitespace in the form of space characters, tabs, newlines, or carriage returns are ignored throughout the command file
except within a string. Any form of line ending is allowed.

3.4 Keywords
The following table lists every keyword used in the elftosb command files. These identifiers are not available for use as a source
file or constant names. There are some of the keywords that are set aside for the features that are intended for the future and not
in-use currently.

Table 4. Command file keywords

call no

constants options

extern raw

false section

filters sources

from switch

jump true

Table continues on the next page...

Command file

elftosb User's Guide, Rev. 5, June 2019
NXP Semiconductors 9

Table 4. Command file keywords (continued)

load yes

mode if

else defined

info warning

error sizeof

qspi unsecure

ifr jump_sp

enable keyblob

start end

key counter

keywrap reset

all encrypt

3.5 Comments
The single-line comments can be introduced at any point in a line with a pound character ("#") or two slashes ("//") which runs
until the end of the line.

The multi-line comments work the same as they do in ANSI C.

They begin with "/*" and end with "*/"

Additionally, as with ANSI C, there is no support for the nested multi-line comments.

3.6 Identifiers
The identifiers are used for the option names, constants, and source names. They follow the similar ANSI C rules for identifiers.
They can begin with an underscore or alphabetic character and may contain any number of underscores and alphanumeric
characters.

3.7 Integers
The integer literals are of one of these three supported bases: binary, decimal, or hexadecimal. The decimal integers have no
prefix. The hexadecimal integers must be prefixed by '0x' and the binary integers must be prefixed by '0b'.

The integer literals can be followed by a metric multiplier character: "K", "M", or "G". The space characters are allowed between
the last digit and the multiplier. Binary multiplier values instead of the standard metric multipliers are used. This means that "K"
multiplies the integer by 1024, "M" by 1048576, and "G" by 1073741824. The lowercase "k", "m", or "g" are not allowed.

All integer values in a command file are unsigned and have a size associated with it. The supported integer sizes are byte (8 bits),
half-word (16 bits), and word (32 bits). The integer literals are by default all word-sized values. To change the word size, the "word
size" operator is used in an expression.

Command file

elftosb User's Guide, Rev. 5, June 2019
10 NXP Semiconductors

The integer constants can also be created with the character sequences contained in single quotes. One, two, or four character
sequences are allowed. These correspond to byte, half-word, and word-sized integers. For example, 'oh' is equal to a half-word
with the value of 0x6f68 hex (the value of the characters "o" and "h" in ASCII) or 28520 decimal.

Several keywords are set aside for the built-in integer constants for boolean values. These are "yes", "no", "true", and "false". The
"yes" and "true" keywords evaluate to 1, while the "no" and "false" keywords evaluate to 0. These keywords can be used wherever
the integer values are accepted including the command line.

3.7.1 Integer expressions
An integer expression can be used in any place where an integer constant value is required in an equation. These expressions
(mostly) follow standard C expressions with a few exceptions. The following table lists the available operators.

Table 5. Integer expression operators

Operator Description

+ add

- subtract

* multiply

/ divide

% modulus

& bitwise and

| bitwise or

^ bitwise xor

<< logical left shift

>> logical right shift

. set integer size

sizeof() get size of a constant or symbol

In addition to the operators listed in the above table, the unary plus and minus are also supported.

3.7.1.1 Operator precedence
This table lists the expression operators grouped in their order of precedence. The first row in the table is the lowest and the last
row is the highest precedence.

Table 6. Operator precedence in increasing order

Operator Description

| bitwise or

^ bitwise xor

& bitwise and

<< >> left shift, right shift

+ - add, subtract

* / % multiply, divide, modulus

Table continues on the next page...

Command file

elftosb User's Guide, Rev. 5, June 2019
NXP Semiconductors 11

Table 6. Operator precedence in increasing order (continued)

Operator Description

. word size

unary + - unary positive and negative

3.7.1.2 Word size operator
The integer size operator (".") consists of a period followed by one of the characters "w", "h", or "b". These characters are case-
sensitive. A whitespace is allowed between the period and the following character. This operator changes the word size for the
expression to its left. The "w" character sets the size to a 32-bit word, "h" to a 16-bit word, and "b" to an 8-bit word.

For any given binary operation, the result is the largest word size of two operands. So, a byte-sized integer multiplied by a half-
word-sized integer results in a half-word. The actual operation is always performed as 32-bit words and the result is truncated if
necessary.

3.7.1.3 Sizeof operator
The sizeof operator is used to check the size of a symbol or a constant. The syntax of the operator is the keyword "sizeof" followed
by a symbol reference or constant identifier in parentheses (unlike in ANSI C). Sizes are always 32-bit values.

3.7.1.4 Constant references
Along with the integer literals, the expressions may refer to the constants defined in the constants' blocks by their name. A constant
name is a standard identifier. Placing a constant name in an expression is equivalent to inserting that constant's integer value.
Although the sources share the same namespace as the constants, they cannot be used within an integer expression.

3.7.1.5 Symbol references
Just like constants, the symbol references may also be used in integer expressions. A symbol reference has the value of the
symbol's value in the ELF file and is a 32-bit value. Usually, a symbol's value is its address, although some special symbols can
have other values. If the referenced symbol does not exist in the source file, then the symbol reference has a value of 0.

3.7.2 Boolean expressions
The boolean expressions are used while defining a constant, an option, or a condition for the if and else-if statements described
in Section 3.12.6, "If-Else". The boolean expressions cannot be a source or target of a load statement.

Table 7. Boolean expression operators

Operator Description

&& boolean and

|| boolean or

< less than

> greater than

<= less than or equal to

>= greater than or equal to

== equal to

Table continues on the next page...

Command file

elftosb User's Guide, Rev. 5, June 2019
12 NXP Semiconductors

Table 7. Boolean expression operators (continued)

Operator Description

!= not equal to

exists(src_file) does a source file exist?

defined(const) is a constant defined?

There is a number of new operators that can be used in the Boolean expressions. In addition to those operators, the unary not
operator (or the character "!") is supported. All of these operators evaluate to either 0 or 1. Like in ANSI C, a value of 0 means
false and any non-zero value means true.

There are two function-like operators that can be used in a Boolean expression. The first, "exists()", returns true if the source file
named inside the parentheses exists on the disk and was opened successfully. It is a syntax error to put a source name that was
not defined in a sources block inside an exists operator.

The second special operator is "defined()". It takes the name of a constant between the parentheses. The operator has a value
of true if the named constant is assigned a value, either within the boot descriptor file or from the command line.

The && and || binary operators are short-circuit operators. This means that if the left-hand operand is equal to a value that makes
the value of the right-hand operand not important (because the expression has the same end value either way), the right hand
operand is not evaluated. This is particularly useful in expressions such as "if defined(const) && const > 10…". Here, the right-
hand greater-than expression is only evaluated if the constant "const" is defined. If the right-hand expression is always evaluated
and "const" is not defined, an error is reported.

3.8 Strings
All string literals are contained within double quote characters. They may not extend beyond the end of a line. The C language
backslashes used as escape sequences are not supported so that the backslash character can be used in the file paths. As a
result it is not possible to insert a double quote, newline, or other special character in the middle of a string.

3.9 Section names
The named sections of the ELF files are selected with a section name literal. These special literals begin with a dollar-sign character
('$') and continue until the first character that is not allowed in the section name. The name is a standard glob-type expression
that can match any number of ELF sections. The acceptable characters include alphanumerics, underscore, period, asterisk,
question mark, dashes, caret, and square brackets. Many of these characters are used only as a part of the glob expression.

The supported glob sub-expressions are:

Expression Description

* Matches any character, zero or more times in a row.

? Matches any single character.

[set] Matches any character in the set.

[^set] Matches any character not in the set.

In the list above, [set] is any combination of single characters and range. This range is formed using two characters separated
by a hyphen: [a-z] inclusively matches all characters from "a" to "z".

Command file

elftosb User's Guide, Rev. 5, June 2019
NXP Semiconductors 13

When used in the section list of a load statement, a section name prefixed with a tilde ("~") character to invert the set of matched
ELF sections.

3.10 Symbol references
The source files in the ELF format have a symbol table embedded in them. A symbol reference is used to refer to a particular
symbol in an ELF file by its name. When used in an integer expression, the symbol reference has the symbol value which is its
address.

The syntax for a symbol reference consists of an optional source file name followed by a colon and the symbol name. The symbol
name is not placed in quotes and is used as a regular identifier.

If there is no source file before the colon, the symbol coming from the default source file that is specified with a "from" statement.
If the symbol reference is not within the context of a "from" statement, the source file name is required.

3.11 Binary objects
The binary object values (known as "blobs") are a sequence of hexadecimal bytes that form an object. Double curly braces open
and close a blob. Every two hexadecimal characters form one byte in the blob and all whitespace is ignored. The hex characters
are case-insensitive. Non-hex characters are illegal and are not allowed within a blob.

