
SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide
Rev. 0 — 4 April 2023 User guide

Document information
Information Content

Keywords SLN-VIZNLC-IOT

Abstract The purpose of this guide is to help developers understand the software design and architecture
of the application better to implement applications using the SLN-VIZNLC-IOT more easily and
efficiently.

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

1 Introduction

The purpose of this guide is to help developers understand the software design and architecture of the
application better to implement applications using the SLN-VIZNLC-IOT more easily and efficiently.

This guide covers such topics as the Bootloader and the Framework + HAL architecture design, as well as
other features that may be relevant to the application development using the SLN-VIZNLC-IOT.

See the Getting Started Guide for an overview of the out-of-box features available in the SLN-VIZNLC-IOT
application.

2 Setup and installation

This section introduces the setup and installation of the tools necessary to begin developing applications using
NXP's framework architecture.

Note: This document focuses on the use of MCUXpresso IDE for development purposes.

2.1 MCUXpresso IDE
The MCUXpresso IDE brings developers an easy-to-use Eclipse-based development environment for NXP
MCUs based on Arm Cortex-M cores, including its general-purpose, crossover, and Bluetooth-enabled MCUs.
The MCUXpresso IDE offers advanced editing, compiling, and debugging features with the addition of MCU-
specific debugging views, code trace and profiling, multicore debugging, and integrated configuration tools. The
MCUXpresso IDE debug connections support Freedom, Tower system, LPCXpresso, i.MX RT-based EVKs, and
your custom development boards with industry-leading open-source and commercial debug probes from NXP,
P&E Micro, and SEGGER.

For more information about the MCUXpresso IDE, see the NXP website.

2.2 Install toolchain
The MCUXpresso IDE can be downloaded from the following link: Get MCUXpresso IDE.

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
2 / 104

https://www.nxp.com/mcu-vision2
https://www.nxp.com/mcuxpresso/ide
https://www.nxp.com
https://www.nxp.com/mcuxpresso/ide

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

Figure 1.  Download MCUXpresso IDE

See the Getting Started Guide to download the correct version of the IDE. Once the download is completed,
follow the instructions in the installer to get started.

2.3 Installing SDK
To build projects using the MCUXpresso IDE, install an SDK for the platform you intend to use. A compatible
SDK has dependencies and platform-specific drivers required to compile projects.

A compatible SDK can be downloaded from MCUXpresso SDK builder.

See the Getting Started Guide for how to install the SDK.

2.4 Importing projects
Note: To build projects that you import regardless of how they are imported, you must have a compatible
MCUXpresso SDK package for SLN-VIZNLC-IOT installed.

The MCUXpresso IDE allows you to open example projects from the source folder.

2.4.1 Importing from Github

Note: Before you begin, make sure you have Git downloaded and installed on the machine you intend to use.

The latest software updates for the SLN-VIZNLC-IOT application can be downloaded from the official Github
repository. Here, you will find the most up-to-date version of the code that contains the newest features
available for the Smart Lock application.

See the Getting Started Guide for how to import the SLN-VIZNLC-IOT projects into the MCUXpresso IDE.

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
3 / 104

https://www.nxp.com/mcu-vision2
https://mcuxpresso.nxp.com/en/welcome
https://www.nxp.com/mcu-vision2
https://git-scm.com/downloads
https://github.com/NXP/mcu-viznlc
https://github.com/NXP/mcu-viznlc
https://www.nxp.com/mcu-vision2

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

3 Bootloader

3.1 Introduction
The Smart Lock project uses a "bootloader + main application" architecture to provide additional security and
update-related functionality to the main application. The bootloader handles all boot-related tasks including, but
not limited to:

• Launching the main application and, if necessary, initializing peripherals
• Firmware updates using either the Mass Storage Device (MSD), Over-the-Air, or Over-the-Wire update

method
– Protects against update failures using a primary and backup application "flash bank"

• Image certification/verification

The SLN-VIZNLC-IOT currently does not support any bootloader security features.

3.1.1 Why to use a bootloader?

By separating the boot process from the main application, the main application can be safely updated and
verified without the risk of creating an irrecoverable state due to a failed update or running a malicious,
unauthorized, and unsigned firmware binary flashed by a bad actor. It is essential in any production application
to take precautions to ensure the integrity and stability of the firmware before, during, and after an update and
the bootloader application is simply a measure to provide this assurance.

The following sections will describe how to use many of the bootloader's primary features to assist developers
interested in understanding, utilizing, and expanding them.

3.1.2 Application banks

The bootloader file system uses dual application "banks" called "Bank A" and "Bank B" to provide a backup/
redundancy "known good" application to prevent bricking when flashing an update either via the MSD, OTA, or
OTW update method. For example, if an application update is being flashed via MSD to the Bank A application
bank, even if that update should fail midway through, Bank B will still contain a fully operational backup.

In the SLN-VIZNLC-IOT, Bank A is located at 0x60100000, while Bank B is located at 0x60780000. Specify
the flash address of an application to compile, as shown below.

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
4 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

Figure 2.  Configuring application bank in MCUXpresso IDE

Providing an application binary built for the proper application bank address is crucial during MSD, OTA, and
OTW updates and failure to do so will result in a failure to flash the binary.

The bootloader does not automatically recover from a botched flashing procedure, but reverts to the alternate
working application flash bank instead.

3.1.3 Logging

The bootloader supports debug logging over UART to help diagnose and debug issues that may arise while
using or modifying the bootloader. For example, the debug logger can be helpful when trying to understand why
an application update might have failed.

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
5 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

Figure 3.  Example log message

Logging is enabled by default in the Debug build mode configuration. The logging functionality, however, comes
with an increase in bootloader performance and it can slow down the boot process by as much as 200 ms. As a
result, it may be desirable to disable debug logging in production applications.

To disable logging in the bootloader, simply build and run the bootloader in the Release build mode, as shown
below.

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
6 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

Figure 4.  Setting build configuration in MCUXpresso IDE

To use the debug logging feature, use a UART->USB converter to:

• Connect the GND pin of the converter to the GND of the VIZNLC board
• Connect the TXD pin of the converter to the LPUART2_RXD of the VIZNLC board
• Connect the RXD pin of the converter to the LPUART2_TXD of the VIZNLC board

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
7 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

Figure 5.  Uart pin connections

When the converter is properly attached, connect to the board using a serial terminal emulator (like PuTTY or
Tera Term) configured with the following serial settings:

• Speed: 115200
• Data: 8 Bit
• Parity: None
• Stop bits: 1 bit
• Flow control: None

3.2 Boot modes

3.2.1 Overview

The bootloader employs several different boot-up methods to augment the boot-up behavior. Currently, the
bootloader supports two primary boot modes:

• Normal mode
• Mass Storage Device (MSD) update mode

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
8 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

Normal mode, as the name would imply, is the default boot mode in which the bootloader simply loads the main
application.

The MSD update mode is a special boot mode, in which the board enters an update state where the board
appears as a mass storage device to a host PC device. In this mode, the bootloader is capable of receiving and
flashing a new binary by copying that binary to the board as for a regular USB storage device.

More information on each of these modes are in the subsequent sections of this document.

3.2.1.1 How is boot mode determined?

To determine the boot mode to enter, the bootloader checks several different boot flags, which are set based on
various conditions being met.

For each different boot mode (excluding the normal boot which is taken by default), there is a different
corresponding boot flag. The means which the boot flag gets set depend on the boot mode in question and the
platform being used. On the SLN-VIZNLC-IOT, the MSD boot flag is set when the SW3 button is held during the
boot.

3.2.2 Normal boot

By default, if no other boot flags are set during the boot phase, the normal boot mode is used. During the
normal boot, the bootloader will simply boot to the "main" application, which is flashed at the current application
bank flash address (see Section 3.3 for more information). For example, if the current flash bank is set to Bank
A, then the bootloader will jump to the flash address associated with Bank A and run the application at that
address.

3.2.3 Mass Storage Device (MSD) updates

The MSD feature allows the device to be updated without the Segger tool, instead of utilizing the USB. Only the
main application can be flashed in this manner. If the bootloader must be updated, the Segger tool or the factory
programming flow is necessary.

3.2.3.1 Enabling MSD mode

To enable the MSD mode on the SLN-VIZNLC-IOT, press and hold the SW3 button while powering on the board.

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
9 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

Figure 6.  MSD push-button (SW3)

Additionally, if connected to a Windows PC, your computer should make a sound indicating that a new USB
device has been connected.

3.2.3.2 Flashing a new binary

To flash a new binary while the mass storage device mode is enabled, you must first verify the application bank
which is currently in use. This information can be discovered using the version shell command while the main
app is running.

SHELL>> version
App running in bankA
Version 1.1.2
Shell>>

When the current application bank in use has been identified, you must compile a binary for the alternate flash
bank. For example, if Bank A is currently in use, you must compile a Bank B binary and vice versa. Instructions
on compiling for a specific flash bank are in Section 3.3.

Note: The requirement to provide a binary for the alternate flash bank is designed to prevent corrupting the
active flash bank and accidentally create an unrecoverable state, which would require erasing and reflashing
everything.

After compiling a binary for the proper flash bank, activate the MSD mode.

To begin flashing the binary, simply drag and drop the binary onto the device listing for the USB storage device
associated with your board. While flashing is in progress, a pop-up window will indicate the current progress of
the firmware download.

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
10 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

Figure 7.  Flashing in progress

Upon completion, the board will automatically reboot itself into the new firmware which was just flashed. This
can be verified by opening the serial CLI and typing the version command again and checking that the
application is running from the alternate flash bank.

3.3 Application banks
• Dual application flash banks, Bank A and Bank B.
• Provides a redundancy mechanism used by the bootloader update mechanisms.

The SLN-VIZNLC-IOT utilizes a series of dual application flash banks used as redundancy mechanism when
updating the firmware via one of the bootloader update mechanisms.

3.3.1 Addresses

The flash address for each application flash bank is as follows:

• Bank A - 0x60100000
• Bank B - 0x60780000

3.3.2 Configuring flash bank in MCUXpresso IDE

The flash bank can be configured in the MCUXpresso IDE before compiling a project.

1. Right-click the sln_viznlc_iot_rt106f_smart_lock project in the Project Explorer window.
2. Go to Properties.
3. Click on MCU Settings.
4. Change the FLASH location from 0x60100000 to 0x60780000 or vice versa.
5. Build the project.

3.3.2.1 Converting .axf to .bin

When building a project in the MCUXpresso IDE, the default behavior is to create an .axf file. However, some
of the bootloader update mechanisms including MSD updates require the use of a .bin file.

Fortunately, converting an .axf file to a .bin file can be done in MCUXpresso without any additional setup.

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
11 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

To perform this conversion, navigate to the project directory which contains your compiled project binary and
right-click the .axf file in that directory.

Note: The binary for your project is likely located either in the Debug or Release folder, depending on your
current build configuration.

In the context menu, select Binary Utilities->Create binary.

Figure 8.  Convert to binary

Verify that the binary has successfully been created.

4 Framework

4.1 Framework introduction
This section describes the architecture design of the framework. The application is primarily designed around
the use of a "framework" architecture, which is composed of several different parts.

These constituent parts include:

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
12 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

• Device managers
• Hardware Abstraction Layer (HAL) devices
• Messages/events

Figure 9. Architecture diagram

Each of these different components will be discussed in detail in the following sections.

4.1.1 Design goals

The architectural design of the framework was centered around three primary goals:

1. Ease of use
2. Flexibility/portability
3. Performance

In the course of a project development, many problems which hinder the speed of that development can arise.
The framework architecture was designed to counteract those problems.

The framework is designed with the goal of speeding up the time to market for vision and other machine-
learning applications. To ensure a speedy time to market, it is critical that the software itself is easy to
understand and easy to modify. Keeping this goal in mind, the architecture of the framework was designed to be
easy to modify without being restrictive and without coming at the cost of performance.

4.1.2 Relevant files

The files which pertain to the framework architecture are primarily in the "framework/" or "sln_framework/" folder
of the specific application. Because the application is designed around the framework architecture, it is likely
that the bulk of developer efforts will be focused on the contents of these folders.

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
13 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

4.2 Naming conventions
The framework code adheres to a set of naming conventions to make the code easier to read and search using
modern code-completion tools.

The naming conventions described below apply only to framework-related code, which is located primarily in the
"framework" and "source" folders of the application.

4.2.1 Functions

Function names follow the format of {APP/FWK/HAL}_{DevType}_{DevName}_{Action}:

hal_input_status_t HAL_InputDev_PushButons_Start(const input_dev_t *dev);

To increase searchability, the code completion tools functions for each framework component have their own
prefix denoting which component they relate to.

• APP - app-specific function. Usually device registration or event handler-related.
• FWK - framework-specific function. Usually framework API function.
• HAL - HAL-specific function. Usually HAL device operators.

Additionally, an underscore _ may be placed in front of a function name to indicate that the function is
static/private. Static functions oftentimes exclude all but the underscore and the "Action" as the
component, devType, and devName is implicit.

static shell_status_t _VersionCommand(shell_handle_t shellContextHandle, int32_t
 argc, char **argv);
static shell_status_t _ResetCommand(shell_handle_t shellContextHandle, int32_t
 argc, char **argv);
static shell_status_t _SaveCommand(shell_handle_t shellContextHandle, int32_t
 argc, char **argv);
static shell_status_t _AddCommand(shell_handle_t shellContextHandle, int32_t
 argc, char **argv);
static shell_status_t _DelCommand(shell_handle_t shellContextHandle, int32_t
 argc, char **argv);

Following one of the above prefixes is the device type of the device defining the function.

• InputDev
• OutputDev
• CameraDev
• DisplayDev
• and so on.

Following the device type is the name of the device. This name should match the name of the device specified
in the file name.

hal_input_status_t HAL_InputDev_PushButons_Start(const input_dev_t *dev);

Finally, following the name of the device is the "action" which is being performed on/by the device. This could be
anything including Start, Stop, Register, and so on.

The following are several examples of different function names.

void APP_InputDev_Shell_RegisterShellCommands(shell_handle_t shellContextHandle,
 input_dev_t *shellDev,
 input_dev_callback_t callback)

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
14 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

{
 s_InputCallback = callback;
 s_SourceShell = shellDev;
 s_ShellHandle = shellContextHandle;
 s_FrameworkRequest.respond = _FrameworkEventsHandler;
 SHELL_RegisterCommand(shellContextHandle, SHELL_COMMAND(version));
 SHELL_RegisterCommand(shellContextHandle, SHELL_COMMAND(reset));
 SHELL_RegisterCommand(shellContextHandle, SHELL_COMMAND(save));
 SHELL_RegisterCommand(shellContextHandle, SHELL_COMMAND(add));

int HAL_InputDev_PushButons_Register()
{
 int error = 0;
 LOGD("input_dev_push_butons_register");
 error = FWK_InputManager_DeviceRegister(&s_InputDev_PushButons);
 return error;
}

hal_input_status_t HAL_InputDev_PushButons_Init(input_dev_t *dev,
 input_dev_callback_t callback);
hal_input_status_t HAL_InputDev_PushButons_Deinit(const input_dev_t *dev);
hal_input_status_t HAL_InputDev_PushButons_Start(const input_dev_t *dev);
hal_input_status_t HAL_InputDev_PushButons_Stop(const input_dev_t *dev);
hal_input_status_t HAL_InputDev_PushButons_InputNotify(const input_dev_t *dev,
 void *param);

4.2.2 Variables

Local and global variables both use camelCase.

static hal_output_status_t HAL_OutputDev_RgbLed_InferComplete(const output_dev_t
 *dev,

 output_algo_source_t source,
 void *inferResult)
{
 vision_algo_result_t *visionAlgoResult = (vision_algo_result_t
 *)inferResult;
 hal_output_status_t error = kStatus_HAL_OutputSuccess;

Static variables are prefixed with s_PascalCase

static event_common_t s_CommonEvent;
static event_face_rec_t s_FaceRecEvent;
static event_recording_t s_RecordingEvent;
static input_event_t s_InputEvent;
static framework_request_t s_FrameworkRequest;
static input_dev_callback_t s_InputCallback;
static input_dev_t *s_SourceShell; /* Shell device that commands are sent over
 */
static shell_handle_t s_ShellHandle;

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
15 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

4.2.3 Typedefs

Type definitions are written in snake_case and end in _t.

typedef struct
{
 fwk_task_t task;
 input_task_data_t inputData;
} input_task_t;

4.2.4 Enums

Enumerations are written in the form kEventType_State.

typedef enum _rgb_led_color
{
 kRGBLedColor_Red, /*!< LED Red Color */
 kRGBLedColor_Orange, /*!< LED Orange Color */
 kRGBLedColor_Yellow, /*!< LED Yellow Color */
 kRGBLedColor_Green, /*!< LED Green Color */
 kRGBLedColor_Blue, /*!< LED Blue Color */
 kRGBLedColor_Purple, /*!< LED Purple Color */
 kRGBLedColor_Cyan, /*!< LED Cyan Color */
 kRGBLedColor_White, /*!< LED White Color */
 kRGBLedColor_Off, /*!< LED Off */
} rgbLedColor_t;

Enumerations for a status specifically are written in the form kStatus_{Component}_{State}.

/*! @brief Error codes for input hal devices */
typedef enum _hal_input_status
{
 kStatus_HAL_InputSuccess = 0,
 /*!< Successfully */
 kStatus_HAL_InputError =
 MAKE_FRAMEWORK_STATUS(kStatusFrameworkGroups_Input, 1), /*!< Error occurs */
} hal_input_status_t;

4.2.5 Macros and defines

Defines are written in all caps.

#define INPUT_DEV_PB_WAKE_GPIO BOARD_USER_BUTTON_GPIO
#define INPUT_DEV_PB_WAKE_GPIO_PIN BOARD_USER_BUTTON_GPIO_PIN
#define INPUT_DEV_SW1_GPIO BOARD_BUTTON_SW1_GPIO
#define INPUT_DEV_SW1_GPIO_PIN BOARD_BUTTON_SW1_PIN
#define INPUT_DEV_SW2_GPIO BOARD_BUTTON_SW2_GPIO
#define INPUT_DEV_SW2_GPIO_PIN BOARD_BUTTON_SW2_PIN
#define INPUT_DEV_SW3_GPIO BOARD_BUTTON_SW3_GPIO
#define INPUT_DEV_SW3_GPIO_PIN BOARD_BUTTON_SW3_PIN
#define INPUT_DEV_PUSH_BUTTONS_IRQ GPIO13_Combined_0_31_IRQn
#define INPUT_DEV_PUSH_BUTTON_SW1_IRQ BOARD_BUTTON_SW1_IRQ
#define INPUT_DEV_PUSH_BUTTON_SW2_IRQ BOARD_BUTTON_SW2_IRQ
#define INPUT_DEV_PUSH_BUTTON_SW3_IRQ BOARD_BUTTON_SW3_IRQ

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
16 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

4.3 Device managers

4.3.1 Overview

As the name would imply, device managers are responsible for "managing" devices used by the system. Each
device type (input, output, and so on) has its own type-specific device manager.

A device manager serves two primary purposes:

• Initializing and starting each device registered to that manager
• Sending data to and receiving data from each device registered to that manager

This section will avoid low-level implementation details of the device managers and focus on the device
manager APIs and the startup flow for the device managers. The device managers themselves are provided as
a library binary file to, in part, help abstract the underlying implementation details and encourage developers to
focus on the HAL devices being managed instead.

The device managers themselves are provided as a library binary file in the "framework" folder, while the APIs
for each manager can be found in the "framework/inc" folder.

4.3.1.1 Initialization flow

Before a device manager can properly manage devices, it must follow a specific start-up process. The start-up
process for device managers is as follows:

1. Initialize managers
2. Register each device to its respective manager
3. Start managers

This process is clearly demonstrated in the main function in the "source/main.cpp" file.

/*
 * @brief Application entry point.
 */
int main(void)
{
 /* Init board hardware. */
 APP_BoardInit();
 LOGD("[MAIN]:Started");
 /* init the framework*/
 APP_InitFramework();

 /* register the hal devices*/
 APP_RegisterHalDevices();

 /* start the framework*/
 APP_StartFramework();

 // start
 vTaskStartScheduler();

 while (1)
 {
 LOGD("#");
 }

 return 0;
}

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
17 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

As part of a manager's start routine, the manager will call the init and start functions of each of its
registered devices.

In general, developers should only be concerned with adding/removing devices from the
"APP_RegisterHalDevices()" function, because the "Init" and "Start" functions for each manager are already
called by default inside the "APP_InitFramework()" and "APP_StartFramework()" functions in "main()".

4.3.2 Vision input manager

The input manager manages the input HAL devices, which can be registered into the system.

4.3.2.1 APIs

4.3.2.1.1 FWK_InputManager_Init

/**
 * @brief Init internal structures for input manager.
 * @return int Return 0 if the init process was successful
 */
int FWK_InputManager_Init();

4.3.2.1.2 FWK_InputManager_DeviceRegister

/**
 * @brief Register an input device. All input devices need to be registered
 before FWK_InputManager_Start is called.
 * @param dev Pointer to a display device structure
 * @return int Return 0 if registration was successful
 */
int FWK_InputManager_DeviceRegister(input_dev_t *dev);

4.3.2.1.3 FWK_InputManager_Start

/**
 * @brief Spawn Input manager task which will call init/start for all registered
 input devices
 * @return int Return 0 if the starting process was successful
 */
int FWK_InputManager_Start();

4.3.2.1.4 FWK_InputManager_Deinit

/**
 * @brief Denit internal structures for input manager.
 * @return int Return 0 if the deinit process was successful
 */
int FWK_InputManager_Deinit();

Calling this function is not necessary in most applications and it should be used with caution.

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
18 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

4.3.3 Output manager

The output manager manages the output HAL devices, which can be registered into the system.

4.3.3.1 APIs

4.3.3.1.1 FWK_OutputManager_Init

/**
 * @brief Init internal structures for output manager.
 * @return int Return 0 if the init process was successful
 */
int FWK_OutputManager_Init();

4.3.3.1.2 FWK_OutputManager_DeviceRegister

/**
 * @brief Register a display device. All display devices need to be registered
 before FWK_OutputManager_Start is called.
 * @param dev Pointer to an output device structure
 * @return int Return 0 if registration was successful
 */
int FWK_OutputManager_DeviceRegister(output_dev_t *dev);

4.3.3.1.3 FWK_OutputManager_Start

/**
 * @brief Spawn output manager task which will call init/start for all
 registered output devices.
 * @return int Return 0 if starting was successful
 */
int FWK_OutputManager_Start();

4.3.3.1.4 FWK_OutputManager_Deinit

/**
 * @brief DeInit internal structures for output manager.
 * @return int Return 0 if the deinit process was successful
 */
int FWK_OutputManager_Deinit();

Calling this function is not necessary in most applications and it should be used with caution.

