
IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual
Rev. LF6.6.3_1.0.0 — 29 March 2024 Reference manual

Document information
Information Content

Keywords i.MX, Linux, LF6.6.3_1.0.0

Abstract This document provides the i.MX VPU API reference information for the Linux platform.

https://www.nxp.com

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

1 Overview

The i.MX SoC with Video Processing Units (VPU) supports the following four different VPUs:

• i.MX 6 Chips and Media VPU with a VPU library and firmware. This VPU has user space libraries that prepare
IOCTL calls to the kernel VPU Chips and Media driver.

• i.MX 8M Hantro VPU with a VPU library and no firmware. This VPU has user space libraries that prepare
IOCTL calls to the kernel VPU Hantro Driver.

• i.MX 8 and i.MX 8X Amphion VPU with firmware but no library. This VPU has no user space libraries and is
interfaced with IOCTL calls to the kernel Video for Linux2 Driver or RPC communication.

• i.MX 9 Chips and Media VPU with firmware but no library. This VPU has no user space libraries and export
interface compliance with Video for Linux2 (V4L2).

In the Hantro and Chips and Media VPUs (i.MX 6), the i.MX Multimedia framework provides a VPU wrapper
interface that standardizes an API to all, even though each has different APIs to handle interactions with each
VPU. This document describes those different interactions with more details coming in future releases.

1.1 VPU Wrapper
The VPU Wrapper library is a common interface to all the i.MX 6 VPUs and i.MX Hantro 8M VPUs for both Linux
OS and Android platform. GStreamer delivers the header for VPU wrapper imx-gst1.0-plugin/ext-includes folder
in the vpu_wrapper.h file. Samples for how to interface to the VPU wrapper are in the VPU plugin.

1.2 Hantro
The Hantro VPU on the i.MX 8M series of parts includes both a decoder and encoder. The user space library
imx_vpu_hantro interfaces to the kernel Hantro VPU driver in drivers/mxc/hantro folders. The VPU Wrapper
library interfaces to the Hantro library. Headers for the Hantro library are the hantrodec.h and hx280enc.h.

1.3 Amphion VPU RPC
The Amphion VPU hardware block on the i.MX 8Quad Max and i.MX 8QuadXPlus platforms uses dedicated
Arm Cortex-M cores reserved for the VPU hardware decoder and encoder and is controlled by firmware
running on the Arm Cortex-M cores. All APIs are exported to Arm cores through RPC protocol, which is
implemented through the shared memory and MU interrupt. The kernel VPU driver resides in the folder drivers/
mxc/vpu_malone and shows how to use the RPC interface to the firmware.

All RPC communication protocols are defined through some configuration parameters, commands, and callback
event (e.g., message). Applications on Arm cores are responsible to send commands to decoder on the
Cortex-M cores, such as start and stop. Decoder sends callback events to response application, such as start
done, request frame buffers, and frame ready. All input and output parameters are transferred through the
RPC shared memory. Decoder and encoder state machine should be maintained through one event handler
implemented on Arm.

1.4 i.MX 6 VPU Overview
The i.MX 6 series Video Processing Unit (VPU) is a high performance multi-standard video decoder and
encoder engine that performs multiple standard decoding and encoding operations. VPU codec is fully
compliant with H.264 BP/MP/HP, VC-1 SP/MP/AP, MPEG-4 SP/ASP except GMC, DivX (Xvid), MPEG-1/2, VP8,
AVS and MJPEG decoding and H.264, MPEG-4, H.263, and MJPG encoding. The VPU supports up to full HD
1920x1080 60i or 30p decoding and 1920x1088 encoding. It can encode or decode multiple video clips with
multiple standards simultaneously. A block diagram of the i.MX 6 series VPU is shown in the figure below.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
2 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

The VPU connects with the system through the 32-bit AMBA3 APB bus for system control and the 64-
bit AMBA3 AXI for data throughput. The VPU also takes advantage of on-chip memories to achieve high
performance.

Most video hardware blocks in the VPU are optimally designed for shared usage between different video
standards which provides ultra low power and low gate count with powerful performance. As shown in the figure
below, the VPU has a 16-bit DSP core, the BIT processor, which controls the internal video codec operations.

For simple and efficient control of the VPU by the host processor, the VPU provides a set of registers called
the host interface registers. Most commands and responses between the host processor and the VPU are
transmitted through the host interface registers. Stream data and some output picture data are directly
accessed by the host processor and the VPU. For a more comprehensive way of controlling the VPU, a set of
API functions is provided that includes all of the required operations from the host processor side.

IPB (internal peripheral bus)

aaa-053553

Host I/F

DMA

Multi-resolutional
motion estimation

BPU
DMA

APB-to-IPB
wrapper

APB

GDI-to-AXI
wrapper

1st AXI 2nd AXI

Macroblock
sequencer

HW
accelerator

Post-processor
(deringing/

rotation/mirror)
JPEG codec

BIT DSP

GDI bus

DMA

Transform/quantization

Residual

DMA DMA DMA

Reconstruction

Motion
compensation

AC/DC
prediction

DMA DMA

Sub-
sampler

Deblocking filter

Intra
prediction

2-D cyclic cache

Intra mode decision

Source loader
(with built-in rotator)

Figure 1. i.MX 6 VPU Block Diagram

1.5 i.MX 9 Chips and Media VPU
The VPU on i.MX 9 series includes both decoder and encoder. There are no private interface designed for
users. The standard V4L2 compliance interface is the only API used to control VPU hardware block.

2 VPU Wrapper Interface

VPU wrapper library provides encoding and decoding functions of streams for VPUs with library interfaces such
as the Hantro VPU on the i.MX 8M family and the Chips and Media VPU used on the i.MX 6QuadPlus, 6Quad,
6Dual, and 6DualLite silicons. This is the API specification for the VPU wrapper library. The calling sequence of
the API functions is also explained. The API is explicitly described in “vpu_wrapper.h”.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
3 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

2.1 Data Types

2.1.1 Handle of VPU Encoder and Decoder

typedef void * VpuEncHandle;
typedef void * VpuDecHandle;

2.1.2 Enumerations

2.1.2.1 VpuEncRetCode and VpuDecRetCode

The following table lists the return values and descriptions for the encode and decoder API functions.

Return Value Description

VPU_ENC_RET_SUCCESS/VPU_DEC_RET_SUCCESS Success.

VPU_ENC_RET_FAILURE/VPU_DEC_RET_FAILURE Failure.

VPU_ENC_RET_INVALID_PARAM/VPU_DEC_RET_
INVALID_PARAM

Parameter is invalid.

VPU_ENC_RET_INVALID_HANDLE/VPU_DEC_RET_
INVALID_HANDLE

Handle is invalid.

VPU_ENC_RET_INVALID_FRAME_BUFFER/VPU_DEC_
RET_INVALID_FRAME_BUFFER

Frame buffer is invalid.

VPU_ENC_RET_INSUFFICIENT_FRAME_BUFFERS/VPU_
DEC_RET_INSUFFICIENT_FRAME_BUFFERS

Frame buffers are insufficient.

VPU_ENC_RET_INVALID_STRIDE/VPU_DEC_RET_
INVALID_STRIDE

Stride is invalid.

VPU_ENC_RET_WRONG_CALL_SEQUENCE/VPU_DEC_
RET_WRONG_CALL_SEQUENCE

State of the object is not correct.

VPU_ENC_RET_FAILURE_TIMEOUT/VPU_DEC_RET_
FAILURE_TIMEOUT

Waiting for hardware software to finish times out.

2.1.2.2 VpuDecBufRetCode

The following table lists the return values and descriptions for the decoder API functions.

VpuDecBufRetCode Return Value Description

VPU_DEC_INPUT_NOT_USED Input data has been consumed.

VPU_DEC_INPUT_USED Input data hasn’t been consumed.

VPU_DEC_OUTPUT_EOS Received end of stream.

VPU_DEC_OUTPUT_DIS Received one frame to output.

VPU_DEC_OUTPUT_NODIS Received no frame to output.

VPU_DEC_OUTPUT_REPEAT One frame is output repeatedly.

VPU_DEC_OUTPUT_DROPPED Received one frame to drop.

VPU_DEC_OUTPUT_MOSAIC_DIS Received one mosaic frame to output.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
4 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

VpuDecBufRetCode Return Value Description

VPU_DEC_NO_ENOUGH_BUF Not enough buffer to hold for output.

VPU_DEC_NO_ENOUGH_INBUF Not enough input buffer.

VPU_DEC_INIT_OK Initialization of decoding is ok.

VPU_DEC_SKIP Skip to decode one frame.

VPU_DEC_ONE_FRM_CONSUMED One frame has been decoded.

VPU_DEC_RESOLUTION_CHANGED Resolution of the frame is changed.

VPU_DEC_FLUSH Flush the decoder.

2.1.2.3 VpuEncBufRetCode

The following table lists the return values and descriptions for the encode API functions.

VpuEncBufRetCode Return Value Description

VPU_ENC_INPUT_NOT_USED Input data has been consumed.

VPU_ENC_INPUT_USED Input data hasn’t been consumed.

VPU_ENC_OUTPUT_SEQHEADER Sequence header (for H.264: SPS/PPS).

VPU_ENC_OUTPUT_DIS Got one frame to output.

VPU_ENC_OUTPUT_NODIS Got no frame to output.

2.1.2.4 VpuDecCapability

The following table lists the capabilities sof the decoder.

VPUDecCapability Value Description

VPU_DEC_CAP_FILEMODE = 0 File mode is supported? 0: not; 1: yes

VPU_DEC_CAP_TILE Tile format is supported? 0: not; 1: yes

VPU_DEC_CAP_FRAMESIZE Reporting frame size? 0: not; 1: yes

VPU_DEC_CAP_RESOLUTION_CHANGE Resolution change notification? 0: not; 1: yes

2.1.2.5 VpuDecConfig

Specifies the configuration types of decoder.

VpuDecConfig Value Description

VPU_DEC_CONF_SKIPMODE = 0 Parameter value:
• VPU_DEC_SKIPNONE (default)
• VPU_DEC_SKIPPB
• VPU_DEC_SKIPB
• VPU_DEC_SKIPALL
• VPU_DEC_ISEARCH

VPU_DEC_CONF_INPUTTYPE Parameter value:
• VPU_DEC_IN_NOMAL: normal (default);
• VPU_DEC_IN_KICK: kick -- input data/size in VPU_

DecDecodeBuf() will be ignored;

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
5 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

VpuDecConfig Value Description
• VPU_DEC_IN_DRAIN: drain -- stream reach end, and

input data/size in VPU_DecDecodeBuf() will be ignored.

VPU_DEC_CONF_BUFDELAY For stream mode. The parameter represents buffer size
(unit: bytes). Buffer size==0 indicates no delay.

VPU_DEC_CONF_INIT_CNT_THRESHOLD At seqinit stage. VPU reports an error if data count reaches
the threshold.

VPU_DEC_CONF_ENABLE_TILED Configure output frame to tiled after parsing sequence
header and before registering the frame buffer.

VPU_DEC_CONF_RESET_CODECDATA Configure to reset the codec data so that the new codec
data can be handled.

2.1.2.6 VpuEncConfig

Specifies the configuration types of encoder.

VpuEncConfig Value Description

VPU_ENC_CONF_NONE = 0 None.

VPU_ENC_CONF_BIT_RATE Set bit rate (unit: kbps).

VPU_ENC_CONF_INTRA_REFRESH Intra refresh: minimum number of macroblocks to refresh in
a frame.

VPU_ENC_CONF_ENA_SPSPPS_IDR Some muxers may ignore the sequence or configure data,
so SPS/PPS is needed for every IDR frame, including the
first IDR.

VPU_ENC_CONF_RC_INTRA_QP Intra QP value.

VPU_ENC_CONF_INTRA_REFRESH_MODE Intra refresh mode: 0: normal; 1: cyclic.

2.1.2.7 VpuMemType

Specifies the memory type of vpu.

VpuMemType Value Description

VPU_MEM_VIRT = 0 0 for virtual memory

VPU_MEM_PHY = 1 1 for physical continuous memory

2.1.2.8 VpuDecErrInfo

Specifies the type of error information during decode.

VpuDecErrInfo Value Description

VPU_DEC_ERR_UNFOUND = 0 None.

VPU_DEC_ERR_NOT_SUPPORTED The profile/level/features/... outranges the VPU's capability.

VPU_DEC_ERR_CORRUPT Some syntax errors are detected.

2.1.2.9 VpuPicType

Specifies the picture types of VPU.
IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
6 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

VpuPicType Value Description

VPU_I_PIC = 0 I frame or I slice (H.264).

VPU_P_PIC P frame or P slice (H.264).

VPU_B_PIC B frame or B slice H.264).

VPU_IDR_PIC IDR frame (H.264).

VPU_BI_PIC BI frame (VC1)

VPU_SKIP_PIC Skipped frame (VC1).

VPU_UNKNOWN_PIC Reserved.

2.1.2.10 VpuFieldType

Specifies the field type of VPU.

VpuFieldType Value Description

VPU_FIELD_NONE = 0 Frame

VPU_FIELD_Top Only top field.

VPU_FIELD_BOTTOM Only bottom field.

VPU_FIELD_TB Top field + Bottom field.

VPU_FIELD_BT Bottom field + Top field.

VPU_FIELD_UNKNOWN Reserved.

2.1.2.11 VpuType

Specifies the type of VPU.

typedef enum {
 VPU_TYPE_UNKNOWN = 0,
 VPU_TYPE_CHIPSMEDIA,
 VPU_TYPE_MALONE,
 VPU_TYPE_HANTRO,
} VpuType;

2.1.2.12 VpuCodStd

Specifies the video type.

typedef enum {
 VPU_V_MPEG4 = 0,
 VPU_V_DIVX3,
 VPU_V_DIVX4,
 VPU_V_DIVX56,
 VPU_V_XVID,
 VPU_V_H263,
 VPU_V_AVC,
 VPU_V_AVC_MVC,
 VPU_V_VC1,
 VPU_V_VC1_AP,

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
7 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

 VPU_V_MPEG2,
 VPU_V_RV,
 VPU_V_MJPG,
 VPU_V_AVS,
 VPU_V_VP8,
 VPU_V_VP9,
 VPU_V_HEVC,
 VPU_V_SORENSON,
 VPU_V_VP6,
 VPU_V_WEBP,
} VpuCodStd;

2.1.2.13 VpuDecSkipMode

Specifies the skip mode when decoding.

typedef enum {
 VPU_DEC_SKIPNONE=0,
 VPU_DEC_SKIPPB,
 VPU_DEC_SKIPB,
 VPU_DEC_SKIPALL,
 VPU_DEC_ISEARCH, /*only decode IDR*/
}VpuDecSkipMode;

2.1.2.14 VpuDecInputType

Specifies the input type of decoder.

typedef enum {
 VPU_DEC_IN_NORMAL=0,
 VPU_DEC_IN_KICK,
 VPU_DEC_IN_DRAIN,
}VpuDecInputType;

2.1.2.15 VpuColorFormat

Specifies the color format of video.

typedef enum
{
 VPU_COLOR_420=0,
 VPU_COLOR_422H=1,
 VPU_COLOR_422V=2,
 VPU_COLOR_444=3,
 VPU_COLOR_400=4,
 VPU_COLOR_422YUYV=13,
 VPU_COLOR_422UYVY=14,
 VPU_COLOR_ARGB8888=15,
 VPU_COLOR_BGRA8888=16,
 VPU_COLOR_RGB565=17,
 VPU_COLOR_RGB555=18,
 VPU_COLOR_BGR565=19,
}VpuColorFormat;

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
8 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

2.1.2.16 VpuEncMirrorDirection

Specifies the mirror direction of encoder.

typedef enum {
 VPU_ENC_MIRDIR_NONE,
 VPU_ENC_MIRDIR_VER,
 VPU_ENC_MIRDIR_HOR,
 VPU_ENC_MIRDIR_HOR_VER
} VpuEncMirrorDirection;

2.1.2.17 VpuMemDescType

Specifies the memory type.

typedef enum{
 VPU_MEM_DESC_NORMAL = 0,
 VPU_MEM_DESC_SECURE = 1,
}VpuMemDescType;

2.1.3 Enumerations

2.1.3.1 VpuMemSubBlockInfo

A struct that contains the information of a subblock.

Members Type Description

nAlignment int Alignment limitation.

nSize int Size of memory length.

MemType VpuMemType Flag to indicate Static, scratch, or
output data memory.

pVirtAddr unsigned char * Virtual address of the pointer to the
base memory.

pPhyAddr unsigned char * Physical address of the pointer to the
base memory.

nReserved[3] int Reserved for future extension.

2.1.3.2 VpuMemInfo

A struct that contains memory information of all subblocks.

Members Type Description

nSubBlockNum int Number of subblocks.

MemSubBlock[VPU_DEC_MAX_NUM_
MEM_REQS]

VpuMemSubBlockInfo VpuMemSubBlockInfo struct that
contains subblock information.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
9 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

2.1.3.3 VpuVersionInfo

A struct that contains memory information of all subblocks.

Members Type Description

nFwMajor int Firmware major version.

nFwMinor int Firmware minor version.

nFwRelease int Firmware release version.

nFwCode int Firmware code version.

nLibMajor int Library major version

nLibMinor int Library minor version.

nLibRelease int Library release version.

nReserved int Reserved for future extension.

2.1.3.4 VpuWrapperVersionInfo

A struct that contains vpu wrapper version information.

Members Type Description

nMajor int Major Version

nMinor int Minor Version

nRelease int Release Version

pBinary char * Version information specified by user.

nReserved[4] int Reserved for future extension.

2.1.3.5 VpuFrameBuffer

A struct that contains the information of frame buffer in VPU.

Members Type Description

nStrideY unsigned int Luma stride information.

nStrideC unsigned int Chroma stride information.

pbufY unsigned char * Physical address of luma frame pointer
or top field pointer.

pbufCb unsigned char * Physical address of chroma frame
pointer or top field pointer.

pbufCr unsigned char * -

pbufMvCol unsigned char * -

pbufY_tilebot unsigned char * For field tile: physical address of luma
bottom pointer.

pbufCb_tilebot unsigned char * For field tile: physical address of
chroma bottom pointer.

pbufVirtY unsigned char * Virtual address of luma frame pointer or
top field pointer.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
10 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

Members Type Description

pbufVirtCb unsigned char * Virtual address of chroma frame pointer
or top field pointer.

pbufVirtCr unsigned char * -

pbufVirtMvCol unsigned char * -

pbufVirtY_tilebot unsigned char * For field tile: virtual address of luma
bottom pointer.

pbufVirtCb_tilebot unsigned char * For field tile: virtual address of chroma
bottom pointer.

nIonFd int Fd of ion.

nReserved[5] int Reserved for future extension.

pPrivate void * Reserved for future special extension.

2.1.3.6 VpuRect

A struct that contains the image information

Members Type Description

nLeft unsigned int Size of the image left.

nTop unsigned int Size of the image top.

nRight unsigned int Size of the image right.

nBottom unsigned int Size of the image bottom.

2.1.3.7 VpuHDR10Meta

A struct that contains the meta data of video hdr10.

Members Type Description

redPrimary[2] unsigned int -

greenPrimary[2] unsigned int -

bluePrimary[2] unsigned int -

whitePoint[2] unsigned int -

maxMasteringLuminance unsigned int -

minMasteringLuminance unsigned int -

maxContentLightLevel unsigned int -

maxFrameAverageLightLevel unsigned int -

2.1.3.8 VpuColourDesc

A struct that contains color description.

Members Type Description

colourPrimaries unsigned int -

transferCharacteristics unsigned int -

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
11 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

Members Type Description

matrixCoeffs unsigned int -

fullRange unsigned int -

2.1.3.9 VpuChromaLocInfo

A struct that contains chroma description.

Members Type Description

chromaSampleLocTypeTopField unsigned int -

chromaSampleLocTypeBottomField unsigned int -

2.1.3.10 VpuDecInitInfo

A struct that contains the initial information of decoder.

Members Type Description

nPicWidth int Aligned width of image.

nPicHeight int Aligned height of image.

nFrameRateRes int Numerator of framerate.

nFrameRateDiv int Denominator of framerate.

PicCropRect VpuRect Struct that contains crop information of
image.

nMinFrameBufferCount int Minimum frame buffer count in VPU.

nMjpgSourceFormat int Source color format of jpeg

nInterlace int Whether video is interlaced.

nQ16ShiftWidthDivHeightRatio unsigned int Fixed point for width/height: 1: 0x10000;
 0.5: 0x8000; ...

nConsumedByte int Reserved to record sequence length:
value -1 indicate unknow.

nAddressAlignment int Address alignment for Y/Cb/Cr (unit:
bytes).

nFrameSize int Hantro video decoder append DMV and
compression table in pixel buffer.

nBitDepth int Bit depth of video.

nReserved[3] int Reserved for future extension.

pSpecialInfo void * Reserved for future special extension.

hasColorDesc int Whether has color description.

hasHdr10Meta int Whether has hdr10 meta data.

Hdr10Meta VpuHDR10Meta Hdr10Meta struct which contains hdr10
meta data.

ColourDesc VpuColourDesc ColourDesc struct which contains color
description.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
12 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

Members Type Description

ChromaLocInfo VpuChromaLocInfo VpuChromaLocInfo struct which
contains chroma information.

2.1.3.11 VpuFrameExtInfo

A struct that contains the extended information of frame.

Members Type Description

nFrmWidth int Width of image.

nFrmHeight int Height of image.

FrmCropRect VpuRect VpuRect struct that contains the crop
information of image.

nQ16ShiftWidthDivHeightRatio unsigned int Fixed point for width/height: 1: 0x10000;
 0.5: 0x8000;...

rfc_luma_offset int Luma offset.

rfc_chroma_offset int Chroma offset.

nPicId[2] int Picture ID.

int nReserved[5] int Reserved for future extension.

2.1.3.12 VpuDecOutFrameInfo

A struct that contains information of output frame when decoding.

Members Type Description

pDisplayFrameBuf VpuFrameBuffer * Pointer to VpuFrameBuffer struct which
contains the display information of the
frame.

ePicType VpuPicType Type of frame.

eFieldType VpuFieldType Field type of VPU.

nMVCViewID int Extended info: support dynamic
resolution, ...

pExtInfo VpuFrameExtInfo * Luma offset.

nReserved[2] int Reserved for future extension.

pPrivate void * Reserved for future special extension.

2.1.3.13 VpuCodecData

A struct that contains the codec data information.

Members Type Description

pData unsigned char * Codec data virtual address.

nSize unsigned int Codec data length.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
13 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

2.1.3.14 VpuRBufferNode

A struct that contains the information of a buffer in vpu.

Members Type Description

pPhyAddr unsigned char * Buffer physical base address.

pVirAddr unsigned char * Buffer virtual base address.

nSize unsigned int Length of data.

sCodecData VpuCodecData VpuCodecData struct that contains
codec data information.

nPicId int Picture ID.

nReserved[1] int Reserved for future extension.

pPrivate void * Reserved for future special extension

2.1.3.15 VpuMemDesc

A struct that contains the description of memory.

Members Type Description

nSize int Requested memory size.

pPhyAddr unsigned long Physical memory address allocated.

nCpuAddr unsigned long CPU address for system free usage.

nVirtAddr unsigned long Virtual user space address.

nType VpuMemDescType Type of memory.

nReserved[3] int Reserved for future extension.

2.1.3.16 VpuDecFrameLengthInfo

A struct that contains the information of the frame length in vpu.

Members Type Description

pFrame VpuFrameBuffer * Point to the frame buffer which contains
the information of frame buffer.

nStuffLength int Stuff data length ahead of frame.

nFrameLength int Length of the frame.

nReserved[5] int Reserved for recording other
information.

2.1.3.17 VpuEncInitInfo

A struct that contains the initial information of encoder.

Members Type Description

nMinFrameBufferCount int Minimum frame buffer count in VPU.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
14 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

Members Type Description

nAddressAlignment int Address alignment for Y/Cb/Cr (unit:
bytes).

eType VpuType Type of VPUs.

2.1.3.18 VpuEncOpenParamSimp

A struct that contains the simple input parameters of decoder.

Members Type Description

eFormat VpuCodStd Type of video.

nPicWidth int Width of the encoded image.

nPicHeight int Height of the encoded image.

nOrigWidth int Original width of the input buffer.

nOrigHeight int Original height of the input buffer.

nRotAngle int Rotate angle of the image.

nFrameRate int The framerate of the output frame.

nBitRate int Bit rate of the output frame.

nGOPSize int Number of pictures in one GOP.

nColorConversionType int Matrix value parsed from caps.

nStreamSliceCount int Number of the slices that a picture
contains.

nIntraRefresh int Intra macro block numbers.

nIntraQP int Qp values, 0: auto, >0: qp value.

nUserQpMax int Maximum Qp set by the user.

nUserQpMin int Minimum Qp set by the user.

nProfile int Profile of the encoded file.

nLevel int Level of the encoded file.

nChromaInterleave int Should be set to 1 when (nMapType!
=0).

sMirror VpuEncMirrorDirection Mirror direction of the encoder.

nMapType int Frame buffer: 0--linear ; 1--frame tile; 2-
-field tile.

nLinear2TiledEnable int Valid when (nMapType!=0): 0--tile input;
1--yuv input.

eColorFormat VpuColorFormat Color format of video.

nIsAvcc int Used for H.264 data format, 0: byte
stream ; 1: avcc format.

sColorAspects VpuIsoColorAspects Color aspects parameters.

nReserved[3] int Reserved for future extension.

pAppCxt void * Reserved for future extension.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
15 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

2.1.3.19 VpuEncSliceMode

A struct that contains the slice information.

Members Type Description

sliceMode int The mode of slice.

sliceSizeMode int The mode of slice size.

sliceSize int Set the size of a slice.

nReserved int Reserved for future extension.

2.1.3.20 VpuEncOpenParam

A struct that contains input parameters of decoder.

Members Type Description

eFormat VpuCodStd Type of video.

nPicWidth int Width of the encoded image.

nPicHeight int Height of the encoded image.

nOrigWidth int Original width of the input buffer.

nOrigHeight int Original height of the input buffer.

nRotAngle int Rotate angle of the image.

nFrameRate int Framerate of the output frame.

nBitRate int Bit rate of the output frame.

nGOPSize int Number of pictures in one GOP.

nColorConversionType int Matrix value parsed from caps.

nStreamSliceCount int Number of slices that a picture
contains.

nChromaInterleave int Should be set to 1 when (nMapType!
=0).

sMirror VpuEncMirrorDirection Mirror direction of the encoder.

nMapType int Frame buffer: 0--linear ; 1--frame tile; 2-
-field tile.

nLinear2TiledEnable int Valid when (nMapType!=0): 0--tile input;
1--yuv input.

eColorFormat VpuColorFormat Color format of video.

nUserQpMax int Maximum user Qp value.

nUserQpMin int Minimum user Qp value.

nUserQpMinEnable int -

nUserQpMaxEnable int -

nProfile int Profile of the encoded file.

nLevel int Level of the encoded file.

nIntraRefresh int Intra macro block numbers.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
16 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

Members Type Description

nRcIntraQP int QP values, 0: auto, >0: QP value.

nUserGamma int -

nRcIntervalMode int 0: normal, 1: frame_level, 2: slice_level,
3: user defined Mb_level.

nMbInterval int Used when RcintervalMode is 3.

nAvcIntra16x16OnlyModeEnable int -

sliceMode VpuEncSliceMode A pointer to VpuEncSliceMode struct.

nInitialDelay int -

nVbvBufferSize int -

union { VpuEncMp4Param mp4Param;
VpuEncH263Param h263Param; Vpu
EncAvcParam avcParam; } VpuEncStd
Param;

-

nMESearchRange int 3: 16x16, 2: 32x16, 1: 64x32, 0:
128x64, H.263 (Short Header: always
3.

nMEUseZeroPmv int 0: PMV_ENABLE, 1: PMV_DISABLE.

IntraCostWeight int Additional weight of Intra Cost for mode
decision to reduce Intra MB density.

nIsAvcc int Used for H.264 data format, 0: byte
stream; 1: avcc format.

sColorAspects VpuIsoColorAspects Color aspects parameters.

nReserved[8] int Reserved for future extension.

pAppCxt void * Reserved for future extension.

2.1.3.21 VpuEncEncParam

A struct that contains the input and output parameters of encoder.

Members Type Description

eFormat VpuCodStd Type of video.

nPicWidth int Width of the encoded image.

nPicHeight int Height of the encoded image.

nFrameRate int Framerate of the output frame.

nQuantParam int Quant parameter of the frame

nInPhyInput unsigned long Input buffer physical address.

nInVirtInput unsigned long Input buffer virtual address.

nInInputSize int Input buffer size.

nInPhyOutput unsigned long Output buffer physical address.

nInVirtOutput unsigned long Output buffer virtual address.

nInOutputBufLen unsigned int The left buffer size.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
17 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

Members Type Description

nForceIPicture int Whether to force the current frame as
key frame.

nSkipPicture int Whether to skip current frame.

nEnableAutoSkip int Whether to enable auto skip.

eOutRetCode VpuEncBufRetCode Output state after encoding.

nOutOutputSize int Output buffer size.

pInFrame VpuFrameBuffer * Pointer to VpuFrameBuffer struct that
contains the input frame information.

nReserved[2] int Reserved for future extension.

pPrivate void * Reserved for future extension.

2.2 Decoder API Functions

2.2.1 Decoder Open and Close

2.2.1.1 VPU_DecGetVersionInfo

VpuDecRetCode VPU_DecGetVersionInfo (
 VpuVersionInfo * pOutVerInfo)

Description: Function to get the vpulib and firmware version.

Arguments

• pOutVerInfo [out] - Pointer to VpuVersionInfo struct where output parameters will be saved.

Return value

VPU_DEC_RET_SUCCESS

2.2.1.2 VPU_DecGetWrapperVersionInfo

VpuDecRetCode VPU_DecGetWrapperVersionInfo (
 VpuWrapperVersionInfo * pOutVerInfo)

Description:

Function to get the VPU wrapper version.

Arguments

• pOutVerInfo [out] - Pointer to VpuWrapperVersionInfo struct where the output parameters will be saved.

Return value

VPU_DEC_RET_SUCCESS

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
18 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

2.2.1.3 VPU_DecGetInitialInfo

VpuDecRetCode VPU_DecGetInitialInfo (
 VpuDecHandle InHandle,
 VpuDecInitInfo * pOutInitInfo)

Description:

Function to get the initial information.

Arguments:

• InHandle [in/out] - Handle of VPU decoder.
• pOutInitInfo [out] - Pointer to VpuEncInitInfo struct where initial information is stored.

Return value:

VpuDecRetCode value: VPU_DEC_RET_SUCCESS, VPU_DEC_RET_FAILURE…

2.2.1.4 VPU_DecConfig

VpuDecRetCode VPU_DecConfig (
 VpuDecHandle InHandle,
 VpuDecConfig InDecConf,
 void * pInParam)

Description:

Function to set corresponding parameters of decoder according to InDecConf type.

Arguments:

• InDecConf [in] - Type of configuration to be set.
• pInParam [in] - Value that used to set the decoder according to InDecConf type.
• InHandle [out] - Handle of VPU decoder.

Return value:

VpuDecRetCode value: VPU_DEC_RET_SUCCESS, VPU_DEC_RET_FAILURE…

2.2.1.5 VPU_DecOpen

VpuDecRetCode VPU_DecOpen (
 VpuDecHandle * pOutHandle,
 VpuDecOpenParam * pInParam
 VpuMemInfo * pInMemInfo)

Description:

Function to open new VPU handle.