3.12 Statements
Each statement within a bootable section block describes an "operation" that is performed by the bootloader when it processes
the output (.sb) file. The individual statements correspond to at least one or more boot commands created in the output file. The
elftosb interprets these statements and converts them into boot commands in the output file.

The sources block below has 3 statements. For all of the inline examples below, assume the following definitions:

sources
{
 myElfFile = “app.elf”;
 mySRecFile = “utility.s37”;
 myBinFile = “data.bin”;
}

This code above when in a boot descriptor file (.bd) is processed by the elftosb utility. The elftosb utility searches for app.elf,
utility.s37, and data.bin files in the same folder and these files are then referenced as myElfFile, mySRecFile, and myBinFile in
the output file.

All statements except the "from" and "if-else" statements must end with a semicolon.

3.12.1 Load
The load statement is used to store data into the memory. This load command includes the data loads, pattern fills, and word
pokes commands used in the bootloader. The syntax of the statements can be simple but the interpretation can be very complex.
In other words, a short load statement can produce a large sequence of boot commands and vice versa. The elftosb utility converts
a load statement into bootloader commands.

The load command is also used to write to the flash memory. When loading to the flash memory, the region being loaded to must
be erased before to the load operation. See the erase command for details.

Command file

elftosb User's Guide, Rev. 5, June 2019
14 NXP Semiconductors

An example code for a load statement is:

load_stmt ::= ‘load’ load_data (‘>’ load_target)?
 ;
load_data ::= const_expr
 | SOURCE_NAME
 | section_list (‘from’ SOURCE_NAME)?
 ;
section_list ::= section_ref (‘,’ section_ref)*
 ;
section_ref ::= (‘~’)? SECTION_NAME
 ;
load_target ::= ‘.’
 | address_or_range
 ;
address_or_range
 ::= int_const_expr
 | int_const_expr ‘..’ int_const_expr
 ;

As shown in the code above, all load statements begin with the "load" keyword. Each load statement comprises of a data/ data
source and a target location. The source is always required. The target can be implicit, in which case it is based on the source
itself. Not all combinations of source and target types are allowed.

In the code above, the source is represented by the load_data non-terminal. The source can be integer values, string literals, a
source file, or one or more named sections of a source file. These sources result in one or more segments of data depending on
the type of source. The data sources, and therefore segments, may or may not have a physical memory location associated with
them. This memory location is the range of addresses in the memory where the data is placed by default.

For instance, a section of an ELF file is linked to a certain address and has a length. These combine to form the section's natural
address and size. For example, the content of a binary file has a natural size but not an address.

The target of the load statement determines the address in memory where the source is loaded and also the length of the load.
For certain source types that have a natural location, the target is optional and can be excluded from the statement. If listed, the
target is placed after the source data and a '>' symbol. If the target is implicit, same as the source, a dot (period) after the '>'
symbol is used. The value for the target is an address or an address range. When a target is a single address, it does not have
a length associated with it. In this case, the length of the load comes from the source data itself. The references to symbols from
an ELF file can also be used as a load target. They are equivalent to an address range, from the symbol's start address to its end
address.

When the target is a single address, the entire data source is loaded to that address. This is true even if the source has a natural
address. This allows the user to, for instance, load the ELF sections to different addresses from which they were linked.

When the target is an address range or a symbol equivalent to an address range, the source is both located and potentially
truncated. The load address is the start of the target range. This works the same as with a single target address. If the natural
size of the data source is equal to or smaller than the size of the target range (the end address minus the start address), then the
entire source is loaded. The leftover bytes in the target are not modified in such cases. Whenever the natural size of the source
is larger than the target range, the source is truncated to the size of the target address range when loaded.

The data sources that are composed of multiple segments, such as ELF files with multiple sections, must be loaded to their natural
location. This is because only in target address only one address or range can be specified, and it is useless to load each segment
to the same address.

The most common form of a load statement is loading a source file by name. This can produce quite different data sources
depending on the source file type. The specific features of each data source type are described below.

Command file

elftosb User's Guide, Rev. 5, June 2019
NXP Semiconductors 15

ELF file — Using an entire ELF file as a data source causes all sections within the file to be loaded. Not all sections are loaded;
only those sections whose type is SHT_PROGBITS or SHT_NOBITS are considered. All sections from the ELF files have natural
locations and sizes.

these two loads are completely equivalent
load myElfFile;
load myElfFile > .;

S-record file — The content of the file is turned into an in-memory image where contiguous regions of data are found by combining
the individual load commands. The load segments are created from each of the contiguous regions. These segments do have
natural addresses.

load mySRecFile;

Binary file — The entire content of the file forms one load segment that does not have a natural address. However, a binary file
does have a natural length.

// load an entire binary file to an address
load myBinFile > 0x70000000;

// load part of a binary file
load myBinFile > 0x70000000..0x70001000;

Binary object — This is almost like a binary file except that the data is listed inline in the boot descriptor file. Again, raw binary
data has no natural address but does have a natural length.

// load an eight byte blob
load {{ ff 2e 90 07 77 5f 1d 20 }} > 0xa0000000;

ELF section list – If user wants to load only certain sections of an ELF file, a syntax is supported that lets you select the ELF
sections using glob expressions. See Section 3.9, Sections for information about the section names. The data source syntax is
a list of one or more section names followed by the "from" keyword and a source name for an ELF file. The "from" keyword and
the following source name can be omitted if the load statement is within the "from" statement. The following examples demonstrate
the syntax:

Example load block

// inclusive section name
load $.text from myElfFile;

// exclusive section name
load ~$.mytext from myElfFile;

// example load inside a from statement
from myElfFile
{
 load $.text.*, ~$.text.sdram;
}

All sections of an ELF file have a natural location and size and the code in those sections expects to be at that location, an explicit
load target must not be used. In fact, the elftosb utility allows only explicit targets for statements that select a single ELF section
because it is not useful to load multiple sections to the same target address. On the other hand, it can be useful to relocate a
single section to a new address in memory.

The actual comma-separated list of ELF section name expressions that follows the "load" keyword progressively filters the selected
ELF sections. Each section name in the list if preceded by a tilde character ("~"), in which case the set of matched sections is
inverted. For example, the section name "~$.sdram.*" matches every section that does not begin with ".sdram.".

Command file

elftosb User's Guide, Rev. 5, June 2019
16 NXP Semiconductors

In the above code block, check the third load command. The first section name "$.text.*" matches every ELF section that begins
with ".text.". The second name (~.text.sdram) in the list matches every ELF section but the one named ".text.sdram" out of those
sections matched by the previous section name. If the source file contains ".text.ocram", ".text.sdram", ".bss", and ".data" then
only ".text.ocram" is selected.

Integer value — The integer value is a unique type of load data. This value is used as a pattern to fill a region of memory. The
integer sources do not have a natural address but they do have a natural length.

pattern fill
load 0x55.b > 0x2000..0x3000;

load two bytes at an address
load 0x1122.h > 0xf00;

If you load an integer value to a single address, the load fills as many bytes as the integer value is long. The second load statement
in the example above loads two bytes to 0xf00 because the integer value is a half word.

If you load an integer to an address range, only those bytes that are included in the range are filled. This is true even if the integer
value size is larger than the address range length.

String literal — Using string literals as the load data source is very similar to loading a binary file. One use case of this is to fill
a buffer in a memory that contains a message to be displayed to the user or printed over a serial port. When the buffer is set, user
can invoke the print routine with a call statement.

load a string at the address of a symbol
load “hello world!” > myElfFile:szMessage;

3.12.1.1 Load IFR
An IFR option to the load command that specifies that the data in the data source should be programmed to the Flash IFR index
indicated in the target location.

The grammar is as follows:

load_ifr_stmt ::= ‘load ifr’ int_const_expr ‘>’ int_const_expr
 ;

There are two forms of the load IFR statement, one to program to a 4-byte IFR location and another to program to an 8-byte IFR
location.

4-byte load IFR statement

section (0)
{
 load ifr 0x1234567 > 0x30;
}

8-byte load IFR statement

section (0)
{
 load ifr {{11 22 33 44 55 66 77 88}} > 0x40;
}

3.12.2 Call
The call statement is used for inserting a bootloader command that executes a function from one of the files that are loaded into
the memory. The type of function call is determined by the introductory keyword of the statement.

Command file

elftosb User's Guide, Rev. 5, June 2019
NXP Semiconductors 17

The grammar for these statements looks like this:

call_stmt ::= call_type call_target call_arg?
 ;
call_type ::= ‘call’
 | ‘jump’
 ;
call_target ::= SOURCE_NAME
 | symbol_ref
 | int_const_expr
 ;
call_arg ::= ‘(‘ int_const_expr? ‘)’
 ;

As with the load statement, the call statement begins with a special keyword. But, instead of a single keyword, there are two
possibilities. The keyword selects which specific boot command is produced by the statement, depending on the output boot
image format. In general, the "call" commands are expected to return the bootloader and the "jump" commands are not. For the
boot images, "call" produces the ROM_CALL_CMD and "jump" produces the ROM_JUMP_CMD. See the boot image format
design document for specific details about these commands, such as the function prototypes they expect.