/**
 * @brief A registered output device doesn't need to be also active. After the
 start procedure, the output device
 * can register a handler of capabilities to receive events.
 * @param dev Device that register the handler
 * @param handler Pointer to a handler
 * @return int Return 0 if the registration of the event handler was successful
 */
int FWK_OutputManager_RegisterEventHandler(const output_dev_t *dev, const
 output_dev_event_handler_t *handler);

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
19 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

4.3.3.1.5 FWK_OutputManager_UnregisterEventHandler

/**
 * @brief A registered output device doesn't need to be also active. A device
 can call this function to unsubscribe
 * from receiving events
 * @param dev Device that unregister the handler
 * @return int Return 0 if the deregistration of the event handler was
 successful
 */
int FWK_OutputManager_UnregisterEventHandler(const output_dev_t *dev);

4.3.4 Camera manager

The camera manager manages the camera HAL devices, which can be registered into the system.

4.3.4.1 APIs

4.3.4.1.1 FWK_CameraManager_Init

/**
 * @brief Init internal structures for Camera manager.
 * @return int Return 0 if the init process was successful
 */
int FWK_CameraManager_Init();

4.3.4.1.2 FWK_CameraManager_DeviceRegister

/**
 * @brief Register a camera device. All camera devices need to be registered
 before FWK_CameraManager_Start is called
 * @param dev Pointer to a camera device structure
 * @return int Return 0 if registration was successful
 */
int FWK_CameraManager_DeviceRegister(camera_dev_t *dev);

4.3.4.1.3 FWK_CameraManager_Start

/**
 * @brief Spawn Camera manager task which will call init/start for all
 registered camera devices
 * @return int Return 0 if the starting process was successul
 */
int FWK_CameraManager_Start();

4.3.4.1.4 FWK_CameraManager_Deinit

/**
 * @brief Deinit CameraManager
 * @return int Return 0 if the deinit process was successful
 */
int FWK_CameraManager_Deinit();

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
20 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

Calling this function is not necessary in most applications and it should be used with caution.

4.3.5 Display manager

The display manager manages the display HAL devices, which can be registered into the system.

4.3.5.1 APIs

4.3.5.1.1 FWK_DisplayManager_Init

/**
 * @brief Init internal structures for display manager.
 * @return int Return 0 if the init process was successful
 */
int FWK_DisplayManager_Init();

4.3.5.1.2 FWK_DisplayManager_DeviceRegister

/**
 * @brief Register a display device. All display devices need to be registered
 before FWK_DisplayManager_Start is
 * called.
 * @param dev Pointer to a display device structure
 * @return int Return 0 if registration was successful
 */
int FWK_DisplayManager_DeviceRegister(display_dev_t *dev);

4.3.5.1.3 FWK_DisplayManager_Start

/**
 * @brief Spawn Display manager task which will call init/start for all
 registered display devices. Will start the flow
 * to recive frames from the camera.
 * @return int Return 0 if starting was successful
 */
int FWK_DisplayManager_Start();

4.3.5.1.4 FWK_DisplayManager_Deinit

/**
 * @brief Init internal structures for display manager.
 * @return int Return 0 if the init process was successful
 */
int FWK_DisplayManager_Deinit();

Calling this function is not necessary in most applications and it should be used with caution.

4.3.6 Vision algorithm manager

The vision algorithm manager manages the vision algorithm HAL devices, which can be registered into the
system.

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
21 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

4.3.6.1 APIs

4.3.6.1.1 FWK_VisionAlgoManager_Init

/**
 * @brief Init internal structures for VisionAlgo manager.
 * @return int Return 0 if the init process was successful
 */
int FWK_VisionAlgoManager_Init();

4.3.6.1.2 FWK_VisionAlgoManager_DeviceRegister

/**
 * @brief Register a vision algorithm device. All algorithm devices need to be
 registered before
 * FWK_VisionAlgoManager_Start is called
 * @param dev Pointer to a vision algo device structure
 * @return int Return 0 if registration was successful
 */
int FWK_VisionAlgoManager_DeviceRegister(vision_algo_dev_t *dev);

4.3.6.1.3 FWK_VisionAlgoManager_Start

/**
 * @brief Spawn VisionAlgo manager task which will call init/start for all
 registered VisionAlgo devices
 * @return int Return 0 if the starting process was successul
 */
int FWK_VisionAlgoManager_Start();

4.3.6.1.4 FWK_VisionAlgoManager_Deinit

/**
 * @brief Deinit VisionAlgoManager
 * @return int Return 0 if the deinit process was successful
 */
int FWK_VisionAlgoManager_Deinit();

Calling this function is not necessary in most applications and it should be used with caution.

4.3.7 Low power manager

The low power device manager is unique amongst the managers because it does not have the typical Init and
Start functions that the other managers have. Instead, the low power manager has APIs to register a device
(only one at a time), configure how deep a sleep the board should enter, enable sleep mode, and more.

Due to the unique nature of the low power devices being an abstract "virtual" device, only one LPM device can
be registered to the LPM manager at a time. However, there should be no need for more than one LPM device
because other devices can configure the current low power mode states using the low power manager APIs.

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
22 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

4.3.7.1 APIs

4.3.7.1.1 FWK_LpmManager_DeviceRegister

/**
 * @brief Register a low power mode device. Currently, only one low power mode
 device can be registered at a time.
 * @param dev Pointer to a low power mode device structure
 * @return int Return 0 if registration was successful
 */
int FWK_LpmManager_DeviceRegister(lpm_dev_t *dev);

4.3.7.1.2 FWK_LpmManager_RegisterRequestHandler

int FWK_LpmManager_RegisterRequestHandler(hal_lpm_request_t *req);

4.3.7.1.3 FWK_LpmManager_UnregisterRequestHandler

int FWK_LpmManager_UnregisterRequestHandler(hal_lpm_request_t *req);

4.3.7.1.4 FWK_LpmManager_RuntimeGet

int FWK_LpmManager_RuntimeGet(hal_lpm_request_t *req);

4.3.7.1.5 FWK_LpmManager_RuntimePut

int FWK_LpmManager_RuntimePut(hal_lpm_request_t *req);

4.3.7.1.6 FWK_LpmManager_RuntimeSet

int FWK_LpmManager_RuntimeSet(hal_lpm_request_t *req, int8_t count);

4.3.7.1.7 FWK_LpmManager_RequestStatus

int FWK_LpmManager_RequestStatus(unsigned int *totalUsageCount);

4.3.7.1.8 FWK_LpmManager_SetSleepMode

/**
 * @brief Configure the sleep mode to use when entering sleep
 * @param sleepMode sleep mode to use when entering sleep. Examples include SNVS
 and other "lighter" sleep modes
 * @return int Return 0 if successful
 */
int FWK_LpmManager_SetSleepMode(hal_lpm_mode_t sleepMode);

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
23 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

4.3.7.1.9 FWK_LpmManager_EnableSleepMode

/**
 * @brief Configure sleep mode on/off status
 * @param enable used to set sleep mode on/off; true is enable, false is disable
 * @return int Return 0 if successful
 */
int FWK_LpmManager_EnableSleepMode(hal_lpm_manager_status_t enable);

4.3.8 Flash manager

The flash manager is used to provide an abstraction for an underlying filesystem implementation.

Due to the unique nature of the filesystem being an abstract "virtual" device, only one flash device can be
registered at a time. However, there should be no need to have more than one filesystem. This means the flash
manager API functions essentially act as wrappers that call the Operators of the underlying flash HAL device.
1When working with the flash manager, unlike most other managers, "FWK_Flash_DeviceRegister" should be
called before "FWK_Flash_Init".

4.3.8.1 Device APIs

4.3.8.1.1 FWK_Flash_DeviceRegister

/**
 * @brief Only one flash device is supported. Registered a flash filesystem
 device
 * @param dev Pointer to a flash device structure
 * @return int Return 0 if registration was successful
 */
int FWK_Flash_DeviceRegister(const flash_dev_t *dev);

Unlike the flow for most other managers, this function should be called before FWK_Flash_Init.

4.3.8.1.2 FWK_Flash_Init

/**
 * @brief Init internal structures for flash.
 * @return int Return 0 if the init process was successful
 */
sln_flash_status_t FWK_Flash_Init();

4.3.8.1.3 FWK_Flash_Deinit

/**
 * @brief Deinit internal structures for flash.
 * @return int Return 0 if the init process was successful
 */
sln_flash_status_t FWK_Flash_Deinit();

1 Flash access is exclusive, one request at a time.
SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
24 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

4.3.8.2 Operations APIs

The flash manager and underlying flash HAL device define only a few operations to keep the API simple and
easy to implement. These API functions include:

• Format
• Save
• Delete
• Read
• Make Directory
• Make File
• Append
• Rename
• Cleanup

While this might limit the filesystem functionality, it also helps to keep the code readable, portable, and
maintainable.

If the default list of APIs does not satisfy the requirements of a use case, the API can always be extended or
bypassed directly in the code.

4.3.8.2.1 FWK_Flash_Format

/**
 * @brief Format the filesystem
 * @return the status of formatting operation
 */
sln_flash_status_t FWK_Flash_Format();

4.3.8.2.2 FWK_Flash_Save

/**
 * @brief Save the data into a file from the file system
 * @param path Path of the file in the file system
 * @param buf Buffer which contains the data that is going to be saved
 * @param size Size of the buffer
 * @return the status of save operation
 */
sln_flash_status_t FWK_Flash_Save(const char *path, void *buf, unsigned int
 size);

4.3.8.2.3 FWK_Flash_Append

/**
 * @brief Append the data to an existing file.
 * @param path Path of the file in the file system
 * @param buf Buffer which contains the data that is going to be append
 * @param size Size of the buffer
 * @param overwrite Boolean parameter. If true the existing file will be
 truncated. Similar to SLN_flash_save
 * @return the status of append operation
 */
 sln_flash_status_t FWK_Flash_Append(const char *path, void *buf, unsigned int
 size, bool overwrite);

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
25 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

4.3.8.2.4 FWK_Flash_Read

/**
 * @brief Read from a file
 * @param path Path of the file in the file system
 * @param buf Buffer in which to store the read value
 * @param offset If reading in chunks, set offset to file current position
 * @param size Size that was read.
 * @return the status of read operation
 */
sln_flash_status_t FWK_Flash_Read(const char *path, void *buf, unsigned int
 offset, unsigned int *size);

4.3.8.2.5 FWK_Flash_Mkdir

/**
 * @brief Make directory operation
 * @param path Path of the directory in the file system
 * @return the status of mkdir operation
 */
sln_flash_status_t FWK_Flash_Mkdir(const char *path);

4.3.8.2.6 FWK_Flash_Mkfile

/**
 * @brief Make file with specific attributes
 * @param path Path of the file in the file system
 * @param encrypt Specify if the files should be encrypted. Based on FS
 implementation
 * this param can be neglected
 * @return the status of mkfile operation
 */
sln_flash_status_t FWK_Flash_Mkfile(const char *path, bool encrypt);

4.3.8.2.7 FWK_Flash_Rm

/**
 * @brief Remove file
 * @param path Path of the file that shall be removed
 * @return the status of rm operation
 */
sln_flash_status_t FWK_Flash_Rm(const char *path);

4.3.8.2.8 FWK_Flash_Rename

/**
 * @brief Rename existing file
 * @param OldPath Path of the file that is renamed
 * @param NewPath New Path of the file
 * @return status of rename operation
 */
sln_flash_status_t FWK_Flash_Rename(const char *oldPath, const char *newPath);

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
26 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

4.3.8.2.9 FWK_Flash_Cleanup

/**
 * @brief Cleanup function. Might imply defragmentation, erased unused sectors
 etc.
 *
 * @param timeout Time consuming operation. Set a time constrain to be sure that
 is not disturbing the system.
 * Timeout = 0 means no timeout
 * @return status of cleanup operation
 */
sln_flash_status_t FWK_Flash_Cleanup(uint32_t timeout);

4.4 HAL devices

4.4.1 Overview

One of the most important steps in the the creation of any embedded software project is the peripheral
integration. Unfortunately, this step can often be one of the most time-intensive steps of the process.
Additionally, peripheral drivers are often heavily tied to the specific platform that those drivers were originally
written for, which makes upgrading/moving to another platform difficult and costly.

The Hardware Abstraction Layer (HAL) component of the framework architecture was designed in direct
response to these issues.

HAL devices are designed to be written "on top of" the lower-level driver code, helping to increase code
understandability by abstracting many of the underlying details. HAL devices are also designed to be reused
across different projects and even different NXP platforms, increasing code reuse, which can help to cut down
on development time.

4.4.1.1 Device registration

For a manager to communicate with a HAL device, that device must first be registered to its respective
manager. The registration of each HAL device takes place at the beginning of application start-up when main()
calls the APP_RegisterHalDevices() function as follows:

int main(void)
{
 /* Init board hardware. */
 APP_BoardInit();
 LOGD("[MAIN]:Started");
 /* init the framework*/
 APP_InitFramework();

 /* register the hal devices*/
 APP_RegisterHalDevices();

 /* start the framework*/
 APP_StartFramework();

 // start
 vTaskStartScheduler();

 while (1)
 {
 LOGD("#");
 }

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
27 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 return 0;
}

To register a device to its manager, each HAL device implements a registration function, which is called before
starting the managers themselves. For example, the "register" function for the push-button input device looks as
follows:

int HAL_InputDev_PushButons_Register()
{
 int error = 0;
 LOGD("input_dev_push_butons_register");
 error = FWK_InputManager_DeviceRegister(&s_InputDev_PushButons);
 return error;
}

Because HAL devices do not have the header ".h" files associated with them, the registration function
for each device is exposed via the "board_define.h" file found inside the "boards" folder. Each HAL
device to be registered on start-up must be added to the APP_RegisterHalDevices function in the
"board_hal_registration.c" file. The "board_hal_registration.c" file is also in the "boards" folder.

4.4.1.2 Device types

There are several different device types to encapsulate the various peripherals which users may incorporate
into their projects. These device types include:

• Input
• Output
• Camera
• Display
• VAlgo (Vision/Voice)

As well as a few others which are not listed here.

Each device type has specific methods and fields based on the unique characteristics of that device type. For
example, the camera HAL device definition looks as follows:

/**
 * @brief Callback function to notify camera manager that one frame is dequeued
 * @param dev Device structure of the camera device calling this function
 * @param event id of the event that took place
 * @param param Parameters
 * @param fromISR True if this operation takes place in an irq, 0 otherwise
 * @return 0 if the operation was successfully
 */
typedef int (*camera_dev_callback_t)(const camera_dev_t *dev, camera_event_t
 event, void *param, uint8_t fromISR);

/*! @brief Operation that needs to be implemented by a camera device */
typedef struct _camera_dev_operator
{
 /* initialize the dev */
 hal_camera_status_t (*init)(camera_dev_t *dev, int width, int height,
 camera_dev_callback_t callback, void *param);
 /* deinitialize the dev */
 hal_camera_status_t (*deinit)(camera_dev_t *dev);
 /* start the dev */
 hal_camera_status_t (*start)(const camera_dev_t *dev);

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
28 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 /* enqueue a buffer to the dev */
 hal_camera_status_t (*enqueue)(const camera_dev_t *dev, void *data);
 /* dequeue a buffer from the dev */
 hal_camera_status_t (*dequeue)(const camera_dev_t *dev, void **data,
 pixel_format_t *format);
 /* postProcess a buffer from the dev */
 /*
 * Only do the minimum determination(data point and the format) of the frame
 in the dequeue.
 *
 * And split the CPU based post process(IR/Depth/... processing) to
 postProcess as they will eat CPU
 * which is critical for the whole system as camera manager is running with
 the highest priority.
 *
 * Camera manager will do the postProcess if there is a consumer of this
 frame.
 *
 * Note:
 * Camera manager will call multiple times of the posProcess of the same
 frame determinted by dequeue.
 * The HAL driver needs to guarantee the postProcess only do once for the
 first call.
 *
 */
 hal_camera_status_t (*postProcess)(const camera_dev_t *dev, void **data,
 pixel_format_t *format);
 /* input notify */
 hal_camera_status_t (*inputNotify)(const camera_dev_t *dev, void *data);
} camera_dev_operator_t;

/*! @brief Structure that characterize the camera device. */
typedef struct
{
 /* buffer resolution */
 int height;
 int width;
 int pitch;
 /* active rect */
 int left;
 int top;
 int right;
 int bottom;
 /* rotate degree */
 cw_rotate_degree_t rotate;
 /* flip */
 flip_mode_t flip;
 /* swap byte per two bytes */
 int swapByte;
} camera_dev_static_config_t;

In many ways, HAL devices can be thought of as similar to interfaces in C++ and other object-oriented
languages.

4.4.1.3 Anatomy of a HAL device

HAL devices are made up of several components, which can vary by the device type. However, each HAL
device (regardless of type) has at least three components:

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
29 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

• id
• name
• operators

The id field is a unique device identifier, which is assigned by the device manager when the device is first
registered.

The name field is used to help identify the device during various function calls and when debugging.

The operators field is a structure, which contains function pointers to each function that the HAL device is
required to implement. The operators that a device is required to implement will vary based on the device type.

A HAL device's definition is stored in a structure, which is passed to that device's respective manager when the
device is registered. This gives the manager information about the device and allows the manager to call the
device operators when necessary.

4.4.1.3.1 Operators

Operators are functions that "operate" on the device itself and they are used by the device manager to control
the device and/or augment its behavior. Operators are used for initializing, starting, and stopping devices, as
well as serving many other functions, depending on the device.

As mentioned previously, the operators a HAL device must implement vary based on the device type. For
example, input devices must implement the init, deinit, start, stop, and inputNotify functions.

typedef struct
{
 /* initialize the dev */
 hal_input_status_t (*init)(input_dev_t *dev, input_dev_callback_t callback);
 /* deinitialize the dev */
 hal_input_status_t (*deinit)(const input_dev_t *dev);
 /* start the dev */
 hal_input_status_t (*start)(const input_dev_t *dev);
 /* stop the dev */
 hal_input_status_t (*stop)(const input_dev_t *dev);
 /* notify the input_dev */
 hal_input_status_t (*inputNotify)(const input_dev_t *dev, void *param);
} input_dev_operator_t;

Each device (regardless of type) will have at least the start, stop, init, and deinit functions. Most
devices will also implement an inputNotify function which is used for event handling (see "events/
event_handlers.md").

Failing to implement a function will not prevent the HAL device from being registered, but it is likely to prevent
certain functionality from working. For example, failing to provide an implementation for a HAL device's "start"
function will prevent its respective manager from starting that device.

4.4.1.4 Configs

This section describes a feature which is currently being developed.

Configs represent the individual, configurable attributes specific to a HAL device. The configs available for a
device vary from device to device, but they can be altered during runtime via user input or by other devices and
they can be saved to flash to retain the same value through power cycles.

For example, the HAL device for the IR/White LEDs may only have a "brightness" config, while a speaker
device may have configs for "volume", "left/right balance", and so on.

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
30 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

Each device can have a maximum of "MAXIMUM_CONFIGS_PER_DEVICE" configs (see "framework/inc/
fwk_common.h").

Each device config (regardless of the device type) has the same fields:

• name
• expectedValue
• description
• value
• get
• set

4.4.1.4.1 name

A string containing the name of the config. The string length should be less than
DEVICE_CONFIG_NAME_MAX_LENGTH.

char name[DEVICE_CONFIG_NAME_MAX_LENGTH];

4.4.1.4.2 expectedValue

A string which provides a description of the valid values associated with the config. The length of the string
should be less than DEVICE_CONFIG_EXPECTED_VAL_MAX_LENGTH.

char expectedValue[DEVICE_CONFIG_EXPECTED_VAL_MAX_LENGTH];

4.4.1.4.3 description

A string which provides a description of the config. The length of the string should be less than DEVICE_
CONFIG_DESCRIPTION_MAX_LENGTH.

char description[DEVICE_CONFIG_DESCRIPTION_MAX_LENGTH];

4.4.1.4.4 value

An int which stores the internal value of the config. The value should be set using the set function and
retrieved using the get function.

uint32_t value;

4.4.1.4.5 get

A function which returns the value of the config.

status_t (*get)(char *valueToString);

4.4.1.4.6 set

A function which sets the value of the config.

status_t (*set)(char *configName, uint32_t value);

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
31 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

4.4.2 Input devices

The Input HAL device provides an abstraction to implement a variety of devices, which may capture data
in many different ways and whose data can represent many different things. The input HAL device definition
is designed to encapsulate everything from physical devices (like pushbuttons) to "virtual" devices (like a
command line interface) using UART.

Input devices are used to acquire the external input data and forward that data to other HAL devices via the
input manager, so that those devices can respond to that data accordingly. The input manager communicates
with other devices within the framework using the inputNotify event messages. For more information about
events and event handling, see Section 4.5.

As with other device types, the Input devices are controlled via their manager. The input manager is
responsible for managing all registered input HAL devices and invoking input device operators (init, start,
dequeue, and so on) as necessary. The input manager allows for multiple input devices to be registered and
operate at once.

4.4.2.1 Device definition

The HAL device definition for the Input devices is in the "framework/hal_api/hal_input_dev.h" file and it is
reproduced as follows:

/*! @brief Attributes of an input device */
typedef struct _input_dev
{
 /* unique id which is assigned by input manager during the registration */
 int id;
 /* name of the device */
 char name[DEVICE_NAME_MAX_LENGTH];
 /* operations */
 const input_dev_operator_t *ops;
 /* private capability */
 input_dev_private_capability_t cap;
} input_dev_t;

The device operators associated with input HAL devices are as follows:

/*! @brief Operation that needs to be implemented by an input device */
typedef struct
{
 /* initialize the dev */
 hal_input_status_t (*init)(input_dev_t *dev, input_dev_callback_t callback);
 /* deinitialize the dev */
 hal_input_status_t (*deinit)(const input_dev_t *dev);
 /* start the dev */
 hal_input_status_t (*start)(const input_dev_t *dev);
 /* start the dev */
 hal_input_status_t (*stop)(const input_dev_t *dev);
 /* notify the input_dev */
 hal_input_status_t (*inputNotify)(const input_dev_t *dev, void *param);
} input_dev_operator_t;

The device capabilities associated with the input HAL devices are as follows:

typedef struct
{
 /* callback */
 input_dev_callback_t callback;

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
32 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

} input_dev_private_capability_t;

4.4.2.2 Operators

Operators are functions that "operate" on a HAL device itself. Operators are akin to "public methods" in object
oriented languages, and they are used by the input manager to set up and start each of its registered input
devices.

For more information about operators, see Operators.

4.4.2.2.1 Init

/* initialize the dev */
hal_input_status_t (*init)(input_dev_t *dev, input_dev_callback_t callback);

Initializes the input device.

Init should initialize any hardware resources that the input device requires (I/O ports, IRQs, and so on), turn
on the hardware, and perform any other setup that the device requires.

The callback function to the device manager is typically installed as part of the Init function as well.

This operator will be called by the input manager when the input manager task starts for the first time.

4.4.2.2.2 Deinit

/* deinitialize the dev */
hal_input_status_t (*deinit)(const input_dev_t *dev);

"Deinitializes" the input device.