Arguments:

• pInParam [in] - Pointer to VpuDecOpenParam struct which contains input parameters of the decoder.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
19 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

• pInMemInfo [in] - Pointer to VpuMemInfo struct which contains the memory information.
• pOutHandle [out] - Handle of VPU decoder.

Return value:

VpuDecRetCode value: VPU_DEC_RET_SUCCESS, VPU_DEC_RET_FAILURE…

2.2.1.6 VPU_DecGetCapability

VpuDecRetCode VPU_DecGetCapability (
 VpuDecHandle InHandle,
 VpuDecCapability eInCapability,
 int * pOutCapbility)

Description:

Function to get capability of the input eInCapability. If eInCapability is supported, pOutCapbility will be set to 1.

Arguments:

• InHandle [in] - Handle of VPU decoder.
• eInCapability [in] - Type of configuration to be set.
• pOutCapbility [out] - Set to be 1 if eInCapability type is supported.

Return value:

VpuDecRetCode value: VPU_DEC_RET_SUCCESS, VPU_DEC_RET_FAILURE…

2.2.1.7 VPU_DecDisCapability

VpuDecRetCode VPU_DecDisCapability (
 VpuDecHandle InHandle,
 VpuDecCapability eInCapability)

Description:

Function to get capability of the input eInCapability. If eInCapability is supported, pOutCapbility will be set to 1.

Arguments:

• InHandle [in/out] - Handle of VPU decoder, corresponding parameters will be set according to eInCapability
type.

• eInCapability [in]- Type of configuration to be set.

Return value:

VpuDecRetCode value: VPU_DEC_RET_SUCCESS, VPU_DEC_RET_FAILURE…

2.2.1.8 VPU_DecGetErrInfo

VpuDecRetCode VPU_DecGetErrInfo (
 VpuDecHandle InHandle,

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
20 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

 VpuDecErrInfo * pErrInfo)

Description:

Function to get the error information.

Arguments:

• InHandle [in] - Handle of VPU decoder.
• pErrInfo [out] - Pointer to VpuDecErrInfo enumeration where contains type of error information.

Return value:

VpuDecRetCode value: VPU_DEC_RET_SUCCESS, VPU_DEC_RET_FAILURE…

2.2.1.9 VPU_DecGetNumAvailableFrameBuffers

VpuDecRetCode VPU_DecGetNumAvailableFrameBuffers (
 VpuDecHandle InHandle,
 int * pOutBufNum)

Description:

Function to get the number of available frame buffers.

Arguments:

• InHandle [in] - Handle of VPU decoder.
• pOutBufNum [out] - Number of the available frame buffers.

Return value:

VPU_DEC_RET_SUCCESS

2.2.1.10 VPU_DecUnLoad

VpuDecRetCode VPU_DecUnLoad ()

Description:

Function to unload VPU.

Arguments:

None.

Return value:

VPU_DEC_RET_SUCCESS

2.2.1.11 VPU_DecReset

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
21 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

VpuDecRetCode VPU_DecReset (
 VpuDecHandle InHandle)

Description:

Function to reset the handle of VPU decoder.

Arguments:

InHandle [in] - Handle of VPU decoder.

Return value:

VpuDecRetCode value: VPU_DEC_RET_SUCCESS, VPU_DEC_RET_FAILURE…

2.2.1.12 VPU_DecClose

VpuDecRetCode VPU_DecClose (
 VpuDecHandle InHandle)

Description:

Function to close the decoder.

Arguments:

InHandle [in] - Handle of VPU decoder.

Return value:

VpuDecRetCode value: VPU_DEC_RET_SUCCESS, VPU_DEC_RET_FAILURE…

2.2.1.13 VPU_DecFlushAll

VpuDecRetCode VPU_DecFlushAll (
 VpuDecHandle InHandle)

Description:

Function to flush the decoder.

Arguments:

InHandle [in] - Handle of VPU decoder.

Return value:

VpuDecRetCode value: VPU_DEC_RET_SUCCESS, VPU_DEC_RET_FAILURE…

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
22 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

2.2.2 Decode

2.2.2.1 VPU_DecDecodeBuf

VpuDecRetCode VPU_DecDecodeBuf (
 VpuDecHandle InHandle,
 VpuBufferNode * pInData,
 int * pOutBufRetCode)

Description:

Function to decode one frame. This function will see if there is decoded frame to be sent out, then process the
input buffer of the current frame and decode it. The final decode state is saved in pOutBufRetCode.

Arguments:

• InHandle [in/out] - Handle of VPU decoder.
• pInData [in] - Pointer to VpuBufferNode struct where the information of input buffer is stored.
• pOutBufRetCode [out] - State of the input and output frame.

Return value:

VpuDecRetCode value: VPU_DEC_RET_SUCCESS, VPU_DEC_RET_FAILURE…

2.2.2.2 VPU_DecGetOutputFrame

VpuDecRetCode VPU_DecGetOutputFrame (
 VpuDecHandle InHandle,
 VpuDecOutFrameInfo * pOutFrameInfo)

Description:

Function to get the next output frame information.

Arguments:

• InHandle [in/out] - VPU decode object.
• pOutFrameInfo [out] - Pointer to VpuDecOutFrameInfo struct where the output frame information is stored.

Return value:

VpuDecRetCode value: VPU_DEC_RET_SUCCESS, VPU_DEC_RET_FAILURE…

2.2.2.3 VPU_DecGetConsumedFrameInfo

VpuDecRetCode VPU_DecGetConsumedFrameInfo (
 VpuDecHandle InHandle,
 VpuDecFrameLengthInfo * pOutFrameInfo)

Description:

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
23 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

Function to get the information of frame buffers in VPU.

Arguments:

• InHandle [in/out] - VPU decode object.
• pOutFrameInfo [out] - Pointer to VpuDecFrameLengthInfo struct where the information of frame buffers in

VPU is stored.

Return value:

VpuDecRetCode value: VPU_DEC_RET_SUCCESS, VPU_DEC_RET_FAILURE…

2.2.2.4 VPU_DecOutFrameDisplayed

VpuDecRetCode VPU_DecOutFrameDisplayed (
 VpuDecHandle InHandle,
 VpuFrameBuffer * pInFrameBuf)

Description:

Function to clear one display frame buffer.

Arguments:

• InHandle [in/out] - Handle of VPU decoder.
• pInFrameBuf [out] - Pointer to VpuFrameBuffer struct which contains the information of frame buffer to be

cleared.

Return value:

VpuDecRetCode value: VPU_DEC_RET_SUCCESS, VPU_DEC_RET_FAILURE…

2.2.3 Memory Query and Free

2.2.3.1 VPU_DecQueryMem

VpuDecRetCode VPU_DecQueryMem (
 VpuMemInfo * pOutMemInfo)

Description:

Function to query output physical and virtual memory information to further allocate.

Arguments:

• pOutMemInfo [out] - Pointer to VpuMemInfo struct where the output memory information is stored.

Return value:

VPU_DEC_RET_SUCCESS

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
24 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

2.2.3.2 VPU_DecGetMem

VpuDecRetCode VPU_DecGetMem (
 VpuMemDesc * pInOutMem)

Description:

Function to allocate memory.

Arguments:

• pInOutMem [in/out] - Pointer to VpuMemDesc struct where the memory information is stored.

Return value:

VpuDecRetCode value: VPU_DEC_RET_SUCCESS, VPU_DEC_RET_FAILURE…

2.2.3.3 VPU_DecFreeMem

VpuDecRetCode VPU_DecFreeMem (
 VpuMemDesc * pInMem)

Description:

Function to free memory.

Arguments:

• pInMem [in] - Pointer to VpuMemDesc struct where the memory information is stored.

Return value:

VpuDecRetCode value: VPU_DEC_RET_SUCCESS, VPU_DEC_RET_FAILURE…

2.2.3.4 VPU_DecRegisterFrameBuffer

VpuDecRetCode VPU_DecRegisterFrameBuffer (
 VpuDecHandle InHandle,
 VpuFrameBuffer * pInFrameBufArray,
 int nNum)

Description:

Function to register frame buffer.

Arguments:

• InHandle [in/out] - Handle of VPU encoder.
• pInFrameBufArray [in] - Pointer to VpuFrameBuffer struct where the information of VPU frame buffer is stored.
• nNum [in] - The number of VPU frame buffer count.

Return value:

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
25 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

VpuDecRetCode value: VPU_DEC_RET_SUCCESS, VPU_DEC_RET_FAILURE…

2.3 Encoder API Functions

2.3.1 Encoder Open and Close

2.3.1.1 VPU_EncGetVersionInfo

VpuEncRetCode VPU_EncGetVersionInfo (
 VpuVersionInfo * pOutVerInfo)

Description:

Function to get the vpulib and firmware version.

Arguments

• pOutVerInfo [out] - Pointer to VpuVersionInfo struct where the output parameters will be stored.

Return value

VPU_ENC_RET_SUCCESS

2.3.1.2 VPU_EncGetWrapperVersionInfo

VpuEncRetCode VPU_EncGetWrapperVersionInfo (
 VpuWrapperVersionInfo * pOutVerInfo)

Description:

Function to get the VPU wrapper version.

Arguments

• pOutVerInfo [out] - Pointer to VpuWrapperVersionInfo struct where the output parameters will be stored.

Return value

VPU_ENC_RET_SUCCESS

2.3.1.3 VPU_EncGetInitialInfo

VpuEncRetCode VPU_EncGetInitialInfo (
 VpuEncHandle InHandle,
 VpuEncInitInfo * pOutInitInfo)

Description:

Function to get the initial information.

Arguments:

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
26 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

• InHandle [in] - Handle of VPU encoder.
• pOutInitInfo [out] - Pointer to VpuEncInitInfo struct where initial configuration parameters of the encoder will be

stored.

Return value:

VPU_ENC_RET_SUCCESS

2.3.1.4 VPU_EncConfig

VpuEncRetCode VPU_EncConfig (
 VpuEncHandle InHandle,
 VpuEncConfig InEncConf,
 Void * pInParam)

Description:

Function to set the corresponding parameters of encoder according to InEncConf type.

Arguments:

• InEncConf [in] - Type of configuration to be set.
• pInParam [in] - Value that used to set the encoder according to InEncConf type.
• InHandle [out] - Handle of VPU encoder.

Return value:

VpuEncRetCode - value: VPU_ENC_RET_SUCCESS, VPU_ENC_RET_FAILURE…

2.3.1.5 VPU_EncOpen

VpuncRetCode VPU_EncOpen (
 VpuEncHandle * pOutHandle,
 VpuMemInfo * pInMemInfo,
 VpuEncOpenParam * pInParam)

Description:

Function to open new VPU handle, called by function VPU_EncOpenSimp.

Arguments:

• pInMemInfo [in] - Pointer to VpuMemInfo struct which contains the memory information.
• pInParam [in] - Pointer to VpuEncOpenParam struct which contains input parameters of the encoder.
• pOutHandle [out] - Handle of VPU encoder.

Return value:

VpuEncRetCode - value: VPU_ENC_RET_SUCCESS, VPU_ENC_RET_FAILURE…

2.3.1.6 VPU_EncOpenSimp

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
27 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

VpuEncRetCode VPU_EncOpenSimp (
 VpuEncHandle * pOutHandle,
 VpuMemInfo * pInMemInfo,
 VpuEncOpenParamSimp * pInParam)

Description:

Function to open new VPU handle which is realized in function VPU_EncOpen.

Arguments:

• pInMemInfo [in] - Pointer to VpuMemInfo struct which contains the memory information.
• pInParam [in] - Pointer to VpuEncOpenParam struct which contains input parameters of the encoder.
• pOutHandle [out] - Handle of VPU encoder.

Return value:

VpuEncRetCode - value: VPU_ENC_RET_SUCCESS, VPU_ENC_RET_FAILURE…

2.3.1.7 VPU_EncLoad

VpuEncRetCode VPU_EncLoad ()

Description:

Function to parse the log level, load VPU.

Arguments:

None.

Return value:

VPU_ENC_RET_SUCCESS

2.3.1.8 VPU_EncUnLoad

VpuEncRetCode VPU_EncUnLoad ()

Description:

Function to unload VPU.

Arguments:

None.

Return value:

VPU_ENC_RET_SUCCESS

2.3.1.9 VPU_EncReset

VpuEncRetCode VPU_EncReset (

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
28 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

 VpuEncHandle InHandle)

Description:

Function to reset the handle of VPU. H1 encoder has no interface to reset.

Arguments:

• InHandle [in] - Handle of VPU encoder.

Return value:

VPU_ENC_RET_SUCCESS

2.3.1.10 VPU_EncClose

VpuEncRetCode VPU_EncClose (
 VpuEncHandle InHandle)

Description:

Function to close the encoder.

Arguments:

• InHandle [in] - Handle of VPU encoder.

Return value:

VPU_ENC_RET_SUCCESS

2.3.2 Encode

2.3.2.1 VPU_EncEncodeFrame

VpuEncRetCode VPU_EncEncodeFrame (
 VpuEncHandle InHandle,
 VpuEncEncParam * pInOutParam)

Description:

Function to encode one frame. Before encoding the first frame, call function VPU_EncStartEncode to start
stream. Otherwise, call function VPU_EncDoEncode.

Arguments:

• InHandle [in/out] - Handle of the VPU encoder.
• pInOutParam [out] - Pointer to VpuEncEncParam struct where input and output parameters are stored.

Return value:

VpuEncRetCode - value: VPU_ENC_RET_SUCCESS, VPU_ENC_RET_FAILURE…

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
29 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

2.3.3 Memory Query and Free

2.3.3.1 VPU_EncQueryMem

VpuEncRetCode VPU_EncQueryMem (
 VpuMemInfo * pOutMemInfo)

Description:

Function to query output physical and virtual memory information to further allocate.

Arguments:

• pOutMemInfo [out] - Pointer to VpuMemInfo struct where the output memory information is stored.

Return value:

VPU_ENC_RET_SUCCESS

2.3.3.2 VPU_EncFreeMem

VpuEncRetCode VPU_EncFreeMem (
 VpuMemDesc * pInMem)

Description:

Function to free memory.

Arguments:

• pInMem [in] - Pointer to VpuMemDesc struct where the memory information is stored.

Return value:

VpuEncRetCode - value: VPU_ENC_RET_SUCCESS, VPU_ENC_RET_FAILURE…

2.3.3.3 VPU_EncRegisterFrameBuffer

VpuEncRetCode VPU_EncRegisterFrameBuffer (
 VpuEncHandle InHandle,
 VpuFrameBuffer * pInFrameBufArray,
 int nNum,
 int nSrcStride)

Description:

Function to register frame buffer.

Arguments:

• InHandle [in/out] - Handle of VPU encoder.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
30 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

• pInFrameBufArray [in] - Pointer to VpuFrameBuffer struct where the information of VPU frame buffer is stored.
• nNum [in] - Number of minimum frame buffer count obtained from initial information.
• nSrcStride [in] - Number of stride of plane 0.

Return value:

VPU_ENC_RET_SUCCESS

2.4 API Calling Sequence
This section gives the API calling sequence to further understand encoding and decoding process

2.4.1 Decoding Calling Sequence

The following figure shows the block diagram of a typical decoding process.

Load vpu and check version
VPU_DecLoad()

VPU_DecGetVersionInfo()
VPU_DecGetWrapperVersionInfo()

aaa-053548

Allocate memory
VPU_DecQueryMem()

VPU_DecGetMem()

Open vpu
VPU_DecOpen()

Close vpu
VPU_DecClose()

VPU_DecUnLoad()

Release memory
VPU_DecFreeMem()

Configuration
VPU_DecGetCapability()

VPU_DecConfig()

Decode frame
VPU_DecDecodeBuf()

More frame?

No

Yes

Figure 2. Typical decoding process

The main steps of decoding are as follows:

1. Load the VPU.
VPU_DecLoad()

2. Check the vpulib and VPU wrapper version.
VPU_DecGetVersionInfo()

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
31 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

VPU_DecGetWrapperVersionInfo()
3. Query memory to hold for output buffer.

VPU_DecQueryMem()
Note: Query the memory information from VPU with VPU_EncQueryMem(), and then the VPU will allocate
internal memory for it.

4. Allocate memory for the VPU.
VPU_DecGetMem()

5. Open new VPU decoder handle.
VPU_DecOpen()
Note: Configuration parameters will be set according to video type and decode handle will be created.

6. Set decoding configuration for the VPU decoder.
VPU_DecGetCapability()
VPU_DecConfig()

7. Start to decode the frame.
VPU_DecDecodeBuf()
Note: Function VPU_DecDecodeBuf() includes the following steps:
a. Scan whether there is decoded frame.If there is decoded frame, the output state will have the state

VPU_DEC_OUTPUT_DIS to indicate there is a frame to be sent out.
b. Process the current frame input data. The output state will have the state VPU_DEC_INPUT_USED.
c. Decode the current frame. If the input data is consumed and the frame is decoded successfully, the

output state will have the state VPU_DEC_ONE_FRM_CONSUMED.
8. After decoding, perform different actions according to the output state.

VPU_DecGetOutputFrame()
VPU_DecGetConsumedFrameInfo()
VPU_DecFlushAll()
Note: The following are several actions that can happen with the output state pOutBufRetCode.
• If (pOutBufRetCode & VPU_DEC_ONE_FRM_CONSUMED) is not 0, then call

VPU_DecGetConsumedFrameInfo() to get the frame information in VPU.
• If (pOutBufRetCode & VPU_DEC_OUTPUT_DIS) is not 0, then call VPU_DecGetOutputFrame() to get

the output frame information.
• If (pOutBufRetCode & VPU_DEC_FLUSH) is not 0, then call VPU_DecFlushAll() to flush the decoder.

9. Release the frame buffer to the VPU after displaying the frame.
VPU_DecOutFrameDisplayed()

10. Close the VPU.
VPU_DecClose()
VPU_DecUnLoad()

11. Release the memory.
VPU_DecFreeMem()

2.4.2 Encoding Calling Sequence

The following figure shows the block diagram of a typical encoding process.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
32 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

Load vpu and check version
VPU_EncLoad()

VPU_EncGetVersionInfo()
VPU_EncGetWrapperVersionInfo()

aaa-053552

Allocate memory
VPU_EncQueryMem()

VPU_EncGetMem()

Open vpu
VPU_EncOpen()

VPU_EncOpenSimp()

Close vpu
VPU_EncClose()

VPU_EncUnLoad()

Release memory
VPU_EncFreeMem()

Configuration
VPU_EncGetCapability()

VPU_EncConfig()

Encode frame
VPU_EncEncodeFrame()

More frame?

No

Yes

Figure 3. Typical encoding process

The main steps of encoding are as follows:

1. Load the VPU.
VPU_EncLoad()

2. Check the vpulib and VPU wrapper version information.
VPU_EncGetVersionInfo()
PU_EncGetWrapperVersionInfo()

3. Query the memory to hold for the output buffer.
VPU_EncQueryMem()
Note: Query the memory information from the VPU with VPU_EncQueryMem(), and then the VPU will
allocate the internal memory for it.

4. Allocate memory for the VPU.
VPU_EncGetMem()

5. Open the new VPU encoder handle.
VPU_EncOpen()
VPU_EncOpenSimp()
Note: Configuration parameters will be set according to the encoded stream type and encode handle will
be created.

6. Set the default configuration and get the initial information of the VPU encoder.
VPU_EncConfig()

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
33 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

VPU_EncGetInitialInfo()
7. Allocate physical memory for the input buffer and register the frame buffer if needed.

VPU_EncRegisterFrameBuffer()
Note: H1 encoder does not need to register the frame buffer, so VPU_EncRegisterFrameBuffer() does
nothing.

8. Start to encode stream.
VPU_EncEncodeFrame()
Note: This is the stream production process, including stream start and stream encode. Encoder first starts
stream and outputs codec data, and then starts to encode stream one frame by one frame.

9. Close the VPU.
VPU_EncClose()
VPU_EncUnLoad()

10. Release the VPU memory.
PU_EncFreeMem()

3 Amphion VPU Interface

The Amphion VPU is supported on the i.MX 8QuadMax and 8QuadXPlus platforms using the Malone hardware
for decoding and Windsor hardware for encoding. There are dedicated Cortex-M cores reserved for Amphion
VPU for decoding and encoding.

Both hardware decoder and encoder are controlled by firmware running on the Cortex-M cores and all APIs
are exported to Arm cores through the RPC protocol, which is implemented through shared memory and MU
interrupt. All RPC communication protocol are defined through some configuration parameters, commands,
and callback event (e.g., message), etc. Applications on Arm cores send commands to decoder on Cortex-
M cores, such as start, stop, etc. and decoder will send callback events to response application, such as start
done, request frame buffers, frame ready, etc. All input and output parameters will be transferred through RPC
shared memory.

Decoder and encoder state machines should be maintained through one event handler implemented on Arm
cores.

3.1 Amphion RPC Protocol
For the RPC protocol, there is one header file ‘mediasys_types.h’ used to define commands, events and all
required structures stored in shared memory.

3.1.1 RPC Shared Memory Interface

One main structure is used to build the index for all data, including ring buffer descriptor. All shared information
between the application and Cortex-M cores can be fetched from the interface structure. Since there are no
MMU on the Cortex-M cores, all memory should be physical continuous, including interface struct and all ring
buffers.

The following is the shared memory space for the RPC decoder interface.

 typedef struct {
 u_int32 FwExecBaseAddr;
 u_int32 FwExecAreaSize;
 MediaIPFW_Video_BufDesc StreamCmdBufferDesc;
 MediaIPFW_Video_BufDesc StreamMsgBufferDesc;
 u_int32 StreamCmdIntEnable[VID_API_NUM_STREAMS];
 MediaIPFW_Video_PitchInfo StreamPitchInfo[VID_API_NUM_STREAMS];

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
34 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

 u_int32 StreamConfig[VID_API_NUM_STREAMS];
 MediaIPFW_Video_CodecParamTabDesc CodecParamTabDesc;
 MediaIPFW_Video_JpegParamTabDesc JpegParamTabDesc;
 u_int32 pStreamBuffDesc[VID_API_NUM_STREAMS][VID_API_MAX_BUF_PER_STR];
 MediaIPFW_Video_SeqInfoBuffTabDesc SeqInfoTabDesc;
 MediaIPFW_Video_PicInfoBuffTabDesc PicInfoTabDesc;
 MediaIPFW_Video_GopInfoBuffTabDesc GopInfoTabDesc;
 MediaIPFW_Video_QMeterInfoTabDesc QMeterInfoTabDesc;
 u_int32 StreamError[VID_API_NUM_STREAMS];
 u_int32 FWVersion;
 u_int32 uMVDMipsOffset;
 u_int32 uMaxDecoderStreams;
 MediaIPFW_Video_DbgLogDesc DbgLogDesc;
 MediaIPFW_Video_FrameBuffer StreamFrameBuffer[VID_API_NUM_STREAMS];
 MediaIPFW_Video_FrameBuffer StreamDCPBuffer[VID_API_NUM_STREAMS];
 MediaIPFW_Video_UData UDataBuffer[VID_API_NUM_STREAMS];
 MediaIPFW_Video_BufDesc DebugBufferDesc;
 MediaIPFW_Video_BufDesc EngAccessBufferDesc[VID_API_NUM_STREAMS];
 u_int32 ptEncryptInfo[VID_API_NUM_STREAMS];
 MEDIAIP_FW_SYSTE-M_CONFIG sSystemCfg;
 u_int32 uApiVers-ion;
 BUFFER_INFO_TYPE StreamBuffInfo[VID_API_NUM_STREAMS];
 } DEC_RPC_HOST_IFACE, *pDEC_RPC_HOST_IFACE;

The following is the shared memory space for the RPC Encoder interface.

 typedef struct {
 u_int32 FwExecBaseAddr;
 u_int32 FwExecAreaSize;
 BUFFER_DESCRIPTOR_TYPE StreamCmdBufferDesc;
 BUFFER_DESCRIPTOR_TYPE StreamMsgBufferDesc;
 u_int32 StreamCmdIntEnable[VID_API_NUM_STREAMS];
 u_int32 FWVersion;
 u_int32 uMVDFWOffset;
 u_int32 uMaxEncoderStreams;
 u_int32 pEncCtrlInterface[VID_API_NUM_STREAMS];
 MEDIAIP_FW_SYSTEM_CONFIG sSystemCfg;
 u_int32 uApiVersion;
 BUFFER_DESCRIPTOR_TYPE DebugBufferDesc;
 } ENC_RPC_HOST_IFACE, *pENC_RPC_HOST_IFACE;

3.1.1.1 Sample Code for RPC Decoder Interface Initialization

The following is sample code to initialize the RPC interface with continuous physical memory: Application is
responsible to record corresponding virtual address for RPC communication.

 pSharedInterface = (pDEC_RPC_HOST_IFACE)rpc_virt_addr;
 base_phy_addr = rpc_phy_addr - fw_binary_phy_addr;
 pSharedInterface->FwExecBaseAddr = base_phy_addr;
 pSharedInterface->FwExecAreaSize = total_size;
 pSharedCmdBufDescPtr = (MediaIPFW_Video_BufDesc *)&pSharedInterface-
>StreamCmdBufferDesc;
 pSharedMsgBufDescPtr = (MediaIPFW_Video_BufDesc *)&pSharedInterface-
>StreamMsgBufferDesc;
 phy_addr = base_phy_addr + sizeof(DEC_RPC_HOST_IFACE);
 pSharedCmdBufDescPtr->uWrPtr = phy_addr;

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
35 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

 pSharedCmdBufDescPtr->uRdPtr = pSharedCmdBufDescPtr->uWrPtr;
 pSharedCmdBufDescPtr->uStart = pSharedCmdBufDescPtr->uWrPtr;
 pSharedCmdBufDescPtr->uEnd = pSharedCmdBufDescPtr->uStart + CMD_SIZE;
 phy_addr += CMD_SIZE;
 pSharedMsgBufDescPtr->uWrPtr = phy_addr;
 pSharedMsgBufDescPtr->uRdPtr = pSharedMsgBufDescPtr->uWrPtr;
 pSharedMsgBufDescPtr->uStart = pSharedMsgBufDescPtr->uWrPtr;
 pSharedMsgBufDescPtr->uEnd = pSharedMsgBufDescPtr->uStart + MSG_SIZE;
 phy_addr += MSG_SIZE;
 pSharedInterface->CodecParamTabDesc.pCodecParamArrayBase = phy_addr;
 phy_addr += CODEC_SIZE;
 pSharedInterface->JpegParamTabDesc.pJpegParamArrayBase = phy_addr;
 phy_addr += JPEG_SIZE;
 pSharedInterface->SeqInfoTabDesc.pSeqInfoArrayBase = phy_addr;
 phy_addr += SEQ_SIZE;
 pSharedInterface->PicInfoTabDesc.pPicInfoArrayBase = phy_addr;
 phy_addr += PIC_SIZE;
 pSharedInterface->GopInfoTabDesc.pGopInfoArrayBase = phy_addr;
 phy_addr += GOP_SIZE;
 pSharedInterface->QMeterInfoTabDesc.pQMeterInfoArrayBase = phy_addr;
 phy_addr += QMETER_SIZE;
 pSharedInterface->DbgLogDesc.uDecStatusLogBase = phy_addr; //set NULL to
 disable
 pSharedInterface->DbgLogDesc.uDecStatusLogSize = DBGLOG_SIZE; //set 0 to
 disable
 pSharedInterface->uDecStatusLogLevel = 0;
 phy_addr += DBGLOG_SIZE;
 pDebugBufferDesc = &pSharedInterface->DebugBufferDesc;
 pDebugBufferDesc->uWrPtr = phy_addr;
 pDebugBufferDesc->uRdPtr = pDebugBufferDesc->uWrPtr;
 pDebugBufferDesc->uStart = pDebugBufferDesc->uWrPtr; //set NULL to disable
 pDebugBufferDesc->uEnd = pDebugBufferDesc->uStart + DEBUG_SIZE;
 phy_addr += DEBUG_SIZE;
 for (i = 0; i < VPU_MAX_NUM_STREAMS; i++) {
 pEngAccessBufferDesc = &pSharedInterface->EngAccessBufferDesc[i];
 pEngAccessBufferDesc->uWrPtr = phy_addr;
 pEngAccessBufferDesc->uRdPtr = pEngAccessBufferDesc->uWrPtr;
 pEngAccessBufferDesc->uStart = pEngAccessBufferDesc->uWrPtr;
 pEngAccessBufferDesc->uEnd = pEngAccessBufferDesc->uStart + ENG_SIZE;
 phy_addr += ENG_SIZE;
 }
 for (i = 0; i < VPU_MAX_NUM_STREAMS; i++) {
 pSharedInterface->ptEncryptInfo[i] = phy_addr;
 phy_addr += sizeof(MediaIPFW_Video_Encrypt_Info);
 }

3.1.1.2 Sample Code for Decoder System Configuration Parameter Initialization

The following is the sample code to initialize the decoder system configuration parameter.

 pSharedInterface = (pDEC_RPC_HOST_IFACE)rpc_virt_addr;
 regs_base = 0x40000000;
 pSystemCfg = &pSharedInterface->sSystemCfg;
 pSystemCfg->uNumMalones = 1;
 pSystemCfg->uMaloneBaseAddress[0] = (unsigned int)(regs_base + 0x180000);
 pSystemCfg->uMaloneBaseAddress[0x1] = 0x0;
 pSystemCfg->uHifOffset[0x0] = 0x1C000;
 pSystemCfg->uHifOffset[0x1] = 0x0;

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
36 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

 pSystemCfg->uDPVBaseAddr = 0x0;
 pSystemCfg->uDPVIrqPin = 0x0;
 pSystemCfg->uPixIfBaseAddr = (unsigned int)(regs_base + 0x180000 + 0x20000);
 pSystemCfg->uFSLCacheBaseAddr[0] = (unsigned int)(regs_base + 0x60000);
 pSystemCfg->uFSLCacheBaseAddr[1] = (unsigned int)(regs_base + 0x68000);

3.1.1.3 Sample Code for RPC Encoder Interface Initialization

Application is responsible to record corresponding virtual address for RPC communication.

 pSharedInterface = (pENC_RPC_HOST_IFACE)rpc_virt_addr;
 base_phy_addr = rpc_phy_addr - fw_binary_phy_addr;
 pSharedInterface->FwExecBaseAddr = base_phy_addr;
 pSharedInterface->FwExecAreaSize = total_size;
 pSharedCmdBufDescPtr = (BUFFER_DESCRIPTOR_TYPE *)&pSharedInterface-
>StreamCmdBufferDesc;
 pSharedMsgBufDescPtr = (BUFFER_DESCRIPTOR_TYPE *)&pSharedInterface-
>StreamMsgBufferDesc;
 phy_addr = base_phy_addr + sizeof(ENC_RPC_HOST_IFACE);
 pSharedCmdBufDescPtr->wptr = phy_addr;
 pSharedCmdBufDescPtr->rptr = pSharedCmdBufDescPtr->wptr;
 pSharedCmdBufDescPtr->start = pSharedCmdBufDescPtr->wptr;
 pSharedCmdBufDescPtr->end = pSharedCmdBufDescPtr->start + CMD_SIZE;
 phy_addr += CMD_SIZE;
 pSharedMsgBufDescPtr->wptr = phy_addr;
 pSharedMsgBufDescPtr->rptr = pSharedMsgBufDescPtr->wptr;
 pSharedMsgBufDescPtr->start = pSharedMsgBufDescPtr->wptr;
 pSharedMsgBufDescPtr->end = pSharedMsgBufDescPtr->start + MSG_SIZE;
 phy_addr += MSG_SIZE;
 for (i = 0; i < VID_API_NUM_STREAMS; i++) {
 pSharedInterface->pEncCtrlInterface[i] = phy_addr;
 phy_addr += sizeof(MEDIA_ENC_API_CONTROL_INTERFACE);
 }
 for (i = 0; i < VID_API_NUM_STREAMS; i++) {
 temp_addr = pSharedInterface->pEncCtrlInterface[i];
 pEncCtrlInterface = (pMEDIA_ENC_API_CONTROL_INTERFACE)
(phy_to_virt(temp_addr));
 pEncCtrlInterface->pEncYUVBufferDesc = phy_addr;
 phy_addr += sizeof(MEDIAIP_ENC_YUV_BUFFER_DESC);
 pEncCtrlInterface->pEncStreamBufferDesc = phy_addr;
 phy_addr += sizeof(BUFFER_DESCRIPTOR_TYPE);
 pEncCtrlInterface->pEncExpertModeParam = phy_addr;
 phy_addr += sizeof(MEDIAIP_ENC_EXPERT_MODE_PARAM);
 pEncCtrlInterface->pEncParam = phy_addr;
 phy_addr += sizeof(MEDIAIP_ENC_PARAM);
 pEncCtrlInterface->pEncMemPool = phy_addr;
 phy_addr += sizeof(MEDIAIP_ENC_MEM_POOL);
 pEncCtrlInterface->pEncEncodingStatus = phy_addr;
 phy_addr += sizeof(ENC_ENCODING_STATUS);
 pEncCtrlInterface->pEncDSAStatus = phy_addr;
 phy_addr += sizeof(ENC_DSA_STATUS_t);
 }

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
37 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

3.1.1.4 Sample Code for Encoder System Configuration Parameter Initialization

The following is sample code for initializing the encoder configuration parameter for Windsor.