After the introductory keyword comes the call target, of which there are three forms that have their own syntax. All forms of the
target boil down to just an address in the memory. The different forms are described in detail below.

Source file — If a source file name is used as the call target, the call statement uses the entry point to that source file as the
target address. This implies that the source file must have an entry point. If a source file that does not support entry points or
does not have one set is used, an error is reported.

call the entry point
call myElfFile;

same here
jump mySRecFile;

this produces an error because binary files
do not have an entry point
call myBinFile;

Integer expression — Using an integer expression is the most straightforward call target. The expression simply evaluates to
the address of the function that is invoked by the call or jump boot command.

jump to a fixed address
jump 0xffff0000;

Symbol — Although it is just another form of integer expression, it is important to point out that a reference to a symbol in an ELF
file can be used as the call target. Both the form where the source file is explicit and the form where it is implicit are supported.
The implicit form uses the source file from the enclosing from statement. It is an error to use the implicit form outside of a from
statement. It is also an error to list a symbol that is not present in the source file, or to use a source file with a type other than ELF.

call a function by name and pass it an arg
call myElfFile:initSDRAM (32);

this is the implicit form of symbol usage
from myElfFile
{
 call :reboot();
}

Command file

elftosb User's Guide, Rev. 5, June 2019
18 NXP Semiconductors

this is an error because Srecords do not have symbols
jump mySRecFile:anEntryPoint();

Note that the file the symbol comes from does not actually have to be loaded by the same command file. It is only used to find an
address, whether or not the function actually exists at that location.

The final part of a call statement is the optional argument value. It is just an integer expression wrapped in parentheses. The
expression determines what value is passed as the first argument to the call or jump boot commands. If the expression is excluded
from the statement, then the argument value defaults to zero. Using empty parentheses is equivalent to completely excluding the
parentheses.

3.12.3 From
More of a block than a true statement, the from statement has the simplest syntax. It produces no boot commands by itself.
Instead, the from statement enables you to use simpler forms of the statements contained within it.

The simple grammar for the from statements follows this form:

from_stmt ::= ‘from’ SOURCE_NAME ‘{‘ statement* ‘}’
;

The from statement consists of the "from" keyword, a source identifier, and a sequence of statements enclosed in braces. There
is no terminating semicolon after the closing brace. Any type of statement is allowed between the braces, except for the additional
from statements, as they cannot be nested.

Certain forms of the load and call statements use an implicit source file. All the from statement does is setting this implicit source
file for the statements found within it. This makes for cleaner and easier read command files.

The from statement

name our input file
sources
{
 example = extern(0);
}

create a section
section (0)
{
 from example
 {
 # load from example and call a function inside it
 load $.ocram.*;
 call :_start;
 }
}

The above example demonstrates how the from statement is used. The load and call statements inside the from statement do
not have any source explicitly listed. Which file should the named sections be loaded from? Which file is the "_start" symbol located
in? The from statement supplies the implicit source file for these statements.

The load statement loads all sections in the example source that have a name beginning with ".ocram.". The call statement
generates a call boot command to the address of the "_start" symbol within the example source file.

3.12.4 Erase
The erase statement inserts a bootloader command to erase the flash memory.

Command file

elftosb User's Guide, Rev. 5, June 2019
NXP Semiconductors 19

Grammar for the erase statement:

erase_stmt ::= 'erase' address_or_range
 | 'erase' 'all'
 ;

There are two forms of the erase statement. The simplest form (erase all) creates a command that erases the available flash
memory. The actual effect of this command depends on the runtime settings of the bootloader and whether the bootloader resides
in the flash, ROM, or RAM.

The second form of the erase statement accepts an address or address range as an argument. It erases the flash sectors that
are intersected by the address or range. To erase a single sector, provide a single address within that sector.

The erase statement

sources
{
 example = extern(0);
}

create a section
section (0)
{
 erase all;
 load example;
}

3.12.5 Print
The print statement are actually three very similar statements that are used to print different categories of messages to the user.
The three types of print statement are info, warning, and error. All print statements begin with a keyword corresponding to their
type, as seen in the grammar here:

print_stmt ::= ‘info’ STRING
 | ‘warning’ STRING
 | ‘error’ STRING
 ;

The info statement simply prints the message to the standard out. The message is visible unless the caller enabled the quiet
output feature. The warning statement does basically the same thing as the info statement, except that it prefixes the message
with "warning:". Additionally, the message is always visible. Finally, the error statement stops the execution of the elftosb
immediately and prints the message prefixed by "error:".

The print statement

sources
{
 # give the ELF file a name
 afile = “file.elf”;
}

constants
{
 # create a constant that is the size of a symbol
 bufsize = sizeof(afile:_my_buf);
}

Command file

elftosb User's Guide, Rev. 5, June 2019
20 NXP Semiconductors

create a section
section (0)
{
 if bufsize < 128
 {
 # elftosb stops after this is printed
 error “Buffer size $(bufsize) is too small!”;
 }
 else
 {
 info “Buffer size $(bufsize) is acceptable”;
 }
 /* ...more... */
}

The three print statements support the substitution of constant values and source file paths using a syntax like that for the Unix
shell variable substitution. A constant name or source file name placed in parentheses and prefixed with a dollar sign causes the
appropriate value to be inserted before the message is printed to the standard out.

For the constant substitution, there is a limited control of the formatting of the constant's value. The formatting options are placed
before a colon that prefixes the name of the constant inside the parentheses. The two supported formatting options are the
characters "d" and "x", only one of which is allowed at a time. The "d" character formats the constant as decimal and the "x"
character formats it as hexadecimal. For example, "$(x:floop)" formats the constant "floop" as hex.

3.12.6 If-Else
To make it easier to create reusable boot descriptor files, the elftosb has the if-else statement. These statements work just like
the if statements in any other language you have used. Chain as many if-else statements as you like. The final else branch is
optional and may be excluded.

The grammar looks like this:

if_stmt ::= ‘if’ bool_expr ‘{‘ statement* ‘}’ else_stmt?
;
else_stmt ::= ‘else’ ‘{‘ statement* ‘}’
| ‘else’ if_stmt
;

There are several differences in syntax from the ANSI C. No parentheses are required around the boolean expression after the
"if" keyword. Additionally, curly braces are always required around the statements on both the if and else branches.

All types of statements are allowed inside the if-else statement, including the from statements. The converse is also true: the if-
else statements may be placed inside the from statements.

3.12.7 Erase QuadSPI all statement
The erase QuadSPI all statement erases the entire external QuadSPI flash.

The grammar is:

erase_qspi_stmt ::= ‘erase’ ‘qspi’ ‘all’
 ;

Erase QuadSPI All statement

section (0)
{

Command file

elftosb User's Guide, Rev. 5, June 2019
NXP Semiconductors 21

 erase unsecure all;
}

3.12.8 Erase Unsecure All statement
The erase unsecure all statement erases the entire internal flash, leaving the flash security disabled.

The grammar is:

unsecure_stmt ::= ‘erase’ ‘unsecure’ ‘all’
 ;

Erase Unsecure All statement

section (0)
{
 erase unsecure all;
}

3.12.9 Enable QuadSPI statement
The enable QuadSPI statement initializes the external QuadSPI flash using a parameter block previously loaded to the RAM.

The grammar is:

enable_stmt ::= ‘enable’ ‘qspi’ int_const_expr
 ;

Enable QuadSPI statement

section (0)
{
 # Load quadspi config block bin file to RAM, use it to enable QSPI.
 load myBinFile > 0x20001000;
 enable qspi 0x20001000;
}

3.12.10 Reset statement
The reset statement generates a booloader reset command that resets the target device. Any additional commands in the SB file
after the reset command are ignored by the bootloader.

The grammar is:

reset_stmt ::= ‘reset’
 ;

Reset statement

section (0)
{
 reset;
}

Command file

elftosb User's Guide, Rev. 5, June 2019
22 NXP Semiconductors

3.12.11 Jump with stack pointer statement
The jump with stack pointer statement generates a booloader jump command that sets the stack pointer before jumping. Any
additional commands in the SB file after the jump command are ignored by the bootloader. The first argument is the value of the
stack pointer. The second argument is the jump address. The third (optional) argument is the argument to the function being
jumped to.