DeInit should release any hardware resources that the input device uses (I/O ports, IRQs, and so on), turn off
the hardware, and perform any other shutdown that the device requires.

This operator will be called by the input manager when the input manager task ends 2

4.4.2.2.3 Start

/* start the dev */
hal_input_status_t (*start)(const input_dev_t *dev);

Starts the input device.

The Start operator will be called in the initialization stage of the input manager's task after a call to the Init
operator. The start-up of the display sensor and interface should be implemented in this operator. This includes,
for example, starting the interface and enabling the IRQ of the DMA used by the interface.

4.4.2.2.4 Stop

/* start the dev */
hal_input_status_t (*stop)(const input_dev_t *dev);

Stops the input device.

2 The `DeInit` function will not be called under normal operation.
SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
33 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

The Stop operator functions as the inverse of the Start function and it will generally not be called under
normal operation.

4.4.2.2.5 InputNotify

/* notify the input_dev */
hal_input_status_t (*inputNotify)(const input_dev_t *dev, void *param);

Handles input events.

The InputNotify operator is called by the input manager whenever a kFWKMessageID_InputNotify
message is received by and forwarded from the input manager's message queue.

For more information regarding events and event handling, see "events/overview.md".

4.4.2.3 Capabilities

typedef struct
{
 /* callback */
 input_dev_callback_t callback;
} input_dev_private_capability_t;

The capabilities struct is primarily used for storing a callback to communicate information from the device
back to the input manager. This callback function is typically installed via a device's init operator.

4.4.2.3.1 callback

/**
 * @brief callback function to notify input manager with an async event
 * @param dev Device structure
 * @param eventId Id of the event that took place
 * @param receiverList List with managers that should be notify
 * @param event Pointer to a event structure.
 * @param size If size is 0 event should be in a persistent memory zone else the
 framework will allocate memory for the
 * object Note the message delivery might go slow if the size is too much.
 * @param fromISR True if this operation takes place in an irq, 0 otherwise
 * @return 0 if the operation was successfully
 */
typedef int (*input_dev_callback_t)(const input_dev_t *dev,
 input_event_id_t eventId,
 unsigned int receiverList,
 input_event_t *event,
 unsigned int size,
 uint8_t fromISR);

Callback to the input manager.

The capabilities struct is primarily used for storing a callback to communicate information from the device
back to the input manager.

The vision algorithm manager will provide the callback to the device when the init operator is called. As a
result, the HAL device should make sure to store the callback in the init operator's implementation.

static hal_input_status_t HAL_InputDev_PushButons_Init(input_dev_t *dev,
 input_dev_callback_t callback)

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
34 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

{
 hal_input_status_t error = 0;

 /* PERFORM INIT FUNCTIONALITY HERE */

 /* Installing callback function from manager... */
 memset(&dev->cap, 0, sizeof(dev->cap));
 dev->cap.callback = callback;

 return ret;
}

The HAL device invokes this callback to notify the vision algorithm manager of specific events.

The definition for valgo_dev_callback_t is as follows:

typedef int (*input_dev_callback_t)(const input_dev_t *dev,
 input_event_id_t eventId,
 unsigned int receiverList,
 input_event_t *event,
 unsigned int size,
 uint8_t fromISR);

The fields passed as a part of the callback are described below.

4.4.2.3.2 eventId

typedef enum _input_event_id
{
 kInputEventID_Recv,
 kInputEventID_AudioRecv,
 kInputEventID_FrameworkRecv,
} input_event_id_t;

Describes the type of source event being sent/received.

4.4.2.3.3 receiverList

typedef enum _fwk_task_id
{
 kFWKTaskID_Camera = 0, /* This should always stay first */
 kFWKTaskID_Display,
 kFWKTaskID_VisionAlgo,
 kFWKTaskID_VoiceAlgo,
 kFWKTaskID_Output,
 kFWKTaskID_Input,
 kFWKTaskID_Audio,
 kFWKTaskID_APPStart, /* APP task ID should always start from here */
 kFWKTaskID_COUNT = (kFWKTaskID_APPStart + APP_TASK_COUNT)
} fwk_task_id_t;

The list of device managers meant to receive the input event message.

4.4.2.3.4 event

typedef struct _input_event

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
35 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

{
 union
 {
 /* Valid when message is kInputEventID_RECV */
 void *inputData;

 /* Valid when eventId is kInputEventID_AudioRECV */
 void *audioData;

 /* Valid when framework information is needed GET_FRAMEWORK_INFO*/
 framework_request_t *frameworkRequest;
 };
} input_event_t;

4.4.2.4 Example

The project has several input devices implemented for use as is or for use as a reference for implementing new
input devices. The source files for these input HAL devices are under "framework/hal".

The following is an example of a push-button input HAL device driver:

static input_event_t inputEvent;

const static input_dev_operator_t s_InputDev_ExampleDevOps = {
 .init = HAL_InputDev_ExampleDev_Init,
 .deinit = HAL_InputDev_ExampleDev_Deinit,
 .start = HAL_InputDev_ExampleDev_Start,
 .stop = HAL_InputDev_ExampleDev_Stop,
 .inputNotify = HAL_InputDev_ExampleDev_InputNotify,
};

static input_dev_t s_InputDev_ExampleDev = {
 .name = "butons",
 .ops = &s_InputDev_ExampleDevOps,
 .cap = {
 .callback = NULL
 },
};

/* here assume butons push event will call this handler */
void HAL_InputDev_ExampleDev_EvtHandler(void)
{
 /* Add manager task list need notify, the id is from fwk_task_id_t.
 * Note: here can set not only one task manager.
 */
 receiverList = 1 << kFWKTaskID_Display;

 /* load input data */
 inputEvent.inputData = NULL;

 /* callback inputmanager notify the corresponding manager from receiverList
 */
 inputDev.cap.callback(&inputDev, kInputEventID_Recv, receiverList,
 &inputEvent, 0, fromISR);
}

hal_input_status_t HAL_InputDev_ExampleDev_Init(input_dev_t *dev,
 input_dev_callback_t callback)
{

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
36 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 hal_input_status_t ret = kStatus_HAL_InputSuccess;

 /* install manager callback for device */
 dev->cap.callback = callback;

 /* put hardware init here */

 return ret;
}

hal_input_status_t HAL_InputDev_ExampleDev_Deinit(const input_dev_t *dev)
{
 hal_input_status_t ret = kStatus_HAL_InputSuccess;

 /* put device deinit here */

 return ret;
}

hal_input_status_t HAL_InputDev_ExampleDev_Start(const input_dev_t *dev)
{
 hal_input_status_t ret = kStatus_HAL_InputSuccess;

 /* put device start here */

 return ret;
}

hal_input_status_t HAL_InputDev_ExampleDev_Stop(const input_dev_t *dev)
{
 hal_input_status_t ret = kStatus_HAL_InputSuccess;

 /* put device stop here */

 return ret;
}

hal_input_status_t HAL_InputDev_ExampleDev_InputNotify(const input_dev_t *dev,
 void *param)
{
 hal_input_status_t ret = kStatus_HAL_InputSuccess;

 /* add device notify handler here */

 return ret;
}

int HAL_InputDev_ExampleDev_Register(void)
{
 int ret = 0;
 ret = FWK_InputManager_DeviceRegister(&s_InputDev_ExampleDev);
 return ret;
}

4.4.3 Output devices

The Output HAL devices are used to represent any device which produces output (excluding specific devices
which have their own specific device type, like cameras and displays).

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
37 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

The Output devices will respond to events passed by other HAL devices and produce a corresponding output.
This includes changing the UI overlay in response to a "face recognized" event or changing the volume of the
speaker in response to a specific shell command.

Multiple output devices can be registered at a time per the design of the framework.

4.4.3.1 Subtypes

The output devices can be divided into three "subtypes" to better represent the specific nuances of a wider
variety of output devices without creating entirely new HAL device types:

• General output devices
• Overlay/UI output devices
• Audio output devices

4.4.3.1.1 General devices

The "general"/generic output devices describe the majority of output devices and include devices like LEDs.

4.4.3.1.2 UI devices

The overlay/UI output devices are used for output devices which act as an overlay that sits on top of a camera-
preview surface.

Overlay/UI devices require that a framebuffer is allocated when initializing a device of this subtype.

4.4.3.1.3 Audio devices

The audio-output HAL devices represent the devices that act as recipients of audio data. The audio-output HAL
devices typically process audio data so that they can play a sound in response to an event, like a face being
registered or sleep mode triggering.

4.4.3.2 Device definition

The HAL device definition for output devices is under "framework/hal_api/hal_output_dev.h" and it is reproduced
as follows:

/*! @brief definition of an output device */
typedef struct _output_dev
{
 /* unique id and assigned by Output Manager when this device register */
 int id;
 /* device name */
 char name[DEVICE_NAME_MAX_LENGTH];
 /* attributes */
 output_dev_attr_t attr;
 /* optional config for private configuration of special output device */
 hal_device_config configs[MAXIMUM_CONFIGS_PER_DEVICE];

 /* operations */
 const output_dev_operator_t *ops;
}output_dev_t;

The operators associated with the output HAL devices are as follows:

/*! @brief Operation that needs to be implemented by an output device */

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
38 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

typedef struct _output_dev_operator
{
 /* initialize the dev */
 hal_output_status_t (*init)(const output_dev_t *dev);
 /* deinitialize the dev */
 hal_output_status_t (*deinit)(const output_dev_t *dev);
 /* start the dev */
 hal_output_status_t (*start)(const output_dev_t *dev);
 /* stop the dev */
 hal_output_status_t (*stop)(const output_dev_t *dev);

} output_dev_operator_t;

The device attributes associated with the output HAL devices are as follows:

/*! @brief Attributes of an output device */
typedef struct _output_dev_attr_t
{
 /* the type of output device */
 output_dev_type_t type;
 union
 {
 /* if the type of output device is OverlayUI, it need to allocate
 overlay surface */
 gfx_surface_t *pSurface;
 /* reserve for other type of output device*/
 void *reserve;
 };
} output_dev_attr_t;

4.4.3.3 Operators

Operators are functions which "operate" on a HAL device itself. Operators are akin to "public methods" in
object-oriented languages, and they are used by the output manager to set up and start each of its registered
output devices.

For more information about operators, see the Operators in the overview.

4.4.3.3.1 Init

hal_output_status_t (*init)(const output_dev_t *dev);

The Init function is used to initialize the output device. The Init function should initialize any hardware
resources that the output device requires (I/O ports, IRQs, and so on), turn on the hardware, and perform any
other setup that the device requires.

This operator will be called by the output manager when the output manager task starts for the first time.

4.4.3.3.2 DeInit

hal_output_status_t (*deinit)(const output_dev_t *dev);

The DeInit function is used to initialize the output device. The DeInit function should release any hardware
resources that the output device uses (I/O ports, IRQs, and so on), turn off the hardware, and perform any other
shutdown that the device requires.

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
39 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

This operator will be called by the output manager when the output manager task ends 3

4.4.3.3.3 Start

hal_output_status_t (*start)(const output_dev_t *dev);

It starts the output device. The Start method will usually call FWK_OutputManager_RegisterEvent
Handler to register event handlers with the output manager so that when the output manager receives an
output event (like an "inference complete" event or an "input notify" event), the corresponding event handler
function will be executed.

This operator is called by the output manager when the output manager task starts for the first time.

4.4.3.3.4 Stop

hal_output_status_t (*stop)(const output_dev_t *dev);

Stops the output device. The Stop method will usually call FWK_OutputManager_UnRegisterEventHandle
r to unregister an event handler from the output manager. This prevents the device's event handlers from
executing when an event is triggered.

4.4.3.4 Attributes

4.4.3.4.1 type

The type of output device. If the type is kOutputDevType_UI, the pSurface parameter will have to be set.
Otherwise, pSurface can safely be ignored.

output_dev_type_t type;

The type enum is as follows:

/*! @brief Types of output devices' callback messages */
typedef enum _output_dev_type
{
 kOutputDevType_UI, /* for Overlay UI */
 kOutputDevType_Audio, /* for Audio output */
 kOutputDevType_Other, /* for other general output, like LED, Console, etc
 */
} output_dev_type_t;

4.4.3.4.2 pSurface

The pSurface variable is used by Overlay/UI output devices to hold a frame buffer.

If the device type "subtype" is not a kOuptutDevType_UI device, then this parameter can be safely ignored.

gfx_surface_t * pSurface;

3 The "DeInit" function will not be called under normal operation.
SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
40 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

The gfx_surface struct is as follows:

typedef struct _gfx_surface
{
 int height; /* the height of surface */
 int width; /* the width of surface */
 int pitch; /* the pitch of surface */
 int left; /* the left coordinate of surface */
 int top; /* the top coordinate of surface */
 int right; /* the right coordinate of surface */
 int bottom; /* the bottom coordinate of surface */
 int swapByte; /* For each 16 bit word of surface framebuffer, set true to
 swap the two bytes. */
 pixel_format_t format; /* the pixel format of surface, like
 kPixelFormat_RGB565 */
 void *buf; /* the pointer for the framebuffer */
 void *lock; /* the mutex lock for the surface, is determined by hal and set
 to null if not use in hal*/
} gfx_surface_t;

4.4.3.5 Example

The project has several output devices implemented for use as is or for use as a reference for implementing
new output devices. The source files for these output HAL devices are under "framework/hal/output".

The following is an example of the RGB LED HAL device driver "framework/hal/output/hal_output_rgb_led.c":

static hal_output_status_t HAL_OutputDev_RgbLed_Init(output_dev_t *dev);
static hal_output_status_t HAL_OutputDev_RgbLed_Start(const output_dev_t *dev);
static hal_output_status_t HAL_OutputDev_RgbLed_InferComplete(const output_dev_t
 *dev,

 output_algo_source_t source,
 void
 *inferResult);

const static output_dev_event_handler_t s_OutputDev_RgbLedHandler = {
 .inferenceComplete = HAL_OutputDev_RgbLed_InferComplete,
 .inputNotify = NULL,
};

/* output device operators*/
const static output_dev_operator_t s_OutputDev_RgbLedOps = {
 .init = HAL_OutputDev_RgbLed_Init,
 .deinit = NULL,
 .start = HAL_OutputDev_RgbLed_Start,
 .stop = NULL,
};

/* output device */
static output_dev_t s_OutputDev_RgbLed = {
 .name = "rgb_led",
 .attr.type = kOutputDevType_Other,
 .attr.reserve = NULL,
 .ops = &s_OutputDev_RgbLedOps,
};

/* RGB LED output device Init function*/
static hal_output_status_t HAL_OutputDev_RgbLed_Init(output_dev_t *dev)

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
41 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;
 /* put RGB LED hardware initialization here*/
 ...
 return error;
}

/* RGB LED output device start function*/
static hal_output_status_t HAL_OutputDev_RgbLed_Start(const output_dev_t *dev)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;
 /* registered special event handler for this output device */
 if (FWK_OutputManager_RegisterEventHandler(dev,
 &s_OutputDev_RgbLedHandler) != 0)
 {
 error = kStatus_HAL_OutputError;
 }
 return error;
}

static hal_output_status_t HAL_OutputDev_RgbLed_InferComplete(const output_dev_t
 *dev,

 output_algo_source_t source,
 void *inferResult)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;
 /* algorithm_result_t is defined by special algorithm device registered into
 vision pipeline */
 algorithm_result_t *result = (algorithm_result_t *)inferResult;
 if (pResult != NULL)
 {
 /* do RGB LED hardware setting according to inference result from
 valgorithm manager*/
 ...
 }
 return error;
}

int HAL_OutputDev_RgbLed_Register()
{
 int error = 0;
 LOGD("output_dev_rgb_led_register");
 error = FWK_OutputManager_DeviceRegister(&s_OutputDev_RgbLed);
 return error;
}

An example of an overlay UI output device is in "HAL/face_rec/hal_smart_lock_ui.c".

static hal_output_status_t HAL_OutputDev_OverlayUi_Init(const output_dev_t
 *dev);
static hal_output_status_t HAL_OutputDev_OverlayUi_Start(const output_dev_t
 *dev);
static hal_output_status_t HAL_OutputDev_OverlayUi_InferComplete(const
 output_dev_t *dev,

 output_algo_source_t source,
 void
 *infer_result);

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
42 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

static hal_output_status_t HAL_OutputDev_OverlayUi_InputNotify(const
 output_dev_t *dev, void *data);

/* Overlay UI surface */
static gfx_surface_t s_UiSurface;
/* the framebuffer for Overlay UI surface */
SDK_ALIGN(static char s_AsBuffer[UI_BUFFER_WIDTH * UI_BUFFER_HEIGHT *
 UI_BUFFER_BPP], 32);
/* event handler */
const static output_dev_event_handler_t s_OutputDev_UiHandler = {
 .inferenceComplete = HAL_OutputDev_OverlayUi_InferComplete,
 .inputNotify = HAL_OutputDev_OverlayUi_InputNotify,
};

/* output device operators */
const static output_dev_operator_t s_OutputDev_UiOps = {
 .init = HAL_OutputDev_OverlayUi_Init,
 .deinit = NULL,
 .start = HAL_OutputDev_OverlayUi_Start,
 .stop = NULL,
};

/* output device */
static output_dev_t s_OutputDev_Ui = {
 .name = "ui",
 .attr.type = kOutputDevType_UI,
 .attr.pSurface = &s_UiSurface,
 .ops = &s_OutputDev_UiOps,
};

/* Overlay UI output device Init function*/
static hal_output_status_t HAL_OutputDev_OverlayUi_Init(output_dev_t *dev)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;
 /* init overlay ui surface */
 s_UiSurface.left = 0;
 s_UiSurface.top = 0;
 s_UiSurface.right = UI_BUFFER_WIDTH - 1;
 s_UiSurface.bottom = UI_BUFFER_HEIGHT - 1;
 s_UiSurface.height = UI_BUFFER_HEIGHT;
 s_UiSurface.width = UI_BUFFER_WIDTH;
 s_UiSurface.pitch = UI_BUFFER_WIDTH * 2;
 s_UiSurface.format = kPixelFormat_RGB565;
 s_UiSurface.buf = s_AsBuffer;
 s_UiSurface.lock = xSemaphoreCreateMutex();

 return error;
}

/* Overlay UI output device start function*/
static hal_output_status_t HAL_OutputDev_OverlayUi_Start(const output_dev_t
 *dev)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;
 /* registered special event handler for this output device */
 if (FWK_OutputManager_RegisterEventHandler(dev, &s_OutputDev_UiHandler) !=
 0)
 error = kStatus_HAL_OutputError;
 return error;
}

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
43 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

/* Overlay UI inferenceComplete event handler function*/
static hal_output_status_t HAL_OutputDev_OverlayUi_InferComplete(const
 output_dev_t *dev,

 output_algo_source_t source,
 void
 *infer_result)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;
 /* algorithm_result_t is defined by special algorithm device registered into
 vision pipeline */
 algorithm_result_t *pResult = (algorithm_result_t *)infer_result;

 if (pResult != NULL)
 {
 /* lock overlay surface to avoid conflict with PXP composing overlay
 surface */
 if (s_UiSurface.lock)
 {
 xSemaphoreTake(s_UiSurface.lock, portMAX_DELAY);
 }

 /* draw overlay surface here according to inference result from
 valgorithm manager */
 ...

 /* unlock */
 if (s_UiSurface.lock)
 {
 xSemaphoreGive(s_UiSurface.lock);
 }
 }
 return error;
}

/* Overlay UI inputNotify event handler function*/
static hal_output_status_t HAL_OutputDev_OverlayUi_InputNotify(const
 output_dev_t *dev, void *data)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;
 event_base_t eventBase = *(event_base_t *)data;

 if (eventBase != NULL)
 {
 /* lock overlay surface to avoid conflict with PXP composing overlay
 surface */
 if (s_UiSurface.lock)
 {
 xSemaphoreTake(s_UiSurface.lock, portMAX_DELAY);
 }

 /* draw overlay surface here according to input notify event from input
 manager*/
 ...

 /* unlock */
 if (s_UiSurface.lock)
 {
 xSemaphoreGive(s_UiSurface.lock);

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
44 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 }
 }
 return error;
}

int HAL_OutputDev_UiSmartlock_Register()
{
 int error = 0;
 LOGD("output_dev_ui_smartlock_register");
 error = FWK_OutputManager_DeviceRegister(&s_OutputDev_Ui);
 return error;
}

4.4.4 Camera devices

The Camera HAL device provides an abstraction to represent many different camera devices that may have
different resolutions, color formats, and even connection interfaces.

For example, the same GC0308 RGB camera can connect with CSI or via a FlexIO interface.

A camera HAL device represents a camera sensor and interface, meaning that a separate device driver is
required for the same camera sensor using different interfaces.

As with other device types, camera devices are controlled via their manager. The camera manager is
responsible for managing all registered camera HAL devices and invoking camera-device operators (init,
start, dequeue, and so on) as necessary. Additionally, the camera manager allows for multiple camera
devices to be registered and operate at once.

4.4.4.1 Device definition

The HAL device definition for Camera devices is under "framework/hal_api/hal_camera_dev.h" and it is as
follows:

typedef struct _camera_dev camera_dev_t;
/*! @brief Attributes of a camera device. */
struct _camera_dev
{
 /* unique id which is assigned by camera manager during registration */
 int id;
 /* state in which the device is found */
 hal_device_state_t state;
 /* name of the device */
 char name[DEVICE_NAME_MAX_LENGTH];

 /* operations */
 const camera_dev_operator_t *ops;
 /* static configs */
 camera_dev_static_config_t config;
 /* private capability */
 camera_dev_private_capability_t cap;
};

The device operators associated with camera HAL devices are as follows:

/*! @brief Operation that needs to be implemented by a camera device */
typedef struct _camera_dev_operator
{
 /* initialize the dev */

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
45 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 hal_camera_status_t (*init)(camera_dev_t *dev, int width, int height,
 camera_dev_callback_t callback, void *param);
 /* deinitialize the dev */
 hal_camera_status_t (*deinit)(camera_dev_t *dev);
 /* start the dev */
 hal_camera_status_t (*start)(const camera_dev_t *dev);
 /* enqueue a buffer to the dev */
 hal_camera_status_t (*enqueue)(const camera_dev_t *dev, void *data);
 /* dequeue a buffer from the dev */
 hal_camera_status_t (*dequeue)(const camera_dev_t *dev, void **data,
 pixel_format_t *format);
 /* postProcess a buffer from the dev */
 /*
 * Only do the minimum determination(data point and the format) of the frame
 in the dequeue.
 *
 * And split the CPU based post process(IR/Depth/... processing) to
 postProcess as they will eat CPU
 * which is critical for the whole system as Camera Manager is running with
 the highest priority.
 *
 * Camera Manager will do the postProcess if there is a consumer of this
 frame.
 *
 * Note:
 * Camera Manager will call multiple times of the posProcess of the same
 frame determinted by dequeue.
 * The HAL driver needs to guarantee the postProcess only do once for the
 first call.
 *
 */
 hal_camera_status_t (*postProcess)(const camera_dev_t *dev, void **data,
 pixel_format_t *format);
 /* input notify */
 hal_camera_status_t (*inputNotify)(const camera_dev_t *dev, void *data);
} camera_dev_operator_t;

The static configs associated with camera HAL devices are as follows:

/*! @brief Structure that characterize the camera device. */
typedef struct
{
 /* buffer resolution */
 int height;
 int width;
 int pitch;
 /* active rect */
 int left;
 int top;
 int right;
 int bottom;
 /* rotate degree */
 cw_rotate_degree_t rotate;
 /* flip */
 flip_mode_t flip;
 /* swap byte per two bytes */
 int swapByte;
} camera_dev_static_config_t;

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
46 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

The device capabilities associated with camera HAL devices are as follows:

/*! @brief Structure that capability of the camera device. */
typedef struct
{
 /* callback */
 camera_dev_callback_t callback;
 /* param for the callback */
 void *param;
} camera_dev_private_capability_t;

4.4.4.2 Operators

Operators are functions which "operate" on a HAL device itself. Operators are akin to "public methods" in
object-oriented languages, and they are used by the camera manager to set up and start each of its registered
camera devices.