MEDIAIP_FW_SYSTEM_CONFIG *pSystemCfg;
regs_base = 0x40000000;
 pSharedInterface = (pENC_RPC_HOST_IFACE)rpc_virt_addr;
 pSystemCfg = &pSharedInterface->sSystemCfg;
 pSystemCfg->uNumWindsors = 1;
 pSystemCfg->uWindsorIrqPin[0x0][0x0] = 0x4; // PAL_IRQ_WINDSOR_LOW
 pSystemCfg->uWindsorIrqPin[0x0][0x1] = 0x5; // PAL_IRQ_WINDSOR_HI
 if (encoder_id == 0)
 pSystemCfg->uWindsorBaseAddress[0] = (unsigned int)(regs_base + 0x800000);
 else
 pSystemCfg->uWindsorBaseAddress[0] = (unsigned int)(regs_base + 0xa00000);

There is one encoder engine on i.MX 8QuadXPlus and two encoder engines on i.MX 8QuadMax.

3.1.2 RPC Commands

RPC commands and events are the basic communication between the application and Cortex-M cores.
Applications send commands to the Cortex-M cores and receive events from the Cortex-M cores using the
enumerations as shown below.

The following are the command types for decoder and encoder RPC commands.

 typedef enum {
 VID_API_CMD_XXX = xxx,
 } TB_API_DEC_CMD;
 typedef enum {
 VID_API_EVENT_XXX = xxx,
 } TB_API_DEC_EVENT;
 typedef enum {
 GTB_ENC_CMD_XXX = xxx,
 } GTB_ENC_CMD;
 typedef enum {
 VID_API_ENC_EVENT_XXX = xxx,
 } ENC_TB_API_ENC_EVENT;

3.1.3 RPC MU

MU modules are designed to trigger interrupt between different processors on i.MX 8 platforms. In the i.MX
RPC implementation, MU interrupt (RX0) will be used to replace CPU polling. The application is responsible
to register interrupt handler, which is used to receive RPC message and trigger the state machine of decoder
(event handler).

MU configuration:

 QXP:
 MU0: irq: (469+32); base: 0x2d000000 //for M core ID 0
 MU1: irq: (470+32); base: 0x2d020000 //for M core ID 1
 QM:
 MU0: irq: (472+32); base: 0x2d000000
 MU1: irq: (473+32); base: 0x2d020000
 MU2: irq: (474+32); base: 0x2d040000

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
38 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

 DM:
 MU0: irq: (472+32); base: 0x2d000000
 MU1: irq: (473+32); base: 0x2d020000

For the VPU decoder on i.MX 8QuadXPlus, to use the Cortex-M core ID 0, set the MU interrupt IRQ to 501,
and mu_phy_base to 0x2d000000. Only regindex ‘0’ is enabled to trigger interrupt in RPC communication. For
encoder on i.MX 8QuadXPlus, to use the Cortex-M core ID 1, set MU interrupt IRQ to 502, and mu_phy_base to
0x2d020000.

Sample code to initialize the MU module:

 MU_Init(mu_virt_base);
 MU_EnableRxFullInt(mu_virt_base, 0); //only RX0 enabled
 Sample code to send/receive message:
 MU_SendMessage(mu_virt_base, regIndex, msg);
 MU_ReceiveMsg(mu_virt_base, 0, &msg)

Send msg definition:

 Regindex:
 0: used to transfer msg
 1: used to transfer paramter
 Msg:
 1: init done, and no parameter is required in regindex 1
 2: set the RPC buffer offset, and the parameter is the RPC physical address
 from M0+ sight
 3: set the boot address, and the parameter is the binary load physcial
 address from Arm cores sight
 4: command, notify the Cortex-M core to read the RPC command buffer, and no
 parameter is required in regindex 1

Receive msg definition:

 0xAA: M core boot done, waiting the rpc config
 0x55: M core start done, waiting decoder command
 0xA5: M core snapshot done, for suspend
 0x5: M core send event, Arm core need to read rpc message buffer

For more information about how to send/receive MU interrupt, see the i.MX Linux Reference Manual
(IMXLXRM).

3.1.4 RPC Message

Command and event are transferred through RPC command ring buffer and message ring buffer separately.

Sample code to send command (followed by MU sending msg: 4):

 MediaIPFW_Video_BufDesc *pCmdDesc = &pSharedInterface->StreamCmdBufferDesc;
 u_int32 *cmddata;
 u_int32 i;
 u_int32 *cmdword=(u_int32 *)(cmd_mem_vir+pCmdDesc->uWrPtr - pCmdDesc->uStart);
 *cmdword = 0;
 *cmdword |= ((strIdx & 0x000000ff) << 24); //stream index
 *cmdword |= ((cmdnum & 0x000000ff) << 16);

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
39 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

 *cmdword |= ((cmdid & 0x00003fff) << 0); // TB_API_DEC_CMD
 pCmdDesc->uWrPtr = (pCmdDesc->uWrPtr + 4)%(ring_buffer_size);
 for (i = 0; i < cmdnum; i++) {
 cmddata = (u_int32 *)(cmd_mem_vir+pCmdDesc->uWrPtr - pCmdDesc->uStart);
 *cmddata = local_cmddata[i];
 pCmdDesc->uWrPtr = (pCmdDesc->uWrPtr + 4)%(ring_buffer_size);
 }

Sample code to receive message (followed by MU receiving msg: 0x5):

 MediaIPFW_Video_BufDesc *pMsgDesc = &pSharedInterface->StreamMsgBufferDesc;
 u_int32 msgword =*((u_int32 *)(msg_mem_vir+pMsgDesc->uRdPtr-pMsgDesc-
>uStart));
 msg->idx = ((msgword & 0xff000000) << 24); //stream index
 msg->msgnum = ((msgword & 0x00ff0000) << 16);
 msg->msgid = ((msgword & 0x00003fff) << 0); // TB_API_DEC_EVENT
 pMsgDesc->uRdPtr = (pMsgDesc -> uRdPtr + 4)%(ring_buffer_size);
 for (i = 0; i < msg->msgnum; i++) {
 msg->msgdata[i]=*((u_int32*)(msg_mem_vir+pMsgDesc->uRdPtr-pMsgDesc-
>uStart));
 pMsgDesc->uRdPtr = (pMsgDesc->uRdPtr + 4)%(ring_buffer_size);
 } msg->msgid = ((msgword & 0x00003fff) >> 0); // TB_API_DEC_EVENT
 pMsgDesc->uRdPtr = (pMsgDesc -> uRdPtr + 4)%(ring_buffer_size);
 for (i = 0; i < msg->msgnum; i++) {
 msg->msgdata[i]=*((u_int32*)(msg_mem_vir+pMsgDesc->uRdPtr-pMsgDesc-
>uStart));
 pMsgDesc->uRdPtr = (pMsgDesc -> uRdPtr + 4)%(ring_buffer_size);
 }

3.2 Cortex-M Core Boot
Some internal protocols are defined to make the Cortex-M core boot properly. Applications should perform the
steps below to follow the protocol.

1. Application should load firmware binary into one physical continuous memory firstly and then set the
physical address to offset register of the Cortex-M core, finally boot the Cortex-M core through clear wait
register of the Cortex-M core.

CSR config:
QXP:
CSR0: 0x2d040000
CSR1: 0x2d050000
QM:
CSR0: 0x2d080000
CSR1: 0x2d090000
CSR2: 0x2d0a0000
DM:
CSR0: 0x2d040000
CSR1: 0x2d050000
Sample code to use the Cortex-M core ID 0 on QXP:
csr_base = 0x2d040000;
csr_wait = 0x2d040004;
(u_int32)csr_base = fw_binary_phy_addr;
(u_int32)csr_wait = 0;

2. Application must wait until receiving special message (0xAA). This means the Cortex-M core is already
initialized. Then application can initialize RPC interface from previous section.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
40 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

3. Application sends firmware binary physical address and RPC physical address to the Cortex-M core through
MU_SendMessage.

Sample code:
MU_SendMessage(mu_virt_base, 1, fw_binary_phy_addr);
MU_SendMessage(mu_virt_base, 0, 3);
MU_SendMessage(mu_virt_base, 1, rpc_phy_addr);
MU_SendMessage(mu_virt_base, 0, 2);
MU_SendMessage(mu_virt_base, 1, 2);
MU_SendMessage(mu_virt_base, 0, 1);

4. Application waits until receiving special message (0x55) from the Cortex-M core, which indicates that the
Cortex-M core is already started up. After these steps are complete, bootup of the Cortex-M core is finished,
and the application can send normal decoder command.

3.3 Decoder Workflow

3.3.1 Stream Config

Application sets initial parameter for every stream instance before start. Below is Sample code to initialize the
decoder:

 u_int32 *CurrStrfg;
 pSharedInterface = (pDEC_RPC_HOST_IFACE)Interface;
 CurrStrfg = &pSharedInterface->StreamConfig[str_idx];
 *CurrStrfg = 0;
 VID_STREAM_CONFIG_STRBUFIDX_SET(0, CurrStrfg);
 VID_STREAM_CONFIG_NOSEQ_SET(FALSE, CurrStrfg);
 VID_STREAM_CONFIG_DEBLOCK_SET(FALSE, CurrStrfg);
 VID_STREAM_CONFIG_DERING_SET(FALSE, CurrStrfg);
 VID_STREAM_CONFIG_PLAY_MODE_SET(MEDIA_PLAYER_API_MODE_CONTINUOUS,CurrStrfg);
 VID_STREAM_CONFIG_FS_CTRL_MODE_SET(MEDIA_PLAYER_FS_CTRL_MODE_EXTERNAL,
 CurrStrfg);
 VID_STREAM_CONFIG_ENABLE_DCP_SET(TRUE, CurrStrfg);
 VID_STREAM_CONFIG_NUM_STR_BUF_SET(1, CurrStrfg);
 VID_STREAM_CONFIG_MALONE_USAGE_SET(1, CurrStrfg);
 VID_STREAM_CONFIG_MULTI_VID_SET(FALSE, CurrStrfg);
 VID_STREAM_CONFIG_OBFUSC_EN_SET(FALSE, CurrStrfg);
 VID_STREAM_CONFIG_RC4_EN_SET(FALSE, CurrStrfg);
 VID_STREAM_CONFIG_MCX_SET(TRUE, CurrStrfg);
 VID_STREAM_CONFIG_PES_SET(FALSE, CurrStrfg);
 VID_STREAM_CONFIG_NUM_DBE_SET(1, CurrStrfg);
 VID_STREAM_CONFIG_FORMAT_SET(VSys_AvcFrmt, CurrStrfg); //for h.264 format

3.3.2 Event Handler

For normal decoder workflow, the application should implement one event handler to respond the event from
the Cortex-M core and send proper command to trigger correct decoder state. The following figure shows one
simple flow for normal decoder playback.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
41 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

APP RPC

Feed data

VID_API_CMD_START
VID_API_EVENT_START_DONE

aaa-053547

VID_API_EVENT_SEQ_HDR_FOUND

VID_API_EVENT_REQ_FRAME_BUFF

VID_API_CMD_FS_ALLOC
VID_API_EVENT_FIFO_LOW

VID_API_CMD_STOP
VID_API_EVENT_STOPPED

Fetch seqinfo

VID_API_EVENT_REL_FRAME_BUFF

VID_API_CMD_FS_RELEASE

Display finish

Exit?

Close

Yes

No

Allocate frame

Feed data
Decoder

VID_API_EVENT_PIC_DECODED
VID_API_EVENT_FRAME_BUFF_RDY

Display frame

Figure 4. Simple flow for normal decoder playback

For dynamic resolution changes, event ‘VID_API_EVENT_RES_CHANGE’ will be sent and thus allocation of
memory needs to change.

To support other advanced features, such as flush operation, command ‘VID_API_CMD_ABORT’ should
be used and decoder will send callback event VID_API_EVENT_STR_BUF_RST when the command is
processed.

Input data buffer:

All input data are maintained by ring buffers, which are managed by read and write pointer. The buffer
descriptors are defined in pSharedInterface->pStreamBuffDesc[]. Every descriptor needs to point to one HW
MCX register: (total 8 groups of MCX registers)

 regs_base + DEC_MFD_XREG_SLV_BASE + MFD_MCX + MFD_MCX_OFF * strIdx
 = 0x2c000000 + 0x00180000 + 0x00020800 + 0x20 * strIdx

Output frame buffer:

For internal mode (obsolete), one large memory pool is registered through pSharedInterface->StreamFrame
Buffer[], and decoder will divide frames from the large memory pool internally. For external mode, frames are
registered through command ‘VID_API_CMD_FS_ALLOC’, and application is responsible to allocate frame one
by one following the callback event request.

3.3.2.1 VID_API_EVENT_REQ_FRAME_BUFF

Decoder requests frame and applications sends buffer through command ‘VID_API_CMD_FS_ALLOC’. There
are three types of buffers:

• DCP

uLocalCmdBuffer[0] = Id;

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
42 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

uLocalCmdBuffer[1] = dcp_phy;
uLocalCmdBuffer[2] = dcp_size;
uLocalCmdBuffer[3] = 0;
uLocalCmdBuffer[4] = 0;
uLocalCmdBuffer[5] = 0;
uLocalCmdBuffer[6] = ulFsType; // MEDIAIP_MEM_REQ : 0: Frame; 1: MBI; 2: DCP

DCP buffer is only requested by HEVC decoder, and DCP size is one constant value ‘0x3000000’ for the
worst case. And the maximum DCP buffer number should be less than 3.

• MBI

uLocalCmdBuffer[0] = Id;
uLocalCmdBuffer[1] = mbi_phy;
uLocalCmdBuffer[2] = mbi_size;
uLocalCmdBuffer[3] = 0;
uLocalCmdBuffer[4] = 0;
uLocalCmdBuffer[5] = 0;
uLocalCmdBuffer[6] = ulFsType; // MEDIAIP_MEM_REQ : 0: Frame; 1: MBI; 2: DCP
the maximum MBI buffer number should be less than 19.

• Frame:

uLocalCmdBuffer[0] = ulFsId;
uLocalCmdBuffer[1] = ulFsLumaBase[0];
uLocalCmdBuffer[2] = ulFsLumaBase[1]; //for field
uLocalCmdBuffer[3] = ulFsChromaBase[0];
uLocalCmdBuffer[4] = ulFsChromaBase[1]; //for field
uLocalCmdBuffer[5] = ulFsStride;
uLocalCmdBuffer[6] = ulFsType; // MEDIAIP_MEM_REQ : 0: Frame; 1: MBI; 2: DCP

Sample code to calculate frame buffer stride/size and MBI size:

 u_int32 uVertAlign = 256-1;
 u_int32 uMBIAlign = 0x800-1;
 bool b10BitFormat = (pSeqinfo->uBitDepthLuma > 8) || pSeqinfo->uBitDepthChroma
 >8);
 width = b10BitFormat ? (width + ((width + 3) >> 2)): width;
 width = ((width + uVertAlign) & ~uVertAlign);
 stride = width;
 height = ((height + uVertAlign) & ~uVertAlign);
 chroma_height = height >> 1;
 luma_size = width * height;
 chroma_size = width * chroma_height;
 mbi_size = (luma_size+chroma_size)/4;
 mbi_size = ((mbi_size + uMBIAlign) & ~ uMBIAlign);

3.3.2.2 VID_API_EVENT_SEQ_HDR_FOUND

Decoder finds one valid sequence header, and application can fetch sequence info from shared memory
(MediaIPFW_Video_SeqInfo *)(pSharedInterface->SeqInfoTabDesc.pSeqInfoArrayBase) with stream index
offset. The information includes the number of FS buffers required and the number of MBI buffers and size. The
MBI buffers is slightly different depending on the codec format. For the DCP buffer, decoder should request a
size of the worst-case for expected streams to support.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
43 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

3.3.2.3 VID_API_EVENT_PIC_DECODED

One frame is decoded, and the application can fetch decoded picture information from the shared memory
(MediaIPFW_Video_PicInfo *)(pSharedInterface->PicInfoTabDesc.pPicInfoArray
Base) with stream index offset. Event data also contains the frame ID (uMsgData[0x7]) and frame location
(uMsgData[0xA]) in the stream buffer.

Frame ID ‘0x555’ means skip frame, which is added mainly for synchronization and includes timestamp.

3.3.2.4 VID_API_EVENT_FRAME_BUFF_RDY

One frame is ready for display, and the application can fetch the picture information from the message data.

 uMsgData[0x0] = ulFsId;
 uMsgData[0x1] = ulFsLumaBase[0];
 uMsgData[0x2] = ulFsChromaBase[0] - ulFsLumaBase[0];
 uMsgData[0x3] = ulStride;
 uMsgData[0x4] = ulData;
 uMsgData[0x5] = ulFsLumaBase[0];
 uMsgData[0x6] = ulFsChromaBase[0];
 uMsgData[0x7] = ulFsLumaBase[1];
 uMsgData[0x8] = ulFsChromaBase[1];

Frame ID ‘0x555’ means to skip frame, which is added mainly for synchronization, including timestamp.

3.3.2.5 VID_API_EVENT_REL_FRAME_BUFF

Decoder sends this event to notify that the application's one frame won’t be referenced by decoder again.
Application can fetch the frame information by converting ‘msgdata’ to MEDIA_PLAYER_FSREL.

typedef struct{
 u_int32 uFSIdx;
 MEDIAIP_MEM_REQ eType;
 bool bNotDisplayed;
} MEDIA_PLAYER_FSREL;

If the frame is also returned from render, the application can release the frame through command
‘VID_API_CMD_FS_RELEASE’ with uLocalCmdBuffer[0]=uFsID.

3.3.2.6 VID_API_EVENT_ABORT_DONE

Decoder responds for command VID_API_CMD_ABORT in seek/trick mode. To abort current playback to
implement seek, application should insert some padding data (4K aligned) beginning with abort start code
(4bytes aligned) manually without updating writer pointer.

Definition of abort start code (big endian) for different formats:

• AVC:0x0000010B
• VC1: 0x0000010A
• MPEG2: 0x000001B7
• MPEG4: 0x000001B1
• RV/VP6/VP8/SPARK: 0x00000134
• HEVC: 0x0000014A 0x20000000

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
44 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

3.3.2.7 VID_API_EVENT_STR_BUF_RST

Decoder responds for command VID_API_CMD_RST_BUF in seek/trick mode.

3.3.2.8 VID_API_EVENT_FINISHED

To finish the current playback, application should insert some padding data (4 KB aligned) beginning with EOS
(end of stream) start code (4 bytes aligned) manually. After decoder finishes all process of these special EOS
data, it reports the finish event to notify the application that all frames have been processed.

Definition of EOS start code (big endian) for different formats:

• AVC:0x0000010B
• VC1: 0x0000010A
• MPEG2: 0x000001CC
• MPEG4: 0x000001B1
• RV/VP6/VP8/SPARK: 0x00000134
• MJPEG:0x0000FFEF
• HEVC: 0x0000014A 0x20000000

3.3.2.9 VID_API_EVENT_STOPPED

Before the application releases resource and exits, the application should send the command
‘VID_API_CMD_STOP’ first, and then wait the event VID_API_EVENT_STOPPED from decoder. Suppose
VID_API_CMD_STOP/VID_API_EVENT_STOPPED is only handled once for every playback. One reasonable
flow for normal or exception exit (such as Ctrl-C) is application call VID_API_CMD_ABORT following
VID_API_CMD_STOP.

3.3.2.10 VID_API_EVENT_FIRMWARE_XCPT

The firmware sends an exception event when decoder enters unrecoverable error state due to some unknown
reasons. Additional information can be fetched from ‘(char*)msgdata’. In such a use case, the application should
send ‘VID_API_CMD_FIRM_RESET’ to the software to reset the Cortex-M core and firmware.

3.3.3 Decoder State Machine

The following figure shows the state machine for decoder internal state, as well as the relation between
commands and events.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
45 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

Other normal events:
Start done
Sequence header find
Picture header find
Picture decoded
Frame ready
Frame release
Stream buffer reset
Resolution change
Exception event

Sync events:
0xAA
0x55
0xA5

Running

aaa-053546

EOS

Stop

Loaded

Waiting
frame

Waiting
input

Fifo
low

Feed
data

Find eos
Rst buf cmd

Abort cmd

Stop event

Finish event
Abort done event

Abort cmd

Start cmd

Stop cmd

Alloc frame
Request frame

Start cmd

Snapshot cmdReset cmdM core boot

Waiting
buffer rest

Figure 5. Decoder State Machine

3.3.4 Decoder Special Operation

There are some special operations beside normal playback for decoder.

3.3.4.1 Seek Mode

Playback will jump into one specified location from which one reference frame begins.

To support this mode, one suggested workflow is as follows:

1. Application fills data (4 KB aligned) beginning with ABORT start code (4 bytes aligned) following current
write pointer, and does not update write pointer after padding data filling. It is very important that firmware
updates write pointer of padding data instead of application, which will avoid potential risk caused by
asynchronous operations.

2. Application sends the command ‘VID_API_CMD_ABORT’ with padding data size, e.g., cmdnum =1, and
cmddata[0]=pading_size.

3. Application clears bit-stream buffer after receiving the event ‘VID_API_EVENT_ABORT_DONE’.
4. Application sends the command ‘VID_API_CMD_RST_BUF’.
5. Application feeds data from new location after receiving the event ‘VID_API_EVENT_STR_BUF_RST.

During seek process, other events will be handled normally, such as
VID_API_EVENT_REQ_FRAME_BUFF and VID_API_EVENT_REL_FRAME_BUFF.

3.3.4.2 Trick Mode

To speed up playback, application only feeds some reference frame and all non-reference frames will be
dropped.

In such mode, decoder is requested to send out decoded frame immediately without any frame delay. One
suggested workflow in such mode is as follows:

1. Application sends the command ‘VID_API_CMD_ABORT’.
2. Application clears bit-stream buffer after receiving the event ‘VID_API_EVENT_ABORT_DONE’.
3. Application sends the command ‘VID_API_CMD_RST_BUF’.
4. Application feeds one reference frame after receiving the event ‘VID_API_EVENT_STR_BUF_RST'.
5. Application fills data (4 KB aligned) beginning with EOS start code (4 bytes aligned) following the reference

frame.
6. Application renders frame after receiving the event ‘VID_API_EVENT_FRAME_BUFF_RDY’.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
46 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

7. Application waits until receiving the event ‘VID_API_EVENT_FINISHED’.
8. Loop from Step 1 to Step 7.

3.3.4.3 Low Latency Mode

In some special cases, only I and P frames are encoded and the display order is same as the decode order. To
minimize the delay for frame buffer display, ‘low-latency’ mode is defined to support it.

Application is required to do the following two steps to enable it.

1. Disable reorder - Application should be responsible to guarantee that no reorder exists in the current clip.
Set parameter ‘uDispImm’ to 1 in shared memory (MediaIPFW_Video_CodecParams*)pSharedInterface-
>CodecParamTabDesc.pCodecParamArrayBase with stream index offset.

2. Insert data (4 KB aligned) beginning with flush start code (4 bytes aligned) at the end of every frame.
Definition of flush start code (only AVC supported): AVC: 0x00000115

3.3.4.4 Suspend and Resume Mode

Snapshot command is used to implement suspend/resume feature, which is OS and system related.

1. Applications send snapshot command first.
2. Application powers off the Cortex-M core after receiving snapshot done event (0xA5).
3. Application resumes decoder following re-power on the Cortex-M core in such cases. Configuring event

‘0xAA’ will be bypassed by firmware, and the application only receives started event ‘0x55’.

3.3.4.4.1 Limitation for Suspend and Resume

To avoid potential failure in suspend operation, the application should guarantee enough input data, and RPC
variable ‘BUFFER_INFO_TYPE StreamBuffInfo[str_idx]’ is used to support this:

 typedef struct {
 u_int32 stream_input_mode;
 u_int32 stream_pic_input_count;
 u_int32 stream_pic_parsed_count;
 u_int32 stream_buffer_threshold;
 u_int32 stream_pic_end_flag;
 } BUFFER_INFO_TYPE, *pBUFFER_INFO_TYPE;

• stream_input_mode: 0: invalid; 1: frame-level; 2: non-frame level.
• stream_pic_input_count: accumulated frame count (set by application), meaningful only for frame-level mode.

The application should be responsible to initialize (before start) and reset (abort done) it.
• stream_pic_parsed_count: accumulated frame count (set by firmware), meaningful only for frame-level mode.
• stream_buffer_threshold: the data threshold value to trigger internal HW preparser, meaningful only for non-

frame level.
• stream_pic_end_flag: meaningful only for frame-level mode to support some special mode (such as

trickmode). The application should set this ‘pic-end’ flag following all padding data inserted, including flush,
EOS,abort. The application should clear this ‘pic-end’ flag after receiving the following events, including buffer
reset done (abort) and finish (EOS) event. Clearing ‘pic-end’ for flush padding is not required, e.g., keep pic-
end unchanged in low-latency mode.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
47 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

3.4 Encoder Workflow

3.4.1 Stream Configuration

Applications need to set initial parameter for every stream (instance) before start. Sample code to initialize the
encoder:

 pVirt = (phy_to_virt)(pSharedInterface->pEncCtrlInterface[str_idx]);
 pMEDIAIP_ENC_PARAM param = (phy_to_virt)(pVirt->pEncParam);
 param->eCodecMode = MEDIAIP_ENC_FMT_H264;
 param->uSrcStride = VPU_ENC_WIDTH_DEFAULT;
 param->uSrcWidth = VPU_ENC_WIDTH_DEFAULT;
 param->uSrcHeight = VPU_ENC_HEIGHT_DEFAULT;
 param->uSrcOffset_x = 0;
 param->uSrcOffset_y = 0;
 param->uSrcCropWidth = VPU_ENC_WIDTH_DEFAULT;
 param->uSrcCropHeight = VPU_ENC_HEIGHT_DEFAULT;
 param->uOutWidth = VPU_ENC_WIDTH_DEFAULT;
 param->uOutHeight = VPU_ENC_HEIGHT_DEFAULT;
 param->uFrameRate = VPU_ENC_FRAMERATE_DEFAULT;
 param->uMinBitRate = BITRATE_LOW_THRESHOLD

3.4.2 Encoder Event Handler

For encoding, the application should implement one event handler to respond the event from the Cortex-M core
and send proper command to trigger correct encoder state. The following is one simple flow for normal encoder.

APP RPC

Allocate memory

GTB_ENC_CMD_CONFIGURE_CODEC
VID_API_ENC_EVENT_MEM_REQUEST

aaa-053549

VID_API_ENC_EVENT_START_DONE

VID_API_ENC_EVENT_FRAME_INPUT_DONE
GTB_ENC_CMD_FRAME_ENCODE

GTB_ENC_CMD_FRAME_ENCODE
VID_API_ENC_EVENT_FRAME_DONE

GTB_ENC_CMD_STREAM_START

GTB_ENC_CMD_STREAM_STOP
VID_API_ENC_EVENT_STOP_DONE

Feed frame

Exit?

Close

Feed frame

Get output

Encoder

VID_API_ENC_EVENT_FRAME_RELEASE

Return frame

Figure 6. Simple flow for normal encoder

The input frame buffer is set through the buffer descriptor: pSharedInterface -> pEncCtrlInterface
[str_idx] ->pEncYUVBufferDesc.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
48 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

• Output frame buffer: Output data is maintained in buffer descriptor: pSharedInterface->
pEncCtrlInterface[str_idx]-> pEncStreamBufferDesc.

• Encoder parameters: The application can configure most parameters through set structure:
pSharedInterface-> pEncCtrlInterface[str_idx]->pEncParam before sending the configuration
command.

3.4.2.1 VID_API_ENC_EVENT_MEM_REQUEST

Encoder reports required memory information, and the application is responsible to allocate memory first,
and then call the command ‘GTB_ENC_CMD_STREAM_START’ to start. The required memory size can be
obtained from the message data.

Sample code to calculate total memory size:

 MEDIAIP_ENC_MEM_REQ_DATA *req_data = msgdata;
 for (i = 0; i < req_data->uEncFrmNum; i++) {
 size += req_data->uEncFrmSize;
 }
 for (i = 0; i < req_data->uRefFrmNum; i++) {
 size += req_data->uRefFrmSize;
 }
 size += req_data->uActBufSize;

The application is responsible to allocate the frame based on the information above and fill the structure (p
MEDIAIP_ENC_MEM_POOL)pSharedInterface->pEncCtrlInterface[str_idx]->pEncMemPool accordingly.

3.4.2.2 VID_API_ENC_EVENT_START_DONE

Encoder is ready, and the application can send next input by filling ‘pEncYUVBufferDesc’ and call command
‘GTB_ENC_CMD_FRAME_ENCODE’.

3.4.2.3 VID_API_ENC_EVENT_FRAME_INPUT_DONE

Encoder has obtained the frame input buffer, and the application can send next input by filling
‘pEncYUVBufferDesc’ and call command ‘GTB_ENC_CMD_FRAME_ENCODE’.

3.4.2.4 VID_API_ENC_EVENT_FRAME_DONE

Encoder notifies the application that one frame is encoded, and the application can get output
through ‘pEncStreamBufferDesc’. Another way, the application can obtain picture information through
‘(pMEDIAIP_ENC_PIC_INFO)msgdata’. Start address of the output frame data is stored in the variable
‘uStrBuffWrPtr’, and the size of the output frame data is stored in the variable ‘uFrameSize’.

3.4.2.5 VID_API_ENC_EVENT_FRAME_RELEASE

Encoder releases one input frame, and the application can get the frame ID through msgdata[0]. The application
can refresh the input frame buffer data only after receiving this release event.

3.4.2.6 VID_API_ENC_EVENT_STOP_DONE

Response to the stop command, and the application can exit current stream after receiving this event.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
49 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

3.4.2.7 VID_API_ENC_EVENT_FIRMWARE_XCPT

Firmware sends the exception event when encoder enters unrecoverable error state due to some unknown
reasons. Additional information can be obtained from ‘(char*)msgdata’. In such cases, the application should
send ‘GTB_ENC_CMD_FIRM_RESET’ to the software to reset the Cortex-M core and firmware.