The grammar is below. The call_target and call_arg elements are described in the regular elftosb documentation.

jump_sp_stmt ::= ‘jump_sp’ sp_arg call_target call_arg?
 ;
sp_arg ::= int_const_expr
 ;

Jump with stack pointer statement

section (0)
{
 jump_sp 0x20000e00 0x1000 (0x5a5a5a5a);
}

3.13 Common usage example
The most common use of elftosb is to simply load a single ELF file and jump to its entry point, which is almost always the _start
symbol defined by the C runtime library.

Basic reusable boot descriptor file

// Define one input file that will be the first file listed
// on the command line. The file can be either an ELF file
// or an S-record file.
sources
{
 inputFile = extern(0);
}

// create a section
section (0)
{
 load inputFile; // load all sections
 call inputFile; // jump to entry point
}

4 elftosb key file format

The key files provided to elftosb with the -k/--key command line switch have a very simple format. Each line of a key file contains
one key which is an uninterrupted string of 32/64 hexadecimal characters, for a total of 128/256 bits of key data. Multiple keys
may appear in a key file. Each key is on a separate line. The line-ending format is not significant.

Example 16. Key file with two 128 bits keys

3F3CFBC001F399991035C3C6C7065924
1BA3CD4030FC4376B4AA8CB5E932432E

elftosb key file format

elftosb User's Guide, Rev. 5, June 2019
NXP Semiconductors 23

Example 17. Key file with one 256 bits key

AAB5CCFB687D378C93821E8793337EA8F98B48A0B596F36CDD169347322E8C87

The contents of a key file are in plaintext.

5 Appendix A: Command file grammar

The grammar for the command file format is shown below in the Extended Backus-Naur Format (EBNF).

command_file ::= pre_section_block* section_def*
 ;

pre_section_block
 :: options_block
 | constants_block
 | sources_block
 ;

options_block ::= ‘options’ ‘{‘ option_def* ‘}’
 ;

option_def ::= IDENT ‘=’ const_expr ‘;’
 ;

constants_block
 ::= ‘constants’ ‘{’ constant_def* ‘}’
 ;

constant_def ::= IDENT ‘=’ int_const_expr ‘;’
 ;

sources_block ::= sources ‘{’ source_def* ‘}’
 ;

source_def ::= IDENT ‘=’ source_value (‘(‘ source_attr_list? ‘)’)? ‘;’
 ;

source_value ::= STRING_LITERAL
 | ‘extern’ ‘(‘ int_const_expr ‘)’
 ;

source_attr_list
 ::= option_def (‘,’ option_def)*
 ;

section_block ::= ‘section’ ‘(‘ int_const_expr section_options? ‘)’
 section_contents
 ;

keyblob_block ::= ‘keyblob’ ‘(‘ int_const_expr ‘)’ keyblob_contents
 ;

keyblob_contents
 ::= ‘{‘ (‘(‘ keyblob_options_list ‘)‘)* ‘}’
 ;

keyblob_options_list

Appendix A: Command file grammar

elftosb User's Guide, Rev. 5, June 2019
24 NXP Semiconductors

 ::= keyblob_option (‘,’ keyblob_option)*
 ;

keyblob_option ::= (IDENT ‘=’ const_expr)?
 ;

section_options
 ::= ‘;’ source_attr_list?

section_contents
 ::= ‘{‘ statement* ‘}’
 | ‘<=’ SOURCE_NAME ‘;’
 ;

statement ::= basic_stmt ‘;’
 | from_stmt
 | if_stmt
 ;

basic_stmt ::= load_stmt
 | call_stmt
 | mode_stmt
 | message_stmt
 ;

load_stmt ::= ‘load’ load_data (‘>’ load_target)?
 ;

load_data ::= int_const_expr
 | STRING_LITERAL
 | SOURCE_NAME
 | section_list (‘from’ SOURCE_NAME)?
 ;

section_list ::= section_ref (‘,’ section_ref)*
 ;

section_ref ::= (‘~’)? SECTION_NAME
 ;

load_target ::= ‘.’
 | address_or_range
 ;

address_or_range
 ::= int_const_expr
 | int_const_expr ‘..’ int_const_expr
 ;

symbol_ref ::= SOURCE_NAME? ‘:’ IDENT
 ;

load_ifr_stmt ::= ‘load ifr’ int_const_expr ‘>’ int_const_expr
 ;

call_stmt ::= call_type call_target call_arg?
 ;

call_type ::= ‘call’
 | ‘jump’

Appendix A: Command file grammar

elftosb User's Guide, Rev. 5, June 2019
NXP Semiconductors 25

 ;

call_target ::= SOURCE_NAME
 | symbol_ref
 | int_const_expr
 ;

call_arg ::= ‘(‘ int_const_expr? ‘)’
 ;

jump_sp_stmt ::= ‘jump_sp’ sp_arg call_target call_arg?
 ;

sp_arg ::= int_const_expr
 ;

from_stmt ::= ‘from’ SOURCE_NAME ‘{‘ in_from_stmt* ‘}’
 ;

in_from_stmt ::= basic_stmt ‘;’
 | if_stmt
 ;

mode_stmt ::= ‘mode’ int_const_expr
 ;

message_stmt ::= message_type STRING_LITERAL
 ;

message_type ::= ‘info’
 | ‘warning’
 | ‘error’
 ;

if_stmt ::= ‘if’ bool_expr ‘{‘ statement* ‘}’ else_stmt?
 ;

else_stmt ::= ‘else’ ‘{‘ statement* ‘}’
 | ‘else’ if_stmt
 ;

encrypt_stmt ::= ‘encrypt’ ‘(‘ int_const_expr ‘)’ encrypt_stmt_list
 ;

encrypt_stmt_list
 ::= ‘{‘ (statement)* ‘}’
 ;

erase_qspi_stmt ::= ‘erase’ ‘qspi’ ‘all’
 ;

unsecure_stmt ::= ‘erase’ ‘unsecure’ ‘all’
 ;

enable_stmt ::= ‘enable’ ‘qspi’ int_const_expr
 ;

reset_stmt ::= ‘reset’
 ;

Appendix A: Command file grammar

elftosb User's Guide, Rev. 5, June 2019
26 NXP Semiconductors

const_expr ::= bool_expr
 | STRING_LITERAL
 ;

int_const_expr ::= expr
 ;

bool_expr ::= int_const_expr
 | bool_expr ‘<’ bool_expr
 | bool_expr ‘<=’ bool_expr
 | bool_expr ‘>’ bool_expr
 | bool_expr ‘>=’ bool_expr
 | bool_expr ‘==’ bool_expr
 | bool_expr ‘!=’ bool_expr
 | bool_expr ‘&&’ bool_expr
 | bool_expr ‘||’ bool_expr
 | ‘!’ bool_expr
 | IDENT ‘(‘ SOURCE_NAME ‘)’
 | ‘(‘ bool_expr ‘)’
 | ‘defined’ ‘(‘ IDENT ‘)’
 ;

expr ::= INT_LITERAL
 | IDENT
 | symbol_ref
 | expr ‘+’ expr
 | expr ‘-‘ expr
 | expr ‘*’ expr
 | expr ‘/’ expr
 | expr ‘%’ expr
 | expr ‘<<’ expr
 | expr ‘>>’ expr
 | expr ‘&’ expr
 | expr ‘|’ expr
 | expr ‘^’ expr
 | unary_expr
 | expr ‘.’ INT_SIZE
 | ‘(‘ expr ‘)’
 | ‘sizeof’ ‘(‘ symbol_ref ‘)’
 | ‘sizeof’ ‘(‘ IDENT ‘)’
 ;

unary_expr ::= ‘+’ expr
 | ‘-‘ expr
 ;

6 Appendix B: SB boot image file format

6.1 Glossary
AES-128 - Rijndael cipher with block and key sizes of 128 bits.

Block cipher - Encryption algorithm that works on blocks of N={64, 128, ...} bits.

CBC - Cipher Block Chaining, a cipher mode that uses the feedback between the ciphertext blocks.

Appendix B: SB boot image file format

elftosb User's Guide, Rev. 5, June 2019
NXP Semiconductors 27

CBC-MAC - A message authentication code computed with a block cipher.

Cipher block - The minimum amount of data on which a block cipher operates.

Ciphertext - Encrypted data.

DEK - Data encryption key, a one-time session key used to encrypt the bulk of the boot image.

ECB - Electronic Code Book, a cipher mode with no feedback between the ciphertext blocks.

Hash - Digest computation algorithm.

KEK - Key Encryption Key, used to encrypt a session key or DEK.

MAC - Message Authentication Code. Provides integrity and authentication checks.

Message digest - Unique value computed from the data using a hash algorithm. Provides only an integrity check (unless
encrypted).

Plaintext - Unencrypted data.

Rijndael - Block cipher chosen by the US Government to replace DES. Pronounced "rain-dahl".

Session key - Encryption key generated at the time of encryption. Only ever used once.

SHA-1 - Hash algorithm that produces a 160-bit message digest.