For more information about operators, see Operators.

4.4.4.2.1 Init

hal_camera_status_t (*init)(camera_dev_t *dev,
 int width,
 int height,
 camera_dev_callback_t callback,
 void *param);

Initializes the camera device.

Init should initialize any hardware resources that the camera device requires (I/O ports, IRQs, and so on),
turn on the hardware, and perform any other setup that the device requires.

This operator will be called by the camera manager when the camera manager task starts for the first time.

4.4.4.2.2 Deinit

hal_camera_status_t (*deinit)(camera_dev_t *dev);

"Deinitializes" the camera device.

DeInit should release any hardware resources that the camera device uses (I/O ports, IRQs, and so on), turn
off the hardware, and perform any other shutdown that the device requires.

This operator will be called by the camera manager when the camera manager task ends 4

4.4.4.2.3 Start

hal_camera_status_t (*start)(const camera_dev_t *dev);

Starts the camera device.

The Start operator will be called in the initialization stage of the camera manager's task after the call to the
Init operator. The startup of the camera sensor and interface should be implemented in this operator. This
includes, for example, starting the interface and enabling the IRQ of the DMA used by the interface.

4 The `DeInit` function generally will not be called under normal operation.
SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
47 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

4.4.4.2.4 Enqueue

hal_camera_status_t (*enqueue)(const camera_dev_t *dev,
 void *data);

Enqueues a single frame.

The Enqueue operator is called by the camera manager to submit an empty buffer into the camera device's
buffer queue. Once the submitted buffer is filled by the camera device, the camera device should call the
camera manager's callback function and pass a kCameraEvent_SendFrame event.

4.4.4.2.5 Dequeue

hal_camera_status_t (*enqueue)(const camera_dev_t *dev,
 void *data);

Dequeues a single frame.

The Dequeue operator will be called by the camera manager to get a camera frame from the device. The frame
address and the format will be determined by this operator.

4.4.4.2.6 PostProcess

hal_camera_status_t (*postProcess)(const camera_dev_t *dev,
 void **data,
 pixel_format_t *format);

Handles the postprocessing of the camera frame.

The PostProcess operator is called by the camera manager to perform any required postprocessing of the
camera frame. For example, if a frame must be converted from one format to another in some way before it is
useable by the display and/or a vision algo device, this would take place in the PostProcess operator.

4.4.4.2.7 InputNotify

hal_camera_status_t (*inputNotify)(const camera_dev_t *dev, void *data);

Handles input events.

The InputNotify operator is called by the camera manager whenever a kFWKMessageID_InputNotify
message is received by and forwarded from the camera manager's message queue.

For more information regarding events and event handling, see Events.

4.4.4.3 Static configs

Static configs, unlike regular dynamic configs, are set at compile time and cannot be changed on the fly.

4.4.4.3.1 height

int height;

The height of the camera buffer.

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
48 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

4.4.4.3.2 width

int width;

The width of the camera buffer.

4.4.4.3.3 pitch

int pitch;

The total number of bytes in a single row of a camera frame.

4.4.4.3.4 left

int left;

The left edge of the active area in a camera buffer.

4.4.4.3.5 top

int top;

The top edge of the active area in a camera buffer.

4.4.4.3.6 right

int right;

The right edge of the active area in a camera buffer.

4.4.4.3.7 bottom

int bottom;

The bottom edge of the active area in a camera buffer.

4.4.4.3.8 rotate

typedef enum _cw_rotate_degree
{
 kCWRotateDegree_0 = 0,
 kCWRotateDegree_90,
 kCWRotateDegree_180,
 kCWRotateDegree_270
} cw_rotate_degree_t;

cw_rotate_degree_t rotate;

The rotate degree of the camera sensor.

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
49 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

4.4.4.3.9 flip

typedef enum _flip_mode
{
 kFlipMode_None = 0,
 kFlipMode_Horizontal,
 kFlipMode_Vertical,
 kFlipMode_Both
} flip_mode_t;

flip_mode_t flip;

Determines whether to flip the frame while processing the frame for the algorithm and display.

4.4.4.3.10 swapByte

int swapByte;

Determines whether to enable swapping bytes while processing a frame for algorithm and display devices.

4.4.4.4 Capabilities

typedef struct
{
 /* callback */
 camera_dev_callback_t callback;
 /* param for the callback */
 void *param;
} camera_dev_private_capability_t;

The capabilities struct is primarily used for storing a callback to communicate information from the device
back to the Camera Manager. This callback function is typically installed via a device's init operator.

4.4.4.4.1 callback

/**
* @brief Callback function to notify Camera Manager that one frame is dequeued
* @param dev Device structure of the camera device calling this function
* @param event id of the event that took place
* @param param Parameters
* @param fromISR True if this operation takes place in an irq, 0 otherwise
* @return 0 if the operation was successfully
*/
typedef int (*camera_dev_callback_t)(const camera_dev_t *dev,
 camera_event_t event,
 void *param,
 uint8_t fromISR);

camera_dev_callback_t callback;

Callback to the Camera Manager.

The HAL device invokes this callback to notify the Camera Manager of specific events like "frame dequeued."

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
50 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

The Camera Manager will provide this callback to the device when the init operator is called. As a result, the
HAL device should make sure to store the callback in the init operator's implementation.

static hal_camera_status_t HAL_CameraDev_ExampleDev_Init(
 camera_dev_t *dev, int width, int height, camera_dev_callback_t callback,
 void *param)
{
 hal_camera_status_t ret = kStatus_HAL_CameraSuccess;

 /* PERFORM INIT FUNCTIONALITY HERE */

 ...

 /* Installing callback function from manager... */
 dev->cap.callback = callback;

 return ret;
}

4.4.4.4.2 param

void *param;

The parameter of the callback for kCameraEvent_SendFrame event. The Camera Manager will provide the
parameter while calling the Init operator, so this param should be stored in the HAL device's struct as part of
the implementation of the Init operator.

This param should be provided when calling the [`Callback`](#callback) function.

4.4.4.5 Example

The project has several camera devices implemented for use as-is or for use as reference for implementing new
camera devices. Source files for these camera HAL devices can be found under "framework/hal/camera".

Below is an example of the GC0308 RGB FlexIO camera HAL device driver "framework/hal/camera/hal_
camera_flexio_gc0308.c".

hal_camera_status_t HAL_CameraDev_FlexioGc0308_Init(
 camera_dev_t *dev, int width, int height, camera_dev_callback_t callback,
 void *param);
static hal_camera_status_t HAL_CameraDev_FlexioGc0308_Deinit(camera_dev_t *dev);
static hal_camera_status_t HAL_CameraDev_FlexioGc0308_Start(const camera_dev_t
 *dev);
static hal_camera_status_t HAL_CameraDev_FlexioGc0308_Enqueue(const camera_dev_t
 *dev, void *data);
static hal_camera_status_t HAL_CameraDev_FlexioGc0308_Dequeue(const camera_dev_t
 *dev,
 void **data,
 pixel_format_t
 *format);
static int HAL_CameraDev_FlexioGc0308_Notify(const camera_dev_t *dev, void
 *data);

/* The operators of the FlexioGc0308 Camera HAL Device */
const static camera_dev_operator_t s_CameraDev_FlexioGc0308Ops = {
 .init = HAL_CameraDev_FlexioGc0308_Init,

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
51 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 .deinit = HAL_CameraDev_FlexioGc0308_Deinit,
 .start = HAL_CameraDev_FlexioGc0308_Start,
 .enqueue = HAL_CameraDev_FlexioGc0308_Enqueue,
 .dequeue = HAL_CameraDev_FlexioGc0308_Dequeue,
 .inputNotify = HAL_CameraDev_FlexioGc0308_Notify,
};

/* FlexioGc0308 Camera HAL Device */
static camera_dev_t s_CameraDev_FlexioGc0308 = {
 .id = 0,
 .name = CAMERA_NAME,
 .ops = &s_CameraDev_FlexioGc0308Ops,
 .cap =
 {
 .callback = NULL,
 .param = NULL,
 },
};

hal_camera_status_t HAL_CameraDev_FlexioGc0308_Init(
 camera_dev_t *dev, int width, int height, camera_dev_callback_t callback,
 void *param)
{
 hal_camera_status_t ret = kStatus_HAL_CameraSuccess;
 LOGD("camera_dev_flexio_gc0308_init");

 /* store the callback and param for late using*/
 dev->cap.callback = callback;
 dev->cap.param = param;

 /* init the low level camera sensor and interface */

 return ret;
}

static hal_camera_status_t HAL_CameraDev_FlexioGc0308_Deinit(camera_dev_t *dev)
{
 hal_camera_status_t ret = kStatus_HAL_CameraSuccess;
 /* Currently do nothing for the Deinit as we didn't support the runtime de-
registraion of the device */
 return ret;
}

static hal_camera_status_t HAL_CameraDev_FlexioGc0308_Start(const camera_dev_t
 *dev)
{
 hal_camera_status_t ret = kStatus_HAL_CameraSuccess;

 /* start the low level camera sensor and interface */

 return ret;
}

static hal_camera_status_t HAL_CameraDev_FlexioGc0308_Enqueue(const camera_dev_t
 *dev, void *data)
{
 hal_camera_status_t ret = kStatus_HAL_CameraSuccess;

 /* submit one free buffer into the camera's buffer queue */

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
52 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 return ret;
}

static hal_camera_status_t HAL_CameraDev_FlexioGc0308_Dequeue(const camera_dev_t
 *dev,
 void **data,
 pixel_format_t
 *format)
{
 hal_camera_status_t ret = kStatus_HAL_CameraSuccess;

 /* get the buffer from camera's buffer queue and determine the format of the
 frame */

 return ret;
}

static int HAL_CameraDev_FlexioGc0308_Notify(const camera_dev_t *dev, void
 *data)
{
 int error = 0;
 event_base_t eventBase = *(event_base_t *)data;

 /* handle the events which are interested in */
 switch (eventBase.eventId)
 {
 default:
 break;
 }

 return error;
}

4.4.5 Display devices

The Display HAL device provides an abstraction to represent many different display panels which may have
different controllers, resolutions, color formats, and event-connection interfaces.

A display HAL devices represents the display panel and interface. For example, the
"hal_display_lcdif_rk024hh298.c" file is the display HAL device driver for the "rk024hh298" panel with an
eLCDIF interface.

This means that a separate device driver is required for the same display using different interfaces.

As with other device types, display devices are controlled via their manager. The display manager is responsible
for managing all registered display HAL devices and invoking display-device operators (init, start, and so
on) as necessary.

4.4.5.1 Device definition

The HAL device definition for display devices is under "framework/hal_api/hal_display_dev.h" and it is
reproduced as follows:

typedef struct _display_dev display_dev_t;
/*! @brief Attributes of a display device. */
struct _display_dev
{
 /* unique id which is assigned by Display Manager during the registration */
 int id;

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
53 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 /* name of the device */
 char name[DEVICE_NAME_MAX_LENGTH];
 /* operations */
 const display_dev_operator_t *ops;
 /* private capability */
 display_dev_private_capability_t cap;
};

The operators associated with display HAL devices are as follows:

/*! @brief Operation that needs to be implemented by a display device */
typedef struct _display_dev_operator
{
 /* initialize the dev */
 hal_display_status_t (*init)(
 display_dev_t *dev,
 int width, int height,
 display_dev_callback_t callback,
 void *param);
 /* deinitialize the dev */
 hal_display_status_t (*deinit)(const display_dev_t *dev);
 /* start the dev */
 hal_display_status_t (*start)(const display_dev_t *dev);
 /* blit a buffer to the dev */
 hal_display_status_t (*blit)(const display_dev_t *dev,
 void *frame,
 int width,
 int height);
 /* input notify */
 hal_display_status_t (*inputNotify)(const display_dev_t *dev, void *data);
} display_dev_operator_t;

The capabilities associated with display HAL devices are as follows:

/*! @brief Structure that characterize the display device. */
typedef struct _display_dev_private_capability
{
 /* buffer resolution */
 int height;
 int width;
 int pitch;
 /* active rect */
 int left;
 int top;
 int right;
 int bottom;
 /* rotate degree */
 cw_rotate_degree_t rotate;
 /* pixel format */
 pixel_format_t format;
 /* the source pixel format of the requested frame */
 pixel_format_t srcFormat;
 void *frameBuffer;
 /* callback */
 display_dev_callback_t callback;
 /* param for the callback */
 void *param;
} display_dev_private_capability_t;

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
54 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

4.4.5.2 Operators

Operators are functions which "operate" on a HAL device itself. Operators are akin to "public methods" in
object-oriented languages and they are used by the display manager to setup and start each of its registered
display devices.

For more information about operators, see Operators.

4.4.5.2.1 Init

hal_display_status_t (*init)(display_dev_t *dev,
 int width,
 int height,
 display_dev_callback_t callback,
 void *param);

Initializes the display device.

Init should initialize any hardware resources that the display device requires (I/O ports, IRQs, and so on), turn
on the hardware, and perform any other setup that the device requires.

The callback function to the device's manager is typically installed as a part of the Init function as well.

This operator will be called by the display manager when the display manager task starts for the first time.

4.4.5.2.2 Deinit

hal_display_status_t (*deinit)(const display_dev_t *dev);

"Deinitializes" the display device.

DeInit should release any hardware resources that the display device uses (I/O ports, IRQs, and so on), turn
off the hardware, and perform any other shutdown that the device requires.

This operator will be called by the display manager when the display manager task ends 5

4.4.5.2.3 Start

hal_display_status_t (*start)(const display_dev_t *dev);

Starts the display device.

The Start operator will be called in the initialization stage of the display manager's task after the call to the
Init operator. The startup of the display sensor and interface should be implemented in this operator. This
includes, for example, starting the interface and enabling the IRQ of the DMA used by the interface.

4.4.5.2.4 Blit

hal_display_status_t (*blit)(const display_dev_t *dev,
 void *frame,
 int width,
 int height);

5 The `DeInit` function generally will not be called under normal operation.
SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
55 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

Sends a frame to the display panel and "blits" the frame with any additional required components (UI overlay
and others).

Blit is called by the display manager once a previously requested frame of the matching srcFormat has
been sent by a camera device. The sending of the frame from the display manager to the display panel should
take place in this operator.

kStatus_HAL_DisplaySuccess should be returned if the frame was successfully sent to the display panel.
After calling this operator, the display manager will request a new frame. If the "Blit" operator is working in the
asynchronous mode, the hardware will continue sending the frame buffer even after the return of the "Blit"
function call. In this case, "kStatus_HAL_DisplayNonBlocking" should be returned and the display manager will
not issue a new display frame request after this "Blit" call.

To request a new frame, the device should invoke the display manager's callback using a
"kDisplayEvent_RequestFrame" event to notify that the sending of the previous frame is completed. Once the
display manager sees this new request, it will request a new frame.

4.4.5.2.5 InputNotify

 hal_display_status_t (*inputNotify)(const display_dev_t *dev, void *data);

Handles input events.

The InputNotify operator is called by the display manager whenever a kFWKMessageID_InputNotify
message is received by and forwarded from the display manager's message queue.

For more information regarding events and event handling, see Events.

4.4.5.3 Capabilities

/*! @brief Structure that characterizes the display device. */
typedef struct _display_dev_private_capability
{
 /* buffer resolution */
 int height;
 int width;
 int pitch;
 /* active rect */
 int left;
 int top;
 int right;
 int bottom;
 /* rotate degree */
 cw_rotate_degree_t rotate;
 /* pixel format */
 pixel_format_t format;
 /* the source pixel format of the requested frame */
 pixel_format_t srcFormat;
 void *frameBuffer;
 /* callback */
 display_dev_callback_t callback;
 /* param for the callback */
 void *param;
} display_dev_private_capability_t;

The capabilities struct is primarily used for storing a callback to communicate information from the device
back to the display manager. This callback function is typically installed via a device's init operator.

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
56 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

Display devices also maintain information regarding the size of the display, pixel format, and other information
pertinent to the display.

4.4.5.3.1 height

int height;

The height of the display buffer.

4.4.5.3.2 width

int width;

The width of the display buffer.

4.4.5.3.3 pitch

int pitch;

The total number of bytes in one row of the display buffer.

4.4.5.3.4 left

int left;

The left edge of the active area 6in the display frame buffer.

4.4.5.3.5 top

int top;

The top edge of the active area in the display frame buffer.

4.4.5.3.6 right

int right;

The right edge of the active area in the display frame buffer.

4.4.5.3.7 bottom

int bottom;

The bottom edge of the active area in the display frame buffer.

4.4.5.3.8 rotate

typedef enum _cw_rotate_degree

6 The active area indicates the area of the display frame buffer that will be utilized.
SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
57 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

{
 kCWRotateDegree_0 = 0,
 kCWRotateDegree_90,
 kCWRotateDegree_180,
 kCWRotateDegree_270
} cw_rotate_degree_t;

cw_rotate_degree_t rotate;

The rotate degree of the display frame buffer.

4.4.5.3.9 format

typedef enum _pixel_format
{
 /* 2d frame format */
 kPixelFormat_RGB,
 kPixelFormat_RGB565,
 kPixelFormat_BGR,
 kPixelFormat_Gray888,
 kPixelFormat_Gray888X,
 kPixelFormat_Gray,
 kPixelFormat_Gray16,
 kPixelFormat_YUV1P444_RGB, /* color display sensor */
 kPixelFormat_YUV1P444_Gray, /* ir display sensor */
 kPixelFormat_UYVY1P422_RGB, /* color display sensor */
 kPixelFormat_UYVY1P422_Gray, /* ir display sensor */
 kPixelFormat_VYUY1P422,

 /* 3d frame format */
 kPixelFormat_Depth16,
 kPixelFormat_Depth8,

 kPixelFormat_YUV420P,

 kPixelFormat_Invalid
} pixel_format_t;

The format of the display frame buffer.

4.4.5.3.10 srcFormat

The source format of the requested display frame buffer.

Because there may be multiple display devices operating at a time, the display will check the srcFormat
property of the frame to determine whether it is from the display device it is expecting. This prevents the display
from displaying a 3D depth image when the user expects an RGB image, for example.

4.4.5.3.11 frameBuffer

Pointer to the display frame buffer.

4.4.5.3.12 callback

/**

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
58 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 * @brief callback function to notify Display Manager that an async event took
 place
 * @param dev Device structure of the display device calling this function
 * @param event id of the event that took place
 * @param param Parameters
 * @param fromISR True if this operation takes place in an irq, 0 otherwise
 * @return 0 if the operation was successfully
 */
typedef int (*display_dev_callback_t)(const display_dev_t *dev,
 display_event_t event,
 void *param,
 uint8_t fromISR);

display_dev_callback_t callback;

Callback to the display manager. The HAL device invokes this callback to notify the display manager of specific
events.

Currently, only the "kDisplayEvent_RequestFrame" event callback is implemented in the display manager.

The display manager will provide this callback to the device when the init operator is called. As a result, the
HAL device should make sure to store the callback in the init operator's implementation.

hal_display_status_t HAL_DisplayDev_ExampleDev_Init(
 display_dev_t *dev, int width, int height, display_dev_callback_t callback,
 void *param)
{
 hal_display_status_t ret = kStatus_HAL_DisplaySuccess;

 /* PERFORM INIT FUNCTIONALITY HERE */

 ...

 /* Installing callback function from manager... */
 dev->cap.callback = callback;

 return ret;
}

The HAL device invokes this callback to notify the display manager of specific events.

4.4.5.3.13 param

void *param;

The parameter of the display manager callback.

The "param" field is not currently used by the framework in any way.

4.4.5.4 Example

The project has several display devices implemented for use as is or as a reference for implementing new
display devices. The source files for these display HAL devices are under "framework/hal/display".

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
59 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

The following is an example of the "rk024hh298" display HAL device driver "framework/hal/display/hal_display_
lcdif_rk024hh298.c".

hal_display_status_t HAL_DisplayDev_LcdifRk024hh2_Init(display_dev_t *dev,
 int width,
 int height,
 display_dev_callback_t
 callback,
 void *param);
hal_display_status_t HAL_DisplayDev_LcdifRk024hh2_Uninit(const display_dev_t
 *dev);
hal_display_status_t HAL_DisplayDev_LcdifRk024hh2_Start(const display_dev_t
 *dev);
hal_display_status_t HAL_DisplayDev_LcdifRk024hh2_Blit(const display_dev_t *dev,
 void *frame,
 int width,
 int height);
static hal_display_status_t HAL_DisplayDev_LcdifRk024hh2_InputNotify(const
 display_dev_t *receiver,
 void *data);

/* The operators of the rk024hh298 Display HAL Device */
const static display_dev_operator_t s_DisplayDev_LcdifOps = {
 .init = HAL_DisplayDev_LcdifRk024hh2_Init,
 .deinit = HAL_DisplayDev_LcdifRk024hh2_Uninit,
 .start = HAL_DisplayDev_LcdifRk024hh2_Start,
 .blit = HAL_DisplayDev_LcdifRk024hh2_Blit,
 .inputNotify = HAL_DisplayDev_LcdifRk024hh2_InputNotify,
};

/* rk024hh298 Display HAL Device */
static display_dev_t s_DisplayDev_Lcdif = {
 .id = 0,
 .name = DISPLAY_NAME,
 .ops = &s_DisplayDev_LcdifOps,
 .cap = {
 .width = DISPLAY_WIDTH,
 .height = DISPLAY_HEIGHT,
 .pitch = DISPLAY_WIDTH * DISPLAY_BYTES_PER_PIXEL,
 .left = 0,
 .top = 0,
 .right = DISPLAY_WIDTH - 1,
 .bottom = DISPLAY_HEIGHT - 1,
 .rotate = kCWRotateDegree_0,
 .format = kPixelFormat_RGB565,
 .srcFormat = kPixelFormat_UYVY1P422_RGB,
 .frameBuffer = NULL,
 .callback = NULL,
 .param = NULL
 }
 };

hal_display_status_t HAL_DisplayDev_LcdifRk024hh2_Init(display_dev_t *dev,
 int width,
 int height,
 display_dev_callback_t
 callback,
 void *param)
{

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
60 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 hal_display_status_t ret = kStatus_HAL_DisplaySuccess;

 /* init the capability */
 dev->cap.width = width;
 dev->cap.height = height;
 dev->cap.frameBuffer = (void *)&s_FrameBuffers[1];

 /* store the callback and param for late using */
 dev->cap.callback = callback;

 /* init the low level display panel and interface */

 return ret;
}

hal_display_status_t HAL_DisplayDev_LcdifRk024hh2_Uninit(const display_dev_t
 *dev)
{
 hal_display_status_t ret = kStatus_HAL_DisplaySuccess;
 /* Currently do nothing for the Deinit as we didn't support the runtime de-
registraion of the device */
 return ret;
}

hal_display_status_t HAL_DisplayDev_LcdifRk024hh2_Start(const display_dev_t
 *dev)
{
 hal_display_status_t ret = kStatus_HAL_DisplaySuccess;

 /* start the display pannel and the interface */

 return ret;
}

hal_display_status_t HAL_DisplayDev_LcdifRk024hh2_Blit(const display_dev_t *dev,
 void *frame, int width, int height)
{
 hal_display_status_t ret = kStatus_HAL_DisplayNonBlocking;

 /* blit the frame to the real display pannel */

 return ret;
}

static hal_display_status_t HAL_DisplayDev_LcdifRk024hh2_InputNotify(const
 display_dev_t *receiver, void *data)
{
 hal_display_status_t error = kStatus_HAL_DisplaySuccess;
 event_base_t eventBase = *(event_base_t *)data;
 event_status_t event_response_status = kEventStatus_Ok;

 /* handle the events which are interested in */
 if (eventBase.eventId == kEventID_SetDisplayOutputSource)
 {

 }

 return error;
}

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
61 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

4.4.6 Vision algorithm devices

The vision algorithm HAL device type represents an abstraction for computer vision algorithms, which are used
for analysis of digital images, videos, and other visual inputs.