3.4.3 Encoder State Machine

The following figure shows the state machine for encoder internal state, as well as the relation between
commands and events.

Other normal events:
Frame done
Frame release
Exception event

Sync events:
0xAA
0x55
0xA5

Running

aaa-053551

Stop

Loaded

Request
memory

Waiting
frame input

Start done/input done
Feed yuv/encode cmd

Stop event

Stop cmd

Start cmd

Config cmd

Alloc memory

Mem req event

Config cmd

Config

Start cmd

Snapshot cmdReset cmdM core boot

Figure 7. State machine for encoder internal state

3.4.4 Encoder Special Operations

There are some special operations beside normal encoding.

3.4.4.1 Low Latency Mode

Some delay is involved since encoder will consider frame re-order for more efficient compression, and one RPC
parameter is added to allow application disable re-order feature to implement minimum latency:

((pMEDIAIP_ENC_PARAM)(pSharedInterface->pEncCtrlInterface[str_idx]->pEncParam))
 ->uLowLatencyMode
1: enable low-latency mode.
0: disable low-latency mode

3.4.4.2 Suspend and Resume

Snapshot command is used to implement suspend/resume feature, which is OS and system related.

1. Application sends the snapshot command.
2. Applications powers off the Cortex-M core after receiving the snapshot done event (0xA5).
3. Application resumes encoder following re-power on the Cortex-M core. In such cases, configuring event

‘0xAA’ will be bypassed by firmware, and the application only receives the started event ‘0x55’.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
50 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

3.5 Multi-instance Support
Decoder and encoder can support up to 8 multi-instances (streams). VID_API_NUM_STREAMS must be
defined with 8. The application should obtain the real multi-instance number from the RPC variable reported
from 'pSharedInterface->uMaxDecoderStreams' after the decoder is loaded or from 'pShared
Interface->uMaxEncoderStreams' after the encoder is loaded. There is stream index parameter in every
RPC command and message to support multi-instance, and the application should be responsible to maintain
context for every instance. The application can reuse the stream ID after the current stream is stopped.

3.6 Resolution Change
Different resolutions are permitted in some special clips or cases. For resolution change, decoder
receives resolution change event ‘VID_API_EVENT_RES_CHANGE’ following new header event
‘VID_API_EVENT_SEQ_HDR_FOUND’. The application should follow the rules below to support resolution
change:

• Free and re-allocate all frame and MBI buffers for new resolution.
• Obtain the current sequence tag from ‘uActiveSeqTag’ in structure MediaIPFW_Video_SeqInfo for every

header event ‘VID_API_EVENT_SEQ_HDR_FOUND’.
• Pack sequence tag in the top 8 bits along with frame ID in the command ‘VID_API_CMD_FS_RELEASE’ and

‘VID_API_CMD_FS_ALLOC’:

uLocalCmdBuffer[0] = (ulFsId &0xFFF) | (uActiveSeqTag << 24)

3.7 Memory Requirements

3.7.1 Decoder Buffer

There are three types of buffers required based on the information reported from the structure
MediaIPFW_Video_SeqInfo through the callback event ‘VID_API_EVENT_SEQ_HDR_FOUND’:

• Frame buffers: The number of frame buffer is decided by the variables ‘uNumDPBFrms’ and
‘uNumRefFrms’. Each frame needs to be aligned due to the hardware limitation. Frame buffer size is equal to:
Align(uHorRes,256) * Align(uVerRes ,256). Total number = uNumDPBFrms + uNumRefFrms.

• MBI buffers: The number of MBI buffer is decided by the frame buffer number, and the maximum number
should be less than 19. One reasonable MBI buffer size is a quarter of one frame, and alignment is 2 KB
(0x800).

• DCP buffers: The number of DCP buffer is reported by the variable ‘uNumDFEAreas’, and needs to reserve
one fixed size (0x3000000: 48M) for each DCP buffer. The DCP buffer is used for parallel process and
required only for the HEVC format.

3.7.2 Encoder Buffer

There are three types of buffers required based on the information reported from struct
‘MEDIAIP_ENC_MEM_REQ_DATA’ through the callback event ‘VID_API_ENC_EVENT_MEM_REQUEST’:

• Frame buffers: uEncFrmNum * frame buffers of size uEncFrmSize. uEncFrmNum is less than
MEDIAIP_MAX_NUM_WINDSOR_SRC_FRAMES (defined with 6).

• Reference buffers: uRefFrmNum * frame buffers of size uRefFrmSize. uRefFrmNum is less than
MEDIAIP_MAX_NUM_WINDSOR_REF_FRAMES (defined with 3).

• Activity buffer: An Activity buffer area of size uActBufSize. Activity buffer is accessed by M0+ core, so the
application should guarantee that it is allocated in proper memory space. And ‘uMemVirtAddr’ is also required
for the access by M0+.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
51 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

3.7.3 Bitstream Buffer

The allocated bitstream buffer should hold at least 2 to 3 frames. To support decode for 4 KB HEVC clip,
increase the bitstream buffer to 10 MB. To support encoder of 1080p H.264 clip, set the bitstream buffer to 2 MB
or above.

3.7.4 YUV Input Frame Buffer

The application needs to maintain the frame input buffer queue, and 3 or above is suggested to improve the
pipeline efficiency. Every frame buffer size is equal to width * height * 3/2.

3.7.5 RPC Decoder Shared Memory Size

The RPC memory size can be limited under 1 MB for 8 instances with the following details on the required size
information:

• RPC Interface: sizeof(DEC_RPC_HOST_IFACE), max_str_num (max stream number) related
• Command ring buffer size (CMD_SIZE): recommended to reserve 20 KB
• Message ring buffer size (MSG_SIZE): recommended to reserve 20 KB
• Parameter buffer size (CODEC_SIZE): max_str_num * sizeof(MediaIPFW_Video_CodecParams)
• Jpeg parameter buffer size (JPEG_SIZE): max_str_num * sizeof(MediaIPFW_Video_JpegParams)
• Sequence buffer size (SEQ_SIZE): max_str_num * sizeof(MediaIPFW_Video_SeqInfo)
• Picture information size (PIC_SIZE): max_str_num * sizeof(MediaIPFW_Video_PicInfo)
• Gop information size (GOP_SIZE): max_str_num * sizeof(MediaIPFW_Video_GopInfo)
• Meter information size (QMETER_SIZE): max_str_num* sizeof(MediaIPFW_Video_QMeterInfo)
• Debug log buffer size (DBGLOG_SIZE): for internal debug data dump. Application can disable it through set

‘DbgLogDesc.uDecStatusLogSize = 0’
• Debug ring buffer size (DEBUG_SIZE): for debug log. Application can disable it through set uStart = uEnd
• Engineer access ring buffer size (ENG_SIZE): for internal engineer debug. Application can disable it through

set uStart = uEnd
• Encrypt buffer size (reserved): max_str_num * sizeof(MediaIPFW_Video_Encrypt_Info)

3.7.6 RPC Encoder Shared Memory Size

The RPC memory size can be limited under 1 MB for 8 instances with the following details on the required size
information:

• RPC Interface: sizeof(ENC_RPC_HOST_IFACE), max_str_num(max stream number) related
• Command ring buffer size (CMD_SIZE): recommended to reserve 20 KB
• Message ring buffer size (MSG_SIZE): recommended to reserve 20 KB
• Control interface: sizeof(MEDIA_ENC_API_CONTROL_INTERFACE), max_str_num related
• Other shared memory, max_str_num related:

– Sizeof(MEDIAIP_ENC_YUV_BUFFER_DESC) //yuv input
– Sizeof(BUFFER_DESCRIPTOR_TYPE) //bitstream buffer
– Sizeof(MEDIAIP_ENC_EXPERT_MODE_PARAM) //reserved=
– Sizeof(MEDIAIP_ENC_PARAM) //input parameters
– Sizeof(MEDIAIP_ENC_MEM_POOL) //internal frame buffers
– Sizeof(ENC_ENCODING_STATUS) //reserved
– Sizeof(ENC_DSA_STATUS_t) //reserved

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
52 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

3.7.7 Firmware Size

For decoder in the current firmware release, the memory space is mapped into the following, so the application
can reserve 32 MB for the whole binary space.

[.text]: 0 - 1MB
[.data/.bss/.stack]: 1MB - 31MB

For encoder the memory space is mapped into:

[.text]: 0 - 1MB
[.data/.bss/.stack]: 1MB - 2MB
e.g. application can reserve 2MB for the whole binary space.

3.7.8 Cortex-M Cores Memory Space

On the i.MX 8QuadXPlus/8QuadMax/8DualMax B0 SoC, the Cortex-M Cores are reserved for VPU, and the
DDR memory space shared with the Arm cores is from 0x0 to 0x3FFFFFFF (1GB) for each Cortex-M core.

3.7.8.1 Memory Map Between Arm Core and Cortex-M Core

The 0x0 address is always reserved for the code segment, so the application needs to handle the shared
memory (code binary and data buffer) carefully. For example, if the application allocates one memory to load
firmware binary at 0x80000000, the Cortex-M core address offset register is set to 0x80000000, and then all
data memory shared with the Cortex-M cores needs to be limited within the range (0x80000000, 0xC0000000).

3.7.8.2 Configuring Cached and Uncached Regions

In the Cortex-M cores, the memory cache map is defined as:

• 0x0000_0000 - 0x07FF_FFFF (128MB) cached (reserved for .text/.data)
• 0x0800_0000 - 0x0FFF_FFFF (128MB) uncached (reserved for shared memory)
• 0x1000_0000 - 0x1FFF_FFFF (256MB) cached (reserved for .text/.data)
• 0x2000_0000 - 0x3FFF_FFFF (512MB) uncached (reserved for shared memory)

To assign one section in the uncached region, keep its offset (compared with binary base address) in the range
[128 MB, 256 MB] or [512 MB,1 GB].

3.7.8.3 Buffer Configuration Example

The following is an example for buffer configuration (binary address is set with offset 0):

Space [0, 128M]: Binary (include code/data/.bss): >32MB
Uncachable on Acore
Cachable on M core
Space [128M,256M]: RPC shared memory: > 2MB
Uncachable on Acore
Uncachable on M core
Space [256M,1G]: some other reserved buffers for M core if have
 Uncachable on Acore
 Cachable/Uncachable on M core (cache property is unexpected)

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
53 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

For bit-stream and frame buffers, there is no space limitation, because they are referenced only by VPU
hardware.

3.7.9 Platform and Cortex-M Core ID Configuration

To minimize the effort of the following maintain, one decoder binary is used to support all platforms for the i.MX
8QuadXPlus, 8QuadMax and 8DualMax. Some fixed memory offsets from binary base address are reserved to
platform configuration.

Off[16]: Platform (0-QXP, 1-QM, 2-DM, 3-DX)
Off[17]: Mcore ID
QXP/DM: (0 or 1 for decoder ; 0 or 1 for encoder)
 QM: (0, 1 or 2 for decoder ; 1 or 2 for encoder)

Example of Cortex-M core ID (default configuration on the Linux release):

• QXP/DM: 0 for decoder; 1 for encoder
• QM: 0 for decoder; 1 and 2 for two encoders separately

If the user changes the Cortex-M core ID, some register addresses should be changed accordingly, including
CSR, MU base registers.

3.7.10 Boot Speedup

The Cortex-M core is responsible to clear all data in the .bss segment, but the Cortex-M core is much slower
compared with the Arm core, so one additional memory offset is reserved to allow the firmware (Cortex-M core)
to skip clearing of the .bss segment. In such cases, the application (Arm core) is required to clear related buffers
(containing .bss) allocated for firmware.

 Off[20]: 1 (skip .bss clearing); 0 (default flow)

4 i.MX 6 VPU Main Features

The i.MX 6 VPU is fully compliant with H.264 BP/MP/HP, VC-1 SP/MP/AP, MPEG-4 SP/ASP except GMC, DivX
(Xvid) and MPEG-1/2, VP8, AVS, and MJPEG. Image sizes up to full HD 1920x1080 60i or 30p decoding and
1920x1088 encoding. The VPU supports various error resilience tools, multiple decoding, and full duplex multi-
party-call simultaneously. The VPU provides programmability, flexibility, and ease of upgrade in decoding and
encoding or host interface because all of the controls in the decoding and encoding process and host interface
are implemented as firmware in the programmable BIT processor.

The detailed features of the VPU are as follows:

• Encoding
– H.264

– 1/4-pel accuracy motion estimation with programmable search range up to [+/-128, +/-64]
– Search range is reconfigurable by SW
– 16x16, 16x8, 8x16 and 8x8 block sizes
– Configurable block sizes
– Only one reference frame for motion estimation
– Intra-prediction
– Luma I4x4 Mode : 9 modes
– Luma I16x16 Mode : 3 modes (Vertical, Horizon, DC)

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
54 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

– Chroma Mode : 3 modes (Vertical, Horizon, DC)
– Minimum encoding image size is 96 pixels in horizontal and 16 pixels in vertical
– FMO/ASO tool of H.264 is not supported

– MPEG-4
– AC/DC prediction
– 1/2-pel accuracy motion estimation with search range up to [+/-128, +/-64]
– Search range is reconfigurable by SW

– H.263
– H.263 Baseline profile + Annex J, K (RS=0 and ASO=0), and T

– 48x32 pixel minimum encoding image size (48 pixels horizontal and 32 pixels vertical)
• Decoding

– H.264
– Fully compatible with the ITU-T Recommendation H.264 specification in BP/MP and HP
– CABAC/CAVLC
– Supports MVC Stereo High profile
– Variable block size-16x16, 16x8, 8x16, 8x8, 8x4, 4x8 and 4x4
– Error detection, concealment and error resilience tools

– VC1
– All VC-1 profile features-SMPTE Proposed SMPTE Standard for Television: VC-1 Compressed Video

Bitstream format and Decoding Process
– Simple/Main/Advanced Profile

– MPEG-4
– Simple/Advanced Simple profile except GMC
– H.263 Baseline profile + Annex I, J, K (except RS/ASO), and T
– DivX version 3.x to 6.x
– Xvid

– MPEG-2
– Fully compatible with ISO/IEC 13182-2 MPEG2 specification in main profile
– I, P, and B frame
– Field coded picture (interlaced) and frame coded picture

– AVS
– Supports Jizhun profile level 6.2 (exclude 422 use case)

– VP8
– Fully compatible with VP8 decoder specification
– Supporting both simple and normal in-loop deblocking

– 64x64 pixel minimum decoding size
• JPEG tools

– MJPEG Baseline Process Encoder and Decoder
– Baseline ISO/IEC 10918-1 JPEG compliance
– Support 1 or 3 color components
– 3 component in a scan (interleaved only)
– 8 bit samples for each component
– Support 4:2:0, 4:2:2, 2:2:4, 4:4:4 and 4:0:0 color format (max. six 8x8 blocks in one MCU)
– Minimum encoding size is 16x16 pixels.

• Value added features
– De-ringing
– Pre/Post rotator/mirror

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
55 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

– Built-in de-blocking filter for MPEG-2/MPEG-4 and DivX
• Programmability

– 16-bit DSP processor dedicated to processing bitstream and controlling the codec hardware
– General purpose registers and interrupt for communication to and from a host processor

• Optimal external memory accesses
– Configurable frame buffer formats (linear or tiled) for longer burst-length
– 2D cache for motion estimation and compensation to reduce external memory accesses
– Secondary AXI port for on-chip memory to enhance performance

• Performance
– All video decoder standards up to 1920x1088 @ 30 fps at 266 MHz
– H264 encoder standards up to 1920x1088 @ 30 fps at 266 MHz, MPEG4 encoder up to 720p@30fps at

266MHz
– MJPG decoder on 4:4:4 supports 120M pixel per second @ 266MHz
– MJPG encoder on 4:4:4 supports 160M pixel per second @ 266MHz

• Interrupt
– Interrupt from and to external host processor or interrupt controller

4.1 i.MX 6 VPU Programmability
The VPU has an internal DSP called the BIT processor which controls the internal hardware blocks for video
decoder operations. The operation of the BIT processor is determined by the dedicated microcode called the
BIT firmware. VPU has a complete set of BIT firmware code as well as a complete set of VPU control functions
called VPU API. Therefore, application developers do not need to manage codec-specific issues on host
processor.

4.1.1 Frame-Based Processing

The BIT processor completes decoding operations on a frame-by-frame basis, which allows low level
independence of VPU operations from the host processor. While frame operations are running, there is no
need for communication between the host processor and the VPU. Therefore, VPU does not burden the host
processor during decoder operations.

After issuing a picture processing command, the host application performs its own operations until it is ready for
the next picture processing operation or until it receives an interrupt from VPU informing the host processor of
completion of the picture processing.

4.1.2 Program Memory Management

The VPU has its own program memory to load BIT firmware for supporting application-specific operations. In
order to use this internal memory efficiently, the BIT firmware has a dynamic re-loading scheme which enables
the VPU to have a small amount of program memory.

For example, if a MPEG-2 decoder operation is running on VPU, then VPU program memory is filled by the
MPEG-2 decoder firmware inside VPU. If a H.264 decoder operation is newly issued, then the BIT processor
automatically loads the H.264 decoder firmware from the SDRAM to program memory.

Because of the frame-based operation of VPU, the maximum rate of this dynamic reloading operation is
approximately 30 times per second in a single instance decoder use case. Since the amount of BIT firmware for
one decoder standard is smaller than 16 KB, this is not a large burden for the VPU operations in performance
and memory bandwidth.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
56 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

4.1.3 Multi-Instances

The VPU supports multiple instances which can be helpful for multi-channel decoder applications. In order
to support this multi-instance operation, the BIT processor uses an internal context parameter set for each
decoder instance. When creating a new instance and starting a picture processing operation, a set of context
parameters is created and updated automatically within VPU. This internal context management scheme allows
different decoder tasks running on the host processor to control VPU operations independently with their own
instance numbers.

When creating a new instance, an application task receives a new handle specifying an instance if a new
handle is available on the VPU. All the subsequent operations for the given application task are handled
separately by VPU using this task-specific handle. When writing a VPU driver, this handle can be regard as a
device-ID or a port-ID of the VPU for each task. Since the VPU can only perform one picture processing task at
a time, the application task should check if VPU is ready before starting a new picture operation. An application
can easily terminate a single task on VPU by calling a function for closing a certain instance.

4.2 i.MX 6 VPU Host Interface
This section describes the interfaces used by host processor to control i.MX 6 VPU.

This section presents a general description of the host interfaces provided for a host processor to control i.MX
6 VPU.

4.2.1 Communication Models

VPU requires a dedicated path for exchanging data and/or messages between the host processor and VPU.
VPU uses shared memory for exchanging data between the host processor and VPU. This shared memory is
accessible through ABMA host bus. Bitstream data and frame data are exchanged using this shared memory
space.

Independent of data exchange path, a dedicated path for messages between the host processor and VPU is
provided using a set of VPU registers called the host interface registers. All commands and responses between
the host processor and VPU are exchanged through these registers as shown in the figure below.

Command Response

Host SW: VPU API

VPU firmware

Host program. I/F func.

VPU system manager

Host I/F with CMD/RSP,
internal control, u-code
re-loading, manage
codec lib, init/de-init, etc.

VPU codec library

Set of encoder and decoder
libraries for various video
codec standards, including
on-the-fly pre/post
processing functions such
as deblocking/deringing,
rotation, etc.

OS independent base func.
Set for VPU driver

aaa-053544

VPU
enc lib:
MPEG4

SP

VPU
decr lib:
MPEG4

ASP

VPU
enc lib:
H.264

BP

VPU
dec lib:
H.264

MP

VPU system manager

VPU host interface

VPU host interface functions (VPU API)

Figure 8. Data and Message Exchange Between Host and VPU

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
57 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

All bitstream and picture data is accessed directly by the host processor and VPU. The related information
about the data transfer as well as command and responses is exchanged through the host interface. The host
interface of the VPU uses a set of registers accessible from the host processor. Some of these host registers
are used for exchanging actual command and responses and other registers are used to give information about
the internal status of the VPU to host processor. Firmware running on the BIT processor is well-optimized for a
given set of commands and responses.

4.2.1.1 Data Handling

All of the pixel data or stream data transactions are performed by the host processor or VPU through the shared
memory space in SDRAM. In order to assure safe transactions between the host processor and VPU, all the
required information is stored in the host interface registers. Generally, these transactions are one-directional
transactions: the host or VPU writes the data and the other reads the data on a single data buffer. Therefore,
transactions are easily and safely controlled by using a pair of read and write pointers.

Just as common data buffers in shared memory, the BIT processor requires a certain amount of memory for
processing called the working buffer. The working buffer can only be accessed by VPU. In addition, frame
buffers used in picture decoding are managed exclusively by VPU which ensures safe decoding.

For proper streaming, the available free space in the decoder stream buffer can be accessed using the buffer
read pointer, write pointer, and buffer size. A set of APIs is provided for this purpose that can be called by the
application anytime.

4.2.1.2 Host Interface Registers

A set of commands is provided for controlling codec operations on a frame-by-frame basis together with the
corresponding responses. Host interface registers can be partitioned into three categories as follows:

• BIT processor control registers update or show BIT processor status to host processors. Most of these
registers are used for initializing BIT processor during boot-up.

• BIT processor global registers store all the global variables which are reserved even while an active instance
is changed. All the buffer addresses and some global options are safely stored in these registers.

• BIT processor command I/O registers are overwritten or updated whenever a new command is transmitted
from the host processor. All commands with input arguments and all corresponding responses with return
values are handled using these registers.

In addition, command I/O registers are used in a pre-defined way for each command to control VPU.

4.2.2 API-Based VPU Control

Host applications generally control VPU through a set of pre-defined APIs by sending a command and
corresponding arguments to VPU. After receiving an interrupt from VPU, signaling the completion of the
requested operation, the host application acquires the results as shown in the figure below.

Each API definition includes the requested command and the input and output data structure. The given
command from the API function is always written on a dedicated I/O register, but the input and output data
structure is transmitted through a set of command I/O registers that contain the input arguments and output
results. Therefore, application developers do not need to know the details of the host register definitions and
usage.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
58 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

Interrupt

VPU buffer
(Work buffer, u-code buffers,

parameter buffers, etc)

aaa-053554

API calls with args

Return codes with output info

Data

Data

SDRAM

Data

VPU
codec
library

Shared buffer
(Bit-stream buffers,
frame buffers, etc)

Firmware on VPU

VPU
system

manager

VPU
host I/F

reg

CMD/RSP

Host
application

Host
application

C and M
API's

Figure 9. Software Control Model of VPU from Host Application

4.3 i.MX 6 VPU API Features
This section describes the important features of i.MX 6 VPU API, which is an API that includes a set of API
functions to control the VPU.

A set of API functions is provided to efficiently control the VPU. The VPU API covers all functions of the i.MX 6
VPU. This API-based approach speeds up the development process of application software. Important features
of the API for i.MX 6 VPU are summarized in the following sections.

4.3.1 Simple Software Control

The i.MX 6 VPU API provides a simple way to control the i.MX 6 VPU and avoid errors in application
software. The host application does not need to know the details of the i.MX 6 VPU internal operations.
For example, in order to initialize the VPU, an application simply calls API for initialization, vpu_Init(), and no
additional information is required for calling this API. vpu_Init() API performs all the required steps for initializing
the i.MX 6 VPU. When issuing a picture decoder operation, the application simply changes some variables
included in the well-defined input data structure.

4.3.1.1 Handling Multi-Instances

The i.MX 6 VPU supports multiple instances for decoding and encoding at the same time, which can be used
in multiple decoding and encoding and multi-party call applications. To support multi-instance operations, i.MX
6 VPU API provides a full set of functions for handling the instances with ease. When opening a new instance,
the application receives a handle specifying the new instance provided a new handle is available at that time.
The operations for a given instance are separately controlled using the corresponding handle. An application
can easily terminate a single task on the VPU by calling a function for closing a certain instance.

4.3.1.2 Frame-Based Codec Processing

The i.MX 6 VPU completes decoding and encoding operation on a frame-by-frame basis, which enables low-
level independence of the VPU operations from the host processor. While frame processing operation are
running, there is no need for communication between the host processor and VPU. Therefore, the VPU does
not burden the host processor during decoding and encoding operations.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
59 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

4.4 Type Definitions
This section describes the types and structures used in the VPU API.

4.4.1 Type Definitions (common data types)

This section describes the common data types used in the VPU API functions.

4.4.1.1 PhysicalAddress

typedef Uint32 PhysicalAddress;

Description

Represents physical addresses that are recognizable by VPU. In general, VPU hardware does not know about
the virtual address space that is set and handled by the host processor. The virtual addresses are translated
into physical addresses by the Memory Management Unit (MMU). Data buffer addresses, such as input
bitstream buffer or frame buffer, are given to VPU as an address in the physical address space.

4.4.1.2 VirtualAddress

typedef Uint32 VirtualAddress;

Description

Represents virtual addresses that are recognizable by CPU.

4.4.1.3 CodStd

typedef enum {
 STD_MPEG4 = 0,
 STD_H263 = 1,
 STD_AVC = 2,
 STD_VC1 = 3,
 STD_MPEG2 = 4,
 STD_DIV3 = 5,
 STD_RV = 6,
 STD_MJPG = 7,
 STD_AVS = 8,
 STD_VP8 = 9,
} CodStd;

Description

Enumeration for declaring code standard type variables. The following video standards are supported by VPU:

• MPEG4 SP/ASP
• H.263 Profile 3
• AVC (H.264) BP/MP/HP
• VC-1 SP/MP/AP
• MPEG-2, MPEG-1
• Divx3
• AVS
• On2 VP8

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
60 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

Note: The MPEG-1 decoder operation is handled as a special case of the MPEG-2 decoder.

4.4.1.4 RetCode

typedef enum {
 RETCODE_SUCCESS = 0,
 RETCODE_FAILURE = -1,
 RETCODE_INVALID_HANDLE = -2,
 RETCODE_INVALID_PARAM = -3,
 RETCODE_INVALID_COMMAND = -4,
 RETCODE_ROTATOR_OUTPUT_NOT_SET = -5,
 RETCODE_ROTATOR_STRIDE_NOT_SET = -11,
 RETCODE_FRAME_NOT_COMPLETE = -6,
 RETCODE_INVALID_FRAME_BUFFER = -7,
 RETCODE_INSUFFICIENT_FRAME_BUFFERS = -8,
 RETCODE_INVALID_STRIDE = -9,
 RETCODE_WRONG_CALL_SEQUENCE = -10,
 RETCODE_CALLED_BEFORE = -12,
 RETCODE_NOT_INITIALIZED = -13,
 RETCODE_DEBLOCKING_OUTPUT_NOT_SET = -14,
 RETCODE_NOT_SUPPORTED = -15,
 RETCODE_REPORT_BUF_NOT_SET = -16,
 RETCODE_FAILURE_TIMEOUT = -17,
 RETCODE_MEMORY_ACCESS_VIOLATION = -18,
 RETCODE_JPEG_EOS = -19,
 RETCODE_JPEG_BIT_EMPTY = -20
} RetCode;

Description

Enumeration for declaring the return codes from API function calls. The meaning of each return code is the
same for all API functions, but the reason of non-successful return might be different. Table 1 shows the basic
meaning of each return code.

Code Description

RETCODE_SUCCESS Operation successful

RETCODE_FAILURE Operation not successfully; this value is returned when an un-
recoverable decoder error occurs such as a header parsing error

RETCODE_INVALID_HANDLE Given handle for current API function call is invalid, for example, not
initialized yet or improper function call for the given handle

RETCODE_INVALID_PARAM Given argument parameters (for example, input data structure) is
invalid (not initialized yet or not valid anymore)

RETCODE_INVALID_COMMAND Given command is invalid, for example, undefined or not allowed in the
given instance

RETCODE_ROTATOR_OUTPUT_NOT_SET Rotator output buffer is not allocated even though rotation is enabled

RETCODE_ROTATOR_STRIDE_NOT_SET Rotator stride is not provided even though rotation is enabled

RETCODE_FRAME_NOT_COMPLETE Frame decoding operation is not completed, so the given API function
call is not allowed

RETCODE_INVALID_FRAME_BUFFER Certain frame buffer pointers are invalid (not initialized yet or not valid)

Table 1. Return Codes

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
61 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

Code Description

RETCODE_INSUFFICIENT_FRAME_BUFFERS Given numbers of frame buffers are not enough for the operations of
the given handle. This return code is only received when calling the
DecRegisterFrameBuffer() function

RETCODE_INVALID_STRIDE Given stride is invalid (for example, 0, not a multiple of 8 or smaller than
the picture size). This return code is only allowed in API functions which
set stride

RETCODE_WRONG_CALL_SEQUENCE Current API function call is invalid considering the allowed sequences
between API functions (for example, missing one crucial function call
before this function call)

RETCODE_CALLED_BEFORE Multiple calls of current API function for a given instance are invalid

RETCODE_NOT_INITIALIZED VPU is not initialized yet. Before calling any API functions, the
initialization API function, vpu_Init(), should be called

RETCODE_DEBLOCKING_OUTPUT_NOT_SET Not used in i.MX 6

RETCODE_NOT_SUPPORTED One feature is not supported

RETCODE_REPORT_BUF_NOT_SET Data report buffer address is not set with a valid value if report of MB,
MV, frame status, slice information or user data is enabled

RETCODE_FAILURE_TIMEOUT The hardware may be busy with other operation and unavailable for
current API calling or something is wrong with VPU based. For detailed
meaning of this return value, see each API description

RETCODE_MEMORY_ACCESS_VIOLATION Memory access violation error

RETCODE_JPEG_EOS The MJPEG bitstream comes to the end in the vpu_
DecStartOneFrame() API calling.

RETCODE_JPEG_BIT_EMPTY The filled data in the bitstream buffer is not enough for the header
parser in the vpu_DecStartOneFrame() API calling.

Table 1. Return Codes...continued

4.4.1.5 CodecCommand

typedef enum {
 ENABLE_ROTATION,
 DISABLE_ROTATION,
 ENABLE_MIRRORING,
 DISABLE_MIRRORING,
 ENABLE_DERING,
 DISABLE_DERING,
 SET_MIRROR_DIRECTION,
 SET_ROTATION_ANGLE,
 SET_ROTATOR_OUTPUT,
 SET_ROTATOR_STRIDE,
 ENC_GET_SPS_RBSP,
 ENC_GET_PPS_RBSP,
 DEC_SET_SPS_RBSP,
 DEC_SET_PPS_RBSP,
 ENC_PUT_MP4_HEADER,
 ENC_PUT_AVC_HEADER,
 ENC_SET_SEARCHRAM_PARAM,
 ENC_GET_VIDEO_HEADER,
 ENC_GET_VOS_HEADER,
 ENC_GET_VO_HEADER,
 ENC_GET_VOL_HEADER,

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
62 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

 ENC_GET_JPEG_HEADER,
 ENC_SET_INTRA_MB_REFRESH_NUMBER,
 DEC_SET_DEBLOCK_OUTPUT,
 ENC_ENABLE_HEC,
 ENC_DISABLE_HEC,
 ENC_SET_SLICE_INFO,
 ENC_SET_GOP_NUMBER,
 ENC_SET_INTRA_QP,
 ENC_SET_BITRATE,
 ENC_SET_FRAME_RATE,
 ENC_SET_REPORT_MBINFO,
 ENC_SET_REPORT_MVINFO,
 ENC_SET_REPORT_SLICEINFO,
 DEC_SET_REPORT_BUFSTAT,
 DEC_SET_REPORT_MBINFO,
 DEC_SET_REPORT_MVINFO,
 DEC_SET_REPORT_USERDATA,
 SET_DBK_OFFSET,
 SET_WRITE_MEM_PROTECT,
 ENC_SET_SUB_FRAME_SYNC,
 ENC_ENABLE_SUB_FRAME_SYNC,
 ENC_DISABLE_SUB_FRAME_SYNC,
 DEC_SET_FRAME_DELAY,
 ENC_SET_INTRA_REFRESH_MODE,
 ENC_ENABLE_SOF_STUFF
} CodecCommand;

Description

Special enumeration type for configuration commands from the host processor to VPU. Most of these
commands are called occasionally (not periodically) for changing VPU operation configuration. Details of these
commands are presented in Section 4.7.9 and Section 4.8.12.