6.2 Introduction
The entire boot image format is built around the requirements of AES-128, with its minimum block size of 128 bits or 16 bytes.
AES-128 is the symmetric block cipher that is used for encrypted boot images. Using its block size as the base unit throughout
the image makes it much easier to accommodate the encryption.

To support multiple executables within one image, the format has the concept of sections. Each section can contain a standalone
bootable image, or may be a part of a larger sequence of sections. A boot command is provided that can be used to direct the
bootloader to continue from another section at runtime.

There is a number of features of this format that are not useful for all applications or methods of reading. For instance, the section
table is only useful if the random access to the boot image is available, while the boot tags are most useful when booting from a
streaming media. The goal here is to provide a great deal of capability to the image, regardless of how it is accessed.

6.3 Basic types
Several basic C types are used throughout this document to represent cipher blocks, keys, and other important elements. The
definitions for these types are shown below.

//! An AES-128 cipher block is 16 bytes.
typedef uint8_t cipher_block_t[16];

//! An AES-128 key is 128 bits, or 16 bytes.
typedef uint8_t aes128_key_t[16];

//! A SHA-1 digest is 160 bits, or 20 bytes.
typedef uint8_t sha1_digest_t[20];

//! Unique identifier for a section.
typedef uint32_t section_id_t;

Appendix B: SB boot image file format

elftosb User's Guide, Rev. 5, June 2019
28 NXP Semiconductors

6.4 Boot image format
The boot image format consists of five distinct regions. First, there is a plaintext header containing basic information about the
image. A section table, also plaintext, comes afterwards. It describes each of the different sections within the image. For encrypted
images, a key dictionary that is used to support multiple customer keys then follows. Next, each section has its data, which is
prefixed with a tag used by the bootloader. Finally, the image terminates with an authentication code for the entire image. The
figure below shows the basic layout of a boot image.

The image format is designed to be read from the streaming media without the support for random access while requiring the
caching of as little data as possible. However, the format also includes features that are most useful when the random access to
the image is possible. For example, the image ends with an authentication code computed from the entire rest of the image. This
isn’t particularly useful for the ROM, but can be used by the host-resident utilities to verify and authenticate the boot images before
using them.

Figure 2. Boot image regions

The basic unit size of the format is that of an AES-128 cipher block, or 16 bytes. Every region in the file always starts on a cipher
block boundary. Every field within the image is formatted in the little endian byte order.

Appendix B: SB boot image file format

elftosb User's Guide, Rev. 5, June 2019
NXP Semiconductors 29

6.4.1 Image header
The header of a boot image is always unencrypted. It provides the required information about the image as a whole, as well as
some useful pointers to the other regions within the image.

The image header size is always a round number of cipher blocks. Any padding bytes that are necessary to fill out the structure
are always set to random values. No padding is necessary if the header completely fills the last cipher block it occupies. The
section table dictionary immediately follows.

The C structure definition for the image header is:

struct boot_image_header_t
{
 union
 {
 sha1_digest_t m_digest;
 struct
 {
 cipher_block_t m_iv;
 uint8_t m_extra[4];
 };
 };
 uint8_t m_signature[4];
 uint8_t m_majorVersion;
 uint8_t m_minorVersion;
 uint16_t m_flags;
 uint32_t m_imageBlocks;
 uint32_t m_firstBootTagBlock;
 section_id_t m_firstBootableSectionID;
 uint16_t m_keyCount;
 uint16_t m_keyDictionaryBlock;
 uint16_t m_headerBlocks;
 uint16_t m_sectionCount;
 uint16_t m_sectionHeaderSize;
 uint8_t m_padding0[2];
 uint8_t m_signature2[4];
 uint64_t m_timestamp;
 version_t m_productVersion;
 version_t m_componentVersion;
 uint16_t m_driveTag;
 uint8_t m_padding1[6];
};

The fields of boot_image_header_t have their descriptions in the following table. The flags defined for the m_flags field are
shown in the second table.

Table 8. Image header fields

Field Description

m_digest SHA-1 digest of all fields of the header prior to this one. The
first 16 bytes (of 20 total) also act as the initialization vector for
CBC-encrypted regions.

m_signature Always has the value 'STMP'.

m_majorVersion Major version of the boot image format, currently 1.

m_minorVersion Minor version of the boot image format, currently 1 or 2.

Table continues on the next page...

Appendix B: SB boot image file format

elftosb User's Guide, Rev. 5, June 2019
30 NXP Semiconductors

Table 8. Image header fields (continued)

Field Description

m_flags Flags associated with the entire image.

m_imageBlocks Size of the entire image in blocks.

m_firstBootTagBlock Offset from the start of file to the cipher block containing the first
boot tag.

m_firstBootableSectionID Unique identifier of the section to start booting from.

m_keyCount Number of entries in the DEK dictionary.

m_keyDictionaryBlock Starting block number, from the beginning of the image, for the
DEK dictionary.

m_headerBlocks Size of the entire image header in blocks.

m_sectionCount Number of sections.

m_sectionHeaderSize Size in blocks of a section header.

m_padding0 Two bytes of padding to align m_signature2 to a word
boundary. Set to random values.

m_signature2 Always set to 'sgtl'. This second signature is only present in files
with a minor version greater or equal to 1.

m_timestamp Timestamp in microseconds size 1-1-2000 00:00 when the
image was created.

m_productVersion Product version.

m_componentVersion Component version.

m_driveTag Identifier for the disk drive or partition containing this image.

m_padding1 Eight bytes of padding to fill out the cipher block. Set to random
values.

Table 9. Boot image fields

Constant Bit Description

ROM_DISPLAY_PROGRESS 0 Turns on the progress reports of executed
commands.

ROM_VERBOSE_PROGRESS 1 Prints the extra information in reports
about the executed commands. Applies
only if ROM_DISPLAY_PROGRESS is also
enabled.

The m_majorVersion and m_minorVersion fields describe the version of the boot image format, not the version of the ROM (as
in the previous boot image formats). The major version field is currently 1. Any time this field is changed, the format is no longer
backwards compatible with the previous versions and a new bootloader is required. The minor version field should be incremented
for any format changes that are backwards compatible with the previous bootloader versions. For instance, adding a new field to
the end of the image header is backwards compatible due to the presence of the m_headerBlocks field. In this case only
m_minorVersion should be incremented. However, if the image header fields are reordered, the current bootloader can no longer
read the image and the m_majorVersion field must be incremented. See the file format versions table at the end of this document
for more version details.

Appendix B: SB boot image file format

elftosb User's Guide, Rev. 5, June 2019
NXP Semiconductors 31

If the value of the m_keyCount is zero, then the boot image is fully unencrypted. The image is always encrypted if there is at least
one key in the dictionary.

The SHA-1 digest of the header provides a basic integrity check for unencrypted images. It does not provide any extra security
because it can simply be updated along with any changes made to the header.

Throughout the rest of the file, any time something is encrypted using the CBC mode, the first 16 bytes of the m_digest field are
used as the initialization vector. The digest is random enough because the header differs for all boot images. The m_timestamp
field, in addition to its nominal purpose, serves to guarantee that the plaintext header is different for every boot image created. In
addition to improving the randomness of the header digest, this is important because the header is authenticated with the customer
key.

The m_keyDictionaryBlock field is also used to help the boot ROM speed up its processing of the header. This value can be
calculated from other header fields, but having it pre-calculated allows the ROM code to keep track of fewer header fields.

The m_productVersion and m_componentVersion fields contain version values that describe the firmware within the boot image.
These fields use the following C structure defintion:

struct version_t
{
 uint16_t m_major;
 uint16_t m_pad0;
 uint16_t m_minor;
 uint16_t m_pad1;
 uint16_t m_revision;
 uint16_t m_pad2;
};

Within each of the major, minor, and revision fields of the version_t structure, the version number is in the right-aligned BCD
format. The default value for both versions is 999.999.999.

The m_padding0 and m_padding1 fields are used to align other fields and round out the structure size to an even cipher block.
These bytes are set to random values when the image is created to add to the “whiteness” of the header for cryptographic
purposes.

6.4.2 Section table
The section table is basically an index of the starting block and length for each section within a boot image. It also contains flags
that apply solely to that section.

The table is always unencrypted and comes immediately after the plaintext image header and before the DEK dictionary, if the
dictionary is present.

The C type definition for the section table and its entries are as follows:

struct section_header_t
{
 section_id_t m_identifier;
 uint32_t m_offset;
 uint32_t m_length;
 uint32_t m_flags;
};
struct section_table_t
{
 section_info_t m_sections[1];
};

The fields of section_header_t are described in the following table. The flags defined for the m_flags field of section_header_t
are as shown in the second table.