The crux of the design for vision algorithm devices is centered around the use of "infer complete" events which
communicate information about the results of inferencing which is handled by the device. For example, in the
current application, the vision algorithm may receive a camera frame containing a recognized face, perform an
inference on that data, and communicate a "face recognized" message to other devices so that they may act
accordingly. For more information about events and event handling, see Events.

Currently, only one vision algorithm device can be registered to the vision manager at a time per the design of
the framework.

4.4.6.1 Device definition

The HAL device definition for vision algorithm devices is in "framework/hal_api/hal_valgo_dev.h" and it is
reproduced as follows:

/*! @brief definition of a vision algo device */
typedef struct _vision_algo_dev
{
 /* unique id which is assigned by vision algorithm manager during the
 registration */
 int id;
 /* name to identify */
 char name[DEVICE_NAME_MAX_LENGTH];
 /* private capability */
 valgo_dev_private_capability_t cap;
 /* operations */
 vision_algo_dev_operator_t *ops;
 /* private data */
 vision_algo_private_data_t data;
} vision_algo_dev;

The operators associated with the vision algo HAL device are as follows:

/*! @brief Operation that needs to be implemented by a vision algorithm device
 */
typedef struct
{
 /* initialize the dev */
 hal_valgo_status_t (*init)(vision_algo_dev_t *dev, valgo_dev_callback_t
 callback, void *param);
 /* deinitialize the dev */
 hal_valgo_status_t (*deinit)(vision_algo_dev_t *dev);
 /* run the inference */
 hal_valgo_status_t (*run)(const vision_algo_dev_t *dev, void *data);
 /* recv events */
 hal_valgo_status_t (*inputNotify)(const vision_algo_dev_t *receiver, void
 *data);

} vision_algo_dev_operator_t;

The capabilities associated with the vision algo HAL device are as follows:

typedef struct _valgo_dev_private_capability
{

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
62 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 /* callback */
 valgo_dev_callback_t callback;
 /* param for the callback */
 void *param;
} valgo_dev_private_capability_t;

The private data fields associated with the vision algo HAL device is as follows:

typedef struct
{
 int autoStart;
 /* frame type definition */
 vision_frame_t frames[kVAlgoFrameID_Count];
} vision_algo_private_data_t;

4.4.6.2 Operators

Operators are functions which "operate" on a HAL device itself. Operators are akin to "public methods" in
object-oriented languages, and they are used by the vision algorithm manager to set up and start its registered
vision algo device.

For more information about operators, see the overview.

4.4.6.2.1 Init

hal_valgo_status_t (*init)(vision_algo_dev_t *dev, valgo_dev_callback_t
 callback, void *param);

Initializes the vision algo HAL device.

Init should initialize any hardware resources that the device requires (I/O ports, IRQs, and so on), turn on the
hardware, and perform any other setup required by the device.

The callback function to the device's manager is typically installed as part of the Init function as well.

This operator will be called by the vision algorithm manager when the output manager task first starts.

4.4.6.2.2 Deinit

hal_valgo_status_t (*deinit)(vision_algo_dev_t *dev);

The DeInit function is used to "deinitialize" the algorithm device. DeInit should release any hardware
resources that the device uses (I/O ports, IRQs, and so on), turn off the hardware, and perform any other
shutdown required by the device.

This operator will be called by the Vision Algorithm Manager when the Vision Algorithm Manager task ends. 7

4.4.6.2.3 Run

hal_valgo_status_t (*run)(const voice_algo_dev_t *dev, void *data);

Runs the vision algorithm.

The run operator is used to run the algorithm inference and process the camera frame data.

7 The `DeInit` function will not be called under normal operation.
SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
63 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

This operator is called by the vision algorithm manager when a "camera frame ready" message is received from
the camera manager and forwarded to the algorithm device via the vision algorithm manager.

Once the vision algorithm device finishes processing the camera frame data, its manager will forward this
message to the output manager in the form of an "inference complete" message.

4.4.6.2.4 InputNotify

hal_valgo_status_t (*inputNotify)(const vision_algo_dev_t *receiver, void
 *data);

Handles input events.

The InputNotify operator is called by the vision algorithm manager whenever a
kFWKMessageID_InputNotify message is received and forwarded from the vision algorithm manager's
message queue.

For more information regarding events and event handling, see Events.

4.4.6.3 Capabilities

The capabilities struct is primarily used for storing a callback to communicate information from the device
back to the vision algorithm manager. This callback function is typically installed via a device's init operator.

4.4.6.3.1 callback

/*!
 * @brief Callback function to notify managers the results of inference
 * valgo_dev* dev Pointer to an algorithm device
 * valgo_event_t event Event which took place
 * persistent memory area.
 */

typedef int (*valgo_dev_callback_t)(int devId, valgo_event_t event, uint8_t
 fromISR);

valgo_dev_callback_t callback;

Callback to the vision algorithm manager.

The vision algorithm manager will provide the callback to the device when the init operator is called. As a
result, the HAL device should make sure to store the callback in the init operator's implementation.

static hal_valgo_status_t HAL_VisionAlgoDev_ExampleDev_Init(vision_algo_dev_t
 *dev,
 valgo_dev_callback_t
 callback,
 void *param)
{
 hal_valgo_status_t ret = kStatus_HAL_ValgoSuccess;

 /* PERFORM INIT FUNCTIONALITY HERE */

 ...

 /* Installing callback function from manager... */

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
64 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 memset(&dev->cap, 0, sizeof(dev->cap));
 dev->cap.callback = callback;

 return ret;
}

The HAL device invokes this callback to notify the vision algorithm manager of specific events.

The event structure is the following:

/*! @brief Structure used to define an event.*/
typedef struct _valgo_event
{
 /* Eventid from the list above.*/
 valgo_event_id_t eventId;
 event_info_t eventInfo;
 /* Pointer to a struct of data that needs to be forwarded. */
 void *data;
 /* Size of the struct that needs to be forwarded. */
 unsigned int size;
 /* If copy is set to 1, the framework will forward a copy of the data. */
 unsigned char copy;
} valgo_event_t;

All the events, which are identifiable by the "eventId", can be sent to:

• Both the cores in a broadcast manner by setting the "eventInfo" flag to "kEventInfo_DualCore"
• A remote core by setting the "eventInfo" flag to "kEventInfo_Remote"
• A local core by the "eventInfo" flag to "kEventInfo_Local"

All supported message types can be used in conjunction with the copy flag set to 1 to deep copy the message.

4.4.6.3.2 param

void *param;

The param for the callback (optional).

4.4.6.4 Private data

4.4.6.4.1 autoStart

int autoStart;

The flag to automatically start the algorithm.

If autoStart is 1, the vision algorithm manager will automatically start requesting camera frames for this
algorithm device after its init operator is executed.

4.4.6.4.2 frames

vision_frame_t frames[kVAlgoFrameID_Count];

The three kinds of frames which are currently supported by the vision framework are RGB, IR, and Depth
images.

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
65 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

The vision algorithm device must specify the information for each kind of frame, so that the framework will
properly convert and pass only the frames which correspond to this algorithm device's requirement.

For example, the Smart Lock application uses both RGB and IR camera images to perform liveness detection
and face recognition, while using RGB frames solely for use as user feedback to help with aligning a user's face
and other purposes. Therefore, the algorithm device must ensure that it is receiving only the 3D and IR frames
and not any RGB frames.

The definition of vision_frame_t is as follows:

typedef struct _vision_frame
{
 /* is supported by the device for this type of frame */
 /* Vision Algorithm Manager will only request the supported frame for this
 device */
 int is_supported;

 /* frame resolution */
 int height;
 int width;
 int pitch;

 /* rotate degree */
 cw_rotate_degree_t rotate;
 flip_mode_t flip;
 /* swap byte per two bytes */
 int swapByte;

 /* pixel format */
 pixel_format_t format;

 /* the source pixel format of the requested frame */
 pixel_format_t srcFormat;
 void *data;
} vision_frame_t;

4.4.6.5 Example

Because only one vision algorithm device can be registered at a time per the design of the framework, the
project has one vision algorithm device implemented. 8

This example is as follows:

static hal_valgo_status_t HAL_VisionAlgoDev_OasisLite_Init(vision_algo_dev_t
 *dev,
 valgo_dev_callback_t
 callback,
 void *param);
static hal_valgo_status_t HAL_VisionAlgoDev_OasisLite_Deinit(vision_algo_dev_t
 *dev);
static hal_valgo_status_t HAL_VisionAlgoDev_OasisLite_Run(const
 vision_algo_dev_t *dev, void *data);
static hal_valgo_status_t HAL_VisionAlgoDev_OasisLite_InputNotify(const
 vision_algo_dev_t *receiver, void *data);

/* vision algorithm device operators */

8 This example is implemented using NXP's OasisLite face-recognition algorithm, which is the core vision-computing algorithm used in
the project.

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
66 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

const static vision_algo_dev_operator_t s_VisionAlgoDev_OasisLiteOps = {
 .init = HAL_VisionAlgoDev_OasisLite_Init,
 .deinit = HAL_VisionAlgoDev_OasisLite_Deinit,
 .run = HAL_VisionAlgoDev_OasisLite_Run,
 .inputNotify = HAL_VisionAlgoDev_OasisLite_InputNotify,
};

/* vision algorithm device */
static vision_algo_dev_t s_VisionAlgoDev_OasisLite2D = {
 .id = 0,
 .name = "OASIS_2D",
 .ops = (vision_algo_dev_operator_t *)&s_VisionAlgoDev_OasisLiteOps,
 .cap = {.param = NULL},
};

/* vision algorithm device Init function*/
static hal_valgo_status_t HAL_VisionAlgoDev_OasisLite_Init(vision_algo_dev_t
 *dev,
 valgo_dev_callback_t
 callback,
 void *param)
{
 hal_valgo_status_t ret = kStatus_HAL_ValgoSuccess;
 OASIS_LOGI("++HAL_VisionAlgoDev_OasisLite_Init");
 OASISLTResult_t oasisRet = OASISLT_OK;

 s_OasisLite.dev = dev;

 // init the device
 memset(&dev->cap, 0, sizeof(dev->cap));
 dev->cap.callback = callback;

 dev->data.autoStart = 1;
 dev->data.frames[kVAlgoFrameID_RGB].height = OASIS_RGB_FRAME_HEIGHT;
 dev->data.frames[kVAlgoFrameID_RGB].width = OASIS_RGB_FRAME_WIDTH;
 dev->data.frames[kVAlgoFrameID_RGB].pitch = OASIS_RGB_FRAME_WIDTH *
 OASIS_RGB_FRAME_BYTE_PER_PIXEL;
 dev->data.frames[kVAlgoFrameID_RGB].is_supported = 1;
 dev->data.frames[kVAlgoFrameID_RGB].rotate = kCWRotateDegree_0;
 dev->data.frames[kVAlgoFrameID_RGB].flip = kFlipMode_None;

 dev->data.frames[kVAlgoFrameID_RGB].format = kPixelFormat_BGR;
 dev->data.frames[kVAlgoFrameID_RGB].srcFormat = kPixelFormat_UYVY1P422_RGB;
 int oasis_lite_rgb_frame_aligned_size =
 SDK_SIZEALIGN(OASIS_RGB_FRAME_HEIGHT * OASIS_RGB_FRAME_WIDTH *
 OASIS_RGB_FRAME_BYTE_PER_PIXEL,
 FSL_FEATURE_L1DCACHE_LINESIZE_BYTE);
 dev->data.frames[kVAlgoFrameID_RGB].data =
 pvPortMalloc(oasis_lite_rgb_frame_aligned_size);

 if (dev->data.frames[kVAlgoFrameID_RGB].data == NULL)
 {
 OASIS_LOGE("Unable to allocate memory for kVAlgoFrameID_RGB.");
 ret = kStatus_HAL_ValgoMallocError;
 return ret;
 }

 // init the RGB frame
 s_OasisLite.frames[OASISLT_INT_FRAME_IDX_RGB].height =
 OASIS_RGB_FRAME_HEIGHT;

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
67 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 s_OasisLite.frames[OASISLT_INT_FRAME_IDX_RGB].width =
 OASIS_RGB_FRAME_WIDTH;
 s_OasisLite.frames[OASISLT_INT_FRAME_IDX_RGB].fmt =
 OASIS_IMG_FORMAT_BGR888;
 s_OasisLite.frames[OASISLT_INT_FRAME_IDX_RGB].data = dev-
>data.frames[kVAlgoFrameID_RGB].data;
 s_OasisLite.pframes[OASISLT_INT_FRAME_IDX_RGB] =
 &s_OasisLite.frames[OASISLT_INT_FRAME_IDX_RGB];

 dev->data.frames[kVAlgoFrameID_IR].height = OASIS_IR_FRAME_HEIGHT;
 dev->data.frames[kVAlgoFrameID_IR].width = OASIS_IR_FRAME_WIDTH;
 dev->data.frames[kVAlgoFrameID_IR].pitch = OASIS_IR_FRAME_WIDTH *
 OASIS_IR_FRAME_BYTE_PER_PIXEL;
 dev->data.frames[kVAlgoFrameID_IR].is_supported = 1;
 dev->data.frames[kVAlgoFrameID_IR].rotate = kCWRotateDegree_0;
 dev->data.frames[kVAlgoFrameID_IR].flip = kFlipMode_None;

 dev->data.frames[kVAlgoFrameID_IR].format = kPixelFormat_BGR;
 dev->data.frames[kVAlgoFrameID_IR].srcFormat = kPixelFormat_UYVY1P422_Gray;
 int oasis_lite_ir_frame_aligned_size =
 SDK_SIZEALIGN(OASIS_IR_FRAME_HEIGHT * OASIS_IR_FRAME_WIDTH *
 OASIS_IR_FRAME_BYTE_PER_PIXEL,
 FSL_FEATURE_L1DCACHE_LINESIZE_BYTE);
 dev->data.frames[kVAlgoFrameID_IR].data =
 pvPortMalloc(oasis_lite_ir_frame_aligned_size);

 if (dev->data.frames[kVAlgoFrameID_IR].data == NULL)
 {
 OASIS_LOGE("Unable to allocate memory for kVAlgoFrameID_IR.");
 /* here need release the RGB buffer before return. */
 vPortFree(dev->data.frames[kVAlgoFrameID_RGB].data);
 ret = kStatus_HAL_ValgoMallocError;
 return ret;
 }

 /* do private Algorithm Init here */
 ...

 LOGI("--HAL_VisionAlgoDev_OasisLite_Init");
 return ret;
}

/* vision algorithm device DeInit function*/
static hal_valgo_status_t HAL_VisionAlgoDev_OasisLite_Deinit(vision_algo_dev_t
 *dev)
{
 hal_valgo_status_t ret = kStatus_HAL_ValgoSuccess;
 LOGI("++HAL_VisionAlgoDev_OasisLite_Deinit");

 /* release resource here */
 ...

 LOGI("--HAL_VisionAlgoDev_OasisLite_Deinit");
 return ret;
}

/* vision algorithm device inference run function*/
static hal_valgo_status_t HAL_VisionAlgoDev_OasisLite_Run(const
 vision_algo_dev_t *dev, void *data)
{

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
68 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 hal_valgo_status_t ret = kStatus_HAL_ValgoSuccess;
 OASIS_LOGI("++HAL_VisionAlgoDev_OasisLite_Run");

 vision_algo_result_t result;
 /* do inference run, derive meaningful information from the current frame
 data in dev private data */
 /* for example, oasisLite will inference according to two kinds of input
 frames:
 void* frame1 = dev->data.frames[kVAlgoFrameID_IR].data
 void* frame2 = dev->data.frames[kVAlgoFrameID_Depth].data
 result = oasisLite_run(frame1, frame2,);
 */
 ...

 /* execute algorithm manager callback to inform algorithm manager the result
 */
 if (dev != NULL && result != NULL && dev->cap.callback != NULL)
 {
 dev->cap.callback(dev->id, kVAlgoEvent_VisionResultUpdate, result,
 sizeof(vision_algo_result_t), 0);
 }

 OASIS_LOGI("--HAL_VisionAlgoDev_OasisLite_Run");
 return ret;
}

/* vision algorithm device InputNotify function*/
static hal_valgo_status_t HAL_VisionAlgoDev_OasisLite_InputNotify(const
 vision_algo_dev_t *receiver, void *data)
{
 hal_valgo_status_t ret = kStatus_HAL_ValgoSuccess;
 OASIS_LOGI("++HAL_VisionAlgoDev_OasisLite_InputNotify");
 event_base_t eventBase = *(event_base_t *)data;

 /* do proess according to different input notify event */
 ...

 LOGI("--HAL_VisionAlgoDev_OasisLite_InputNotify");
 return ret;
}

/* register vision algorithm device to vision algorithm manager */
int HAL_VisionAlgo_OasisLite2D_Register(int mode)
{
 int error = 0;
 LOGD("HAL_VisionAlgo_OasisLite2D_Register");
 error = FWK_VisionAlgoManager_DeviceRegister(&s_VisionAlgoDev_OasisLite);
 memset(&s_OasisLite, 0, sizeof(s_OasisLite));
 s_OasisLite.mode = mode;
 return error;
}

4.4.7 Low power devices

The low power/LPM HAL device represents an abstraction used to implement a device which controls the power
management of the device by configuring the chip-level power mode (normal operation, SNVS, and so on).

Unlike other devices, which may represent a real, physical device, the low power HAL device is purely a "virtual"
abstraction mechanism representing the chip's power-regulation controls. As a result, the low power HAL device

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
69 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

is platform-dependent because it relies on the different power modes and configuration options made available
by the platform being used. Additionally, only one low power HAL device can (and is necessary to) be registered
at a time because a chip's power regulatory functionality will not typically require multiple disparate components.
This means that the API calls to the Low Power Manager are essentially wrappers over the single LPM device's
operators.

Regarding functionality, the low power HAL device provides:

• Multi-level low-power switching
• Manual power state configuration
• Automatic power state configuration via periodic idle checks and other flags

The low power mode device also provides an exit mechanism, which is called before entering the low power
mode, to ensure that components are properly shut down before sleeping. This is achieved using a series of
timers, one as a periodic idle check to wait for a specified time-out period before shutting down, and the other
as an "exit timer", which reserves a sufficient amount of time for other HAL devices to shut down properly.

4.4.7.1 Device definition

The HAL device definition for LPM devices is under "framework/hal_api/hal_lpm_dev.h" and it is reproduced as
follows:

/*! @brief Attributes of a lpm device */
struct _lpm_dev
{
 /* unique id which is assigned by lpm manager during the registration */
 int id;
 /* operations */
 const lpm_dev_operator_t *ops;
 /* timer */
 TimerHandle_t timer;
 /* pre-enter sleep timer */
 TimerHandle_t preEnterSleepTimer;
 /* lock */
 SemaphoreHandle_t lock;
 /* callback */
 lpm_manager_timer_callback_t callback;
 /* preEnterSleepCallback */
 lpm_manager_timer_callback_t preEnterSleepCallback;
};

The device operators associated with LPM HAL devices are as follows:

/*! @brief Callback function to timeout check requester list busy status. */
typedef int (*lpm_manager_timer_callback_t)(lpm_dev_t *dev);

/*! @brief Operation that needs to be implemented by a lpm device */
typedef struct _lpm_dev_operator
{
 hal_lpm_status_t (*init)(lpm_dev_t *dev,
 lpm_manager_timer_callback_t callback,
 lpm_manager_timer_callback_t preEnterSleepTimer);
 hal_lpm_status_t (*deinit)(const lpm_dev_t *dev);
 hal_lpm_status_t (*openTimer)(const lpm_dev_t *dev);
 hal_lpm_status_t (*stopTimer)(const lpm_dev_t *dev);
 hal_lpm_status_t (*openPreEnterTimer)(const lpm_dev_t *dev);
 hal_lpm_status_t (*stopPreEnterTimer)(const lpm_dev_t *dev);
 hal_lpm_status_t (*enterSleep)(const lpm_dev_t *dev, hal_lpm_mode_t mode);

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
70 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 hal_lpm_status_t (*lock)(const lpm_dev_t *dev);
 hal_lpm_status_t (*unlock)(const lpm_dev_t *dev);
} lpm_dev_operator_t;

typedef struct _hal_lpm_request
{
 void *dev; /* request dev handle */
 char name[LPM_REQUEST_NAME_MAX_LENGTH]; /* request name */
} hal_lpm_request_t;

4.4.7.2 Operators

Operators are functions which "operate" on a HAL device itself. Operators are akin to "public methods" in
object-oriented languages and they are used by the low power manager to setup and start its registered low
power device.

For more information about operators, see Operators.

4.4.7.2.1 Init

hal_lpm_status_t (*init)(lpm_dev_t *dev, lpm_manager_timer_callback_t callback,
 lpm_manager_timer_callback_t
 preEnterSleepTimer);

Initializes the LPM device.

Init should initialize any hardware resources that the LPM device requires (I/O ports, IRQs, and so on), turn
on the hardware, and perform any other setup that the device requires.

The callback function to the device's manager is typically installed as a part of the Init function as well.