Following commands aren't used on i.MX 6 platform:

SET_WRITE_MEM_PROTECT
ENC_SET_SUB_FRAME_SYNC
ENC_ENABLE_SUB_FRAME_SYNC
ENC_DISABLE_SUB_FRAME_SYNC

4.4.1.6 GDI_TILED_MAP_TYPE

typedef enum {
 LINEAR_FRAME_MAP = 0,
 TILED_FRAME_MB_RASTER_MAP = 1,
 TILED_FIELD_MB_RASTER_MAP = 2,
 TILED_MAP_TYPE_MAX
} GDI_TILED_MAP_TYPE;

Description

Enumeration type for the GDI type.

4.4.1.7 MirrorDirection

typedef enum {
 MIRDIR_NONE,
 MIRDIR_VER,

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
63 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

 MIRDIR_HOR,
 MIRDIR_HOR_VER
} MirrorDirection;

Description

Enumeration type for representing the mirroring direction.

4.4.1.8 Mp4HeaderType

typedef enum {
 VOL_HEADER,
 VOS_HEADER,
 VIS_HEADER
} Mp4HeaderType;

Description

Special enumeration type for MPEG-4 top-level header classes such as visual sequence header, visual object
header, and video object layer header.

4.4.1.9 AvcHeaderType

typedef enum {
 SPS_RBSP,
 PPS_RBS,
 SPS_RBSP_MVC,
 PPS_RBSP_MVC
} AvcHeaderType;

Description

Special enumeration type for AVC parameter sets such as sequence parameter set and picture parameter set.

4.4.1.10 EncHandle

typedef EncInst * EncHandle;

Description

Dedicated type for encoder handles returned when an encoder instance is opened. An encoder instance can be
referred to by the corresponding handle. EncInst is a type managed internally by API and the application does
not need to use it.

4.4.1.11 DecHandle

typedef DecInst * DecHandle;

Description

Dedicated type for decoder handles returned when a decoder instance is opened. A decoder instance can be
referred to by the corresponding handle. DecInst is a type managed internally by API and the application does
not need to use it.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
64 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

4.4.2 Data and Structure Definitions

This section describes the data and structure definitions used in VPU API functions.

4.4.2.1 FrameBuffer

typedef struct {
 Uint32 strideY;
 Uint32 strideC;
 int myIndex;
 PhysicalAddress bufY;
 PhysicalAddress bufCb;
 PhysicalAddress bufCr;
 PhysicalAddress bufMvCol;
} FrameBuffer;

Description

Data structure for representing frame buffer pointers for each color component

strideY is a Y stride value of the given frame buffers.

strideC is a C stride value of the given frame buffers.

myIndex is an A frame buffer index to identify each frame buffer that will be processed by VPU. The index of
each buffer should be unique and less than 32.

bufY is an address for Y component in the physical address space.

bufCb is an address for Cb component in the physical address space.

bufCr is an address for Cr component in the physical address space.

bufMvCol is an address for co-located motion vector buffers in the physical address space.

The host application must allocate contiguous physical memory from SDRAM space for the components using
this data structure. All four addresses must be 8-byte aligned. One pixel value of a component occupies one
byte and the frame data is in YCbCr 4:2:0 format for H.264, H.264 and MPEG-4 codecs. The sizes of the Cb
and Cr buffers are 1/4 the size of the Y buffer size for H.264, H.263 and MPEG-4 codecs. For MJPEG, the
frame data format can be YCbCr 4:2:0, 4:2:2 horizontal, 4:2:2 vertical, 4:4:4 and 4:0:0 and the sizes of the Cb
and Cr buffers vary. The co-located motion vector is only required for B-frame decoding in MPEG-2, AVC MP/
HP, MPEG-4 ASP, VC-1 MP/AP, and so on.

4.4.2.2 DecMaxFrmInfo

typedef struct {
 int maxMbX;
 int maxMbY;
 int maxMbNum;
} DecMaxFrmInfo;

Description

Data structure for representing maximum frame buffer info for decoder.

maxMbX means maximum supported macro blocks of horizontal direction.

maxMbY means maximum supported macro blocks of vertical direction.

maxMbNum means maximum supported macro blocks of one picture.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
65 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

This structure is provided to the host application to specify maximum frame buffer information. Normally, without
resolution change picture decoder support, maxMbX value is picture width/16, maxMbY is picture height/16,
maxMbNum is width * height / 256. If the user knows there is a resolution change from smaller to bigger, the user
must give the information as needed and allocate corresponding maximum frame buffer.

4.4.2.3 Rect

typedef struct {
 Uint32 left;
 Uint32 top;
 Uint32 right;
 Uint32 bottom;
} Rect;

Description

Data structure for representing a rectangular window in a frame.

left is a horizontal pixel offset of the top-left corner of the rectangle from top-left corner of the frame.

top is a vertical pixel offset of the top-left corner of the rectangle from top-left corner of the frame.

right is a horizontal pixel offset of the bottom-right corner of the rectangle from top-left corner of the frame.

bottom is a vertical pixel offset of the bottom-right corner of the rectangle from top-left corner of the frame.

This structure is provided to the host application to specify display window for the H.264 cropping option. Each
value is offset from the start point of a frame. Therefore, all values are positive.

4.4.2.4 EncHeaderParam

typedef struct {
 PhysicalAddress buf;
 Uint8 *pBuf;
 int size;
 int headerType;
 int userProfileLevelEnable;
 int userProfileLevelIndication;
} EncHeaderParam;

Description

This structure is used for adding a header syntax layer to the encoded bit stream. The parameter headerType
is the input parameter for VPU. The other two parameters are returned from VPU after completing the
requested operation. If the encoder ringbuffer reset option is enabled, the parameters buf and size are also
input parameters. In this situation, the host application must allocate the physical buffer to save the encoded
header syntax to VPU.

headerType is the encode header code. In MPEG-4.

3'b000 - VOL header; 3'b001 - VOS header; 3'b010 - VO header

In H.264

3'b000 - SPS rbsp; 3'b001 - PPS rbsp

In H.263, ENC_HEADER command is ignored.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
66 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

userProfileLevelEnable decides whether to set profile_and_level_indication in VOS header as MPEG-4
predefined values. If UserProfileLevelEnable is 0, profile_and_level_indication is encoded with one of
these values:

8'b0000 0001 : L1 <= 176x144@15Hz

8'b0000 0010 : L2 <= 352x288@15Hz

8'b0000 0011 : L3 <= 352x288@30Hz

8'b0000 0100 : L4a <=640x480@30Hz

8'b0000 0101 : L5 <=720x576@25Hz

8'b0000 0110 : L6 <= otherwise

If UserProfileLevelEnable is 1, a host can set user profile and level with UserProfileLevelIndication.

UserProfileLevelIndication is a user-defined profile and level value for profile_and_level_indication in
VOS.

4.4.2.5 EncParamSet

typedef struct {
 Uint32 *paraSet;
 Uint8 *pParaSet;
 int size;
} EncParamSet;

Description

This is a structure used when the host processor requires SPS or PPS data from an encoder instance. The
resulting SPS or PPS data is used in an application as a type of out-of-band information.

paraSet is the address of the SPS or PPS data.

pParaSet is the address of the MJPG encoder header data. It is only for MJPG.

size is the size of the data.

4.4.2.6 EncMp4Param

typedef struct {
 int mp4_dataPartitionEnable;
 int mp4_reversibleVlcEnable;
 int mp4_intraDcVlcThr;
 int mp4_hecEnable;
 int mp4_verid;
} EncMp4Param;

Description

This is the data structure for configuring MPEG4-specific parameters in encoder applications.

mp4_dataPartitionEnable where 0 = disable, 1 = enable

mp4_reversibleVlcEnable where 0 = disable, 1 = enable

mp4_intraDcVlcThr is the value of intra_dc_vlc_thr in MPEG-4 part 2 standard. Valid range is 0-7.

mp4_hecEnable where 0 = disable, 1 = enable.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
67 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

mp4_verid is the value of MPEG-4 part 2 standard version ID. Both version 1 and 2 are allowed.

4.4.2.7 EncH263Param

typedef struct {
 int h263_annexIEnable;
 int h263_annexJEnable;
 int h263_annexKEnable;
 int h263_annexTEnable;
} EncH263Param;

Description

This is a data structure for configuring H.263-specific parameters in encoder applications.

h263_annexIEnable where 0 = disable, 1 = enable . Not in use for i.MX 6 .

h263_annexJEnable where 0 = disable, 1 = enable

h263_annexKEnable where 0 = disable, 1 = enable

h263_annexTEnable where 0 = disable, 1 = enable

4.4.2.8 EncAvcParam

typedef struct {
 int avc_constrainedIntraPredFlag;
 int avc_disableDeblk;
 int avc_deblkFilterOffsetAlpha;
 int avc_deblkFilterOffsetBeta;
 int avc_chromaQpOffset;
 int avc_audEnable;
 int avc_fmoEnable;
 int avc_fmoSliceNum;
 int avc_fmoType;
 int avc_fmoSliceSaveBufSize;
 int avc_frameCroppingFlag;
 int avc_frameCropLeft;
 int avc_frameCropRight;
 int avc_frameCropTop;
 int avc_frameCropBottom;
 int mvc_extension;
 int interview_en;
 int paraset_refresh_en;
 int prefix_nal_en;
 int avc_vui_present_flag;
 VuiParam avc_vui_param;
 int avc_level;
} EncAvcParam;

Description

This is a data structure for configuring AVC-specific parameters in encoder applications.

avc_constrainedIntraPredFlag where 0 = disable, 1 = enable

avc_disableDeblk where 0 = enable, 1 = disable, 2 = disable deblocking filter at slice boundaries

avc_deblkFilterOffsetAlpha deblk_filter_offset_alpha (-6 to 6)

avc_deblkFilterOffsetBeta deblk_filter_offset_beta (-6 to 6)
IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
68 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

avc_chromaQpOffset chroma_qp_offset (-12 to 12)

avc_audEnable where 0 = disable, 1 = enable. The encoder generates AUD RBSP at the start of every
picture.

avc_fmoEnable is not used in the i.MX 6 since FMO encoding is not supported.

avc_fmoSliceNum is not used in the i.MX 6 since FMO encoding is not supported.

avc_fmoType is not used in the i.MX 6 since FMO encoding is not supported.

avc_fmoSliceSaveBufSize is not used in the i.MX 6 since FMO encoding is not supported.

avc_frameCroppingFlag where 0 = disable, 1 = enable. If this is 1, the encoder will generate
frame_cropping_flag syntax at the SPS header.

avc_frameCropLeft is the sample number of left cropping region in a line.

avc_frameCropRight is the sample number of right cropping region in a line.

avc_frameCropTop is the sample number of top cropping region in a picture column.

avc_frameCropBottom is the sample number of bottom cropping region in a picture column.

mvc_extension where 0 = AVC, not MVC, 1 = MVC

interview_en where 0 = disable, 1 = enable interview prediction for another picture.

paraset_refresh_en 0 = disable, 1 = enable to insert SPS/PPS before anchor picture.

prefix_nal_en where 0 = disable, 1 = enable to add prefix nal unit before every 2nd view of MVC stream.

4.4.2.9 EncMjpgParam

typedef struct {
 int mjpg_sourceFormat;
 int mjpg_restartInterval;
 int mjpg_thumbNailEnable;
 int mjpg_thumbNailWidth;
 int mjpg_thumbNailHeight;
 Uint8 * mjpg_hufTable;
 Unit8 * mjpg_qMatTable;
 Uint8 huffVal[4][162];
 Uint8 huffBits[4][256];
 Uint8 qMatTab[4][64];
 Uint8 cInfoTab[4][6];
} EncMjpgParam;

Description

This is a data structure for configuring MJPEG-specific parameters in encoder applications.

mjpg_sourceFormat is the chroma format. The format means chrominance size of source image and can be
a value between 0 and 4: 0 = 4:2:0, 1 = 4:2:2 horizontal, 2 = 4:2:2 vertical, 3 = 4:4:4, 4 = 4:0:0.

mjpg_restartInterval is the value for representing interval of restart marker in MB unit.

mjpg_thumbNailEnable where 0 = disable, 1 = enable and the encoder enables thumbnail encoding.

mjpg_thumbNailWidth is the variable representing the width (in pixels) of the thumbnail to be encoded. This
variable can have a value between 0 and the source image width. This value must be larger than a specific
value and must be a multiple of the value shown in table below.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
69 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

Format Value

4:2:0 16

4:2:2 16

2:2:4 8

4:4:4 8

4:0:0 8

Table 2.  mjpg_thumbNailWidth and mjpg_thumbNailHeight Values

mjpg_thumbNailHeight is the variable representing the width (in pixels) of the thumbnail to be encoded.
This variable can have a value between 0 and the source image width. This value must be larger than a specific
value and must be a multiple of the value shown in table above.

mjpg_qMatTable is the variable representing a pointer to an address in the Q-Matrix.

mjpg_hufTable is the variable representing a pointer to an address in the Huffman table (not used in i.MX 6).

huffVal[4][162] A list of the 8-bit symbol values in Huffman tables

huffBits[4][256] A 16-byte list giving the number of codes for each code length from 1 to 16 in Huffman tables.

qMatTab[4][64] Quantization tables

cInfoTab[4][6] Component information tables

4.4.2.10 EncSliceMode

typedef struct {
 int sliceMode;
 int sliceSizeMode;
 int sliceSize;
} EncSliceMode;

Description

This is a structure used for declaring encoder slice mode and its options. This structure value is ignored for a
MJPEG encoder.

sliceMode where 0 = one slice per picture, 1 = multiple slices per picture. In normal MPEG-4 mode, the
resync-marker and packet header are inserted between slice boundaries. In short video header with Annex
K = 0, the GOB header is inserted at every GOB layer start. In short video header with Annex K = 1, multiple
slices are generated. In AVC mode, multiple slice layer RBSP is generated.

sliceSizeMode is the size of a generated slice when sliceMode = 1, 0 means sliceSize is defined by
amount of bits, and 1 means sliceSize is defined by MB(macro block) in a slice. This parameter is ignored when
sliceMode = 0 or in short video header mode with Annex K = 0.

sliceSize is the size of a slice in bits or MB specified by sliceSizeMode. This parameter is ignored when
sliceMode = 0, or in short video header mode with Annex K = 0.

4.4.2.11 EncOpenParam

typedef struct {
 PhysicalAddress bitstreamBuffer;
 Uint32 bitstreamBufferSize;
 CodStd bitstreamFormat;
 int picWidth;

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
70 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

 int picHeight;
 Uint32 frameRateInfo;
 int bitRate;
 int initialDelay;
 int vbvBufferSize;
 int gopSize;
 int linear2TiledEnable;
 int mapType;
 EncSliceMode slicemode;
 int intraRefresh;
 int sliceReport;
 int mbReport;
 int mbQpReport;
 int rcIntraQp;
 int chromaInterleave;
 int dynamicAllocEnable;
 int ringBufferEnable;
 union {
 EncMp4Param mp4Param;
 EncH263Param h263Param;
 EncAvcParam avcParam;
 EncMjpgParam mjpgParam;
 } EncStdParam;
 int userQpMin;
 int userQpMax;
 int userQpMinEnable;
 int userQpMaxEnable;
 Uint32 userGamma;
 int RcIntervalMode;
 int MbInterval;
 int avcIntra16x16OnlyModeEnable;
 int MESearchRange;
 int MEUseZeroPmv;
 int IntraCostWeight;
} EncOpenParam;

Description

This is a data structure for parameters when an encoder instance is opened.

bitstreamBuffer is a start address of bit stream buffer into which encoder places the bit streams. This
address must be 512 byte-aligned.

bitstreamBufferSize is the size in bytes of a buffer pointed to by bitstreamBuffer. This value must be a
multiple of 1024. The maximum size is 16383x1024 bytes.

bitstreamFormat is the standard type of bitstream in encoder operation: STD_MPEG4, STD_H263,
STD_AVC, STD_VP8, STD_AVS or STD_MJPG.

picWidth is the width of a picture to be encoded in pixels.

picHeight is the height of a picture to be encoded in pixels.

frameRateInfo is the 16 least significant bits, [15:0] is a numerator and 16 most significant bits, [31:16] is
a denominator for calculating the frame rate. The numerator is clock ticks per second and the denominator
is clock ticks between frames minus 1. The frame rate can be defined by (numerator/(denominator + 1)),
which equals (frameRateInfo & 0xffff) /((frameRateInfo >> 16) + 1). For example, a frameRateInfo value of 30
represents 30 frames/sec and the value 0x3e87530 represents 29.97 frames/sec.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
71 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

bitRate is the target bit rate in kbps. If 0, there is no rate control and pictures are encoded with a quantization
parameter equal to quantParam in EncParam. For MJPEG, this value is ignored. Users can control the MJPEG
compression rate by setting qMatTab[4][64] of Section 4.4.2.9.

initialDelay is a time delay (in ms) for the bit stream to reach initial occupancy of the vbv buffer from
zero level. This value is ignored if rate control is disabled. The value 0 means the encoder does not check for
reference decoder buffer delay constraints.

vbvBufferSize vbv_buffer_size in bits. This value is ignored if rate control is disabled or initialDelay is 0.
The value 0 means the encoder does not check for reference decoder buffer size constraints.

gopSize is the GOP size where 0 = only first picture is I, 1 = all I pictures, 2 = IPIP, 3 = IPPIPP, and so on. The
maximum value is 32,767, but in practice, a smaller value should be chosen by the application for proper error
concealment. This value is ignored for STD_MJPG.

linear2TiledEnable where 0 = disable, 1 = enable to convert linear to tiled format in vpu

mapType where 0 = Linear frame map; 1 = Frame tiled map; 2 = Field tiled map

slicemode where parameter for slice mode

intraRefresh where 0 = Intra MB refresh is not used. Otherwise = At least N MB's in every P-frame are
encoded as intra MB's. This value is ignored in for STD_MJPG.

sliceReport is not used in i.MX 6 .

mbReport is not used in i.MX 6 .

mbQpReport is not used in i.MX 6 .

rcIntraQp is the quantization parameter for I frame. When this value is -1, the quantization parameter for
I frames is automatically determined by VPU. In MPEG4/H.263 mode, the range is 1-31. In H.264 mode, the
range is from 0-51. This is ignored for STD_MJPG.

dynamicAllocEnable is not used in i.MX 6 .

ringBufferEnable where 0 = disable, 1 = enable. This flag enables the streaming mode for the current
encoder instance. Two streaming modes, packet-based streaming with ring-buffer (buffer-reset mode), and
frame-based streaming with line buffer (buffer-flush mode) can be configured using this flag. When this field is
set, packet-based streaming with ring-buffer is used. When this field is not set, frame-based streaming with line-
buffer is used.

mp4Param is a parameter for MPEG-4 part 2 Visual.

h263Param is a Parameter for ITU-T H.263.

avcParam is a parameter for AVC.

mjpgParam is a parameter for MJPEG.

userQpMin sets the minimum quantized step parameter for encoding process. -1 disables this setting and VPU
uses the default minimum quantize step (Qp(H.264 12, MPEG-4/H.263 2). In MPEG-4/H.263 mode, the value of
userQpMix is in the range of 1 to 31 and less than userQpMax. In H.264 mode, the value of userQpMix is in
the range of 0 to 51 and less than userQpMax.

userQpMax sets the maximum quantized step parameter for the encoding process. -1 disables this setting
and VPU uses the default maximum quantized step. In MPEG-4/H.263 mode, the value of userQpMax is
in the range of 1 to 31. In H.264 mode, the value of userQpMax is in the range of 0 to 51. userQpMin and
userQpMax must be set simultaneously.

userQpMinEnable userQpMinEable equal to 1 indicates that macroblock QP, generated in rate control, is
cropped to be bigger than, or equal to, userQpMin.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
72 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

userQpMaxEnable userQpMaxEable equal to 1 indicates that macroblock QP, generated in rate control, is
cropped to be smaller than, or equal to, userQpMax.

userGamma is a smoothing factor in the estimation. A value for gamma is factorx32768, where the value for
factor must be between 0 and 1. If the smoothing factor is close to 0, Qp changes slowly. If the smoothing factor
is close to 1, Qp changes quickly. The default Gamma value is 0.75x32768.

RcIntervalMode is an encoder rate control mode setting. The host sets the bitrate control mode according to
the required use case. The default value is 1. 0 = normal mode rate control 1 = FRAME_LEVEL rate control 2 =
SLICE_LEVEL rate control 3 = USER DEFINED MB LEVEL rate control.

MbInterval is a user defined Mbyte interval value. The default value is 2 macroblock rows. For example, if
the resolution is 720x470, then the two macroblock row is 2x(720/16) = 90. This value is used only when the
RcIntervalMode is 3.

avcIntra16x16OnlyModeEnable is not used in i.MX 6.

MESearchRange is the search range mode for Motion Estimation.

0 : Horizontal(-128 ~ 127), Vertical(-64 ~ 63)

1 : Horizontal(-64 ~ 63), Vertical(-32 ~ 31)

2 : Horizontal(-32 ~ 31), Vertical(-16 ~ 15)

3 : Horizontal(-16 ~ 15), Vertical(-16 ~ 15)

MEUseZeroPmv is the PMV option for motion estimation. If this field is 1, encoding quality could be worse than
when it was zero.

0 : Motion Estimation engine uses PMV that was derived from neighbor MV

1 : Motion Estimation engine uses Zero PMV

IntraCostWeight is the intra cost weight factor for Intra/Inter type decision. By default, it could be zero. If this
register have some value W, and the cost of best intra mode that was decided by Refine-Intra-Mode-Decision is
ICOST, the Final Intra Cost FIC will be like this, FIC = ICOST + W. So, if this field is not zero, the Final Intra Cost
have additional weight. Then the Intra/Inter mode decision logic tend to make more Inter-Macroblock.

4.4.2.12 EncReportBufSize

typedef struct {
 int sliceInfoBufSize;
 int mbInfoBufSize;
 int mvInfoBufSize;
} EncReportBufSize;

Description

This is a data structure to get the data report buffer size to start encoding from the encoder. Then the application
allocates the memory according to the size information from the data report.

sliceInfoBufSize is a buffer size for slice information.

mbInfoBufSize is a buffer size for MB information.

mvInfoBufSize is a buffer size for motion vector information.

4.4.2.13 EncInitialInfo

typedef struct {

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
73 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

 int minFrameBufferCount;
 EncReportBufSize reportBufSize;
} EncInitialInfo;

Description

This is a data structure for parameters of vpu_EncGetInitialInfo() which are needed to get the initial
information for encoder.

minFrameBufferCount is a minimum required buffer count in host applications. This returned value is used to
allocate frame buffers in vpu_EncRegisterFrameBuffer().

reportBufSize is the data report requested buffer size information.

4.4.2.14 EncParam

typedef struct {
 FrameBuffer * sourceFrame;
 int encTopOffset;
 int encLeftOffset;
 int forceIPicture;
 int skipPicture;
 int quantParam;
 PhysicalAddress picStreamBufferAddr;
 int picStreamBufferSize;
 int enableAutoSkip;
} EncParam;

Description

This is a data structure for configuring one frame encoding:

encTopOffset is the top offset for cropping from source image to be encoded.

encLeftOffset is the left offset for cropping from source image to be encoded.

sourceFrame is a frame buffer containing source image to be encoded.

forceIPicture. If this value is 0, the picture type is determined by the VPU according to the various
parameters such as encoded frame number and GOP size. If this value is 1, the frame is encoded as an I-
picture regardless of the frame number or GOP size and I-picture period calculation is reset to the initial state.
For MPEG-4 and H.263, I-picture is sufficient for decoder refresh. For H.264 mode, the picture is encoded as an
Instantaneous Decoding Refresh (IDR) picture. This value is ignored if skipPicture = 1.

skipPicture. If this value is 0, the encoder encodes the picture normally. If this value is 1, the encoder
ignores sourceFrame and generates a skipped picture. In this situation, the reconstructed image is a duplication
of the previous picture. The skipped picture is encoded as P-type regardless of GOP size.

quantParam is used for all quantization parameters with VBR (no rate control). The range of value is 1-31 for
MPEG-4 and 0-51 for H.264. When rate control is enabled, this field is ignored.

picStreamBufferAddr is a start address of a picture stream buffer under line-buffer mode and dynamic
buffer allocation. This variable represents the start of a picture stream for encoded output. In buffer-reset
mode, an application might use multiple picture stream buffers for the best performance. Using this variable, an
application re-registers the start position of the picture stream while issuing a picture encoding operation. This
start address of this buffer must be 8-byte aligned. Its size is specified by picStreamBufferSize. In packet-
based streaming with ring-buffer, this variable is ignored. This variable is only meaningful when both line-buffer
mode and dynamic buffer allocation are enabled.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
74 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

picStreamBufferSize is a byte size of a picture stream chunk. This variable represents byte size of a
picture stream buffer and is crucial in line-buffer mode because encoder output can be corrupted if this size is
smaller than any picture encoded output. Therefore, this value should be big enough for storing multiple picture
streams with average size. In packet-based streaming with ring-buffer, this variable is ignored. This variable
specifies the picture stream buffer size for encoded output in line-buffer mode.

enableAutoSkip. The value 0 disables automatic skip and 1 enables automatic skip in encoder operation.
Automatic skip means encoder can skip frame encoding when generated Bitstream so far is too big considering
target bitrate. This parameter will be ignored if rate control is not used (bitRate = 0).

4.4.2.15 EncReportInfo

typedef struct {
 int enable;
 int type;
 int size;
 Uint8 *addr;
} EncReportInfo;

Description

This is a structure used for reporting encoder information.

enable is a data report enabled or disabled; type, size and addr are valid when this flag is 1.

type is a type of mvInfo or sliceInfo.

size is a data report size.

addr is a saved report information address.

ReportInfo

typedef struct {
 int enable;
 int size;
 Uint32 *addr;
 union {
 int mvNumPerMb;
 int userDataNum;
 int type;
 };
 union {
 int userDataBufFull;
 int reserved;
 };
} ReportInfo;

Description

This is a data structure for reporting the encoding/decoding information.

enable 0 - Disable the information report; 1- Enable the information report;

size The size of the buffer pointed by the addr to save the specific returned information while calling the
vpu_DecGiveCommand or vpu_EncGiveCommand to set the buffer while it's used as input parameter. The
size of returned information that's saved in the buffer pointed by the addr after vpu_DecGetOutputInfo or
vpu_EncGetOutputInfo calling while it's used as output parameter. The size has different meanings for different
information report cases. For MV information report in decoding, it represents the total number of MB.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
75 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

addr The base address of the buffer to save the specific information.

mvNumPerMb When the MB report feature is enabled, decoder will report the motion vector into the buffer
pointed by addr. mvNumPerMb is motion vector number of an macrobloc (MB). the size above is the total
number of macroblock. Therefore total size of MB information in byte is size* mvNumPerMb *4.

userDataNum When the user data report is enabled, decoder will report user data content into the buffer
pointed by addr. The size is the size of user data in byte. When user data report mode is 1 and user data size
is bigger than user data buffer size, VPU reports user data as much as buffer size, skips the remains and sets
userDataBufFull.

type When the MV report is enabled in the encoder, this value is used for picture type reporting in MVInfo.

userDataBufFull While user data report is enabled and the user data size is too small to save all decoded user
data, VPU will set userDataBufFull as 1.

reserved Used by driver internally, host application should never use it.

4.4.2.16 EncOutputInfo

typedef struct {
 PhysicalAddress bitstreamBuffer;
 Uint32 bitstreamSize;
 int bitstreamWrapAround;
 int skipEncoded;
 int picType;
 int numOfSlices;
 int reconFrameIndex;
 Uint32 *pSliceInfo;
 Uint32 *pMBInfo;
 Uint32 *pMBQpInfo;
 EncReportInfo mbInfo;
 EncReportInfo mvInfo;
 EncReportInfo sliceInfo;
} EncOutputInfo;

Description

This is a data structure for reporting the results of picture encoding operations:

bitstreamBuffer is a physical address of the starting point of a newly encoded picture stream. If dynamic
buffer allocation is enabled in line-buffer mode, this value is identical to the picture stream buffer address
specified by the host application.

bitstreamSize is a byte size of the encoded bitstream.

bitstreamWrapAround is a flag for bitstream buffer wrap-around. When this flag is set, the bitstream buffer
wrapped around and a larger buffer size is required.

skipEncoded. 0 means current frame was encoded as non-skipped frame. 1 means current Frame was
encoded as skipped frame.

picType is a picture type of the current decoded picture. This value has different meaning for different codecs:
for VC1 SP/MP: 0 = I picture, 1 = P picture, 2 = BI picture, 3 = B picture, 4 = SKIPPED picture. For VC1 AP
interlacing, picType contains two picture type information fields: bit[2:0] and bit[5:3] and the respective value
has same meaning as SP/MP use case: 0 = I picture, 1 = P picture, 2 = BI picture, 3 = B picture, 4 = SKIPPED
picture. For example, 0 = 000_000: both first and second field are I picture, 1 = 000_001: first field is I picture
and second field is P picture In other codec use cases, 0 = I picture, 1 = P picture, 2 = B picture.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
76 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

numOfSlices is a number of slices included in the newly encoded picture. When sliceReport in
EncOpenParam is 0, this value is invalid.

pSliceInfo is not used in the i.MX 6 .

pMBInfo is not used in the i.MX 6 .

pMBQpInfo is not used in the i.MX 6 .

mbInfo is the MB information in the encoded picture. If the application does not give the
ENC_SET_REPORT_MBINFO command to enable it before starting one frame encoding, this information is
invalid.

mvInfo is a motion vector information in the encoded picture. If the application does not give the
ENC_SET_REPORT_MVINFO command to enable it before starting one frame encoding, this information is
invalid.

sliceInfo is a slice information in the encoded picture. If the application does not give the
ENC_SET_REPORT_SLICEINFO command to enable it before starting one frame encoding, this information is
invalid.

4.4.2.17 SearchRamParam

typedef struct {
 PhysicalAddress searchRamAddr;
 int SearchRamSize;
} SearchRamParam;

Description

This is not used in the i.MX 6 .

4.4.2.18 DecParamSet

typedef struct {
 Uint32 * paraSet;
 int size;
} DecParamSet;

Description

Structure used when the host processor requires to send SPS data or PPS data. The SPS data or PPS data is
used in real applications as a type of out-of-band information.