Appendix B: SB boot image file format

elftosb User's Guide, Rev. 5, June 2019
32 NXP Semiconductors

Table 10. Section header fields

Field Description

m_identifier Unique 32-bit identifier for this section.

m_offset The starting cipher block for this section's data from the
beginning of the image.

m_length The length of the section data in cipher blocks.

m_flags Flags that apply to the entire section.

Table 11. Section flags

Constant Bit Description

ROM_SECTION_BOOTABLE 0 The section is bootable and contains a
sequence of bootloader commands.

ROM_SECTION_CLEARTEXT 1 The section is unencrypted. Applies only
if the rest of the boot image is encrypted.

The length of each entry in the section table comes from the m_sectionHeaderSize field of the image header. The entries are
always a round number of cipher blocks long, being padded if necessary. All entries in the table are of the same length. In version
1 of the file format, the section table entries are a single cipher block long and have no padding.

The total number of sections (and thus the number of entries in the section table) is given in the m_sectionCount field of the
image header. This should always be at least 1 for a valid bootable image. If it is 0, then the image contains no boot commands
and is considered invalid. In addition, there must be at least one section with the ROM_SECTION_BOOTABLE flag set for an image
to be valid.

The size of the section table is either (header.m_sectionCount * header.m_sectionHeaderSize) cipher blocks or
(header.m_sectionCount * header.m_sectionHeaderSize * 16) bytes.

6.4.3 DEK dictionary
The key dictionary always follows the image header in the next cipher block in the encrypted images. The unencrypted images
do not have a DEK dictionary.

Its purpose is to allow a single boot image to work with any number of customer keys. This is accomplished by generating a new
key, the Data Encryption Key (DEK), every time a boot image is generated. Except for this dictionary, the rest of the image is
encrypted with this DEK. The dictionary is used to map from any given customer key to the DEK in a secure manner, by encrypting
the DEK with each customer key to be supported. Thus, the DEK is never available without a valid customer key.

Each entry in the dictionary consists of two pieces of data: the Message Authentication Code (MAC) and the encrypted DEK
itself. The MAC acts as a check code (a known value that can be searched for). Otherwise, there is no way to tell a valid decryption
of the DEK from garbage.

Appendix B: SB boot image file format

elftosb User's Guide, Rev. 5, June 2019
NXP Semiconductors 33

Figure 3. DEK dictionary

The MAC is generated using a technique called CBC-MAC. The header of the boot image and the section table, which are both
always plaintext, are encrypted in the CBC mode using the KEK for the given dictionary entry. The initialization vector for this
encryption is always zero. Only the last cipher block is retained throughout this process. The authentication code is the last cipher
block.

The C type definition for the DEK dictionary is as follows:

struct dek_dictionary_entry_t
{
 cipher_block_t m_mac;
 aes128_key_t m_dek;
};
struct dek_dictionary_t
{
 dek_dictionary_entry_t m_entries[1];
};

The m_dek field in each entry is encrypted using the KEK in the CBC mode using the IV from the image header. The CBC-MAC
result, held in the m_mac field, is not encrypted. This is not necessary because it is generated from the secret OTP key.

The number of entries in the dictionary is determined from the m_keyCount field of the image header. The dictionary size is always
header.m_keyCount * 2 cipher blocks, or header.m_keyCount * 32 bytes. If m_keyCount is zero, then the DEK dictionary
occupies no cipher blocks in the image and the entire image is unencrypted.

The only realistic limit on the size of the dictionary is the boot time. The more dictionary entries, the longer it takes to boot the
device. At least the algorithm to search for the DEK should be O(n).

6.4.4 Section boot tags
Before each section data region, there is a special tag cipher block that describes the following section. These tags are called
boot tags because the boot ROM uses them to search for sections without having to maintain a copy of the entire section table
in the memory or re-read portions of the image from the storage. Boot tags are always paired with a section data region—there
is never one without the other. Another way to think of boot tags is as a section header local to the section contents.

Appendix B: SB boot image file format

elftosb User's Guide, Rev. 5, June 2019
34 NXP Semiconductors

The actual structure of a boot tag is that of the ROM_TAG_CMD bootloader command. Reusing the boot command structure for the
boot tag simplifies the ROM code. The tag command contains duplicates of some of the fields from the section table entry for the
section data region with which it is paired. The most important of these are the section identifier and the section length (in blocks).

Because there is no padding allowed between the sections, the section length effectively points to the next boot tag. This allows
the boot ROM to easily search for section data regions by comparing the identifiers and following the chain formed by the boot
tags. The last boot tag in an image always has its ROM_LAST_TAG flag set to help the ROM know at what point to stop searching.

6.4.5 Section data regions
There are two types of section data regions. The first is a bootable region that contains a sequence of boot commands. Second
is any non-bootable region that can contain arbitrary data that is not processed by the boot ROM. These regions may contain
resources or other data to be used by customer applications.

The contents of a bootable region are simply a number of bootloader commands sequenced one after another. Bootable sections
must always begin with a ROM_TAG_CMD bootloader command. See section 9 for more details about the structure of bootloader
commands and the details of individual commands.

An SB file created for a MCU ROM must start with a bootable section. The ROM stops processing at the end of this bootable
section. Additional bootable and data sections are ignored.

Section data regions must be ordered in the same sequence as they appear in the section table. That is, the data region for section
number 1 must come after the data region for section number 0 within the boot image. Also, there must be no pad blocks inserted
before or after section data regions, even though the format implicitly supports this by the use of cipher block pointers. These
restrictions are intended to make the processing of the boot image by the ROM easier.

6.4.6 Image authentication code
Every boot image ends with an authentication code that is computed from the entire contents of the image (excluding the
authentication code, of course). This code is a SHA-1 digest encrypted with the DEK using the CBC mode. The authentication
code consumes two cipher blocks in the image, with three words of padding added after the last word of the SHA-1 digest (because
the SHA-1 digest is 160 bits and the cipher blocks are 128 bits). The padding bytes are set to random values.

The digest is computed from the following components, in this order: plaintext header, plaintext section table, DEK dictionary,
plaintext section contents.

The hash algorithms themselves do not provide authentication, only an integrity check. However, if the digest is encrypted with
a secret key, then it can be used to provide authentication.

In an unencrypted boot image, the image authentication code is of course also unencrypted. The code no longer provides
authentication, but does still provide an integrity check over the entire image.

The authentication code always starts at the cipher block number (header.m_imageBlocks - 2).

6.5 Encryption details

6.5.1 Encryption process
The process of encryption takes place solely within the elftosb utility, because it converts the ELF or S-record binaries into a boot
image. The sequence below shows the steps that the elftosb takes to encrypt an image.

1. Build plaintext image header

a. Generate IV

b. Compute SHA-1 over image header

Appendix B: SB boot image file format

elftosb User's Guide, Rev. 5, June 2019
NXP Semiconductors 35

2. Generate plaintext section table

3. Generate DEK

4. For every KEK:

a. Read KEK key file

b. Compute CBC-MAC over plaintext image header with IV=0

c. Encrypt DEK with KEK in CBC mode with IV from header

d. Combine unencrypted CBC-MAC and encrypted DEK into dictionary entry

5. For every section:

a. Generate a ROM_TAG_CMD as the boot tag for this section

b. Encrypt the boot tag using CBC mode with IV from header

c. Generate plaintext section contents

d. Encrypt the section contents using CBC mode with IV from header

6. Compute SHA-1 digest of image

7. Encrypt image digest using CBC node with IV from header

6.5.2 Decryption process
The decryption process takes place within the ROM. In addition, there is a host utility program that can decrypt a boot image for
testing purposes.

1. Read the first cipher block of the image header. The m_keyCount field in the first cipher block tells if the image is encrypted
or not. If the image is encrypted, the m_keyCount is going to be non-zero.

2. As the image header is read, compute the CBC-MAC over it using the customer key.

3. For each entry in the DEK dictionary:

a. does the m_mac field match the computed CBC-MAC? If not, jump to the next entry.

b. if the m_mac field matches, decrypt the DEK using the customer key and exit the loop.

4. For each section table and any section data regions that are to be read:

a. decrypt the region using the DEK in the CBC mode with the IV from the header.

6.5.3 Boot commands
A bootable section in an image contains a sequence of boot commands and any data required by those commands. The
commands are processed in a linear sequence starting with the first. Each boot command occupies a single cipher block, plus
any cipher blocks required for data associated with that command. The C structure definition for a boot command is as follows:

struct boot_command_t
{
 uint8_t m_checksum;
 uint8_t m_tag;
 uint16_t m_flags;
 uint32_t m_address;
 uint32_t m_count;
 uint32_t m_data;
};

Appendix B: SB boot image file format

elftosb User's Guide, Rev. 5, June 2019
36 NXP Semiconductors

The commands described in this section are chosen to allow for the greatest flexibility in construction of boot images using the
least number of command types. For the most part, the individual fields of boot_command_t vary in exact meaning between each
command and are described below.