This operator will be called by the input manager when the input manager task starts for the first time.

4.4.7.2.2 Deinit

hal_lpm_status_t (*deinit)(const lpm_dev_t *dev);

"Deinitializes" the LPM device.

DeInit should release any hardware resources that the LPM device uses (I/O ports, IRQs, and so on), turn off
the hardware, and perform any other shutdown that the device requires.

This operator will be called by the input manager when the input manager task ends 9

4.4.7.2.3 OpenTimer

hal_lpm_status_t (*openTimer)(const lpm_dev_t *dev);

Starts the periodic idle check timer.

4.4.7.2.4 StopTimer

hal_lpm_status_t (*stopTimer)(const lpm_dev_t *dev);

9 The `DeInit` function generally will not be called under normal operation.
SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
71 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

Stops the periodic idle check timer.

After all busy requests (BLE connection established, face registration in progress) have ceased, this function
will be called and begin the shut-down process for other HAL devices.

4.4.7.2.5 OpenPreEnterTimer

hal_lpm_status_t (*openPreEnterTimer)(const lpm_dev_t *dev);

Starts the preEnterSleepTimer.

The preEnterSleepTimer is used to provide other HAL devices sufficient time to properly shutdown before
the board enters the sleep mode. This function will be called after the periodic idle check timer has stopped (due
to a timeout).

4.4.7.2.6 StopPreEnterTimer

hal_lpm_status_t (*stopPreEnterTimer)(const lpm_dev_t *dev);

Stops the preEnterSleepTimer.

This function is called to stop the timer associated with the pre-sleep shut-down process. After this timer ends,
the EnterSleep function will be called and the device will power down.

4.4.7.2.7 EnterSleep

hal_lpm_status_t (*enterSleep)(const lpm_dev_t *dev, hal_lpm_mode_t mode);

Enters the sleep mode using the low power mode specified in the function call 10

4.4.7.2.8 Lock

hal_lpm_status_t (*lock)(const lpm_dev_t *dev);

Acquires the lock for the low power device.

The low power manager uses a lock-based system to prevent accidentally entering the sleep mode before all
devices are ready to enter sleep. The Lock function is called by the low power manager in response to a HAL
device signaling that it is performing a critical function, which requires that the board does not enter sleep until it
completes.

4.4.7.2.9 Unlock

hal_lpm_status_t (*unlock)(const lpm_dev_t *dev);

Releases the lock for the low power device.

The low power manager uses a lock-based system to prevent accidentally entering the sleep mode before all
devices are ready to enter sleep. The Unlock function is called by the low power manager in response to a
HAL device signaling that it finished performing a critical function which required that the board did not enter
sleep until it was completed.

10 The power modes available vary based on the platform in use.
SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
72 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

4.4.7.3 Components

4.4.7.3.1 timer

/* timer */
TimerHandle_t timer;

This timer is used to periodically check the busy requests from other HAL devices.

4.4.7.3.2 preEnterSleepTimer

/* pre-enter sleep timer */
TimerHandle_t preEnterSleepTimer;

This timer is used to provide a sufficient amount of time for HAL devices to shut down before entering the sleep
mode.

4.4.7.3.3 lock

/* lock */
SemaphoreHandle_t lock;

This lock is used to maintain thread safety when multiple tasks must call the low power manager and it is
managed by the low power manager.

4.4.7.3.4 callback

/* callback */
lpm_manager_timer_callback_t callback;

Callback to the low power manager. The HAL device invokes this callback to notify the vision algorithm manager
of specific events.

The low power manager will provide this callback to the device when the init operator is called. As a result,
the HAL device should make sure to store the callback in the init operator's implementation.

hal_lpm_status_t HAL_LpmDev_Init(lpm_dev_t *dev,
 lpm_manager_timer_callback_t callback,
 lpm_manager_timer_callback_t
 preEnterSleepCallback)
{
 int ret = kStatus_HAL_LpmSuccess;

 dev->callback = callback;
 dev->preEnterSleepCallback = preEnterSleepCallback;

4.4.7.3.5 PreEnterSleepCallback

/* preEnterSleepCallback */
lpm_manager_timer_callback_t preEnterSleepCallback;

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
73 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

Callback function which is called after the "preEnterSleep" timer terminates. This callback comes from the LPM
manager.

4.4.7.4 Example

Because only one low power device can be registered at a time per the design of the framework, the project has
only one low power device implemented.

The source file for this low power device is in "framework/hal/misc/hal_sln_lpm.c".

In this example, we will demonstrate the use of a low power device (using FreeRTOS for timers and other
purposes) in conjunction with a device/manager of a different type.

The LPM Manager Device implements all the power switching functionality we need, while the secondary
device/manager will attempt to make busy requests (lock the LPM device) and enable/disable the low power
mode.

4.4.7.4.1 LPM manager device

/* Here call periodic callback to check idle status. */
static void HAL_LpmDev_TimerCallback(TimerHandle_t handle)
{
 if (handle == NULL)
 {
 return;
 }

 lpm_dev_t *pDev = (lpm_dev_t *)pvTimerGetTimerID(handle);
 if (pDev->callback != NULL)
 {
 pDev->callback(pDev);
 }
}

/* Here call preEnterSleepCallback. Duing this time, all device have already
 exit. So this callback will call enterSleep operator to enter low power mode.
 */
static void HAL_LpmDev_PreEnterSleepTimerCallback(TimerHandle_t handle)
{
 if (handle == NULL)
 {
 return;
 }

 lpm_dev_t *pDev = (lpm_dev_t *)pvTimerGetTimerID(handle);
 if (pDev->preEnterSleepCallback != NULL)
 {
 pDev->preEnterSleepCallback(pDev);
 }
}

hal_lpm_status_t HAL_LpmDev_Init(lpm_dev_t *dev,
 lpm_manager_timer_callback_t callback,
 lpm_manager_timer_callback_t
 preEnterSleepCallback)
{
 int ret = kStatus_HAL_LpmSuccess;

 dev->callback = callback;

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
74 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 dev->preEnterSleepCallback = preEnterSleepCallback;

 /* put low power hardware init here */

 /* put periodic timer create and init here */
 dev->timer = xTimerCreate("LpmTimer", pdMS_TO_TICKS(1000), pdTRUE, (void
 *)dev, HAL_LpmDev_TimerCallback);
 if (dev->timer == NULL)
 {
 return kStatus_HAL_LpmTimerNull;
 }

 /* put exit timer create and init here */
 dev->preEnterSleepTimer = xTimerCreate("LpmPreEnterSleepTimer",
 pdMS_TO_TICKS(1500), pdTRUE, (void *)dev,

 HAL_LpmDev_PreEnterSleepTimerCallback);
 if (dev->preEnterSleepTimer == NULL)
 {
 return kStatus_HAL_LpmTimerNull;
 }

 /* put lock create and init here */
 dev->lock = xSemaphoreCreateMutex();
 if (dev->lock == NULL)
 {
 return kStatus_HAL_LpmLockNull;
 }

 /* put init low power mode and status here, detial can find in lpm_manager.
 */
 FWK_LpmManager_SetSleepMode(kLPMMode_SNVS);
 FWK_LpmManager_EnableSleepMode(kLPMManagerStatus_SleepDisable);

 return ret;
}

hal_lpm_status_t HAL_LpmDev_Deinit(const lpm_dev_t *dev)
{
 int ret = kStatus_HAL_LpmSuccess;

 return ret;
}

hal_lpm_status_t HAL_LpmDev_OpenTimer(const lpm_dev_t *dev)
{
 int ret = kStatus_HAL_LpmSuccess;

 if (dev->timer == NULL)
 {
 return kStatus_HAL_LpmTimerNull;
 }

 if (xTimerStart(dev->timer, 0) != pdPASS)
 {
 ret = kStatus_HAL_LpmTimerFail;
 }

 return ret;
}

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
75 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

hal_lpm_status_t HAL_LpmDev_StopTimer(const lpm_dev_t *dev)
{
 int ret = kStatus_HAL_LpmSuccess;

 if (dev->timer == NULL)
 {
 return kStatus_HAL_LpmTimerNull;
 }

 if (xTimerStop(dev->timer, 0) != pdPASS)
 {
 ret = kStatus_HAL_LpmTimerFail;
 }

 return ret;
}

hal_lpm_status_t HAL_LpmDev_OpenPreEnterSleepTimer(const lpm_dev_t *dev)
{
 int ret = kStatus_HAL_LpmSuccess;

 if (dev->preEnterSleepTimer == NULL)
 {
 return kStatus_HAL_LpmTimerNull;
 }

 if (xTimerStart(dev->preEnterSleepTimer, 0) != pdPASS)
 {
 ret = kStatus_HAL_LpmTimerFail;
 }

 return ret;
}

hal_lpm_status_t HAL_LpmDev_StopPreEnterSleepTimer(const lpm_dev_t *dev)
{
 int ret = kStatus_HAL_LpmSuccess;

 if (dev->preEnterSleepTimer == NULL)
 {
 return kStatus_HAL_LpmTimerNull;
 }

 if (xTimerStop(dev->preEnterSleepTimer, 0) != pdPASS)
 {
 ret = kStatus_HAL_LpmTimerFail;
 }

 return ret;
}

hal_lpm_status_t HAL_LpmDev_EnterSleep(const lpm_dev_t *dev, hal_lpm_mode_t
 mode)
{
 int ret = kStatus_HAL_LpmSuccess;
 switch (mode)
 {
 case kLPMMode_SNVS:
 {

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
76 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 /* put enter SNVS low power mode here*/
 }
 break;

 default:
 break;
 }

 return ret;
}

hal_lpm_status_t HAL_LpmDev_Lock(const lpm_dev_t *dev)
{
 uint8_t fromISR = __get_IPSR();

 if (dev->lock == NULL)
 {
 return kStatus_HAL_LpmLockNull;
 }

 if (fromISR)
 {
 BaseType_t HigherPriorityTaskWoken = pdFALSE;
 if (xSemaphoreTakeFromISR(dev->lock, &HigherPriorityTaskWoken) !=
 pdPASS)
 {
 return kStatus_HAL_LpmLockError;
 }
 }
 else
 {
 if (xSemaphoreTake(dev->lock, portMAX_DELAY) != pdPASS)
 {
 return kStatus_HAL_LpmLockError;
 }
 }

 return kStatus_HAL_LpmSuccess;
}

hal_lpm_status_t HAL_LpmDev_Unlock(const lpm_dev_t *dev)
{
 uint8_t fromISR = __get_IPSR();

 if (dev->lock == NULL)
 {
 return kStatus_HAL_LpmLockNull;
 }

 if (fromISR)
 {
 BaseType_t HigherPriorityTaskWoken = pdFALSE;
 if (xSemaphoreGiveFromISR(dev->lock, &HigherPriorityTaskWoken) !=
 pdPASS)
 {
 return kStatus_HAL_LpmLockError;
 }
 }
 else
 {

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
77 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 if (xSemaphoreGive(dev->lock) != pdPASS)
 {
 return kStatus_HAL_LpmLockError;
 }
 }

 return kStatus_HAL_LpmSuccess;
}

static lpm_dev_operator_t s_LpmDevOperators = {
 .init = HAL_LpmDev_Init,
 .deinit = HAL_LpmDev_Deinit,
 .openTimer = HAL_LpmDev_OpenTimer,
 .stopTimer = HAL_LpmDev_StopTimer,
 .openPreEnterTimer = HAL_LpmDev_OpenPreEnterSleepTimer,
 .stopPreEnterTimer = HAL_LpmDev_StopPreEnterSleepTimer,
 .enterSleep = HAL_LpmDev_EnterSleep,
 .lock = HAL_LpmDev_Lock,
 .unlock = HAL_LpmDev_Unlock,
};

static lpm_dev_t s_LpmDev = {
 .id = 0,
 .ops = &s_LpmDevOperators,
};

int HAL_LpmDev_Register()
{
 int ret = 0;

 FWK_LpmManager_DeviceRegister(&s_LpmDev);

 return ret;
}

4.4.7.4.2 Requesting device

As a part of this example, we assume that the LPM device is running at the same time as the "requesting
device" (camera, vision algo, and so on) of a different type which is performing some critical functionality.

Supposing that this example "requesting device" (aptly named "ExampleDev") performs some critical
functionality inside HAL_InputDev_ExampleDev_Critical will set the request busy by calling
FWK_LpmManager_RuntimeGet, thus acquiring the lock that prevents changes to the current power mode
state.

After the device has completed its critical functionality, it will use use FWK_LpmManager_RuntimePut to
release the lock which prevents changes to the current power mode state.

static hal_lpm_request_t s_LpmReq = {
 .dev = &s_InputDev,
 .name = "lpm device",
};

int HAL_InputDev_ExampleDev_Critical(void)
{
 FWK_LpmManager_RuntimeGet(&s_LpmReq);

 /* perform critical function here */

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
78 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 FWK_LpmManager_RuntimePut(&s_LpmReq);
}

int HAL_InputDev_ExampleDev_Register(void)
{
 hal_input_status_t status = kStatus_HAL_InputSuccess;

 status = FWK_LpmManager_RegisterRequestHandler(&s_LpmReq);

 return status;
}

4.4.8 Flash devices

The flash HAL device represents an abstraction used to implement a device which handles all operations
dealing with flash 11 (permanent) storage. Ultimately, the flash HAL device is useful for abstracting not only flash
operations, but memory operations in general.

The flash HAL device is primarily used as a wrapper over an underlying filesystem, be it LittleFS, FatFS, and so
on. As a result, the flash manager (see "device_managers/flash_manager.md") only allows one flash device to
be registered because there is usually no need for multiple file systems operating at the same time.

Note: Because only one flash device can be registered at a time, this means that API calls to the flash
manager (see "device_managers/flash_manager.md") essentially act as wrappers over the flash HAL device's
operators.

In terms of functionality, the flash HAL device provides:

• Read/Write operations
• Clean-up methods to handle defragmentation and/or emptying flash sectors during idle time
• Information about underlying flash mapping and flash type

4.4.8.1 Device definition

The HAL device definition for flash devices is under "framework/hal_api/hal_flash_dev.h" and it is reproduced as
follows:

/*! @brief Attributes of a flash device */
struct _flash_dev
{
 /* unique id */
 int id;
 /* operations */
 const flash_dev_operator_t *ops;
};

The device operators associated with flash HAL devices are as follows:

/*! @brief Callback function to timeout check requester list busy status. */
typedef int (*lpm_manager_timer_callback_t)(lpm_dev_t *dev);

/*! @brief Operation that needs to be implemented by a flash device */
typedef struct _flash_dev_operator
{

11 Even though the word "flash" is used in the terminology of this device, the user is technically capable of implementing a FS which
uses a volatile memory instead. One potential reason for doing so would be to run logic/sanity checks on the filesystem API's before
implementing them on a flash device.

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
79 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 sln_flash_status_t (*init)(const flash_dev_t *dev);
 sln_flash_status_t (*deinit)(const flash_dev_t *dev);
 sln_flash_status_t (*format)(const flash_dev_t *dev);
 sln_flash_status_t (*save)(const flash_dev_t *dev, const char *path, void
 *buf, unsigned int size);
 sln_flash_status_t (*append)(const flash_dev_t *dev, const char *path, void
 *buf, unsigned int size, bool overwrite);
 sln_flash_status_t (*read)(const flash_dev_t *dev, const char *path, void
 *buf, unsigned int offset, unsigned int *size);
 sln_flash_status_t (*mkdir)(const flash_dev_t *dev, const char *path);
 sln_flash_status_t (*mkfile)(const flash_dev_t *dev, const char *path, bool
 encrypt);
 sln_flash_status_t (*rm)(const flash_dev_t *dev, const char *path);
 sln_flash_status_t (*rename)(const flash_dev_t *dev, const char *oldPath,
 const char *newPath);
 sln_flash_status_t (*cleanup)(const flash_dev_t *dev, unsigned int
 timeout_ms);
} flash_dev_operator_t;

4.4.8.2 Operators

Operators are functions which "operate" on a HAL device itself. Operators are akin to "public methods" in
object-oriented languages.

For more information about operators, see Operators.

4.4.8.2.1 Init

sln_flash_status_t (*init)(const flash_dev_t *dev);

Initializes the flash and file system.

Init should initialize any hardware resources required by the flash device (pins, ports, clock, and so on). 12 In
addition to initializing the hardware, the init function should also mount the filesystem. 13

4.4.8.2.2 Deinit

hal_lpm_status_t (*deinit)(const lpm_dev_t *dev);

"Deinitializes" the flash and file system.

DeInit should release any hardware resources that a flash device might use (I/O ports, IRQs, and so on), turn
off the hardware, and perform any other shutdown that the device requires.[2]

4.4.8.2.3 Format

sln_flash_status_t (*format)(const flash_dev_t *dev);

Cleans and formats the file system.

12 An application that runs from flash (does XiP) should not initialize/deinitialize any hardware. If a hardware change is truly needed, the
change should be performed with caution.

13 Some lightweight FS may not require mounting and can be prebuilt/preloaded on the flash instead. The "init" function should result in
the file system being in a usable state.

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
80 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

4.4.8.2.4 Save

sln_flash_status_t (*save)(const flash_dev_t *dev, const char *path, void *buf,
 unsigned int size);

Saves a file with the contents of buf to path in the filesystem.

4.4.8.2.5 Append

sln_flash_status_t (*append)(const flash_dev_t *dev, const char *path, void
 *buf, unsigned int size, bool overwrite);

Appends the contents of buf to an existing file located at path.

Setting overwrite equal to true will cause append from the beginning of the file instead. 14

4.4.8.2.6 Read

sln_flash_status_t (*read)(const flash_dev_t *dev, const char *path, void *buf,
 unsigned int offset, unsigned int *size);

Reads a file from the file system located at path and store the contents in buf. 15

To find the needed space for the buf, call "read" with buf set to "NULL". In case there is not enough space in
memory to read the whole file, a read with an offset can be used while specifying the chunk size.

4.4.8.2.7 Make directory

sln_flash_status_t (*mkdir)(const flash_dev_t *dev, const char *path);

Creates a directory located at path. If the file system in use does not support directories, this operator can be
set to "NULL".

4.4.8.2.8 Make file

sln_flash_status_t (*mkfile)(const flash_dev_t *dev, const char *path, bool
 encrypt);

Creates the file mentioned by the path. If the information cannot be stored in plain text, encryption can be
enabled.

4.4.8.2.9 Remove

sln_flash_status_t (*rm)(const flash_dev_t *dev, const char *path);

Removes the file located at path. If the file system in use does not support directories, this operator can be set
to "NULL".

14 "overwrite == true" makes this function nearly equivalent to the save function, the only difference being that this will not create a new
file.

15 It is up to the user to guarantee that the buffer supplied will fit the contents of the file being read.
SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
81 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

4.4.8.2.10 Rename

sln_flash_status_t (*rename)(const flash_dev_t *dev, const char *oldPath, const
 char *newPath);

Renames/moves a file from oldPath to newPath.

4.4.8.2.11 Cleanup

sln_flash_status_t (*cleanup)(const flash_dev_t *dev, unsigned int timeout_ms);

Cleans up the file system.

This function is used to help minimize delays introduced by things like fragmentation caused during "erase
sector" operations, which can lead to unwanted delays when searching for the next available sector.

timeout_ms specifies how much time to wait while performing the cleanup. This prevents from multiple HAL
devices calling cleanup and stalling the file system.

4.4.8.3 Example

Because only one flash device can be registered at a time per the design of the framework, the project has only
one file system implemented.

The source file for this flash HAL device is in "HAL/common/hal_flash_littlefs.c".

In this example, we will demonstrate a way to integrate the well-known "Littlefs" into our framework.