4.4.2.19 DecOpenParam

typedef struct {
 CodStd bitstreamFormat;
 PhysicalAddress bitstreamBuffer;
 Uint8 *pBitStream;
 int bitstreamBufferSize;
 int qpReport;
 int mp4DeblkEnable;
 int reorderEnable;
 int chromaInterleave;
 int filePlayEnable;
 int picWidth;
 int picHeight;

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
77 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

 int avcExtension;
 int dynamicAllocEnable;
 int streamStartByteOffset;
 int mjpg_thumbNailDecEnable;
 PhysicalAddress psSaveBuffer;
 int psSaveBufferSize;
 int mp4Class;
 int mapType;
 int tiled2LinearEnable;
 int bitstreamMode;
 int jpgLineBufferMode;
} DecOpenParam;

Description

This is a data structure used to open a new decoder instance:

bitstreamFormat is a standard type of bitstream in decoder operation. One of codec standards defined in
Section 4.4.1.3.

bitstreamBuffer is a start physical address of bit stream buffer from which the decoder retrieves the next
bitstream. This address must be 512 byte-aligned.

bitstreamBufferSize is a size in bytes of a buffer pointed by bitstreamBuffer. This value must be a multiple
of 1024. The maximum size is 16383x1024 bytes.

qpReport is not used in the i.MX 6 .

mp4DeblkEnable where 0 = disable, 1 = enable. In MPEG4 and H.263 (post-processing) modes, the decoder
applies MPEG-4 deblocking filtered output to the host application.

reorderEnable where 1 = enables display buffer reordering when decoding H.264 streams. In H.264 mode,
the output decoded picture is re-ordered if pic_order_cnt_type is 0 or 1 and the decoder must delay the output
display for re-ordering. However, some applications (such as video telephony) do not require such display delay.
The host may set this flag to 0 to disable output display buffer reordering. Then the BIT processor does not
re-order the output buffer when pic_order_cnt_type is 0 or 1. If pic_order_cnt_type is 2 or in MPEG4 or H.263
modes, this flag is ignored because output display buffer reordering is not allowed.

chromaInterleave where 0 = CbCr not interleaved, 1 = CbCr interleaved.

filePlayEnable is not used in the i.MX 6 .

picWidth is a horizontal picture size read from the file format header used for codecs for which the picture size
is not available in the bitstream, for example DivX3.11.

picHeight is a vertical picture size read from the file format header used for codecs for which the picture size
is not available in the bitstream, for example DivX3.11.

avcExtension where 0 = no extension of AVC, 1 = MVC extension of AVC.

dynamicBuffAllocEnable is not used in the i.MX 6 .

streamStartByteOffset is a start byte offset of the stream buffer. Since the VPU has an internal limitation
that the stream buffer start address must be 8-byte aligned, the host application may be required to copy the
stream data to an 8-byte aligned buffer. This offset allows this overhead to be saved. The values should be
between 0 and 7.

mjpg_thumbNailDecEnable is not used in the i.MX 6 .

psSaveBuffer is a start address of the PS (SPS/PPS) save buffer which the decoder saves PS (SPS/PPS)
RBSP. This address must be 8 byte-aligned. This variable is only valid for H.264 decoder mode.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
78 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

psSaveBufferSize is a size in bytes of a buffer pointed to by psSaveBuffer. This value must be a multiple of
1024. The maximum size is 65565x1024 bytes. This variable is only valid when decoding H.264 streams.

mp4Class is a MPEG4 class when codec is MPEG4 type 0 = MPEG-4; 1 = DivX 5.0 or higher; 2 = Xvid; 5 =
DivX 4.0

mapType is an A Map type for GDI interface. 0 is a linear frame map. 1 is a frame tiled map. 2 is a filed tiled
map.

tiled2LinearEnable is a tiled to linear map enable mode. The map type can be changed from tiled to linear
in the post processing unit for display.

bitstreamMode. When read pointer reaches write pointer in the middle of decoding one picture. 0 means
VPU sends an interrupt to HOST and waits for more bitstream to decode. (interrupt mode). 1 means VPU
returns to the status right before the PIC_RUN command (rollback mode).

jpgLineBufferMode where 0 is a LineBuffer mode and 1 is a streaming mode.

4.4.2.20 DecReportBufSize

typedef struct {
 int frameBufStatBufSize;
 int mbInfoBufSize;
 int mvInfoBufSize;
} DecReportBufSize;

Description

Not used in the i.MX 6 .

4.4.2.21 DecInitialInfo

typedef struct {
 int picWidth;
 int picHeight;
 Uint32 frameRateInfo;
 Uint32 frameRateRes;
 Uint32 frameRateDiv;
 Rect picCropRect;
 int mp4_dataPartitionEnable;
 int mp4_reversibleVlcEnable;
 int mp4_shortVideoHeader;
 int h263_annexJEnable;
 int minFrameBufferCount;
 int frameBufDelay;
 int nextDecodedIdxNum;
 int normalSliceSize;
 int worstSliceSize;
 int mjpg_thumbNailEnable;
 int mjpg_sourceFormat;
 int streamInfoObtained;
 int profile;
 int level;
 int interlace;
 int constraint_set_flag[4];
 int direct8x8Flag;
 int vc1_psf;
 int aspectRateInfo;
 Uint32 errorcode;;

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
79 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

 int bitRate;
 Vp8ScaleInfo vp8ScaleInfo;
 int mjpg_ecsPtr;
 DecReportBufSize reportBufSize;
 AvcVuiInfo avcVuiInfo;
} DecInitialInfo;

Description

This is a data structure to get information necessary to start decoding:

picWidth is a horizontal picture size in pixels. This width value is used when allocating decoder frame buffers.
In some situations, this returned value, the display picture width declared on the stream header, should be
modified before allocating the frame buffers. When the picture width is not a multiple of 16, the picture width for
buffer allocation should be re-calculated from the declared display width as: picBufWidth = ((picWidth + 15)/16)
x 16, where picBufWidth is the horizontal picture buffer width. When picWidth is a multiple of 16, picWidth =
picBufWidth.

picHeight is a vertical picture size in pixels. This height value is used when allocating decoder frame buffers.
In some situations, this returned value, the display picture height declared on the stream header, should be
modified before allocating the frame buffers. When the picture height is not a multiple of 16, the picture height
for buffer allocation should be re-calculated from the declared display height as: picBufHeight = ((picHeight
+ 15)/16) x 16, where picBufHeight is the vertical picture buffer height. When picHeight is a multiple of 16,
picHeight = picBufHeight.

frameRateInfo is not used in the i.MX 6 .

frameRateRes is the numerator part of frame rate fraction. Refer to DecOutputInfo.frameRateRes.

frameRateDiv is the denominator part of frame rate fraction. Refer to DecOutputInfo.frameRateDiv.

picCropEnable indicates if picCropRect is valid. If picCropEnable = 0,the picCropRect should be
ignored. picCropEnable = 1, there is cropping rectangle information picCropRect.

picCropRect is a picture cropping rectangle information. If picCropEnable = 0, this field is invalid. This
structure specifies the cropping rectangle information only for a H.264 decoder. The size and position of the
cropping window in a full frame buffer is presented in this structure. This structure is only valid for H.264
decoder mode.

mp4_dataPartitionEnable where 0 = disable. 1 = enable.

mp4_reversibleVlcEnable where 0 = disable. 1 = enable.

mp4_shortVideoHeader where 0 = disable. 1 = enable.

H263_annexJEnable where 0 = disable. 1 = enable.

minFrameBufferCount is a minimum number of frame buffers required for decoding. The application
must allocate at least this number of frame buffers and register those number of buffers to the VPU using
vpu_DecRegisterFrameBuffer() before decoding pictures.

frameBufDelay is a maximum display frame buffer delay for buffering decoded picture reorder. The VPU may
delay decoded picture displays for display reordering H.264 mode, when pic_order_cnt_type is 0 or 1 and for B-
frame handling in VC-1 decoder. (By default, some H.264 encoder set pic_order_cnt_type to 0 or 1, but in BP
applications, this setting is not actually used in practice.)

nextDecodedIdxNum is a maximum number of indexes which are returned after decoding one frame. the VPU
may return 1 for MPEG-4, H.264, DivX, and MPEG-2 use cases. For VC-1 decoding only, this variable may
have a value between 1 and 3.

normalSliceSize is a recommended size of buffer to save slice in normal use case. Value is determined by a
quarter of the memory size of one raw YUV image in Kbytes.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
80 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

worstSliceSize is a recommended size of buffer used to save slice in worst case. Value is determined by
half of the memory size for one raw YUV image in Kbytes.

mjpg_thumbNailEnable where 0 = disable. 1 = enable. The stream which is decoded as thumbnail.

mjpg_sourceFormat is the chroma format of encoded image of the stream. The format defines the
chrominance size of the source image and can be a value between 0 and 4. 0 = 4:2:0, 1 = 4:2:2 horizontal, 2 =
4:2:2 vertical, 3 = 4:4:4, 4 = 4:0:0

streamInfoObtained. Set to zero so the stream information cannot be obtained in the current firmware. It is
true always on i.MX 6 .

profile is the profile information in the stream. This value is used as outlined below:

• H.264 : profile_idc
• Vc1 : 0~2 (SMTPE reserved), 3(advanced profile)
• MP2 : 3'b101: Simple, 3'b100: Main, 3'b011: SNR Scalable, 3'b10: Spatially Scalable, 3'b001: High
• MP4 : If VOS header is existed, 8'b00000000: Simple Profile, 8'b00001000: Advanced coding efficiency;

8'b00001111: Advanced Simple Profile
• If there is only VOL header, 8'b00000001: Simple Profile, 8'b00001100: Advance coding efficiency,

8'b00010001: Advanced Simple Profile

level is the level information in the stream. This value is used as outlined below:

• H.264 : level_idc
• Vc1 : level
• MP2 : 4'b1010: Low, 4'b1000: Main, 4'b0110: High 1440, 4'b0100: High
• MP4 : If VOS header is existed (high bit is 1, 8'b10000000), 4'b0000 or 4'b1000: L0, 4'b0001: L1, 4'b0010: L2,

4'b0011: L3...; If there is VOS header, level cannot be obtained.

interlace is the interlace information in the stream where 0 means only progressive frames in the stream,
and 1 means there may be interlaced frame in the stream.

constraint_set_flag is a syntax element in H.264 used to make level in H.264. Ignored in other standards.

direct8x8Flag is a H.264 SPS syntax element which is used in B picture.

vc1_psf is a PSF information in VC1 stream information.

aspectRateInfo is an aspect rate information in stream information. If the value is 0, then aspect ratio
information is not present.

• [H.264] - if aspectRateInfo [31:16] is 0, aspectRateInfo [7:0] means aspect_ratio_idc. Otherwise, AspectRatio
means Extended_SAR.

• sar_width = aspectRateInfo [31:16]
• sar_height = aspectRateInfo [15:0]
• [VC-1]- Aspect Width = aspectRateInfo [31:16]
• Aspect Height = aspectRateInfo [15:0]
• [MP4] - This value is the index of Table 6-12 in ISO/IEC 14496-2.
• [MP2] - This value is the index of Table 6-3 in ISO/IEC 13818-2. It is determined by half of the memory size for

one raw YUV image in KB unit.

reportBufSize is a data report requested buffer size information.

bitRate is the bitrate value written in bitstream syntax. Available only when value is not 1.

vp8ScaleInfo is VP8 up-sampling information. Refer to the Vp8ScaleInfo.

mjpg_ecsPtr is the consumed mjpg size for using software GetInitialInfo for MJPG decoder.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
81 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

4.4.2.22 ExtBufCfg

typedef struct {
 PhysicalAddress bufferBase;
 int bufferSize;
} ExtBufCfg

Description

This data structure is used when the host application wants to give external memory configuration to VPU.

bufferBase is the start address of external memory.

bufferSize is the size of the buffer pointed by bufferBase in bytes.

4.4.2.23 DecBufInfo

typedef struct {
 ExtBufCfg avcSliceBufInfo;
 ExtBufCfg vp8MbDataBufInfo;
 DecMaxFrmInfo maxDecFrmInfo;
} DecBufInfo;

Description

This data structure is used when the host application wants to transfer additional buffer information without the
frame buffer.

avcSliceBufInfo is the start address and size of the slice save buffer where decoder can save slice RBSP.
This variable is only valid for H.264 decoder.

vp8MbDataBufInfo is the start address and the size of macroblock prediction data save buffer in which the
VP8 decoder can save inflated macroblock information for a frame. This buffer is temporal scratch memory that
sustains while decoding a picture. The start address must be 8-byte aligned.

maxDecFrmInfo is the maximum supported info of the frame buffer. Not used in the i.MX 6 .

4.4.2.24 DecParam

typedef struct {
 int prescanEnable;
 int prescanMode;
 int dispReorderBuf;
 int iframeSearchEnable;
 int skipframeMode;
 int skipframeNum;
 int chunkSize;
 int picStartByteOffset;
 PhysicalAddress picStreamBufferAddr;
 int mjpegScaleDownRatioWidth; /* mx6 */
 int mjpegScaleDownRatioHeight; /* mx6 */
 PhysicalAddress phyJpgChunkBase;
 unsigned char *virtJpgChunkBase;
}DecParam;

Description

This is a data structure for picture decoding options:

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
82 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

prescanEnable is not used in the i.MX 6 .

prescanMode is not used in the i.MX 6 .

iframeSearchEnable where 0 = disable, 1 = enable, and the decoder performs skipping frame decoding
until decoder meets an I (IDR) frame. If there is no I frame in the stream, the decoder waits for a I (IDR) frame.
If skipframeNum is n, the decoder seeks the (n + 1)th I (IDR) frame. When decoder meets an EOS (End Of
Sequence) code during I-Search, the decoder returns -1 (0xFFFF). If this option is enabled, skipframeMode
options are ignored.

skipframeMode is a skip frame function enable and operation mode. 0 means skip frame disable, 1 means
skip frame enabled (skip frames but I (IDR) frame), 2 means skip frame enabled (skip any frames). If this option
is enabled, the decoder skips decoding as far as skipframeNum frames. After the decoder skips frames, the
decoder returns decoded index -2 (0xFFFE) when it does not have any frames displayed. When decoder meets
EOS (End Of Sequence) code during frame skip, the decoder returns -1 (= 0xFFFF).

skipframeNum is not used in the i.MX 6.

chunkSize is not used in the i.MX 6 .

picStartByteOffset is not used in the i.MX 6 .

picStreamBufferAddr is not used in the i.MX 6 .

mjpegScaleDownRatioWidth is horizontal down-sampling factor. 0 : No scaling, 1 : 1/2 down-scaling, 2 : 1/4
down-scaling, 3 : 1/8 down-scaling.

mjpegScaleDownRatioHeight is vertical down-sampling factor. 0 : No scaling, 1 : 1/2 down-scaling, 2 : 1/4
down-scaling, 3 : 1/8 down-scaling.

phyJpgChunkBase is the physical memory address of input bitstream buffer for Jpg.

virtJpgChunkBase is the point of virtual memory address of input bitstream buffer for Jpg.

4.4.2.25 DecReportInfo

typedef struct {
 int enable;
 int size;
 union {
 int mvNumPerMb;
 int userDataNum;
 };
 union {
 int reserved;
 int userDataBufFull;
 };
 Uint8 *addr;
} DecReportInfo;

Description

This function is not used in the i.MX 6 .

4.4.2.26 Vp8ScaleInfo

typedef struct {
 unsigned hScaleFactor : 2;
 unsigned vScaleFactor : 2;
 unsigned picWidth : 14;

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
83 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

 unsigned picHeight : 14;
} Vp8ScaleInfo;

Description

This is data structure of picture up-scaling information for post-processing out of decoding loop.

This structure is valid only for VP8 decoding use case and can never be used by VPU itself. If host has an up
sampling device, this information is useful. When the host allocates a frame buffer, application needs up-scaled
resolution derived by this information to allocate enough (maximum) memory for variable resolution picture
decoding.

hScaleFactor is an up-scaling factor for horizontal expansion. The value could be 0 to 3. The meaning of
each value is described below:

• 0 means 1 up-sampling ratio
• 1 means 5/4 up-sampling ratio
• 2 means 5/3 up-sampling ratio
• 3 means 2/1 up-sampling ratio.

vScaleFactor is an up-scaling factor for vertical expansion. The value could be 0 to 3. The meaning of each
value is described below:

• picWidth is a picture width in units of sample.
• picHeight is a picture height in units of sample.

4.4.2.27 Vp8PicInfo

typedef struct {
 unsigned showFrame : 1;
 unsigned versionNumber : 3;
 unsigned refIdxLast : 8;
 unsigned refIdxAltr : 8;
 unsigned refIdxGold : 8;
} Vp8PicInfo;

Description

This is a data structure for VP8-specific header information and reference frame indices. Only VP8 decoder
returns this structure after decoding a frame.

showFrame is the frame header syntax which means whether the current decoded frame is displayable or not.
It is 0 when current frame is not for display and 1 when current frame is for display.

versionNumber is the VP8 profile version number information in the frame header. The version number
enables or disables certain features in bitstream. It can be defined with one of the four different profiles: 0 to 3.
Each indicates different decoding complexity.

refIdxLast is the frame buffer index for the Last reference frame. This field is valid only for next inter frame
decoding.

refIdxAltr is the frame buffer index for the altref (Alternative Reference) reference frame. This field is valid
only for next inter frame decoding.

refIdxGold is the frame buffer index for the Golden reference frame. This field is valid only for next inter
frame decoding.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
84 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

4.4.2.28 AvcFpaSei

typedef struct {
 unsigned exist;
 unsigned frame_packing_arrangement_id;
 unsigned frame_packing_arrangement_cancel_flag;
 unsigned quincunx_sampling_flag;
 unsigned spatial_flipping_flag;
 unsigned frame0_flipped_flag;
 unsigned field_views_flag;
 unsigned current_frame_is_frame0_flag;
 unsigned frame0_self_contained_flag;
 unsigned frame1_self_contained_flag;
 unsigned frame_packing_arrangement_ext_flag;
 unsigned frame_packing_arrangement_type;
 unsigned content_interpretation_type;
 unsigned frame0_grid_position_x;
 unsigned frame0_grid_position_y;
 unsigned frame1_grid_position_x;
 unsigned frame1_grid_position_y;
 unsigned frame_packing_arrangement_repetition_period;
} AvcFpaSei;

Description

This is a data structure for AVC FPA (frame packing arrangement) SEI.

0 means AVC FPA SEI does not exist. 1 means AVC FPA SEI exists.

frame_packing_arrangement_id 0 ~ 2^32-1 is an identifying number that may be used to identify the
usage of the frame packing arrangement SEI message.

frame_packing_arrangement_cancel_flag indicates whether the frame packing arrangement SEI
message cancels the persistence of any previous frame packing arrangement SEI message in output order.

quincunx_sampling_flag indicates whether each color component plane of each constituent frame is
quincunx sampled.

spatial_flipping_flag indicates that one of the two constituent frames is spatially flipped.

frame0_flipped_flag indicates which one of the two constituent frames is flipped.

field_views_flag 1 indicates that all pictures in the current coded video sequence are coded as
complementary field pairs.

current_frame_is_frame0_flag indicates the current decoded frame and the next decoded frame in
output order.

frame0_self_contained_flag indicates whether inter prediction operations within the decoding process for
the samples of constituent frame 0 of the coded video sequence refer to samples of any constituent frame 1.

frame1_self_contained_flag indicates whether inter prediction operations within the decoding process for
the samples of constituent frame 1 of the coded video sequence refer to samples of any constituent frame 0.

frame_packing_arrangement_extension_flag 0 indicates that no additional data follows within the
frame packing arrangement SEI message.

frame_packing_arrangement_type is the type of packing arrangement of the frames as specified in Table
D-8, ISO/IEC 14496-10D.2.25.

content_interpretation_type indicates the intended interpretation of the constituent frames.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
85 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

frame0_grid_position_x specifies the horizontal location of the upper left sample of constituent frame 0 to
the right of the spatial reference point.

frame0_grid_position_y specifies the vertical location of the upper left sample of constituent frame 0
below the spatial reference point.

frame1_grid_position_x specifies the horizontal location of the upper left sample of constituent frame 1 to
the right of the spatial reference point.

frame1_grid_position_y specifies the vertical location of the upper left sample of constituent frame 1
below the spatial reference point.

frame_packing_arrangement_repetition_period indicates persistence of the frame packing
arrangement SEI message.

4.4.2.29 MvcPicInfo

typedef struct {
 int viewIdxDisplay;
 int viewIdxDecoded;
} MvcPicInfo;

Description

This is a data structure for MVC-specific picture information. Only MVC decoder returns this structure after
decoding a frame.

viewIdxDisplay is the view index order of display frame buffer corresponding to indexFrameDisplay of
DecOutputInfo structure.

viewIdxDecoded is the view index order of decoded frame buffer corresponding to indexFrameDecoded of
DecOutputInfo structure.

4.4.2.30 DecOutputInfo

typedef struct {
 int indexFrameDisplay;
 int indexFrameDecoded;
 int NumDecFrameBuf;
 int picType;
 int picTypeFirst;
 int idrFlg;
 int numOfErrMBs;
 Uint32 *qpInfo;
 int hScaleFlag;
 int vScaleFlag;
 int indexFrameRangemap;
 int prescanresult;
 int notSufficientPsBuffer;
 int notSufficientSliceBuffer;
 int decodingSuccess;
 int interlacedFrame;
 int mp4PackedPBframe;
 int h264Npf;
 int pictureStructure;
 int topFieldFirst;
 int repeatFirstField;
 union {
 int progressiveFrame;

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
86 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

 int vc1_repeatFrame;
 };
 int fieldSequence;
 int decPicHeight;
 int decPicWidth;
 Rect decPicCrop;
 int aspectRateInfo;
 Uint32 frameRateRes;
 Uint32 frameRateDiv;
 Vp8ScaleInfo vp8ScaleInfo;
 Vp8PicInfo vp8PicInfo;
 MvcPicInfo mvcPicInfo;
 AvcFpaSei avcFpaSei;
 AvcVuiInfo avcVuiInfo;
 int frameStartPos;
 int frameEndPos;
 int consumedByte;
 DecReportInfo mbInfo;
 DecReportInfo mvInfo;
 DecReportInfo frameBufStat;
 DecReportInfo userData;
} DecOutputInfo;

Description

This is a data structure to get information resulting from decoding a frame.

indexFrameDisplay is a frame buffer index of a picture to be displayed among frame buffers which
were registered using vpu_DecRegisterFrameBuffer(). Frame data to be displayed is stored into
the frame buffer specified by this index. When a delay in display does not exist, this index is the same as
indexFrameDecoded. But if not, (for example, display reordering in AVC or B-frames in VC-1), this index is not
the same value as indexFrameDecoded. If the decoder cannot provide a display output at the beginning of
sequence decoding with different display order, this index always has -2 (0xFFFE) or -3 (0xFFFD) depending on
the decoder skip option. And at the end of sequence decoding, if there is no more output for display, this value
has -1 (0xFFFF). By checking this index, the host application can easily know whether sequence decoding has
finished or not.

indexFrameDecoded is a frame buffer index of decoded picture among frame buffers which were registered
using vpu_DecRegisterFrameBuffer(). A decoded frame during current picture decoding operation
is stored into the frame buffer specified by this index. If decoder meets EOS or skip, the decoder returns -1
(0xFFFF) to represent that no decoded output is generated. Because of delays in display, the return value of
-1 does not mean end of decoding. In order to check the end of decoding, the host application should refer
toindexFrameDisplay.

picType is a picture type of the decoded picture where 0 = I picture, 1 = P picture, 2 = B picture. For H.264,
bit[0] indicates IDR frame. 0 means current frame is IDR. 1 means non-IDR frame. If 0, the bit [2:1] should be
ignored. If 1 of bit [0], bit [2:1] represents the slice types of current picture. 0 means I-slice, 1 means P-slice, 2
means B-slice. The actual value is the value of the ORed value of all slices of the current picture.

numOfErrMBs is a number of erroneous macroblocks while decoding a picture.

qpInfo is not used in the i.MX 6.

hScaleFlag is a flag for reduced resolution output in horizontal direction. For VC1 decoding, the resulting
picture width from the decoder may be half the decoded picture width. In this situation, this flag is set. The host
application should scale up the picture by two times in the horizontal direction to get proper display output.

vScaleFlag is a flag for reduced resolution output in vertical direction. For VC1 decoding, the resulting picture
height from the decoder may be half the decoded picture height. In this situation, this flag is set. The host
application should scale up this picture by two times in the vertical direction to get proper display output.
IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
87 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

indexFrameRangemap is not used in the i.MX 6.

prescanResult is not used in the i.MX 6.

notSufficientPsBuffer is a flag that represents whether PS (SPS/PPS) save buffer is sufficient to decode
the current picture. VPU does not get the last part of the current picture stream because of the buffer overflow.
The host must close the current instance since the picture streams cannot be decoded properly because of loss
of SPS/PPS data.

notSufficientSliceBuffer is a flag that represents whether slice save buffer is sufficient to decode
the current picture. VPU does not get the last part of the current picture stream, and macroblock errors issue
because of buffer overflow. The host can continue decoding the remaining pictures of the current input stream
without closing the current instance, even though several pictures can be error-corrupted.

decodingSuccess where bit 0 = 0 means incomplete finish of decoding process and bit 0 = 1 means complete
finish of decode process. This variable means that the decoding process is finished completely. If stream has
errors in the picture header syntax or the first slice header syntax of H.264 stream, VPU does not initiate the MB
decoding routine and returns immediately. In this situation, VPU returns bit 0 = 0, which means incomplete end
of decoding process. Additionally, this variable uses some bits to indicate error reasons why VPU returns from
picture decoding. In rollback mode, if bitstream buffer doesn't have enough bits for decoding a picture, VPU
returns from decoding and rolls back its read pointer to the beginning of that picture. In this situation, bit 4 of
decodingSuccess is 1. When sequence parameters are changed, bit 20 of decodingSuccess is 1.

interlacedFrame where 0 means progressive frame which consists of one frame picture and 1 means
interlaced frame which consists of two field picture (top field and bottom field). This variable indicates that the
frame is the interlaced frame. If this value is set, the host application may use a de-interlacing filter to enhance
image quality.

mp4PackedPBframe where 0 means normal frame chunk data and 1 means packed PB frame chunk data.
This variable indicates that the frame chunk data is a packed PB frame chunk. If this value is set, the host
application must re-use this chunk in the next decoding command. This variable is only valid for MPEG-4 file-
play mode.

h264Npf indicates that a top or bottom field is absent when NPF occurrs in display picture.

PictureStructure is a picture structure in picture coding ext in MP2, interlaced in Video Object Layer in
MP4, MBAFF (MB Adaptive frame/field mode) flag in H.264, and FCM in picture header in VC1.

topFieldFirst where 0 means bottom field first and 1 means top field first. Ignored if interlacedFrame is 0.

repeatFirstField repeats first field for repeat counter.

progressiveFrame is a progressive_frame in picture coding extension in MP2.

vc1_repeatFrame where 0 means not repeat frame and 1 means repeat frame.

fieldSequence is a field sequence in picture extension of MP2.

decPicHeight is a picture height of current decoded frame.

decPicWidth is a picture width of current decoded frame. For MJPEG decoding, the decPicHeight and
decPicWidth are the size of the decoded rotator frame saved in the rotation frame buffer that is registered by
the SET_ROTATOR_OUTPUT command. VPU supports the changed resolution decoding. VPU only supports
the changed resolution not larger than the original size. For example, the changed sequence of VGA > QVGA >
VGA is supported.

decPicCrop is a picture crop information of current decoded frame. Only effective with the H.264 decoder.

aspectRateInfo H.264 - It is aspect_ratio_idc [7:0] when [31:8] is 0. Otherwise it is ssar_width in [31:16] and
sar_height in [15:0]. VC-1 - ASPECT_RATIO h:v are reported in [15:8] : [7:0] as described in the spec. MPEG4
- This value is index of Table 6-12 in ISO/IEC 14496-2; MPEG2 - This value is index of Table 6-3 in ISO/IEC
13818-2.
IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
88 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

frameRateRes is the numerator part of frame rate fraction. This is the value of time_scale in the H.264 VUI
syntax for AVC decoding.

frameRateDiv is the denominator part of the frame rate fraction. In case of AVC decoding, this is the value of
num_units_in_tick in the H.264 VUI syntax. User can get the frame rate with this parameter. For AVC decoder,
frame rate = frameRateRes / (frameRateDiv*2). Otherwise, frame rate = frameRateRes / frameRateDiv.

vp8ScaleInfo is VP8 up sampling information. Refer to the Vp8ScaleInfo.

vp8PicInfo is VP8 frame header information. Refer to the Vp8PicInfo.

mvcPicInfo is MVC related picture information. Refer to MvcPicInfo.

avcFpaSei is AVC frame packing arrangement SEI information. Refer to AvcFpaSei.

frameStartPos Start position of the frame.

frameEndPos End position of the frame.

consumedByte Consumed byte in the decoding command.

mbInfo is not used in the i.MX 6.

mvInfo is not used in the i.MX 6.

frameBufStat is not used in the i.MX 6.

userData is a motion vector in the decoded picture. If the application does not give the
DEC_SET_REPORT_USERDATA command to enable the report before starting one frame decoder, this
information is invalid.

4.4.2.31 vpu_versioninfo

typedef struct {
 int fw_major; /* firmware major version */
 int fw_minor; /* firmware minor version */
 int fw_release; /* firmware release version */
 int fw_code; /* firmware checkin code number */
 int lib_major; /* library major version */
 int lib_minor; /* library minor version */
 int lib_release; /* library release version */
} vpu_versioninfo;

Description

This is a data structure to get the VPU firmware and library version:

fw_major, fw_minor, fw_release Firmware version, naming convention which are similar to Linux
kernel.

fw_code is the firmware detail source code commit id.

lib_major, lib_minor, lib_release VPU library version, naming convention which are all similar to
Linux kernel.

4.4.2.32 VPUMemAlloc

typedef struct {
 int size;
 unsigned long phy_addr;
 unsigned long cpu_addr;
 unsigned long virt_uaddr;

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
89 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

} vpu_mem_desc;

Description

Data structure used when the host application allocates physically contiguous memory for the VPU:

size is a requested memory size.

phy_addr is a physical base address of the buffer allocated by driver if allocated successfully.

cpu_addr is a kernel virtual address corresponding to phy_addr. The programmer of the user-space
application does not need to care about this.

virt_uaddr is an user-space virtual address corresponding to phy_addr, which the host application can
access.

4.4.2.33 iram_t

typedef struct iram_t {
 unsigned long start;
 unsigned long end;
} iram_t;

Description

start is a start address of the internal memory for VPU use.

end is an end address of internal memory for VPU use.

4.5 API Definitions Overview
This section provides an overview of the VPU API definitions. The basic API architecture is presented together
with the operation flow of both decoder and encoder- based VPU API functions.

4.5.1 Basic Architecture

i.MX 6 VPU API has the following three basic categories:

• Control API-API functions for general control of the VPU such as initialization
• Decoder API-API functions for VPU decoding operations
• Encoder API-API functions for VPU encoding operations

i.MX 6 VPU API functions are based on a frame-by-frame picture processing scheme. To run a picture decoder
or encoder, the application calls an API function. After completion of the processing, the application can check
the results of the picture processing.

To support multi-instance decoding and encoding, i.MX 6 VPU API functions use a handle to specify a certain
instance. The handle for each instance is provided when the application creates a new decoder or encoder
instance. If the application wants to give a command to a specific instance, the corresponding handle is used in
every API function call for that instance.

4.5.1.1 Decoder Operation Flow

To decode a bitstream, the application completes the following steps:

1. Call vpu_Init() to initialize the VPU.
2. Open a decoder instance by using vpu_DecOpen().

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
90 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

3. To provide the proper amount of bitstream, get the bitstream buffer address by using
vpu_DecGetBitstreamBuffer().

4. After transferring the decoder input stream, inform the amount of bits transferred into the bitstream buffer by
using vpu_DecUpdateBitstreamBuffer().