Because the m_checksum field is always calculated in the same way for every command, it deserves a special mentioning here.
This field provides a cheap and easy way to verify that the cipher block contains a valid bootloader command. While eight bits
are certainly not enough to act as a solid defense against either corruption or intended changes, it is still better than nothing.

The checksum is computed in the following manner:

boot_command_t bootCommand;
uint8_t * bytes = reinterpret_cast<uint8_t *>(&bootCommand);
uint8_t checksum = 0x5a;
int i;

// Unroll this loop for better optimization.
for (i = 1; i < sizeof(bootCommand); ++i)
{
 checksum += bytes[i];
}

Note that the checksum is computed only over bytes 1 through 15 of the boot_command_t structure for each boot command. Put
another way, any additional cipher blocks of data following a command are not included in the checksum. Also note that the initial
checksum value is 0x5a instead of 0. This is to prevent an all-zero command from also having a zero checksum.

The m_tag fields of each boot command contain a unique byte value that identifies which command the structure describes. The
list of boot command tag values is shown in the following table.

Table 12. Boot command tag values

Command tag value Command tag mnemonic

0x00 ROM_NOP_CMD

0x01 ROM_TAG_CMD

0x02 ROM_LOAD_CMD

0x03 ROM_FILL_CMD

0x04 ROM_JUMP_CMD

0x05 ROM_CALL_CMD

0x06 Reserved

0x07 ROM_ERASE_CMD

0x08 ROM_RESET_CMD

0x09 ROM_MEM_ENABLE_CMD

0x10 ROM_PROG_CMD

Any values of m_tag that do not match those listed in the previous table are invalid. If encountered, the bootloader stops and
reports an error.

ROM_NOP_CMD

Appendix B: SB boot image file format

elftosb User's Guide, Rev. 5, June 2019
NXP Semiconductors 37

The ROM_NOP_CMD command is a no-operation. The bootloader simply skips it. All fields except the m_tag fields are ignored by
the bootloader and may contain any value. However, until other uses are documented for these fields, they should contain the
values presented in the following table.

Table 13. No-op command fields

Field Description

m_checksum Simple checksum, which comes to 0x5a when all other fields
are zeros.

m_tag 0x00 or ROM_NOP_CMD

m_flags 0

m_address 0

m_count 0

m_data 0

Any values of m_tag that do not match those listed in the previous table are invalid. If encountered, the bootloader stops and
reports an error.

ROM_TAG_CMD

The ROM_TAG_CMD is used as a kind of “key frame” that describes a section, or a local section header. It contains most of the fields
from the section’s entry in the section table.

This command in not expected to appear within the command stream in a bootable section, and the bootloader just ignores it if
it is present. The purpose of this command definition is to describe the structure of the boot tag cipher block. Boot tags use the
exact same structure as the boot commands to make the bootloader’s job much easier.

Table 14. Hint Tag command fields

Field Description

m_checksum Simple checksum of the other fields of boot_command_t.

m_tag 0x01 or ROM_TAG_CMD

m_flags Bit 0: ROM_LAST_TAG

m_address The m_tag field from the section header.

m_count The number of cipher blocks that the data for this section
occupies. This is also the number of cipher blocks until the
next boot tag (except for the last one).

m_data The m_flags field from the section header.

ROM_LOAD_CMD

This command is followed by an arbitrary number of cipher blocks that contain the data to be loaded into the memory, starting at
the location specified by the m_address field of boot_command_t. The m_count field contains the number of bytes to be loaded
into this location in the memory.

Table 15. Load command fields

Field Description

m_checksum Simple checksum of the other fields of boot_command_t.

Table continues on the next page...

Appendix B: SB boot image file format

elftosb User's Guide, Rev. 5, June 2019
38 NXP Semiconductors

Table 15. Load command fields (continued)

Field Description

m_tag 0x02 or ROM_LOAD_CMD

m_flags Bit 0: Reserved

m_address Memory address to which the data is stored.

m_count Number of bytes to load. This is also the number of valid
bytes in the data cipher blocks following this command.

m_data CRC-32 over the data to be loaded.

The number of cipher blocks following the command is (m_count + 15) / 16. This means that there may be up to 15 bytes of
padding in the last data cipher block. The pad bytes are always filled with random data. See the following figure for an example
of how the cipher blocks are arranged for a load command with a data size of 18 bytes.

Figure 4. Load comment cipher blocks

There are no restrictions on the alignment for the m_address or m_count fields. It is up to the ROM implementation to decide how
to best optimize the loading of data. Thus there is no guarantee on the order in which the data is written to the memory.

The m_data field contains a CRC-32 value computed over the data following the command header block. Any pad bytes in the
last data cipher block are included in the CRC-32 calculation.

ROM_FILL_CMD

This bootloader command is used to fill the regions of memory with a bit pattern. The fill pattern is always a full 32 bits wide, but
the byte aligned fill length and target address are fully supported.

Table 16. Fill command fields

Field Description

m_checksum Simple checksum of the other fields of boot_command_t.

m_tag 0x03 or ROM_FILL_CMD

m_flags Always 0.

m_address The starting memory address to which the fill pattern is
written.

m_count Number of bytes to fill.

m_data The fill pattern. Always replicated across the word, regardless
of the pattern size.

The fill pattern, regardless of its actual size, must be spread across the entire m_data field. A pattern that is a byte wide must be
replicated four times across m_data, and twice for the half-word patterns.

When filling, the pattern is adjusted so that the most significant byte is aligned with the first byte to be filled. The following figure
demonstrates what this looks like.

Appendix B: SB boot image file format

elftosb User's Guide, Rev. 5, June 2019
NXP Semiconductors 39

Figure 5. Fill pattern alignment

Note that this command is guaranteed to use the word writes between any unaligned ragged edges. This enables the use of the
fill command as a word poke operation to write to the registers.

ROM_JUMP_CMD

When the bootloader encounters this command, the bootloading stops and the CPU control is transferred to the function residing
at m_address. The contents of m_data is passed as a single argument to the function. The ROM does not expect to regain control
of the CPU after this command is executed.

Table 17. Jump command fields

Field Description

m_checksum Simple checksum of the other fields of boot_command_t.

m_tag 0x04 or ROM_JUMP_CMD

m_flags Bit 0: Reserved.

m_address Address that the PC is set to.

m_count Initial stack pointer if m_flags bit 1 is set, otherwise 0.

m_data Argument to pass to the entry point in R0.

The prototype of the function executed by ROM_JUMP_CMD is as follows.

void jump_function(uint32_t arg);

Note the void result. If the function does return, the bootloader fails with the ERROR_ROM_LDR_JUMP_RETURNED error.

If bit 1 of m_flags is set, the m_count field contains the initial stack pointer register value to set before the jump is executed.

ROM_CALL_CMD

Like the ROM_JUMP_CMD, the ROM_CALL_CMD also invokes a function residing at m_address and passes the value m_data as its
argument. The first and most important difference between the two commands is a semantic one (the function invoked by
ROM_CALL_CMD is expected to relinquish the control and return to the ROM to allow the bootloading to continue). In addition, this
command adds a second optional argument to the function prototype. This second argument can be used in combination with
the function’s return value to tell the bootloader to jump to another section in the current boot image or prepare for an entirely new
boot image.

Table 18. Call command fields

Field Description

m_checksum Simple checksum of the other fields of boot_command_t.

Table continues on the next page...

Appendix B: SB boot image file format

elftosb User's Guide, Rev. 5, June 2019
40 NXP Semiconductors

Table 18. Call command fields (continued)

Field Description

m_tag 0x05 or ROM_CALL_CMD

m_flags Bit 0: Reserved.

m_address Address for the function to call.

m_count 0

m_data Argument to pass to the function in R0.

The full prototype of the function executed by ROM_CALL_CMD is as follows:

int call_function(uint32_t arg, uint32_t * resultId);

The value of the m_data field is passed in the first argument to the function. The second argument is a pointer to a word that the
function can modify to return a section or image ID.

The return value determines what happens when call_function() returns and whether the *resultId is examined. The possible
return values are shown in the following table.

Table 19. Call command return values

Return value Action

< 0 Negative values as errors.

0=SUCCESS Success. Continue executing the commands in the current
section.

1=ROM_BOOT_SECTION_ID Switch to the section with the ID of *resultId.

2=ROM_BOOT_IMAGE_ID Restart the bootloader in expectance of a new boot image. The
*resultId value is passed to the driver when its initialization
function is called again.

> 2 Ignored, same as SUCCESS.

The two positive return codes have special meanings. If the function returns ROM_BOOT_SECTION_ID, then the bootloader
begins searching for a section of the current image that has an ID equal to the value returned through resultId. This section must
follow the current section in the image or it is not going to be found because the bootloader only searches forward through the
image. If no section with a matching unique identifier is found, the boot fails with an error.