"Littlefs" is a light-weight file system that is designed to handle random power failures. The architecture of the
file system allows for directories and files. As a result, this example uses the following file layout:

root-directory
├── cfg
│ ├── Metadata
│ ├── fwk_cfg - stores framework related information.
│ └── app_cfg - stores app specific information.
├── oasis
│ ├── Metadata
│ └── faceFiles - the number of files that stores faces are up to 100
├── app_specific
└── wifi_info
 └── wifi_info

4.4.8.3.1 Littlefs device

static sln_flash_status_t _lfs_init()
{
 int res = kStatus_HAL_FlashSuccess;
 if (s_LittlefsHandler.lfsMounted)
 {
 return kStatus_HAL_FlashSuccess;
 }
 s_LittlefsHandler.lock = xSemaphoreCreateMutex();
 if (s_LittlefsHandler.lock == NULL)
 {
 LOGE("Littlefs create lock failed");
 return kStatus_HAL_FlashFail;

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
82 / 104

https://github.com/littlefs-project/littlefs

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 }

 _lfs_get_default_config(&s_LittlefsHandler.cfg);
#if DEBUG
 BOARD_InitFlashResources();
#endif
 SLN_Flash_Init();
 if (res)
 {
 LOGE("Littlefs storage init failed: %i", res);
 return kStatus_HAL_FlashFail;
 }

 res = lfs_mount(&s_LittlefsHandler.lfs, &s_LittlefsHandler.cfg);
 if (res == 0)
 {
 s_LittlefsHandler.lfsMounted = 1;
 LOGD("Littlefs mount success");
 }
 else if (res == LFS_ERR_CORRUPT)
 {
 LOGE("Littlefs corrupt");
 lfs_format(&s_LittlefsHandler.lfs, &s_LittlefsHandler.cfg);
 LOGD("Littlefs attempting to mount after reformatting...");
 res = lfs_mount(&s_LittlefsHandler.lfs, &s_LittlefsHandler.cfg);
 if (res == 0)
 {
 s_LittlefsHandler.lfsMounted = 1;
 LOGD("Littlefs mount success");
 }
 else
 {
 LOGE("Littlefs mount failed again");
 return kStatus_HAL_FlashFail;
 }
 }
 else
 {
 LOGE("Littlefs error while mounting");
 }

 return res;
}

static sln_flash_status_t _lfs_cleanupHandler(const flash_dev_t *dev,
 unsigned int
 timeout_ms)
{
 sln_flash_status_t status = kStatus_HAL_FlashSuccess;
 uint32_t usedBlocks[LFS_SECTORS/32] = {0};
 uint32_t emptyBlocks = 0;
 uint32_t startTime = 0;
 uint32_t currentTime = 0;

 if (_lock())
 {
 LOGE("Littlefs _lock failed");
 return kStatus_HAL_FlashFail;
 }

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
83 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 /* create used block list */
 lfs_fs_traverse(&s_LittlefsHandler.lfs, _lfs_traverse_create_used_blocks,
 &usedBlocks);

 startTime = sln_current_time_us();

 /* find next block starting from free.i */
 for (int i = 0; i < LFS_SECTORS; i++)
 {
 currentTime = sln_current_time_us();
 /* Check timeout */
 if ((timeout_ms) && (currentTime >= (startTime + timeout_ms * 1000)))
 {
 break;
 }

 lfs_block_t block = (s_LittlefsHandler.lfs.free.i + i) % LFS_SECTORS;

 /* take next unused marked block */
 if (!_is_blockBitSet(usedBlocks, block))
 {
 /* If the block is marked as free but not yet erased, try to erase
 it */
 LOGD("Block %i is unused, try to erase it", block);
 _lfs_qspiflash_erase(&s_LittlefsConfigDefault, block);
 emptyBlocks += 1;
 }
 }

 LOGI("%i empty_blocks starting from %i available in %ims",
 emptyBlocks, s_LittlefsHandler.lfs.free.i,
 (sln_current_time_us() - startTime)/1000);

 _unlock();
 return status;
}

static sln_flash_status_t _lfs_formatHandler(const flash_dev_t *dev)
{
 if (_lock())
 {
 LOGE("Littlefs _lock failed");
 return kStatus_HAL_FlashFail;
 }
 lfs_format(&s_LittlefsHandler.lfs, &s_LittlefsHandler.cfg);
 _unlock();
 return kStatus_HAL_FlashSuccess;
}

static sln_flash_status_t _lfs_rmHandler(const flash_dev_t *dev, const char
 *path)
{
 int res;

 if (_lock())
 {
 LOGE("Littlefs _lock failed");
 return kStatus_HAL_FlashFail;
 }

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
84 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 res = lfs_remove(&s_LittlefsHandler.lfs, path);
 if (res)
 {
 LOGE("Littlefs while removing: %i", res);
 _unlock();
 if (res == LFS_ERR_NOENT)
 {
 return kStatus_HAL_FlashFileNotExist;
 }

 return kStatus_HAL_FlashFail;
 }
 _unlock();
 return kStatus_HAL_FlashSuccess;
}

static sln_flash_status_t _lfs_mkdirHandler(const flash_dev_t *dev, const char
 *path)
{
 int res;

 if (_lock())
 {
 LOGE("Littlefs _lock failed");
 return kStatus_HAL_FlashFail;
 }

 res = lfs_mkdir(&s_LittlefsHandler.lfs, path);

 if (res == LFS_ERR_EXIST)
 {
 LOGD("Littlefs directory exists: %i", res);
 _unlock();
 return kStatus_HAL_FlashDirExist;
 }
 else if (res)
 {
 LOGE("Littlefs creating directory: %i", res);
 _unlock();
 return kStatus_HAL_FlashFail;
 }
 _unlock();
 return kStatus_HAL_FlashSuccess;
}

static sln_flash_status_t _lfs_writeHandler(const flash_dev_t *dev, const char
 *path, void *buf, unsigned int size)
{
 int res;
 lfs_file_t file;

 if (_lock())
 {
 LOGE("Littlefs _lock failed");
 return kStatus_HAL_FlashFail;
 }

 res = lfs_file_opencfg(&s_LittlefsHandler.lfs, &file, path, LFS_O_CREAT,
 &s_FileDefault);
 if (res)

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
85 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 {
 LOGE("Littlefs opening file: %i", res);
 _unlock();
 return kStatus_HAL_FlashFail;
 }

 res = lfs_file_write(&s_LittlefsHandler.lfs, &file, buf, size);
 if (res < 0)
 {
 LOGE("Littlefs writing file: %i", res);
 _unlock();
 return kStatus_HAL_FlashFail;
 }

 res = lfs_file_close(&s_LittlefsHandler.lfs, &file);
 if (res)
 {
 LOGE("Littlefs closing file: %i", res);
 _unlock();
 return kStatus_HAL_FlashFail;
 }

 _unlock();
 return kStatus_HAL_FlashSuccess;
}

static sln_flash_status_t _lfs_appendHandler(const flash_dev_t *dev,
 const char *path,
 void *buf,
 unsigned int size,
 bool overwrite)
{
 int res;
 lfs_file_t file;

 if (_lock())
 {
 LOGE("Littlefs _lock failed");
 return kStatus_HAL_FlashFail;
 }

 res = lfs_file_opencfg(&s_LittlefsHandler.lfs, &file, path, LFS_O_APPEND,
 &s_FileDefault);
 if (res)
 {
 LOGE("Littlefs opening file: %i", res);
 _unlock();
 if (res == LFS_ERR_NOENT)
 {
 return kStatus_HAL_FlashFileNotExist;
 }
 return kStatus_HAL_FlashFail;
 }

 if (overwrite == true)
 {
 res = lfs_file_truncate(&s_LittlefsHandler.lfs, &file, 0);

 if (res < 0)
 {

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
86 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 LOGE("Littlefs truncate file: %i", res);
 _unlock();
 return kStatus_HAL_FlashFail;
 }
 }

 res = lfs_file_write(&s_LittlefsHandler.lfs, &file, buf, size);
 if (res < 0)
 {
 LOGE("Littlefs writing file: %i", res);
 _unlock();
 return kStatus_HAL_FlashFail;
 }

 res = lfs_file_close(&s_LittlefsHandler.lfs, &file);
 if (res)
 {
 LOGE("Littlefs closing file: %i", res);
 _unlock();
 return kStatus_HAL_FlashFail;
 }

 _unlock();
 return kStatus_HAL_FlashSuccess;
}

static sln_flash_status_t _lfs_readHandler(const flash_dev_t *dev, const char
 *path, void *buf, unsigned int size)
{
 int res;
 int offset = 0;
 lfs_file_t file;

 if (_lock())
 {
 LOGE("Littlefs _lock failed");
 return kStatus_HAL_FlashFail;
 }
 res = lfs_file_opencfg(&s_LittlefsHandler.lfs, &file, path, LFS_O_RDONLY,
 &s_FileDefault);
 if (res)
 {
 LOGE("Littlefs opening file: %i", res);
 _unlock();
 if (res == LFS_ERR_NOENT)
 {
 return kStatus_HAL_FlashFileNotExist;
 }
 return kStatus_HAL_FlashFail;
 }

 do
 {
 res = lfs_file_read(&s_LittlefsHandler.lfs, &file, (buf + offset),
 size);
 if (res < 0)
 {
 LOGE("Littlefs reading file: %i", res);
 _unlock();
 return kStatus_HAL_FlashFail;

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
87 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 }
 else if (res == 0)
 {
 LOGD("Littlefs reading file \"%s\": Read only %d. %d bytes not found
 ", path, offset, size);
 break;
 }

 offset += res;
 size -= res;
 } while (size > 0);

 res = lfs_file_close(&s_LittlefsHandler.lfs, &file);
 if (res)
 {
 LOGE("Littlefs closing file: %i", res);
 _unlock();
 return kStatus_HAL_FlashFail;
 }

 _unlock();
 return kStatus_HAL_FlashSuccess;
}

static sln_flash_status_t _lfs_renameHandler(const flash_dev_t *dev, const char
 *OldPath, const char *NewPath)
{
 int res;

 if (_lock())
 {
 LOGE("Littlefs _lock failed");
 return kStatus_HAL_FlashFail;
 }

 res = lfs_rename(&s_LittlefsHandler.lfs, OldPath, NewPath);
 if (res)
 {
 LOGE("Littlefs renaming file: %i", res);
 _unlock();
 return kStatus_HAL_FlashFail;
 }
 _unlock();
 return kStatus_HAL_FlashSuccess;
}

const static flash_dev_operator_t s_FlashDev_LittlefsOps = {
 .init = _lfs_init,
 .deinit = NULL,
 .format = _lfs_formatHandler,
 .append = _lfs_appendHandler,
 .save = _lfs_writeHandler,
 .read = _lfs_readHandler,
 .mkdir = _lfs_mkdirHandler,
 .rm = _lfs_rmHandler,
 .rename = _lfs_renameHandler,
 .cleanup= _lfs_cleanupHandler,
};

static flash_dev_t s_FlashDev_Littlefs = {

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
88 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 .id = 0,
 .ops = &s_FlashDev_LittlefsOps,
};

int HAL_FlashDev_Littlefs_Init()
{
 int error = 0;
 LOGD("++HAL_FlashDev_Littlefs_Init");
 _lfs_init();

 LOGD("--HAL_FlashDev_Littlefs_Init");
 error = FWK_Flash_DeviceRegister(&s_FlashDev_Littlefs);

 FWK_LpmManager_RegisterRequestHandler(&s_LpmReq);
 return error;
}

What was presented here shows only the operators described above. For more information about the "Littlefs"
configuration, FlexSPI configuration, and optimization done, check the full code base.

4.5 Events

4.5.1 Overview

Events are a means by which information is communicated between different devices via their managers.

4.5.1.1 Event triggers

Events can correspond to many different happenings during the runtime of the application, and they can include
things like:

• Button pressed
• Face detected
• Shell command received

When an event is triggered, the device which first received the event will communicate that event to its
manager, which in turn will notify other managers designated to receive the event.

For example, when a button is pressed, a flow similar to the following will take place:

1. The "Push Button" HAL device will receive an interrupt corresponding to the button that was pressed.
2. Inside the HAL device's interrupt handler, the device will associate an event with the button that was

pressed.
3. The HAL device will specify which managers should receive the event.
4. The HAL device will forward the event to its manager.

The code which corresponds to this scenario is in the below excerpts from "framework/input/hal_input_push_
buttons.c" and "source/event_handlers/smart_lock_input_push_buttons.c", respectively.

void _HAL_InputDev_IrqHandler(button_data_t *button, switch_press_type_t
 pressType)
{
 if (s_InputDev_PushButtons.cap.callback != NULL)
 {
 uint32_t receiverList;
 if (APP_InputDev_PushButtons_SetEvent(button->buttonId, pressType,
 &s_pEvent, &receiverList) == kStatus_Success)
 {

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
89 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 s_inputEvent.inputData = s_pEvent;
 uint8_t fromISR = __get_IPSR();
 s_InputDev_PushButtons.cap.callback(&s_InputDev_PushButtons,
 kInputEventID_Recv, receiverList,
 &s_inputEvent, 0, fromISR);
 }
 else
 {
 LOGE("No valid event associated with SW%d button %s press", button-
>buttonId,
 pressType == kSwitchPressType_Short ? "short" : "long");
 }
 }
}

The "callback" function in the above code refers to an internal callback function inside the [Input Manager](.
./device_managers/input_manager.md), which relays input events to each of the managers specified in an
event's "receiverList".

 switch (button)
 {
 case kSwitchID_1:
 if (pressType == kSwitchPressType_Long)
 {
 LOGD("Long PRESS Detected.");
 unsigned int totalUsageCount;
 FWK_LpmManager_RequestStatus(&totalUsageCount);
 FWK_LpmManager_EnableSleepMode(kLPMManagerStatus_SleepEnable);
 }
 break;

 case kSwitchID_2:
 if ((pressType == kSwitchPressType_Short) || (pressType ==
 kSwitchPressType_Long))
 {
 *receiverList = 1 << kFWKTaskID_VisionAlgo;
 s_FaceRecEvent.eventBase.eventId = kEventFaceRecID_DelUser;
 s_FaceRecEvent.delFace.hasName = false;
 s_FaceRecEvent.delFace.hasID = false;
 *event = &s_FaceRecEvent;
 }
 break;

 case kSwitchID_3:
 if ((pressType == kSwitchPressType_Short) || (pressType ==
 kSwitchPressType_Long))
 {
 *receiverList = 1 << kFWKTaskID_VisionAlgo;
 s_FaceRecEvent.eventBase.eventId = kEventFaceRecID_AddUser;
 s_FaceRecEvent.addFace.hasName = false;
 *event = &s_FaceRecEvent;
 }
 break;

 default:
 ret = kStatus_Fail;
 break;
 }

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
90 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 return ret;

4.5.1.2 Types of events

Events can be used to communicate all sorts of information, but the two types of events defined by default are
InferComplete events and InputNotify events.

Both types of events represent different information being communicated to and by the HAL devices.

4.5.1.2.1 InferComplete events

Inference events are used to indicate that a vision/voice algorithm HAL device has completed a stage in its
inference pipeline.

Currently, only the output HAL devices can respond to the "InferComplete" events. This is not true of the
"InputNotify" events.

In the current application, this can refer to several things, including:

• Face detected
• Face recognized
• Fake face detected

The output HAL devices can respond to inference events by implementing an inferComplete method. When
an "InferComplete" event is triggered, the output manager attempts to call the inferComplete event handler
of each of its devices, (assuming that the device has implemented the inferComplete function).

As part of the inferComplete function call, the output manager will also communicate the HAL device from
which the event originated, the ID of the event received, as well as any additional information related to the
event that was generated.

For example, a "Face Recognized" event will also include the ID of the face being recognized. Below is an
example of how the RGB LED HAL device responds to several different events.

static hal_output_status_t HAL_OutputDev_RgbLed_InferComplete(const output_dev_t
 *dev,

 output_algo_source_t source,
 void *inferResult)
{
 vision_algo_result_t *visionAlgoResult = (vision_algo_result_t
 *)inferResult;
 hal_output_status_t error = kStatus_HAL_OutputSuccess;

 if (visionAlgoResult != NULL)
 {
 if (visionAlgoResult->id == kVisionAlgoID_OasisLite)
 {
 oasis_lite_result_t *result = &(visionAlgoResult->oasisLite);
 if (source == kOutputAlgoSource_Vision)
 {
 if ((result->face_recognized) && (result->face_id >= 0))
 {
 RGB_LED_SET_COLOR(kRGBLedColor_Green);
 }
 else if (result->face_count)
 {
 RGB_LED_SET_COLOR(kRGBLedColor_Red);
 }

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
91 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 else
 {
 RGB_LED_SET_COLOR(kRGBLedColor_Off);
 }
 }
 }

For more information about handling events, see Section 4.5.2.

4.5.1.2.2 InputNotify events

The input events are events that indicate that the input has been received by an input HAL device.

Only the input HAL devices can generate an "InputNotify" event. However, all HAL devices (with the exception
of [LPM](../hal_devices/low_power.md), Flash, and Graphics devices) are able to respond to an "InputNotify"
event.

The examples of input events include:

• Button pressed
• Shell command received
• Wi-Fi/BLE input received

The event to generate for a given input is decided by the device that receives the input.

For example, the "Push Button" device associates different events based on the different button presses and
the duration of those button presses, either long or short presses.

 switch (button)
 {
 case kSwitchID_1:
 if (pressType == kSwitchPressType_Long)
 {
 LOGD("Long PRESS Detected.");
 unsigned int totalUsageCount;
 FWK_LpmManager_RequestStatus(&totalUsageCount);
 FWK_LpmManager_EnableSleepMode(kLPMManagerStatus_SleepEnable);
 }
 break;

 case kSwitchID_2:
 if ((pressType == kSwitchPressType_Short) || (pressType ==
 kSwitchPressType_Long))
 {
 *receiverList = 1 << kFWKTaskID_VisionAlgo;
 s_FaceRecEvent.eventBase.eventId = kEventFaceRecID_DelUser;
 s_FaceRecEvent.delFace.hasName = false;
 s_FaceRecEvent.delFace.hasID = false;
 *event = &s_FaceRecEvent;
 }
 break;

 case kSwitchID_3:
 if ((pressType == kSwitchPressType_Short) || (pressType ==
 kSwitchPressType_Long))
 {
 *receiverList = 1 << kFWKTaskID_VisionAlgo;
 s_FaceRecEvent.eventBase.eventId = kEventFaceRecID_AddUser;
 s_FaceRecEvent.addFace.hasName = false;
 *event = &s_FaceRecEvent;

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
92 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 }
 break;

 default:
 ret = kStatus_Fail;
 break;
 }

Alongside an input event, the HAL device from which the event originated may also relay additional information
as well. Depending on the event, this may correspond to the button that was pressed, the shell command and
args that were received, and so on.

In the above example, you can see that pressing the "SW3" push button generates a
kEventFaceRecID_AddUser event, specifying that there is no name for the face to add.

A list of general events is in "hal_event_descriptor_common.h", while a list of face recognition-
specific events is in "hal_event_descriptor_face_rec.h". It is recommended to add new events to the
"hal_event_descriptor_common.h" file.

To respond to an "InputNotify" event, a HAL device must implement an inputNotify handler function. When
an "InputNotify" event is triggered, each manager receives the event attempts to call the inputNotify method
of every one of its devices (assuming that the device has implemented an inputNotify method).

For more information about event handlers, see Section 4.5.2.

4.5.2 Event handlers

Because events are the primary means by which the framework communicates between devices, a mechanism
to respond to those events is necessary for them to be useful. Event handlers were created for this purpose.

There are two kinds of event handlers:

• Default handlers
• App-specific handlers

As other device operators, event handlers are passed via the device's operator struct to its manager.

const static display_dev_operator_t s_DisplayDev_LcdifOps = {
 .init = HAL_DisplayDev_LcdifRk024hh2_Init,
 .deinit = HAL_DisplayDev_LcdifRk024hh2_Uninit,
 .start = HAL_DisplayDev_LcdifRk024hh2_Start,
 .blit = HAL_DisplayDev_LcdifRk024hh2_Blit,
 .inputNotify = HAL_DisplayDev_LcdifRk024hh2_InputNotify,
};

Each HAL device may define its own handlers for any given event. For example, a developer may want
the RGB LEDs to turn green when a face is recognized, but the UI may display a specific overlay for that
same event. To do this, the RGB Output HAL device and the UI Output HAL device can each implement an
InferComplete handler, which will be called by their manager when an "InferComplete" event is received.

A HAL device does not have to implement an event handler for any specific event, nor does it have to
implement an "InputNotify" handler (applicable for most device types) or an "InferComplete" handler (applicable
only for output devices).

4.5.2.1 Default handlers

The default event handlers are exactly what their name would suggest, the default means by which a device
handles events. A HAL device's default event handlers (InputNotify, InferComplete, and so on) can be
found in the HAL device driver itself.
SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
93 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

Nearly every device has a default handler implemented16, although most devices will only actually handle a few
types of events.

static hal_display_status_t HAL_DisplayDev_LcdifRk024hh2_InputNotify(const
 display_dev_t *receiver, void *data)
{
 hal_display_status_t error = kStatus_HAL_DisplaySuccess;
 event_base_t eventBase = *(event_base_t *)data;
 event_status_t event_response_status = kEventStatus_Ok;

 if (eventBase.eventId == kEventID_SetDisplayOutputSource)
 {
 event_common_t event = *(event_common_t *)data;
 s_DisplayDev_Lcdif.cap.srcFormat =
 event.displayOutput.displayOutputSource;
 s_NewBufferSet = true;
 if (eventBase.respond != NULL)
 {
 eventBase.respond(eventBase.eventId, &event.displayOutput,
 event_response_status, true);
 }
 LOGI("[display_dev_inputNotify]: kEventID_SetDisplayOutputSource devID
 %d, srcFormat %d", receiver->id,
 event.displayOutput.displayOutputSource);
 }
 else if (eventBase.eventId == kEventID_GetDisplayOutputSource)
 {
 display_output_event_t display;
 display.displayOutputSource = s_DisplayDev_Lcdif.cap.srcFormat;
 if (eventBase.respond != NULL)
 {
 eventBase.respond(eventBase.eventId, &display,
 event_response_status, true);
 }
 LOGI("[display_dev_inputNotify]: kEventID_GetDisplayOutputSource devID
 %d, srcFormat %d", receiver->id,
 display.displayOutputSource);
 }

 return error;
}

Some devices will not handle any events at all and they will instead return 0 after performing no action.

hal_camera_status_t HAL_CameraDev_CsiGc0308_InputNotify(const camera_dev_t *dev,
 void *data)
{
 hal_camera_status_t ret = kStatus_HAL_CameraSuccess;

 return ret;
}

Alternatively, some devices that do not require an event handler may simply return a NULL pointer instead.

const static display_dev_operator_t s_DisplayDev_LcdifOps = {
 .init = HAL_DisplayDev_Lcdifv2Rk055ah_Init,
 .deinit = HAL_DisplayDev_Lcdifv2Rk055ah_Deinit,

16 Devices which do not have a handler implemented can be extended to have one using a similar device as an example.
SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
94 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 .start = HAL_DisplayDev_Lcdifv2Rk055ah_Start,
 .blit = HAL_DisplayDev_Lcdifv2Rk055ah_Blit,
 .inputNotify = NULL,
};

Managers will know not to call the InputNotify or other handler if that handler points to NULL.

A device's default handler, whether for InputNotify events, InferComplete events, or otherwise can be
overridden by an app-specific handler.

4.5.2.2 App-specific handlers

App-specific handlers are device handlers which are defined for a specific application.

Not every device will have to implement an app-specific handler, but because default handlers are implemented
using WEAK functions 17, any device that has a default event handler can have that handler overridden.

For example, the IR + White LEDs may not require project-specific handlers because they will always react the
same way to a kEventID_SetConfig/kEventID_GetConfig command. Alternatively, an application may
wish to override and/or extend that default event-handling behavior so that, for example, the LEDs increase in
brightness when an "Add Face" event is received.

To help denote an app-specific handler, app-specific handlers will start with the APP prefix. If an app-specific
handler for a device exists, it is in source/event_handlers/{APP_NAME}_{DEV_TYPE}_{DEV_NAME}.c.

5 Smart lock

5.1 Introduction
The Smart Lock application is a demo reference project that uses NXP proprietary face-recognition and
detection engine to implement all the functionality necessary for a full-fledged Smart Lock product. The Smart
Lock application comes with many out-of-the-box features, including:

• Local (offline) face registration and recognition
• Remote face registration and recognition via a smartphone/tablet
• Liveness detection for protection against spoof attacks

Note: Be sure to check out the getting started guide (document SLN-VIZNLC-IOT-GSG) and user guide
(document SLN-VIZNLC-IOT-UG) for an overview of the out-of-the-box features available in the SLN-VIZNLC-
IOT.

5.1.1 Software block diagram

The Smart Lock application uses a two-layer architecture containing the "Framework + HAL" layer and the
"Application" layer.

17 Some devices may not have implemented their default handlers using "WEAK" functions, but they may be updated to do so in the
future.

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
95 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

M
Q

S
Button SpeakerLEDBluetooth LEDisplay

LC
D

IF

Camera

U
AR

T

SD
IO

G
PI

O

WIFI

C
SI I2
C

PW
M

Driver Layer

Fr
ee

R
TO

S

Face Detection

NXP OASIS LITE Runtime Library

File
System

Serial
Manager

Middleware
Oasis Lite API

GUI

Audio

Bluetooth LE

Shell

Application Control

Over the Wire Update (OTW)

Boot Loader

Drag and Drop Update

NXP MCU inference engine

Face Alignment

Face Quality 2D Liveness Algo

Face Recognition

Memory Management
M

ini C
V

Camera
HAL

Hardware Abstraction Layer
Display

HAL
Algorithm

HAL
Input
HAL

Output
HAL

Camera
Manager

Framework
Display

Manager
Algorithm
Manager

Input
Manager

Output
Manager

Figure 10. Software block diagram

The bottom "Framework + HAL" layer acts as a message-routing system which allows the peripherals
connected to the board to interact with one another. The "Framework" was designed with code portability in
mind, with the idea that low-level driver bindings would connect to higher-level, platform-agnostic "Hardware
Abstraction Layer" drivers which do not depend on the underlying pin assignments, and so on. They are specific
to the board. This design allows for easy migration from one platform to another, helping alleviate platform lock-
in, and make code easier to read, write, modify, and maintain.