5. Before starting a picture decoder operation, get the crucial parameters for decoder operations such as
picture size, frame rate, and required frame buffer size by using vpu_DecGetInitialInfo().

6. Using the returned frame buffer requirement, allocate the proper size of the frame buffers, and convey this
data to i.MX 6 VPU by using vpu_DecRegisterFrameBuffer().

7. Start a picture decoder operation picture-by-picture by using vpu_DecStartOneFrame().
8. Wait for the completion of the picture decoder operation interrupt event.
9. Check the results of the decoder operation using vpu_DecGetOutputInfo().

10. After displaying nth frame buffer, clear the buffer display flag by using vpu_DecClrDispFlag().
11. If there is more bitstream to decode, go to Step 7, otherwise go to the next step.
12. Terminate the sequence operation by closing the instance by using vpu_DecClose().
13. Call vpu_UnInit() to release the system resources.

The decoder operation flow is shown in the figure below.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
91 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

aaa-053545

vpu_IsBusy()?

vpu_DecSetEscSeqInit(handle,1)
vpu_DecGetInitialInfo()

vpu_DecSetEscSeqInit(handle,0)

vpu_DecUpdateStreamBuffer()

vpu_DecOpen()

vpu_Init()

vpu_DecStartOneFrame()

vpu_DecRegisterFrameBuffer()

Decode finished?

vpu_DecGetOutputInfo()

Exit?

Yes

Yes

Yes

No

No

No

No

Yes

Line-buffer mode?

vpu_DecClrDisp()

Set bitstream to
bitstreambuffer start address

vpu_UnInit()

End

vpu_DecClose()

Process output picture
E.g. show on display or save

to mem

Line-buffer mode?

Lack of bitstream?

vpu_DecGetBitstreamBuffer()

End of stream?

Yes

No

Fill bitstream ring buffer

vpu_DecUpdateBitstream
Buffer()

No

vpu_DecUpdateBitstream
Buffer(handle, 0)

Yes

Yes

No

Figure 10. Decoder Operation Flow

4.5.1.2 Encoder Operation Flow

To encode a bitstream, the application completes the following steps:

1. Call vpu_Init() to initialize the VPU.
2. Open a encoder instance by using vpu_EncOpen().
3. Before starting a picture encoder operation, get crucial parameters for encoder operations such as required

frame buffer size by using vpu_EncGetInitialInfo().

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
92 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

4. By using the returned frame buffer requirement, allocate size of frame buffers and convey this information to
the VPU by using vpu_EncRegisterFrameBuffer().

5. Generate high-level header syntax by using vpu_EncGiveCommand().
6. Start picture encoder operation picture-by-picture by using vpu_EncStartOneFrame().
7. Wait the completion of picture encoder operation interrupt event.
8. After encoding a frame is complete, check the results of encoder operation by using

vpu_EncGetOutputInfo().
9. If there are more frames to encode, go to Step 4. Otherwise, go to the next step.

10. Terminate the sequence operation by closing the instance using vpu_EncClose().
11. Call vpu_UnInit() to release the system resources.

The encoder operation flow is shown in the figure below.

aaa-053550

Left source data?

vpu_EncRegisterFrameBuffer()

vpu_EncGetInitialInfo()

vpu_EncOpen()

vpu_Init()

vpu_EncGiveCommand()

Copy source data to source
frame buffer

vpu_EncStartOneFrame()

vpu_EncGetOutputInfo()

vpu_IsBusy()?

No

Yes

No No
Yes

Yes

Exit?

Process output data

No

vpu_UnInit()

End

vpu_EncClose()

Figure 11. Encoder Operation Flow

4.6 Control API
The following sections describe the control API functions.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
93 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

4.6.1 vpu_Init()

Prototype

RetCode vpu_Init(void *);

Parameter

Not used, just defined for extension. The user can set it with null.

Return Value

RETCODE_SUCCESS means VPU initialized successfully.

RETCODE_FAILURE means VPU initialization unsuccessful.

Description

This function initializes the VPU hardware and proper data structures/resources. The application must call this
function before using VPU. If the VPU hardware is initialized after boot at first usage, VPU library does not need
to initialize the hardware again. For example, there is no need to load the firmware again. This is transparent to
the application.

4.6.2 vpu_UnInit()

Prototype

void vpu_UnInit();

Parameter

None

Description

This function deinitializes the VPU hardware and releases the resources that are allocated in the vpu_Init()
function. The application must call this function before exiting.

4.6.3 vpu_IsBusy()

Prototype

int vpu_IsBusy();

Parameter

None

Return Value

0 VPU hardware is idle.

1 VPU hardware is busy processing a frame.

Description

This function tells the application if decoder or encoder frame processing is completed or not.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
94 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

4.6.4 jpu_IsBusy()

Prototype

int jpu_IsBusy();

Parameter

None

Return Value

0 JPU hardware is idle.

1 JPU hardware is busy processing a frame.

Description

This function tells the application if decoder or encoder frame processing of MJPG format is completed or not.
This function is not implemented. Use vpu_IsBusy instead.

4.6.5 vpu_WaitForInt()

Prototype

int vpu_WaitForInt(int timeout_in_ms);

Parameter

timeout_in_ms [input] is wait time in milliseconds.

Return Value

RETCODE_SUCCESS means that the operation is successful.

RETCODE_FAILURE means that the operation failed.

Description

The application waits for the decoder or encoder to complete the interrupt. This function returns immediately if
the interrupt has been received. Otherwise, it returns after timeout_in_ms.

4.6.6 vpu_GetVersionInfo()

Prototype

RetCode vpu_GetVersionInfo(vpu_versioninfo * verinfo);

Parameter

verinfo [output] is the pointer to vpu_versionInfo data.

Return Value

RETCODE_SUCCESS means that the version information is acquired successfully.

RETCODE_FAILURE means that the current firmware does not contain any version information.

RETCODE_NOT_INITIALIZED means that VPU is not initialized before calling this function. The application
should initialize VPU by calling vpu_Init() before calling this function.

Description

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
95 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

This function provides the version information running on the system to the application.

4.6.7 IOGetPhyMem()

Prototype

int IOGetPhyMem(vpu_mem_desc * buff);

Parameter

buff [input] is a pointer to memory information stored in allocated memory. The user needs to input buff >
size, then buff >. phy_addr is output after return success.

Return Value

RETCODE_SUCCESS means that the operation is successful.

RETCODE_FAILURE means that the operation failed.

Description

This function allocates physically contiguous memory. When the application calls this function, the driver
allocates physically contiguous memory.

4.6.8 IOFreePhyMem()

Prototype

int IOFreePhyMem(vpu_mem_desc * buff);

Parameter

buff [input] is a pointer to memory information stored in allocated memory. The user needs to input buff >
size, then buff > phy_addr is output after return success.

Return Value

RETCODE_SUCCESS means that the operation is successful.

RETCODE_FAILURE means that the operation failed.

Description

This function frees the physical memory allocated by IOGetPhyMem back to the system.

4.6.9 IOGetVirtMem()

Prototype

int IOGetVirtMem(vpu_mem_desc * buff);

Parameter

buff [input] is a pointer to memory information stored in allocated memory. The user needs to input buff >
size, then buff > phy_addr is output after return success.

Return Value

RETCODE_SUCCESS means that the operation is successful.

RETCODE_FAILURE means that the operation failed.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
96 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

Description

This function gets the virtual address of the given physical address. If the allocated physical continuous memory
needs to be accessed in user space, this function is used to map physical memory.

4.6.10 IOFreeVirtMem()

Prototype

int IOFreeVirtMem(vpu_mem_desc * buff);

Parameter

buff [input] is a pointer to memory information stored in allocated memory. The user needs to input buff >
size, then buff > phy_addr is output after return success.

Return Value

RETCODE_SUCCESS means that the operation is successful.

RETCODE_FAILURE means that the operation failed.

Description

This function is used to unmap physical memory to user space.

4.6.11 IOGetIramBase()

Prototype

int IOGetIramBase(iram_t * iram);

Parameter

iram [input] is a pointer to memory information that stores the internal memory.

Return Value

RETCODE_SUCCESS means that the operation is successful.

RETCODE_FAILURE means that the operation failed.

Description

This function is not used in i.MX 6 .

4.6.12 vpu_SWReset()

Prototype

RetCode vpu_SWReset(DecHandle handle, int index);

Parameter

handle [input] is an encoder/decoder handle obtained from vpu_EncOpen()/vpu_DecOpen().

index [input] means that the index of instance will be reset.

Return Value

RETCODE_SUCCESS means that the operation is successful.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
97 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

RETCODE_FAILURE means that the operation failed.

Description

This function resets the instance specified by the handle or index. Host application can use this function with
two methods:

1) Calling with handle parameter. If handle is given, the index parameter will be ignored automatically.

2) Calling with index parameter. This method is for special use cases in which the application exists without
instance closed, the resources need to be released, and the host knows the exact index of instance.

In normal situations, you should reset VPU with a specified handle. You should be confident in what you are
doing if resetting VPU with an index parameter not a handle.

4.7 Encoder API
The following sections describe the encoder API functions.

4.7.1 vpu_EncOpen()

Prototype

RetCode vpu_EncOpen(EncHandle * pHandle, EncOpenParam * pop);

Parameter

pHandle [output] is a pointer to EncHandle type variable which specifies instance for an application. If no
instance is available, a null handle is returned.

pop [input] is a pointer to a EncOpenParam type structure which describes the parameters for the new
encoder instance.

Return Value

RETCODE_SUCCESS means that the new encoder instance opened successfully.

RETCODE_FAILURE means that the new encoder instance not opened successfully. If there is no free instance
available, this value is returned in the function call.

RETCODE_INVALID_PARAM means that a given argument parameter, pop, is invalid-it has a null pointer or
contains improper values for some member variables.

RETCODE_NOT_INITIALIZED means that VPU is not initialized before calling this function. The application
must initialize VPU by calling vpu_Init() before calling this function.

Description

To start a new encoder operation, the application must open a new instance. By calling this function, the
application gets a handle specifying a new encoder instance. Because i.MX 6 VPU supports multiple instances
of codec operations, the application needs this kind of handle for the all running codec instances. Once
the application receives a handle, the application uses this handle to represent the target instances for all
subsequent encoder-related operations.

4.7.2 vpu_EncClose()

Prototype

RetCode vpu_EncClose(EncHandle handle);

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
98 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

Parameter

handle [input] is an encoder handle obtained from vpu_EncOpen().

Return Value

RETCODE_SUCCESS means that the encoder instance closed successfully.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This code
might be returned if handle has not been obtained by vpu_EncOpen(), for example a decoder handle, or if
handle is from an instance which has been closed.

RETCODE_FRAME_NOT_COMPLETE means that the frame decoding or encoding operation is not completed
yet and the API function call cannot be performed at this time. A frame encoding or decoding operation should
be completed by calling vpu_EncGetOutputInfo() or vpu_DecGetOutputInfo(). Even though the result
of the current frame operation is not necessary, the application should call vpu_EncGetOutputInfo() or
vpu_DecGetOutputInfo() to proceed with this function call.

RETCODE_FAILURE_TIMEOUT means that the hardware is already busy with other operation and unavailable
for current API calling.

Description

This function is called by the application to close an instance when the application completes the encoding
operations and wants to release this instance for other processing. After completion of this function call, the
instance referred to by the handle is free. Once the application closes an instance, the application cannot call
any further encoder-specific function with this handle before re-opening a new instance with the same handle.

4.7.3 vpu_EncGetInitialInfo()

Prototype

RetCode vpu_EncGetInitialInfo(EncHandle handle, EncInitialInfo * info);

Parameter

handle [input] is an encoder handle obtained from vpu_EncOpen().

info [output] is a pointer to a EncInitialInfo type structure which describes the parameters required before
starting encoder operations.

Return Value

RETCODE_SUCCESS means that receiving the initial parameters completed successfully.

RETCODE_FAILURE means that there is an error getting the configuration information for the encoder.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This code
might be returned if handle has not been obtained by vpu_EncOpen(), for example a decoder handle, or if
handle is of an instance which has been closed.

RETCODE_INVALID_PARAM means that the given argument parameter, info, is invalid. This means that it has
a null pointer or contains improper values for some member variables.

RETCODE_CALLED_BEFORE means that the function call is invalid because multiple calls of the current API
function for a given instance are not allowed. The encoder initial information has already been received, so this
function call is meaningless and not allowed.

RETCODE_FAILURE_TIMEOUT means that the hardware is already busy with other operation and unavailable
for current API calling.

Description

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
99 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

Before starting the encoder operation, the application must allocate the frame buffers according
to the information obtained from this function. This function returns the required parameters for
vpu_EncRegisterFrameBuffer(), which is followed by this function call.

4.7.4 vpu_EncGetBitstreamBuffer()

Prototype

RetCode vpu_EncGetBitstreamBuffer(EncHandle handle,
 PhysicalAddress * prdPrt,
 PhysicalAddress * pwrPtr, Uint32 * size);

Parameter

handle [input] is an encoder handle obtained from vpu_EncOpen().

prdPrt [output] is a stream buffer read pointer for the current encoder instance.

pwrPtr [output] is a stream buffer write pointer for the current encoder instance.

size [output] is a variable specifying the available space in the bitstream buffer for the current encoder
instance.

Return Value

RETCODE_SUCCESS means that the required information for encoder stream buffer is received successfully.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This code
might be returned if handle has not been obtained by vpu_EncOpen(), for example a decoder handle, or if
handle is of an instance which has been closed.

RETCODE_INVALID_PARAM means that given argument parameters, prdPrt, pwrPtr, or size, are invalid. This
means that they have a null pointer or contain improper values for some member variables.

Description

After encoding a frame, the application must get the bitstream from the encoder by using the stream location
and the maximum size. The application gets the information by calling this function.

4.7.5 vpu_EncUpdateBitstreamBuffer()

Prototype

RetCode vpu_EncUpdateBitstreamBuffer(EncHandle handle, Uint32 size);

Parameter

handle [input] Encoder handle obtained from vpu_EncOpen()

size [input] Variable specifying the amount of bits retrieved from the bitstream buffer for the current encoder
instance

Return Value

RETCODE_SUCCESS: Putting new stream data completed successfully

RETCODE_INVALID_HANDLE: Given handle for current API function call, handle, is invalid. This return code
might be returned if handle has not been obtained by vpu_EncOpen(), for example a decoder handle, or if
handle is of an instance which has been closed.

RETCODE_INVALID_PARAM: Given argument parameter, size, is invalid-it is larger than the value obtained
from vpu _EncGetBitstreamBuffer ()
IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
100 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

Description

The application must let the encoder know how much bitstream has been transferred from the address obtained
from vpu _EncGetBitstreamBuffer (). By giving the size as an argument, the API automatically handles pointer
wrap-around and updates the read pointer.

4.7.6 vpu_EncRegisterFrameBuffer()

Prototype

RetCode vpu_EncRegisterFrameBuffer(EncHandle handle,
 FrameBuffer * bufArray, int num, int frameBufStride, int
 sourceBufStride,
 PhysicalAddress subSampBaseA,PhysicalAddress subSampBaseB,
 EncExtBufInfo *pBufInfo);

Parameter

handle [input] is an encoder handle obtained from vpu_EncOpen().

bufArray [input] is a pointer to the first element of an array of FrameBuffer data structure.

num [input] is a number of frame buffers.

frameBufStride [input] is a stride value of the given frame buffers for encoder.

sourceBufStride [input] is a stride value of the source frame buffer for encoder.

subSampBaseA [input] is a buffer address for saving a sub-sampled image.

subSampBaseB [input] is a buffer address for saving a sub-sampled image.

pBufInfo [input] is a buffer address for saving extension buffer info. See EncExtBufInfo for details.

The distance between a pixel in a row and the corresponding pixel in the next row is called a stride. The value
of a stride must be a multiple of 8. The address of the first pixel in the second row does not necessarily coincide
with the value next to the last pixel in the first row. In other words, a stride can have values greater than the
picture width in pixels.

The application should not set a stride value smaller than the picture width. For the Y component, the
application must allocate at least a space of size (frame height x stride), and for Cb or Cr components, (frame
height/2 x stride/2).

For MJPEG encoding, the address of the frame buffer is not necessary. Only the frameBufStride and
frameBufStride values are necessary.

Return Value

RETCODE_SUCCESS means that registering the frame buffers completed successfully.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This code
might be returned if handle has not been obtained by vpu_EncOpen(), for example a decoder handle, or if
handle is of an instance which has been closed.

RETCODE_WRONG_CALL_SEQUENCE means that the current API function call is invalid considering the
allowed sequences between API functions. In this situation, the application may have called this function
before successfully calling vpu_EncGetInitialInfo(). This function should be called after successfully calling
vpu_EncGetInitialInfo().

RETCODE_INVALID_FRAME_BUFFER means that the argument bufArray is invalid or not initialized.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
101 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

RETCODE_INSUFFICIENT_FRAME_BUFFERS means that the given number of frame buffers, num, is not
enough for the encoder operations of the given handle. num should be greater than or equal to the value of
minFrameBufferCount obtained from vpu_EncGetInitialInfo().

RETCODE_INVALID_STRIDE means that the given argument stride is invalid. This means that it is 0, or is not
a multiple of 8.

RETCODE_CALLED_BEFORE means that the function call is invalid because multiple calls of the current API
function for a given instance are not allowed. The encoder initial information has already been received, so this
function call is meaningless and not allowed.

Description

This function registers frame buffers requested by vpu_EncGetInitialInfo(). The frame buffers pointed to by
bufArray are managed internally within VPU. These include reference frames, reconstructed frames, and so on.
The application must not change the contents of the array of frame buffers during the life time of the instance.
num must not be less than minFrameBufferCount obtained by vpu_EncGetInitialInfo().

4.7.7 vpu_EncStartOneFrame()

Prototype

RetCode vpu_EncStartOneFrame(EncHandle handle, EncParam * param);

Parameter

handle [input] is an encoder handle obtained from vpu_EncOpen().

param [input] is a pointer to a EncParam type structure which describes the picture encoding parameters
for the current encoder instance.

Return Value

RETCODE_SUCCESS means that encoding a new frame started successfully. This return value does not mean
that encoding a frame completed successfully.

RETCODE_FAILURE means that there is an error in starting one frame encoding operation.

RETCODE_INVALID_HANDLE means that a given handle for current API function call is invalid. This code
might be returned if handle has not been obtained by vpu_EncOpen(), for example a decoder handle, or if
handle is of an instance which has been closed.

RETCODE_WRONG_CALL_SEQUENCE means that the current API function call is invalid considering the
allowed sequences between API functions. In this situation, the application may have called this function before
successfully calling vpu_EncRegisterFrameBuffer(). This function should be called after successfully calling
vpu_EncRegisterFrameBuffer().

RETCODE_INVALID_PARAM means that the given argument parameter, param, is invalid. This means that it
has a null pointer, or contains improper values for some member variables.

RETCODE_INVALID_FRAME_BUFFER means that the sourceFrame in the input structure, EncParam, is
invalid. This means that the sourceFrame is not valid even though picture-skip is disabled.

RETCODE_FAILURE_TIMEOUT means that the hardware is already busy with other operation and unavailable
for current API calling.

Description

This function starts by encoding one frame. Returning from this function does not mean the completion of
encoding one frame, only that encoding of one frame successfully initiated. This function should be followed
by vpu_EncGetOutputInfo() with the same encoder handle. Before vpu_EncGetOutputInfo() is called,

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
102 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

the application can't call other API functions except for vpu_IsBusy(), vpu_EncGetBitstreamBuffer(), or
vpu_EncUpdateBitstreamBuffer().

4.7.8 vpu_EncGetOutputInfo()

Prototype

RetCode vpu_EncGetOutputInfo(EncHandle handle, EncOutputInfo * info)

Parameter

handle [input] is an encoder handle obtained from vpu_EncOpen().

info [output] is a pointer to an EncOutputInfo type structure which describes picture encoding results for
the current encoder instance.

Return Value

RETCODE_SUCCESS means that the output information of current frame encoding received successfully.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This code
might be returned if handle has not been obtained by vpu_EncOpen(), for example a decoder handle, or if
handle is of an instance which has been closed.

RETCODE_WRONG_CALL_SEQUENCE means that the current API function call is invalid considering the
allowed sequences between API functions. In this situation, the application may have called this function
before successfully calling vpu_EncStartOneFrame(). This function should be called after successfully calling
vpu_EncStartOneFrame().

RETCODE_INVALID_PARAM means that the given argument parameter, info, is invalid. This means that it has
a null pointer, or contains improper values for some member variables.

Description

This function gives the information about the encoding output such as the picture type, the address and size of
the generated bitstream, the number of generated slices, the end addresses of the slices, and the macroblock
bit position information. The host application should call this function after frame encoding is complete and
before starting further processing.

4.7.9 vpu_EncGiveCommand()

Prototype

RetCode vpu_EncGiveCommand(EncHandle handle, CodecCommand cmd, void *param);

Parameter

handle [input] is an encoder handle obtained from vpu_EncOpen().

cmd [input] is a variable specifying the command of CodecComand type.

param [intput/output] is a pointer to a command-specific data structure which describes picture I/O
parameters for the current encoder instance.

Return Value

RETCODE_INVALID_COMMAND means that the given argument, cmd, is invalid. It is undefined or not allowed
in the current instance.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
103 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This code
might be returned if handle has not been obtained by vpu_EncOpen(), for example a decoder handle, or if
handle is of an instance which has been closed.

RETCODE_FRAME_NOT_COMPLETE means that frame encoding operation is not complete, so the given
API function call cannot be performed this time. A frame encoding or decoding operation should be completed
by calling vpu_EncGetOutputInfo() or vpu_DecGetOutputInfo(). Even though the result of the current frame
operation is not necessary, the application should call vpu_EncGetOutputInfo() or vpu_DecGetOutputInfo()
to proceed with this function call.

Description

This function is provided to give the application a certain level of freedom for reconfiguring the encoder
operation after creating an encoder instance. The options which can be changed dynamically while encoding a
video sequence as well as some command-specific return codes are shown in table below.

Command Description

ENABLE_ROTATION handle is ignored. This command returns RETCODE_SUCCESS.

DISABLE_ROTATION handle is ignored. This command returns RETCODE_SUCCESS.

ENABLE_MIRRORING handle is ignored. This command returns RETCODE_SUCCESS.

DISABLE_MIRRORING handle is ignored. This command returns RETCODE_SUCCESS.

SET_MIRROR_DIRECTION handle is a pointer to MirrorDirection. *param should be one of the following:
• MIRDIR_NONE means no mirroring.
• MIRDIR_VER means vertical mirroring.
• MIRDIR_HOR means horizontal mirroring.
• MIRDIR_HOR_VER means both directions mirroring.
Return values are as follows:
RETCODE_SUCCESS means that the given mirroring direction is valid.
RETCODE_INVALID_PARAM means that the given argument parameter, param, is invalid
so given mirroring direction is invalid.

SET_ROTATION_ANGLE param is a pointer to an integer which represents rotation angle in degrees. Rotation angle
should be 0, 90, 180, or 270. Return values are as follows:
RETCODE_SUCCESS means that the given rotation angle is valid.
RETCODE_INVALID_PARAM means that the given argument parameter, param, is invalid
so given rotation angle is invalid.
Note: Rotation angle cannot be changed after sequence initialization since it might cause
problems in handling frame buffers.

ENC_GET_SPS_RBSP param is a pointer to an EncParamSet type structure. The first variable, paraSet, is a
physical address where the generated stream is located. Size is the size of the stream in
bytes. Return values are as follows:
RETCODE_SUCCESS SPS means that it is successfully generated and available at the
received buffer pointer.
RETCODE_INVALID_COMMAND means that the given argument, cmd, is invalid. It is
undefined or not allowed in the current instance. In this instance, current instance might not
be an AVC (H.264) encoder instance.
RETCODE_INVALID_PARAM means that the given argument, param, is invalid. It has a null
pointer or contains improper values for some member variables.

ENC_GET_PPS_RBSP param is a pointer to an EncParamSet type structure. Return values are as follows:
RETCODE_SUCCESS PPS means that it is successfully generated and available at the
received buffer pointer.

Table 3.  Encoder Commands

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
104 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

Command Description
RETCODE_INVALID_COMMAND means that the given argument, cmd, is invalid. It is
undefined or not allowed in the current instance. In this instance, current instance might not
be an AVC (H.264) encoder instance.
RETCODE_INVALID_PARAM means that the given argument, param, is invalid. It has a null
pointer or contains improper values for some member variables.

ENC_PUT_MP4_HEADER param is a pointer to an EncHeaderParam structure, where buf is a physical address
pointing to the generated stream location, and size is the size of the generated stream in
bytes. headerType is a type of header that the application wants to generate and has values
such as VOL_HEADER, VOS_HEADER, or VO_HEADER. Return values are as follows:
RETCODE_SUCCESS means that the requested header syntax is successfully inserted.
RETCODE_INVALID_COMMAND means that the given argument, cmd, is invalid. It is
undefined or not allowed in the current instance. In this instance, current instance might not
be an MPEG-4 encoder instance.
RETCODE_INVALID_PARAM means that the given argument, param, is invalid. It has a null
pointer or contains improper values for some member variables.

ENC_PUT_AVC_HEADER param is a pointer to an EncHeaderParam structure, where buf is a physical address
pointing the generated stream location and size is the size of generated stream in bytes.
 headerType is a type of header that the application wants to generate and has values such
as SPS_RBSP or PPS_RBSP. Return values are as follows:
RETCODE_SUCCESS means that the requested header syntax successfully inserted.
RETCODE_INVALID_COMMAND means that the given argument, cmd, is invalid. It is
undefined or not allowed in the current instance. In this instance, current instance might not
be an AVC (H.264) encoder instance.
RETCODE_INVALID_PARAM means that the given argument, param or headerType, is
invalid. It has a null pointer or contains improper values for some member variables

ENC_SET_SEARCHRAM_
 PARAM

The command is not used in i.MX 6 .

ENC_SET_INTRA_MB_
 REFRESH_NUMBER

param is a pointer to an integer which represents the intra refresh number. The intra refresh
number should be between 0 and the macroblock number of the encoded picture. Return
values are as follows:
RETCODE_SUCCESS means that the requested header syntax is successfully inserted,

ENC_ENABLE_HEC param is ignored. Return values are as follows:
RETCODE_SUCCESS means that the requested header syntax is successfully inserted.
RETCODE_INVALID_COMMAND means that the given argument, cmd, is invalid. It is
undefined or not allowed in the current instance. In this instance, current instance might not
be an MPEG-4 encoder instance.

ENC_DISABLE_HEC param is ignored. Return values are as follows:
RETCODE_SUCCESS means that the requested header syntax successfully inserted.
RETCODE_INVALID_COMMAND means that the given argument, cmd, is invalid. It is
undefined or not allowed in the current instance. In this instance, current instance might not
be an MPEG-4 encoder instance.

ENC_SET_SLICE_INFO param is a pointer to an EncSliceMode structure, where sliceMode enables a multi slice
structure. sliceSizeMode represents the mode of calculating one slicesize. sliceSize is the
size of one slice. Return values are as follows:
RETCODE_SUCCESS means that the requested header syntax is successfully inserted.
RETCODE_INVALID_PARAM means that the given argument parameter, param or header
Type, is invalid. It has a null pointer or contains improper values for some member variables.

ENC_SET_GOP_NUMBER param is a pointer to an integer which represents the GOP number. Return values are as
follows:
RETCODE_SUCCESS means that the requested header syntax is successfully inserted.

Table 3.  Encoder Commands...continued

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
105 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

Command Description
RETCODE_INVALID_PARAM means that the given argument parameter, param or header
Type, is invalid. It has a null pointer or contains improper values for some member variables.

ENC_SET_INTRA_QP param is a pointer to an integer which represents constant I frame QP. Constant I frame QP
should be between 1 and 31 for MPEG-4, and between 0 and 51 for AVC (H.264). Return
values are as follows:
RETCODE_SUCCESS means that the requested header syntax is successfully inserted.
RETCODE_INVALID_COMMAND means that the given argument, cmd, is invalid. It is
undefined or not allowed in the current instance. In this instance, current instance might not
be an encoder instance.
RETCODE_INVALID_PARAM means that the given argument parameter, param or header
Type, is invalid. It has a null pointer or contains improper values for some member variables.

ENC_SET_BITRATE param is a pointer to an integer which represents the bitrate. The bitrate should be between
0 and 32767. Return values are as follows:
RETCODE_SUCCESS means that the requested header syntax is successfully inserted.
RETCODE_INVALID_COMMAND means that the given argument, cmd, is invalid. It is
undefined or not allowed in the current instance. In this instance, current instance might not
be an encoder instance.
RETCODE_INVALID_PARAM means that the given argument parameter, param or header
Type, is invalid. It has a null pointer or contains improper values for some member variables.

ENC_SET_FRAME_RATE param is a pointer to an integer which represents the frame rate value. The frame rate
should be greater than 0. Return values are as follows:
RETCODE_SUCCESS means that the requested header syntax inserted successfully.
RETCODE_INVALID_COMMAND means that the given argument, cmd, is invalid. It is
undefined or not allowed in the current instance. In this instance, the current instance might
not be an encoder instance.
RETCODE_INVALID_PARAM means that the given argument parameter, param or header
Type, is invalid. It has a null pointer or contains improper values for some member variables.

ENC_SET_REPORT_
 MBINFO

Not used in i.MX 6 .

ENC_SET_REPORT_
 MVINFO

Not used in i.MX 6 .

ENC_SET_REPORT_ SLI
CEINFO

param is a pointer to an EncReportInfo. addr cannot be a null pointer when the enable
flag is 1, so the user needs to allocate memory according to mvInfoBufSize returned by
vpu_EncGetInitialInfo(). The user can call malloc() to allocate the buffer since continuous
physical memory is not needed. Return values are as follows:
RETCODE_INVALID_PARAM means that the given argument parameter, param is invalid. It
has a null pointer or addr in EncReportInfo is a null pointer when enable is 1.

ENC_SET_INTRA_
REFRESH_MODE

Set intra refresh mode. It must be called before vpu_EncGetInitialInfo takes effect.
• 0 - random intra refresh mode
• 1 - consecutive intra refresh mode

ENC_ENABLE_SOF_STUFF Pad stuffing zero bytes to the end of JPEG SOF fields.
• 0 - disable stuffing
• 1 - enable stuffing

Table 3.  Encoder Commands...continued

4.8 Decoder API
The following sections describe the decoder API functions.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
106 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

4.8.1 vpu_DecOpen()

Prototype

RetCode vpu_DecOpen(DecHandle * pHandle, DecOpenParam * pop);

Parameter

pHandle [output] is a pointer to a DecHandle type variable which specifies each instance for an application.

pop [input] is a pointer to a DecOpenParam type structure which describes the required parameters for
creating a new decoder instance.

Return values:

RETCODE_SUCCESS means that the new decoder instance created successfully.

RETCODE_FAILURE means that the new decoder instance did not open successfully. If there is no free
instance available, this value is returned in the function call.

RETCODE_INVALID_PARAM means that the given argument parameter, pop, is invalid. It has a null pointer or
contains improper values for some member variables.

RETCODE_NOT_INITIALIZED means that VPU is not initialized before calling this function. The application
must initialize the VPU by calling vpu_Init() before calling this function.

Description

To decode, the application must open the decoder. By calling this function, the application receives a handle by
which the application can refer to a decoder instance. Since VPU is a multiple instance codec, the application
requires this kind of handle. Once the application receives a handle, the application must pass the handle to all
subsequent decoder-related functions.