If the function returns ROM_BOOT_IMAGE_ID, then the bootloader prepares itself to start reading an entirely new boot image
file and signals this to the current boot driver by calling its initialization function again. The value returned through resultId is the
ID of a boot image; the meaning of the image ID is specific to each boot driver and not all boot drivers support switching to new
image files. The behavior is undefined when switching boot images with a driver that does not support this functionality.

Only when the return value is ROM_BOOT_SECTION_ID or ROM_BOOT_IMAGE_ID is the value pointed to by the resultId
examined when the bootloader resumes execution. Because of this and how the ARM

®
 ABI works, the functions that do not expect

to return ROM_BOOT_SECTION_ID or ROM_BOOT_IMAGE_ID can shorten their prototype to the following:

int call_function_short(uint32_t arg);

ROM_ERASE_CMD

The erase command applies only to devices with an internal flash memory array (i.e., Kinetis devices). It executes a flash erase
command for either the entire flash array or the range of memory specified in the command fields.

Appendix B: SB boot image file format

elftosb User's Guide, Rev. 5, June 2019
NXP Semiconductors 41

Table 20. Erase command fields

Field Description

m_checksum Simple checksum of the other fields of boot_command_t.

m_tag 0x07 or ROM_ERASE_CMD

m_flags See the following table.

m_address Start address of flash to erase.

m_count Number of bytes of flash to erase. The end address is
m_address + m_count - 1.

m_data 0

Table 21. Erase command flag bits

Bit Flag Description

0 ROM_ERASE_ALL_MASK If set, erase all flash instead of only the
specified range. If cleared, the m_address
and m_count fields are used to determine
the range of flash to erase.

1 ROM_ERASE_ALL_UNSECURE_MASK If set, erase all flash and set the flash
security state to disabled (erase-all-
unsecure).

11:8 0x00 kLdrMemoryCtrl_InternalFlash

0x01 kLdrMemoryCtrl_QSPI0

Memory controller ID. Value 0x0 (default)
indicates internal flash. Value 0x01
indicates external QSPI0 on devices that
support QSPI0. If set to 0x01, then bit 1
(ROM_ERASE_ALL_UNSECURE_MASK) is
ignored.

Bit 0 of the m_flags field determines whether the entire flash array is erased, or if only a subset is erased. If bit 0 is set, the
command erases the whole flash. In this case, the m_address and m_count fields are ignored.

If bit 0 of m_flags is cleared, then the range of flash memory to erase is specified by the m_address and m_count command fields.
Because the flash memory can only be erased on a whole-sector basis, all flash sectors that are intersected by the address range
are erased. This applies even if the address range does not begin or end on an aligned sector boundary.

If bit 1 of the m_flags field is set, the flash security state is set to disabled after the flash is erased. See the specific chip reference
manual for details on the flash erase-all-unsecure command.

Bits 11:8 indicate the memory controller ID of the flash device to erase. Value 0x0 (default) indicates the internal flash. Value 0x01
indicates the external QSPI0 on devices that support QSPI0.

ROM_RESET_CMD

The target is reset.

Table 22. Reset command fields

Field Description

m_checksum Simple checksum, which comes to 0x5a when all other fields
are zeros.

m_tag 0x08 or ROM_RESET_CMD

Table continues on the next page...

Appendix B: SB boot image file format

elftosb User's Guide, Rev. 5, June 2019
42 NXP Semiconductors

Table 22. Reset command fields (continued)

Field Description

m_flags 0

m_address 0

m_count 0

m_data 0

ROM_MEM_ENABLE_CMD

Enable (configure) the external memory. The m_flags field bits 11:8 indicate the memory controller ID. The m_address field
contains the address in the RAM where the config block was previously written, and the m_count field contains the size of the
config block. The format of the configuration block depends on the memory space.

Note that this command does not actually write the config block to the external media, but simply uses the config block to configure
the interface.

Table 23. Memory enable command fields

Field Description

m_checksum Simple checksum, which comes to 0x5a when all other fields
are zeros.

m_tag 0x09 or ROM_MEM_ENABLE_CMD

m_flags See the Memory controller ID table.

m_address Address of the existing config block in the RAM.

m_count Size of the config block.

m_data 0

Table 24. Memory enable command flag bits

Bits Value Description

11:8 0x01 kLdrMemoryCtrl_QSPI0 Memory controller ID. Value 0x01
indicates external QSPI0 on devices that
support QSPI0. No other values are
supported.

ROM_PROG_CMD

Write to the program-once persistent bits. Bits 11:8 of the m_flags field contain the memory space ID (only kLdrMemorySpace_IFR0
is supported). Bit 1 of the m_flags field indicates a 8-byte write (if set) or 4-byte write (if clear). The m_address field contains the
IFR index. The m_count field contains the first four bytes to be programmed. The m_data field (optionally) contains the next 4
bytes to be written (if bit 1 of the flags field is set).

Table 25. Program command fields

Field Description

m_checksum Simple checksum, which comes to 0x5a when all other fields
are zeros.

m_tag 0x0a or ROM_PROG_CMD

Table continues on the next page...

Appendix B: SB boot image file format

elftosb User's Guide, Rev. 5, June 2019
NXP Semiconductors 43

Table 25. Program command fields (continued)

Field Description

m_flags See the Program command flags bits table.

m_address IFR index.

m_count First four bytes to be programmed.

m_data Second four bytes to be programmed (if 1 of m_flags is set.

Table 26. Program command flags bits

Bit(s) Flag/Value Description

1 ROM_PROG_8BYTE_MASK If set, write eight bytes, otherwise write
four bytes.

11:8 0x04 kLdrMemorySpace_IFR0 Memory space. Value 0x04 indicates
internal IFR flash. No other values are
supported.

6.6 File format versions
The versions are listed as Major.minor.

Table 27. File format versions

Version Description

1.3 Support for Kinetis-specific features.

7 Revision history

The following table contains a history of changes made to this user's guide.

Table 28. Revision history

Revision number Date Substantive changes

0 09/2015 Initial release

1 04/2016 Kinetis Bootloader v2.0 release

2 05/2018 MCU Bootloader v2.5.0 release

3 09/2018 MCU Bootloader v2.6.0 release

4 11/2018 MCU Bootloader v2.7.0 release

5 06/2019 Minor updates to Chapter 1, Overview

Revision history

elftosb User's Guide, Rev. 5, June 2019
44 NXP Semiconductors

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to

use NXP products. There are no express or implied copyright licenses granted hereunder to

design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for

any particular purpose, nor does NXP assume any liability arising out of the application or use

of any product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters that may be provided in NXP data

sheets and/or specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer's technical experts. NXP does not convey any license under

its patent rights nor the rights of others. NXP sells products pursuant to standard terms and

conditions of sale, which can be found at the following address: nxp.com/

SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, All other

product or service names are the property of their respective owners. Arm, AMBA, Arm Powered,

are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All

rights reserved.

© NXP B.V. 2019. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: June 2019

Document identifier: MBOOTELFTOSBUG

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	elftosb User's Guide
	Contents
	1 Overview
	2 Command line interface
	3 Command file
	3.1 Blocks
	3.1.1 Block syntax
	3.1.1.1 Options
	3.1.1.2 Constants
	3.1.1.3 Sources
	3.1.1.4 Keyblob
	3.1.1.5 Sections

	3.2 Lexical elements
	3.3 Whitespace
	3.4 Keywords
	3.5 Comments
	3.6 Identifiers
	3.7 Integers
	3.7.1 Integer expressions
	3.7.1.1 Operator precedence
	3.7.1.2 Word size operator
	3.7.1.3 Sizeof operator
	3.7.1.4 Constant references
	3.7.1.5 Symbol references

	3.7.2 Boolean expressions

	3.8 Strings
	3.9 Section names
	3.10 Symbol references
	3.11 Binary objects
	3.12 Statements
	3.12.1 Load
	3.12.1.1 Load IFR

	3.12.2 Call
	3.12.3 From
	3.12.4 Erase
	3.12.5 Print
	3.12.6 If-Else
	3.12.7 Erase QuadSPI all statement
	3.12.8 Erase Unsecure All statement
	3.12.9 Enable QuadSPI statement
	3.12.10 Reset statement
	3.12.11 Jump with stack pointer statement

	3.13 Common usage example

	4 elftosb key file format
	5 Appendix A: Command file grammar
	6 Appendix B: SB boot image file format
	6.1 Glossary
	6.2 Introduction
	6.3 Basic types
	6.4 Boot image format
	6.4.1 Image header
	6.4.2 Section table
	6.4.3 DEK dictionary
	6.4.4 Section boot tags
	6.4.5 Section data regions
	6.4.6 Image authentication code

	6.5 Encryption details
	6.5.1 Encryption process
	6.5.2 Decryption process
	6.5.3 Boot commands

	6.6 File format versions

	7 Revision history