The top "Application" layer contains all application-specific code including the various sounds, icons, UI
elements, and so on. In addition, the "Application" layer registers all the devices relevant to the application, as
well as their event handlers, which react to events triggered by other devices.

Separating the "Application" and "Framework + HAL" layers from each other encourages code reuse between
different projects, because the underlying "Framework" code can be reused almost in its entirety, while primarily
only the "Application" layer code needs modifications.

5.2 Main functionalities
The Smart Lock application runs on RT106F with the following functionalities.

• Camera with 2D PxP graphics acceleration
• Display for the camera preview and GUI
• Vision algorithm
SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
96 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

• Audio playback
• Littlefs
• USB shell

5.3 Boot sequence
Below is the core boot-up flow:

• Board level initialization
• Framework initialization
• HAL devices registration
• Framework startup
• FreeRTOS scheduler startup

The main() entry of this project is located in the "rt106f_smart_lock/source/main.cpp" file:

int main(void)
{
 /* Init board hardware. */
 APP_BoardInit();
#if LOG_ENABLE
 xLoggingTaskInitialize(LOGGING_TASK_STACK_SIZE, LOGGING_TASK_PRIORITY,
 LOGGING_QUEUE_LENGTH);
#endif
 /* init the framework*/
 APP_InitFramework();

 /* register the hal devices*/
 APP_RegisterHalDevices();

 /* start the framework*/
 APP_StartFramework();

 // start
 vTaskStartScheduler();

 while (1)
 {
 LOGD("#");
 }

 return 0;
}

5.3.1 Board-level initialization

The board-level initialization is implemented in the "APP_BoardInit()" entry, which is located in the
"rt106f_smart_lock/source/main.cpp" file.

The following is the main flow:

• Relocate vector table into RAM
• MPU, Clock, and Pins configuration
• Debug console with hardware semaphore initialization
• System time-stamp start

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
97 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

• Load resource from the flash into the share-memory region

void APP_BoardInit(void)
{
 BOARD_InitHardware();
}

void BOARD_InitHardware(void)
{
#if RELOCATE_VECTOR_TABLE
 BOARD_RelocateVectorTableToRam();
#endif
 BOARD_ConfigMPU();
 BOARD_InitBootPins();
 BOARD_InitBootClocks();
 BOARD_InitDebugConsole();
// BOARD_InitEDMA();
 Time_Init(1);
}

5.3.2 Framework initialization

The below framework managers are initialized.

• Flash device manager
• Camera manager
• Display manager
• Vision algorithm manager
• Input manager
• Output manager

int APP_InitFramework(void)
{

 int ret = 0;

 ret = HAL_FlashDev_Littlefs_Register();
 if (ret != 0)
 {
 LOGE("HAL_FlashDev_Littlefs_Init error %d", ret);
 return ret;
 }

 ret = HAL_OutputDev_SmartLockConfig_Init();
 if (ret != 0)
 {
 LOGE("HAL_OutputDev_SmartLockConfig_Init error %d", ret);
 return ret;
 }

 ret = FWK_CameraManager_Init();
 if (ret != 0)
 {
 LOGE("FWK_CameraManager_Init error %d", ret);
 return ret;
 }

 ret = FWK_DisplayManager_Init();

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
98 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

 if (ret != 0)
 {
 LOGE("FWK_DisplayManager_Init error %d", ret);
 return ret;
 }

 ret = FWK_VisionAlgoManager_Init();
 if (ret != 0)
 {
 LOGE("FWK_VisionAlgoManager_Init error %d", ret);
 return ret;
 }

 ret = FWK_OutputManager_Init();
 if (ret != 0)
 {
 LOGE("FWK_OutputManager_Init error %d", ret);
 return ret;
 }

 ret = FWK_InputManager_Init();
 if (ret != 0)
 {
 LOGE("FWK_InputManager_Init error %d", ret);
 return ret;
 }

 return ret;
}

5.3.3 HAL devices registration

The enabled HAL devices are configured in the "rt106f_smart_lock/board/board_define.h" file as follows:

/*
 * Enablement of the HAL devices
 */
#define ENABLE_GFX_DEV_Pxp
#define ENABLE_DISPLAY_DEV_LcdifRk024hh298
#define ENABLE_DISPLAY_DEV_UsbUvc
#define ENABLE_CSI_SHARED_DUAL_CAMERA
#define ENABLE_FLASH_DEV_Littlefs
#define ENABLE_VISIONALGO_DEV_OasisLite2D
#define ENABLE_FACEDB
#define OASIS_FACE_DB_DIR "faceDB"
#define ENABLE_OUTPUT_DEV_SmartLockConfig
#define ENABLE_INPUT_DEV_PushButons_VIZNLC
#define ENABLE_OUTPUT_DEV_IrWhiteLeds
#define ENABLE_OUTPUT_DEV_UiSmartlock_VIZNLC
#define ENABLE_OUTPUT_DEV_MqsAudio_VIZNLC
#define ENABLE_INPUT_DEV_BleWuartQn9090
#define ENABLE_INPUT_DEV_ShellUsb
#define ENABLE_LPM_DEV_Standby
#define ENABLE_INPUT_DEV_Lpc845uart

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
99 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

The registration of the enabled HAL devices is implemented in the APP_RegisterHalDevices(...)
function, which is located in the "rt106f_smart_lock/source/main.cpp" file:

int APP_RegisterHalDevices(void)
{
 int ret = 0;
 /* Register Hal Devices here */
 ...

 return ret;
}

5.4 Logging
Both projects are leveraging the FreeRTOS logging library.

The FreeRTOS logging library code is located in the logging folder where you can find the detailed "freertos/
libraries/logging/README.md" document.

5.4.1 Log task init

The application calls the xLoggingTaskInitialize(...) API to create the logging task in the main()
entry of this project and it is located in the "rt106f_smart_lock/source/main.cpp" file:

xLoggingTaskInitialize(LOGGING_TASK_STACK_SIZE, LOGGING_TASK_PRIORITY,
 LOGGING_QUEUE_LENGTH);

5.4.2 Log macros

There are four kinds of logging, in the "framework/inc/fwk_log.h" file.

#ifndef LOGV
#define LOGV(fmt, args...) {implement...}
...
#endif

#ifndef LOGD
#define LOGD(fmt, args...) {implement...}
#endif

#ifndef LOGI
#define LOGI(fmt, args...) {implement...}
#endif

#ifndef LOGE
#define LOGE(fmt, args...) {implement...}
#endif

5.4.3 database

The Smart Lock application uses framework flash operations with the low-level "littlefs" file system to store the
recognized user faces database information. The detailed usage API is located in the "framework/hal/vision/hal_
sln_facedb.h" file.

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
100 / 104

https://www.freertos.org/logging.html

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

5.4.3.1 Face recognize database usage

The g_facedb_ops handles all kinds of face database operation.

typedef struct _facedb_ops
{
 facedb_status_t (*init)(uint16_t featureSize);
 facedb_status_t (*saveFace)(void);
 facedb_status_t (*addFace)(uint16_t id, char *name, void *face, int size);
 facedb_status_t (*delFaceWithId)(uint16_t id);
 facedb_status_t (*delFaceWithName)(char *name);
 facedb_status_t (*updNameWithId)(uint16_t id, char *name);
 facedb_status_t (*updFaceWithId)(uint16_t id, char *name, void *face, int
 size);
 facedb_status_t (*getFaceWithId)(uint16_t id, void **pFace);
 facedb_status_t (*getIdsAndFaces)(uint16_t *face_ids, void **pFace);
 facedb_status_t (*getIdWithName)(char *name, uint16_t *id);
 facedb_status_t (*genId)(uint16_t *new_id);
 facedb_status_t (*getIds)(uint16_t *face_ids);
 bool (*getSaveStatus)(uint16_t id);
 int (*getFaceCount)(void);
 char *(*getNameWithId)(uint16_t id);
} facedb_ops_t;

extern const facedb_ops_t g_facedb_ops;

6 Revision history

The following table provides the revision history.

Revision number Date Substantive changes

0 4 April 2023 Initial release

Table 1. Revision history

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
101 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

7 Legal information

7.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

7.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

7.3 Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
102 / 104

mailto:PSIRT@nxp.com

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

Contents
1 Introduction ... 2
2 Setup and installation ...2
2.1 MCUXpresso IDE .. 2
2.2 Install toolchain ..2
2.3 Installing SDK .. 3
2.4 Importing projects .. 3
2.4.1 Importing from Github ..3
3 Bootloader ... 4
3.1 Introduction .. 4
3.1.1 Why to use a bootloader? 4
3.1.2 Application banks .. 4
3.1.3 Logging .. 5
3.2 Boot modes ... 8
3.2.1 Overview ..8
3.2.1.1 How is boot mode determined?9
3.2.2 Normal boot ... 9
3.2.3 Mass Storage Device (MSD) updates 9
3.2.3.1 Enabling MSD mode ... 9
3.2.3.2 Flashing a new binary 10
3.3 Application banks .. 11
3.3.1 Addresses ..11
3.3.2 Configuring flash bank in MCUXpresso IDE 11
3.3.2.1 Converting .axf to .bin11
4 Framework ... 12
4.1 Framework introduction 12
4.1.1 Design goals ..13
4.1.2 Relevant files ... 13
4.2 Naming conventions .. 14
4.2.1 Functions ... 14
4.2.2 Variables .. 15
4.2.3 Typedefs .. 16
4.2.4 Enums ..16
4.2.5 Macros and defines ... 16
4.3 Device managers ...17
4.3.1 Overview ..17
4.3.1.1 Initialization flow .. 17
4.3.2 Vision input manager18
4.3.2.1 APIs ... 18
4.3.3 Output manager ...19
4.3.3.1 APIs ... 19
4.3.4 Camera manager ...20
4.3.4.1 APIs ... 20
4.3.5 Display manager ..21
4.3.5.1 APIs ... 21
4.3.6 Vision algorithm manager21
4.3.6.1 APIs ... 22
4.3.7 Low power manager ..22
4.3.7.1 APIs ... 23
4.3.8 Flash manager ...24
4.3.8.1 Device APIs ... 24
4.3.8.2 Operations APIs .. 25
4.4 HAL devices .. 27
4.4.1 Overview ..27
4.4.1.1 Device registration ...27
4.4.1.2 Device types .. 28
4.4.1.3 Anatomy of a HAL device29

4.4.1.4 Configs ...30
4.4.2 Input devices ... 32
4.4.2.1 Device definition .. 32
4.4.2.2 Operators ...33
4.4.2.3 Capabilities .. 34
4.4.2.4 Example ...36
4.4.3 Output devices ...37
4.4.3.1 Subtypes ..38
4.4.3.2 Device definition .. 38
4.4.3.3 Operators ...39
4.4.3.4 Attributes ..40
4.4.3.5 Example ...41
4.4.4 Camera devices ...45
4.4.4.1 Device definition .. 45
4.4.4.2 Operators ...47
4.4.4.3 Static configs ... 48
4.4.4.4 Capabilities .. 50
4.4.4.5 Example ...51
4.4.5 Display devices ..53
4.4.5.1 Device definition .. 53
4.4.5.2 Operators ...55
4.4.5.3 Capabilities .. 56
4.4.5.4 Example ...59
4.4.6 Vision algorithm devices62
4.4.6.1 Device definition .. 62
4.4.6.2 Operators ...63
4.4.6.3 Capabilities .. 64
4.4.6.4 Private data ... 65
4.4.6.5 Example ...66
4.4.7 Low power devices ..69
4.4.7.1 Device definition .. 70
4.4.7.2 Operators ...71
4.4.7.3 Components ...73
4.4.7.4 Example ...74
4.4.8 Flash devices ...79
4.4.8.1 Device definition .. 79
4.4.8.2 Operators ...80
4.4.8.3 Example ...82
4.5 Events ..89
4.5.1 Overview ..89
4.5.1.1 Event triggers .. 89
4.5.1.2 Types of events ... 91
4.5.2 Event handlers ...93
4.5.2.1 Default handlers .. 93
4.5.2.2 App-specific handlers 95
5 Smart lock ..95
5.1 Introduction .. 95
5.1.1 Software block diagram 95
5.2 Main functionalities .. 96
5.3 Boot sequence ...97
5.3.1 Board-level initialization 97
5.3.2 Framework initialization 98
5.3.3 HAL devices registration99
5.4 Logging .. 100
5.4.1 Log task init ... 100
5.4.2 Log macros ..100

SLN-VIZNLC-IOT-SDG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 0 — 4 April 2023
103 / 104

NXP Semiconductors SLN-VIZNLC-IOT-SDG
SLN-VIZNLC-IOT Software Developer Guide

5.4.3 database .. 100
5.4.3.1 Face recognize database usage101
6 Revision history .. 101
7 Legal information .. 102

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2023 NXP B.V. All rights reserved.
For more information, please visit: http://www.nxp.com

Date of release: 4 April 2023

	1 Introduction
	2 Setup and installation
	2.1 MCUXpresso IDE
	2.2 Install toolchain
	2.3 Installing SDK
	2.4 Importing projects
	2.4.1 Importing from Github

	3 Bootloader
	3.1 Introduction
	3.1.1 Why to use a bootloader?
	3.1.2 Application banks
	3.1.3 Logging

	3.2 Boot modes
	3.2.1 Overview
	3.2.1.1 How is boot mode determined?

	3.2.2 Normal boot
	3.2.3 Mass Storage Device (MSD) updates
	3.2.3.1 Enabling MSD mode
	3.2.3.2 Flashing a new binary

	3.3 Application banks
	3.3.1 Addresses
	3.3.2 Configuring flash bank in MCUXpresso IDE
	3.3.2.1 Converting .axf to .bin

	4 Framework
	4.1 Framework introduction
	4.1.1 Design goals
	4.1.2 Relevant files

	4.2 Naming conventions
	4.2.1 Functions
	4.2.2 Variables
	4.2.3 Typedefs
	4.2.4 Enums
	4.2.5 Macros and defines

	4.3 Device managers
	4.3.1 Overview
	4.3.1.1 Initialization flow

	4.3.2 Vision input manager
	4.3.2.1 APIs
	4.3.2.1.1 FWK_InputManager_Init
	4.3.2.1.2 FWK_InputManager_DeviceRegister
	4.3.2.1.3 FWK_InputManager_Start
	4.3.2.1.4 FWK_InputManager_Deinit

	4.3.3 Output manager
	4.3.3.1 APIs
	4.3.3.1.1 FWK_OutputManager_Init
	4.3.3.1.2 FWK_OutputManager_DeviceRegister
	4.3.3.1.3 FWK_OutputManager_Start
	4.3.3.1.4 FWK_OutputManager_Deinit
	4.3.3.1.5 FWK_OutputManager_UnregisterEventHandler

	4.3.4 Camera manager
	4.3.4.1 APIs
	4.3.4.1.1 FWK_CameraManager_Init
	4.3.4.1.2 FWK_CameraManager_DeviceRegister
	4.3.4.1.3 FWK_CameraManager_Start
	4.3.4.1.4 FWK_CameraManager_Deinit

	4.3.5 Display manager
	4.3.5.1 APIs
	4.3.5.1.1 FWK_DisplayManager_Init
	4.3.5.1.2 FWK_DisplayManager_DeviceRegister
	4.3.5.1.3 FWK_DisplayManager_Start
	4.3.5.1.4 FWK_DisplayManager_Deinit

	4.3.6 Vision algorithm manager
	4.3.6.1 APIs
	4.3.6.1.1 FWK_VisionAlgoManager_Init
	4.3.6.1.2 FWK_VisionAlgoManager_DeviceRegister
	4.3.6.1.3 FWK_VisionAlgoManager_Start
	4.3.6.1.4 FWK_VisionAlgoManager_Deinit

	4.3.7 Low power manager
	4.3.7.1 APIs
	4.3.7.1.1 FWK_LpmManager_DeviceRegister
	4.3.7.1.2 FWK_LpmManager_RegisterRequestHandler
	4.3.7.1.3 FWK_LpmManager_UnregisterRequestHandler
	4.3.7.1.4 FWK_LpmManager_RuntimeGet
	4.3.7.1.5 FWK_LpmManager_RuntimePut
	4.3.7.1.6 FWK_LpmManager_RuntimeSet
	4.3.7.1.7 FWK_LpmManager_RequestStatus
	4.3.7.1.8 FWK_LpmManager_SetSleepMode
	4.3.7.1.9 FWK_LpmManager_EnableSleepMode

	4.3.8 Flash manager
	4.3.8.1 Device APIs
	4.3.8.1.1 FWK_Flash_DeviceRegister
	4.3.8.1.2 FWK_Flash_Init
	4.3.8.1.3 FWK_Flash_Deinit

	4.3.8.2 Operations APIs
	4.3.8.2.1 FWK_Flash_Format
	4.3.8.2.2 FWK_Flash_Save
	4.3.8.2.3 FWK_Flash_Append
	4.3.8.2.4 FWK_Flash_Read
	4.3.8.2.5 FWK_Flash_Mkdir
	4.3.8.2.6 FWK_Flash_Mkfile
	4.3.8.2.7 FWK_Flash_Rm
	4.3.8.2.8 FWK_Flash_Rename
	4.3.8.2.9 FWK_Flash_Cleanup

	4.4 HAL devices
	4.4.1 Overview
	4.4.1.1 Device registration
	4.4.1.2 Device types
	4.4.1.3 Anatomy of a HAL device
	4.4.1.3.1 Operators

	4.4.1.4 Configs
	4.4.1.4.1 name
	4.4.1.4.2 expectedValue
	4.4.1.4.3 description
	4.4.1.4.4 value
	4.4.1.4.5 get
	4.4.1.4.6 set

	4.4.2 Input devices
	4.4.2.1 Device definition
	4.4.2.2 Operators
	4.4.2.2.1 Init
	4.4.2.2.2 Deinit
	4.4.2.2.3 Start
	4.4.2.2.4 Stop
	4.4.2.2.5 InputNotify

	4.4.2.3 Capabilities
	4.4.2.3.1 callback
	4.4.2.3.2 eventId
	4.4.2.3.3 receiverList
	4.4.2.3.4 event

	4.4.2.4 Example

	4.4.3 Output devices
	4.4.3.1 Subtypes
	4.4.3.1.1 General devices
	4.4.3.1.2 UI devices
	4.4.3.1.3 Audio devices

	4.4.3.2 Device definition
	4.4.3.3 Operators
	4.4.3.3.1 Init
	4.4.3.3.2 DeInit
	4.4.3.3.3 Start
	4.4.3.3.4 Stop

	4.4.3.4 Attributes
	4.4.3.4.1 type
	4.4.3.4.2 pSurface

	4.4.3.5 Example

	4.4.4 Camera devices
	4.4.4.1 Device definition
	4.4.4.2 Operators
	4.4.4.2.1 Init
	4.4.4.2.2 Deinit
	4.4.4.2.3 Start
	4.4.4.2.4 Enqueue
	4.4.4.2.5 Dequeue
	4.4.4.2.6 PostProcess
	4.4.4.2.7 InputNotify

	4.4.4.3 Static configs
	4.4.4.3.1 height
	4.4.4.3.2 width
	4.4.4.3.3 pitch
	4.4.4.3.4 left
	4.4.4.3.5 top
	4.4.4.3.6 right
	4.4.4.3.7 bottom
	4.4.4.3.8 rotate
	4.4.4.3.9 flip
	4.4.4.3.10 swapByte

	4.4.4.4 Capabilities
	4.4.4.4.1 callback
	4.4.4.4.2 param

	4.4.4.5 Example

	4.4.5 Display devices
	4.4.5.1 Device definition
	4.4.5.2 Operators
	4.4.5.2.1 Init
	4.4.5.2.2 Deinit
	4.4.5.2.3 Start
	4.4.5.2.4 Blit
	4.4.5.2.5 InputNotify

	4.4.5.3 Capabilities
	4.4.5.3.1 height
	4.4.5.3.2 width
	4.4.5.3.3 pitch
	4.4.5.3.4 left
	4.4.5.3.5 top
	4.4.5.3.6 right
	4.4.5.3.7 bottom
	4.4.5.3.8 rotate
	4.4.5.3.9 format
	4.4.5.3.10 srcFormat
	4.4.5.3.11 frameBuffer
	4.4.5.3.12 callback
	4.4.5.3.13 param

	4.4.5.4 Example

	4.4.6 Vision algorithm devices
	4.4.6.1 Device definition
	4.4.6.2 Operators
	4.4.6.2.1 Init
	4.4.6.2.2 Deinit
	4.4.6.2.3 Run
	4.4.6.2.4 InputNotify

	4.4.6.3 Capabilities
	4.4.6.3.1 callback
	4.4.6.3.2 param

	4.4.6.4 Private data
	4.4.6.4.1 autoStart
	4.4.6.4.2 frames

	4.4.6.5 Example

	4.4.7 Low power devices
	4.4.7.1 Device definition
	4.4.7.2 Operators
	4.4.7.2.1 Init
	4.4.7.2.2 Deinit
	4.4.7.2.3 OpenTimer
	4.4.7.2.4 StopTimer
	4.4.7.2.5 OpenPreEnterTimer
	4.4.7.2.6 StopPreEnterTimer
	4.4.7.2.7 EnterSleep
	4.4.7.2.8 Lock
	4.4.7.2.9 Unlock

	4.4.7.3 Components
	4.4.7.3.1 timer
	4.4.7.3.2 preEnterSleepTimer
	4.4.7.3.3 lock
	4.4.7.3.4 callback
	4.4.7.3.5 PreEnterSleepCallback

	4.4.7.4 Example
	4.4.7.4.1 LPM manager device
	4.4.7.4.2 Requesting device

	4.4.8 Flash devices
	4.4.8.1 Device definition
	4.4.8.2 Operators
	4.4.8.2.1 Init
	4.4.8.2.2 Deinit
	4.4.8.2.3 Format
	4.4.8.2.4 Save
	4.4.8.2.5 Append
	4.4.8.2.6 Read
	4.4.8.2.7 Make directory
	4.4.8.2.8 Make file
	4.4.8.2.9 Remove
	4.4.8.2.10 Rename
	4.4.8.2.11 Cleanup

	4.4.8.3 Example
	4.4.8.3.1 Littlefs device

	4.5 Events
	4.5.1 Overview
	4.5.1.1 Event triggers
	4.5.1.2 Types of events
	4.5.1.2.1 InferComplete events
	4.5.1.2.2 InputNotify events

	4.5.2 Event handlers
	4.5.2.1 Default handlers
	4.5.2.2 App-specific handlers

	5 Smart lock
	5.1 Introduction
	5.1.1 Software block diagram

	5.2 Main functionalities
	5.3 Boot sequence
	5.3.1 Board-level initialization
	5.3.2 Framework initialization
	5.3.3 HAL devices registration

	5.4 Logging
	5.4.1 Log task init
	5.4.2 Log macros
	5.4.3 database
	5.4.3.1 Face recognize database usage

	6 Revision history
	7 Legal information
	Contents