4.8.2 vpu_DecClose()

Prototype

RetCode vpu_DecClose(DecHandle handle);

Parameter

handle [input] is a decoder handle obtained from vpu_DecOpen().

Return Value

RETCODE_SUCCESS means that the current decoder instance closed successfully.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This return
code might be caused if handle has not been obtained by vpu_DecOpen(), or if handle is of an instance which
has been closed.

RETCODE_FAILURE_TIMEOUT means that VPU is busy with another task, or there is something wrong
with VPU. In normal operation, the API call should not return a RETCODE_FAILURE_TIMEOUT value. If the
application receives this value, VPU internal function may be corrupted.

RETCODE_FAILURE_TIMEOUT means that hardware is already busy with other operation and unavailable for
current API calling.

Description

When the application is finished decoding a sequence and wants to release this instance for other processing,
the application should close the instance. After completion of this function call, the instance referred to by

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
107 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

handle is free. Once the application closes an instance, the application cannot call any further decoder-specific
function with this handle before re-opening a new decoder instance with the same handle.

4.8.3 vpu_DecGetInitialInfo()

Prototype

RetCode vpu_DecGetInitialInfo(DecHandle handle, DecInitialInfo * info);

Parameter

handle [input] is a decoder handle obtained from vpu_DecOpen().

info [output] is a pointer to a DecInitialInfo data structure.

Return Value

RETCODE_SUCCESS means that the required information of the stream data to be decoded is received
successfully.

RETCODE_FAILURE means that there is an error in getting the configuration information for the decoder.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This code
might be caused if handle has not been obtained by vpu_DecOpen(), or if handle is of an instance which has
been closed.

RETCODE_INVALID_PARAM means that the given argument parameter, info, is invalid. It has a null pointer or
contains improper values for some member variables.

RETCODE_FAILURE_TIMEOUT means that VPU is busy with another task, or there is something wrong with
the VPU. In normal operation, the API call should not return a RETCODE_FAILURE_TIMEOUT value. If the
application receives this value, the VPU internal function may be corrupted.

RETCODE_WRONG_CALL_SEQUENCE means that current API function call is invalid considering the allowed
sequence between API functions. In this case, the application might call this function before successfully
putting the bitstream into the buffer data by calling vpu_DecUpdateBitstreamBuffer(). In order to perform this
functions call, the bitstream data including the sequence level header should be transferred into the bitstream
buffer before calling vpu_DecGetInitialInfo().

RETCODE_CALLED_BEFORE means that the function call is invalid because multiple calls of the current API
function for a given instance are not allowed. The decoder initial information has been already received, so this
function call is meaningless and not allowed.

RETCODE_FAILURE_TIMEOUT means that the hardware is already busy with other operation and unavailable
for current API calling.

Description

The application must pass the address of a DecInitialInfo structure, where the decoder stores the information
such as picture size, number of necessary frame buffers, and so on. For details, see the definition of the
DecInitialInfo data structure in Section 4.4.2.21. This function should be called after creating a decoder instance
and before starting frame decoding. The application must provide sufficient amount of bitstream to the decoder
by calling vpu_DecUpdateBitstreamBuffer() to avoid bitstream buffer emptying before this function returns.

If the application cannot ensure to feed enough data for the stream, the application can use the forced escape
option using vpu_DecSetEscSeqInit().

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
108 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

4.8.4 vpu_DecSetEscSeqInit()

Prototype

RetCode vpu_DecSetEscSeqInit(DecHandle handle, int escape);

Parameter

handle [input] is a decoder handle obtained from vpu_DecOpen().

escape [input] is a flag to enable or disable forced escape from SEQ_INIT.

Return Value

RETCODE_SUCCESS means that the force escape flag successfully provided to the BIT processor.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This return
code might be caused if handle has not been obtained by vpu_DecOpen(), or if handle is of an instance which
has been closed.

Description

This is a special function to provide a way of escaping the VPU hanging during DEQ_SEQ_INIT. When this
flag is set to 1 and the stream buffer becomes empty, the VPU automatically terminates the DEC_SEQ_INIT
operation. If the target application ensures that a high layer header syntax is periodically sent through the
channel, the application does not need this option. However, if the target application cannot ensure that a high
layer header syntax is periodically sent through the channel (such as file-play mode). This function is useful to
avoid VPU hanging because of crucial errors in the header syntax.

Note: This flag is applied to all decoder instances together. Therefore, it is recommended to reset this flag to 0
after successfully finishing the sequence initialization.

4.8.5 vpu_DecGetBitstreamBuffer()

Prototype

RetCode vpu_DecGetBitstreamBuffer(DecHandle handle,
 PhysicalAddress * paRdPtr,
 PhysicalAddress * paWrPtr, Uint32 * size);

Parameter

handle [input] is a decoder handle obtained from vpu_DecOpen().

paRdPtr [output] is a stream buffer read pointer for the current decoder instance.

paWrPtr [output] is a stream buffer write pointer for the current decoder instance.

size [output] is a variable specifying the available space in the bitstream buffer for the current decoder
instance.

Return Value

RETCODE_SUCCESS means that the required information for the decoder stream buffer received successfully.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This return
code might be caused if handle has not been obtained by vpu_DecOpen(), or if handle is of an instance which
has been closed.

RETCODE_INVALID_PARAM means that the given argument parameter, paRdPtr, paWrPtr, or size, is invalid. It
has a null pointer or given values for some member variables have improper values.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
109 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

Description

Before decoding a bitstream, the application must give the bitstream data to the decoder. First, the application
must know where bitstream can be placed and the maximum size. The application receives this information
from this function. For VPU, using the data from this function is more efficient than providing an arbitrary
bitstream buffer to the decoder.

Note: The given size is the total sum of the free space in the ring buffer. Therefore, when the application
downloads a bitstream of this given size, Wrptr can reach the end of the stream buffer. In this case, the
application should wrap-around Wrptr to the beginning of the stream buffer and download the remaining bits. If
not, the decoder operation can fail.

4.8.6 vpu_DecUpdateBitstreamBuffer()

Prototype

RetCode vpu_DecUpdateBitstreamBuffer(DecHandle handle, Uint32 size);

Parameter

handle [input] is a decoder handle obtained from vpu_DecOpen().

size [input] is a variable specifying the amount of bits transferred into the bitstream buffer for the current
decoder instance.

Return Value

RETCODE_SUCCESS means that putting new stream data completed successfully.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This code
might be returned if handle has not been obtained by vpu_DecOpen(), or if handle is of an instance which has
been closed.

RETCODE_INVALID_PARAM means that the given argument parameter, size, is invalid. This means that it is
larger than the value obtained from vpu_DecGetBitstreamBuffer(), or larger than the available space in the
bitstream buffer.

RETCODE_FAILURE_TIMEOUT means that VPU is busy with another task, or there is something wrong
with VPU. In normal operation, the API call should not return a RETCODE_FAILURE_TIMEOUT value. If the
application receives this value, the VPU internal function may be corrupted.

Description

The application must let the decoder know how much bitstream has been transferred to the address obtained
from vpu_DecGetBitstreamBuffer(). By giving the size as argument, the API automatically handles pointer
wrap-around and write pointer update.

4.8.7 vpu_DecRegisterFrameBuffer()

Prototype

RetCode vpu_DecRegisterFrameBuffer(DecHandle handle,
 FrameBuffer * bufArray, int num, int stride,
 DecBufInfo * pBufInfo);

Parameter

handle [input] is a decoder handle obtained from vpu_DecOpen().

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
110 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

bufArray [input] is a pointer to the first element of an array of FrameBuffer for the current decoder
instance.

num [input] is a number of frame buffers.

stride [input] is a stride value of the given frame buffers.

pBufInfo [input] is a pointer to a DecBufInfo type structure which describes the additional work buffers.
Only sliceSaveBuffer is declared by this structure.

Return Value

RETCODE_SUCCESS means that registering the frame buffer information completed successfully.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This return
code might be caused if handle has not been obtained by vpu_DecOpen(), or if handle is of an instance which
has been closed.

RETCODE_FAILURE_TIMEOUT means that VPU is busy with another task, or there is something wrong
with VPU. In normal operation, the API call should not return a RETCODE_FAILURE_TIMEOUT value. If the
application receives this value, the VPU internal function may be corrupted.

RETCODE_WRONG_CALL_SEQUENCE means that the current API function call is invalid considering the
allowed sequence between API functions. In this case, the application might have called this function before
successfully calling vpu_DecGetInitialInfo().

RETCODE_INVALID_FRAME_BUFFER means that bufArray is invalid. It is not initialized, or is not valid
anymore.

RETCODE_INSUFFICIENT_FRAME_BUFFERS means that the given number of frame buffers, num, is not
enough for the decoder operations of the given handle. num should be greater than or equal to the value
requested by vpu_DecGetInitialInfo().

RETCODE_INVALID_STRIDE means that the given argument stride is invalid. It is smaller than the decoded
picture width, or is not a multiple of 8.

RETCODE_CALLED_BEFORE means that the function call is invalid because multiple calls of the current API
function for a given instance are not allowed. The decoder initial information has been already received, so this
function call is meaningless and not allowed.

Description

This function is used for registering frame buffers with the information from vpu_DecGetInitialInfo(). The
frame buffers pointed to by bufArray are managed internally within VPU. These include reference frames,
reconstructed frame, and so on. The application must not change the contents of the array of frame buffers
during the life time of the instance, and num must not be less than minFrameBufferCount obtained from
vpu_DecGetInitialInfo().

4.8.8 vpu_DecStartOneFrame()

Prototype

RetCode vpu_DecStartOneFrame(DecHandle handle, DecParam * param);

Parameter

handle [input] is a decoder handle obtained from vpu_DecOpen().

param [input] is a pointer to a DecParam type structure which describes the decoder options.

Return value

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
111 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

RETCODE_SUCCESS means that decoding a new frame started successfully. This return value does not mean
that decoding a frame completed successfully.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This code
might be caused if handle has not been obtained by vpu_DecOpen(), or if handle is of an instance which has
been closed.

RETCODE_WRONG_CALL_SEQUENCE means that the current API function call is invalid considering
the allowed sequence between API functions. The application might have called this function before
successfully calling vpu_DecRegisterFrameBuffer(). This function should be called after successfully calling
vpu_DecRegisterFrameBuffer().

RETCODE_DEBLOCKING_OUTPUT_NOT_SET means that the de-blocking filter option is activated
but required de-blocking output information is not available. If de-blocking filter is enabled for MPEG-4,
the application should register the frame buffer information of de-blocking filtered output using
vpu_DecGiveCommand().

RETCODE_FAILURE_TIMEOUT means that hardware is already busy with other operation and unavailable for
current API calling.

Description

This function starts by decoding one frame. Returning from this function does not mean the completion of
decoding one frame, only that encoding of one frame successfully initiated. If this event is signaled, then
vpu_DecGetOutputInfo() is called to get the decoded output information. Every call of this function should
be matched with vpu_DecGetOutputInfo() with the same handle. Before vpu_DecGetOutputInfo() is called,
the application cannot call another API function except for vpu_IsBusy(), vpu_DecGetBitstreamBuffer(), or
vpu_DecUpdateBitstreamBuffer().

When the application uses pre-scan mode, there is only a very small chance that the decoder may hang. For
the VC-1 SP/MP decoder, pre-scan mode is not supported.

4.8.9 vpu_DecGetOutputInfo()

Prototype

RetCode vpu_DecGetOutputInfo(DecHandle handle, DecOutputInfo * info);

Parameter

handle [input] is a decoder handle obtained from vpu_DecOpen().

info [output] is a pointer to a DecOutputInfo type structure which describes the picture decoding results for
the current decoder instance.

Return Value

RETCODE_SUCCESS means that receiving the output information of current frame completed successfully.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This
return code might be caused if handle has not been obtained by vpu_DecOpen(), or if handle is of an
instance which has been closed. Also, this value is returned when vpu_DecStartOneFrame() is matched with
vpu_DecGetOutputInfo() with different handles.

RETCODE_WRONG_CALL_SEQUENCE means that the current API function call is invalid considering the
allowed sequence between API functions. vpu_DecStartOneFrame() with the same handle might not have
been called before calling this function

RETCODE_INVALID_PARAM means that the given argument parameter, pInfo, is invalid. It has a null pointer or
contains improper values for some member variables.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
112 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

Description

The application received the output information of the decoder by calling this function after the
VPU_INT_PIC_RUN_NAME event is signaled. The output information includes the frame buffer information
containing the reconstructed image. The host application calls this function after the frame decoding is finished
and before starting further processing.

Note: If pre-scan mode is enabled, the application should check prescanResult. If the value of prescanResult =
0, the other output information is meaningless. vpu_DecStartOneFrame() and vpu_DecGetOutputInfo() must
be matched.

4.8.10 vpu_DecBitBufferFlush()

Prototype

RetCode vpu_DecBitBufferFlush(DecHandle handle);

Parameter

handle [input] is a decoder handle obtained from vpu_DecOpen().

Return Value

RETCODE_SUCCESS means that receiving the output information of the current frame completed successfully.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This
return code might be caused if handle has not been obtained by vpu_DecOpen(), or if handle is of an
instance which has been closed. Also, this value is returned when vpu_DecStartOneFrame() is matched with
vpu_DecGetOutputInfo() with different handles.

RETCODE_WRONG_CALL_SEQUENCE means that the current API function call is invalid considering the
allowed sequence between API functions. vpu_DecRegisterFrameBuffer() with the same handle might not
have been called before calling this function.

Description

The application flushes the bitstream in the decoder bitstream buffer without decoding by calling this function. If
the bitstream buffer is flushed, the read and write pointers of the bitstream buffer of each instance are set to the
bitstream buffer start address.

4.8.11 vpu_DecClrDispFlag()

Prototype

RetCode vpu_DecClrDispFlag(DecHandle handle, int index);

Parameter

handle [input] is a decoder handle obtained from vpu_DecOpen().

index [input] is a frame buffer index to be cleared.

Return Value

RETCODE_SUCCESS means that receiving the output information of the current frame completed successfully.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This
return code might be caused if handle has not been obtained by vpu_DecOpen(), or if handle is of an
instance which has been closed. Also, this value is returned when vpu_DecStartOneFrame() is matched with
vpu_DecGetOutputInfo() with different handles.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
113 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

RETCODE_WRONG_CALL_SEQUENCE means that the current API function call is invalid considering the
allowed sequence between API functions. vpu_DecRegisterFrameBuffer() with the same handle might not
have been called before calling this function.

RETCODE_INVALID_PARAM means that the given argument parameter, index, is invalid. It has improper
values.

Description

The application clears the display flag of each frame buffer by calling this function after creating a decoder
instance. If the display flag of the frame buffer is cleared, the frame buffer can be used in the decoding process.
Therefore, the application controls displaying a buffer by clearing the display flag which is set by VPU at every
display index output process. This API is not needed for the STD_MJPG codec.

4.8.12 vpu_DecGiveCommand()

Prototype

RetCode vpu_DecGiveCommand(DecHandle handle, CodecCommand cmd, void *param);

Parameter

handle [input] is a decoder handle obtained from vpu_DecOpen().

cmd [input] is a variable specifying the given command of CodecComand type.

param [input/output] is a pointer to a command-specific data structure which describes picture I/O
parameters for the current decoder instance.

Return Value

RETCODE_INVALID_COMMAND means that the given argument, cmd, is invalid. It is undefined or not allowed
in the current instance.

RETCODE_INVALID_HANDLE means that the given handle for current API function call is invalid. This return
code might be caused if handle has not been obtained by vpu_DecOpen(), or if handle is of an instance which
has been closed.

RETCODE_FAILURE_TIMEOUT means that hardware is already busy with other operation and unavailable for
current API calling.

Description

This function is provided to give applications a certain level of freedom for reconfiguring decoder operations
after creating a decoder instance. The options which can be changed dynamically while decoding a video
sequence are shown in the table below.

Command Description

ENABLE_ROTATION Enables rotation of the post-rotator. param is ignored. Returns RETCODE_SUCCESS.

DISABLE_ROTATION Disables rotation of the post-rotator. param is ignored. Returns RETCODE_SUCCESS.

ENABLE_MIRRORING Enables mirroring of the post-rotator. param is ignored. Returns RETCODE_SUCCESS.

DISABLE_MIRRORING Disables mirroring of the post-rotator. param is ignored. Returns RETCODE_SUCCESS.

SET_MIRROR_
DIRECTION

Sets the mirror direction of the post-rotator. param is a pointer to MirrorDirection. *param
should be one of the following:
• MIRDIR_NONE-No mirroring
• MIRDIR_VER-Vertical mirroring

Table 4.  Decoder Commands

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
114 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

Command Description
• MIRDIR_HOR-Horizontal mirroring
• MIRDIR_HOR_VER-Both directions
Return values are as follows:
RETCODE_SUCCESS means that the given mirroring direction is valid.
RETCODE_INVALID_PARAM means that the given argument parameter, param, is invalid so
given mirroring direction is invalid.

SET_ROTATION_ANGLE Sets the counter-clockwise angle for post-rotation. param a pointer to an integer which
represents rotation angle in degrees. The rotation angle should be 0, 90, 180, or 270. Return
values are as follows:
RETCODE_SUCCESS means that the given rotation angle is valid.
RETCODE_INVALID_PARAM means that the given argument parameter, param, is invalid so
given rotation angle is invalid.

SET_ROTATOR_OUTPUT Sets the rotator output buffer address. param a pointer to a structure representing the
physical addresses of the YCbCr components of the output frame. For storing the rotated
output for a display, at least one more frame buffer should be allocated. When multiple
display buffers are required, the application changes the buffer pointer of the rotated output
at every frame by issuing this command. Return values are as follows:
RETCODE_SUCCESS means that the given frame buffer pointer is valid.
RETCODE_INVALID_PARAM means that the given argument parameter, param, is invalid so
given frame buffer pointer is invalid.

SET_ROTATOR_STRIDE Sets the stride size of the frame buffer containing rotated output. param is the stride value of
the rotated output. Return values are as follows:
RETCODE_SUCCESS means that the given stride value is valid.
RETCODE_INVALID_PARAM means that the given argument parameter, param, is invalid so
given stride value is invalid. The stride value must be greater than 0 and a multiple of 8.

DEC_SET_SPS_RBSP Applies the SPS stream to the decoder received from a certain out-of-band reception
scheme. The stream should be in RBSP format and big endian. param is a pointer to a Dec
ParamSet structure. paraSet is an array of 32 bits which contains SPS RBSP, and size is the
size of the stream in bytes. Return values are as follows:
RETCODE_SUCCESS means that transferring a SPS RBSP to a decoder completed
successfully.
RETCODE_INVALID_COMMAND means that the given argument, cmd, is invalid. It is
undefined, or not allowed in the current instance. In this case, the current instance might not
be an AVC (H.264) decoder instance.
RETCODE_INVALID_PARAM means that the given argument, param, is invalid. It has a null
pointer or contains improper values for some member variables.

DEC_SET_PPS_RBSP Applies the PPS stream to the decoder received from a certain out-of-band reception
scheme. The stream should be in RBSP format and big endian. param is a pointer to a Dec
ParamSet structure. paraSet is an array of 32 bits which contains PPS RBSP, and size is the
size of the stream in bytes. Return values are as follows:
RETCODE_SUCCESS means that transferring a PPS RBSP to decoder completed
successfully.
RETCODE_INVALID_COMMAND means that the given argument, cmd, is invalid. It is
undefined, or not allowed in the current instance. In this case, current instance might not be
an AVC (H.264) decoder instance.
RETCODE_INVALID_PARAM means that the given argument, param, is invalid. It has a null
pointer, or contains improper values for some member variables.

ENABLE_DERING Enables VPU internal dering operation. Returns RETCODE_SUCCESS.

DISABLE_DERING Disables VPU internal dering function. Returns RETCODE_SUCCESS.

Table 4.  Decoder Commands...continued

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
115 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

Command Description

DEC_SET_REPORT_
 BUFSTAT

param is a pointer to an DecReportInfo. addr cannot be a null pointer when the enable flag
is 1, so the user needs to allocate memory according to frameBufStatBufSize returned by
vpu_DecGetInitialInfo(). The user can call malloc() to allocate the buffer since continuous
physical memory is not needed. Return values are as follows:
RETCODE_INVALID_PARAM means that the given argument parameter, param is invalid. It
has a null pointer, or addr in EncReportInfo is a null pointer when enable is 1.

DEC_SET_REPORT_
 MBINFO

param is a pointer to an DecReportInfo. addr cannot be a null pointer when the enable flag
is 1, so the user needs to allocate memory according to frameBufStatBufSize returned by
vpu_DecGetInitialInfo(). The user can call malloc() to allocate the buffer since continuous
physical memory is not needed. Return values are as follows:
RETCODE_INVALID_PARAM means that the given argument parameter, param is invalid. It
has a null pointer, or addr in EncReportInfo is a null pointer when enable is 1.

DEC_SET_REPORT_
 MVINFO

param is a pointer to an DecReportInfo. addr cannot be a null pointer when the enable flag
is 1, so the user needs to allocate memory according to frameBufStatBufSize returned by
vpu_DecGetInitialInfo(). The user can call malloc() to allocate the buffer since continuous
physical memory is not needed. Return values are as follows:
RETCODE_INVALID_PARAM means that the given argument parameter, param is invalid. It
has a null pointer, or addr in EncReportInfo is a null pointer when enable is 1.

DEC_SET_REPORT_ USE
RDATA

param is a pointer to an DecReportInfo. addr cannot be a null pointer and size cannot be
zero when the enable flag is 1, so the user needs to allocate memory. The user can call
malloc() to allocate the buffer since continuous physical memory is not needed. Return
values are as follows:
RETCODE_INVALID_PARAM means that the given argument parameter, param is invalid. It
has a null pointer, or addr in EncReportInfo is a null pointer when enable is 1.

DEC_SET_REPORT_ USE
RDATA

param is a pointer to an DecReportInfo. addr cannot be a null pointer and size cannot be
zero when the enable flag is 1, so the user needs to allocate memory. The user can call
malloc() to allocate the buffer since continuous physical memory is not needed. Return
values are as follows:
RETCODE_INVALID_PARAM means that the given argument parameter, param is invalid. It
has a null pointer, or addr in EncReportInfo is a null pointer when enable is 1.
DEC_SET_FRAME_DELAY

DEC_SET_FRAME_DELAY HOST can set the number of frames to be delayed before display (H.264/AVC only) by using
this command. This command is useful when display frame buffer delay is supposed to
happen for buffering decoded picture reorder and HOST is sure of that. Unless this command
is executed, VPU has display frame buffer delay as frameBufDelay value of DecInitialInfo
structure.

Table 4.  Decoder Commands...continued

4.9 i.MX 6 VPU Control
This section explains how VPU works, and provides few example applications that can be used with i.MX 6 VPU
API.

This section describes the VPU control scheme based on the API functions and includes some practical
programming issues.

4.9.1 VPU Initialization

When the host processor enables the VPU for the first time, the following initialization process should be
performed. These operations are completed by calling a single API function, vpu_Init().

• Disable the BIT processor by setting BIT_CODE_RUN (BASE + 0x000) = 0

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
116 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

• Write the BIT processor microcode to the SDRAM accessible by the VPU during run-time
• Download the first N Kbytes of microcode to the BIT processor code memory
• Set the BIT processor buffer pointers, working buffer, parameter buffer and code buffer
• Set the stream buffer control options and the frame buffer endian mode
• Enable interrupt and reset registers
• Enable the BIT processor by setting BIT_CODE_RUN register = 1
• Wait until vpu_IsBusy() returns RETCODE_IDLE

Detailed information about each of these initialization steps and some programming tips are presented in the
following sections.

4.9.1.1 Version Check of BIT Processor Microcode

The application can check the version information of the BIT processor microcode during runtime. The version
number of microcode is a 32-bit value. The 16 most significant bits are the internal product number, and the 16
least significant bits are the version number specified by the following rule:

• Bits 15:12 = Major revision
• Bits 11:8 = Minor revision
• Bits 7:0 = Revision patches

This version number can have a value from 0.0.0 to 15.15.255. A dedicated command, vpu_GetVersionInfo(),
is used for this version check and is supported after initialization.

4.9.1.2 BIT Processor Enable and Disable

The BIT processor has a dedicated register that activates or deactivates the BIT processor during run-time,
BIT_CODE_RUN (BASE + 0x000). During initialization, the BIT processor program memory is updated and
some configuration registers for controlling VPU operations are also set. During this process, the BIT processor
should be disabled. After finishing the initialization process, the host processor enables the BIT processor. Then
the BIT processor starts its own internal initialization process and is ready for operation.

4.9.1.3 BIT Processor Data Buffer Management

The BIT processor requires a certain amount of SDRAM space for its codec operations. This dedicated memory
space includes memory space for the BIT processor microcode, internal work buffer, parameter buffers, and so
on. The size of each sub-buffer as follows:

#define CODE_BUF_SIZE (132*1024) // byte size of Code buffer
#define WORK_BUF_SIZE (256*1024) // byte size of Work Buffer
#define PARA_BUF_SIZE (8*1024) // byte size of Parameter Buffer

In VPU API, the initialization function only receives the start address of this internal buffer as an argument.
Therefore, the total sum of the VPU processing buffer space, starting from the start address, should be
dedicated memory space for VPU and no other process should access this memory space while VPU is
enabled. It is highly recommended for the host processor to reserve the specified size of the dedicated buffer
for the BIT processor and call vpu_Init() with the start address of the reserved memory. The start addresses of
internal buffer partitions, code buffer, work buffer, and parameter buffer are calculated inside vpu_Init() function
and the calculated start addresses are set in the host interface.

In addition to the above sub-buffers, VPU requires buffers for saving SPS/PPS and SLICE RBSP when
decoding a H.264 stream. In general, 5 Kbytes is sufficient for the SPS/PPS save buffer and a quarter of the
raw YUV image size is sufficient for the SLICE save buffer. If VPU requires more buffer space to decode a
H.264 stream, VPU reports a buffer overflow.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
117 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

4.9.1.4 BIT Processor Microcode Management

The BIT processor has its own program memory inside of the VPU, but the content of this program memory
is dynamically updated according to the required codec standard. The advantage of this dynamic microcode
reloading is the reduction of program memory size. This advantage is meaningful because the BIT processor
generally requires many sets of microcode to support several codec standards in duplex mode. Generally
speaking, it seldom happens that the codec standard is changed in the middle of a codec application. So
dynamic reloading for changing the codec is not a burden in cycle consumption. In the worst case, the dynamic
code reloading happens once per picture processing, but considering the amount of maximum reloaded code, it
is not a large burden to the VPU cycle consumption.

Since the dynamic reloading is completed by the VPU itself, the host processor only needs to copy the given
microcode to the reserved code buffer before initializing the VPU. Of course, the first loading of the microcode to
the BIT processor program memory should be completed separately by the host processor.

4.9.1.5 Stream Buffer Management

The stream buffer is a shared buffer between the host processor and the VPU for exchanging stream data.
There are two different streaming schemes for decoding: ring-buffer and line-buffer. The ring-buffer scheme is
used for host applications to reserve a fixed size of memory space and use it during codec operations. On the
other hand, the line buffer scheme is used for host application to allocate a stream buffer dynamically and use it
frame-by-frame.

The host processor also can choose the endian option of the stream buffer and can enable or disable the buffer
full/empty check option. All these options for stream buffer data management are stored in a dedicated host
interface register, BIT_BITSTREAM_CTRL, and are referenced by the BIT processor during run-time.

For decoding, the VPU provides both streaming options. But sometimes multiple-instance decoding may
require a different streaming option for each decoder instance. For example, while playing a local video file, the
application might need to decode a digital video broadcast. In this case, the different types of streaming mode
can be helpful for the application design and the different streaming option is applied to each decoder instance
independently.

4.9.1.5.1 Ring-Buffer Scheme (Packet Mode)

The ring-buffer scheme is preferred in packet-based video communication and streaming applications. In
packet-based streaming based on a ring-buffer, the read and write pointers automatically wrap around at the
boundaries. When the application downloads a new chunk of the bitstream, the application should check the
available space in the bitstream buffer. Even though the available space can easily be calculated from the read
pointer, write pointer and buffer size, the VPU API provides a dedicated function for providing the buffer read
pointer, buffer write pointer and the available space in the stream buffer, vpu_DecGetBitStreamBuffer(). Based
on the returned value from this API function, the application downloads a new chunk of bitstream data whose
size should be smaller than the available buffer space. The amount of bits transferred into the stream buffer
should be notified to the VPU using vpu_DecUpdateBitStreamBuffer().

4.9.2 Interrupt Signaling Management

To achieve maximum efficiency in VPU control, the VPU IP provides interrupt signaling for completion of a
requested operation as well as stream buffer empty/full. For some commands with a quick return, interrupt
signaling is not helpful so interrupt signaling is not provided.

The VPU provides interrupt signaling for the following commands:

• BIT_RUN_COMPLETE-BIT processor initialization complete after setting BIT_CODE_RUN
• DEC_SEQ_INIT-Decoder sequence initialization complete
• DEC_SEQ_END-Decoder sequence termination complete
IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
118 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

• DEC_PIC_RUN-Decoder picture processing complete
• DEC_SET_FRAME_BUF-Decoder frame buffer registration complete
• DEC_PARA_SET-External header syntax transfer to decoder complete
• DEC_BUF_FLUSH-Flushing decoder stream buffer complete

DEC_SEQ_INIT and DEC_PIC_RUN can cause VPU to stall when the input bitstream is not large enough.
Therefore, enabling the bitstream buffer-empty interrupt with these two interrupts, avoids unnecessary cycle
consumptions in the host application. Each interrupt is easily enabled or disabled by writing 0 or 1 to the
corresponding bit field of interrupt enable register. When an interrupt is signaled, the application checks the
source of the interrupt by checking the value of interrupt reason register. When interrupt signaling is not easily
applicable, these interrupts can be replaced by a polling scheme by reading the BIT processor busy-flag.

Note: Only the DEC_PIC_RUN interrupt is used by applications. The other interrupts are used internally by the
API or not supported.

4.10 Encoder Control

4.10.1 Creating an Encoder Instance

After initializing VPU, an application creates an encode instance and acquires a handle for specifying that
encoder instance is the first step to run an encoder operation. This is accomplished using a single API function
called vpu_EncOpen().

When creating a new encoder instance, the application specifies the internal features of the encoder instance
through the EncOpenParam structure. This structure includes the following information about the new encoder
instance:

• Bitstream buffer address and size-Physical address of the bitstream buffer start and its size.
• Codec standard-Video codec standard such as H.263, MPEG-4, H.264 or MJPEG.
• Picture size-Picture width and height.
• Target frame rate and bitrate with Video Buffer Verifier (VBV) model parameters, initialDelay and

vbvBufferSize-VBV mode parameters are optional even when rate control is enabled.
• Gop size-Frequency of periodic intra (or IDR) pictures in the encoded stream output.
• Slice enable/disable, slice size mode and slice size-Slice mode enable or disable as well as the slice size and

size mode (number of bits or number of Mbytes in each slice).
• Output report such as sliceReport, mbReport, and qpReport, and so on. qpReport option is only supported in

H.263/MPEG-4 encoders meaning informative output data such as slice boundary, MB boundary in encoded
bitstream.

• Miscellaneous options such as enableAutoSkip and intraRefresh-Enable auto-skipping of pictures when the
output bit count is large enough as well as enable intra-refresh for error robustness and the number of intra
MB in a non-intra picture.

• Ring buffer mode enable, allows streaming mode setting for each encoder instance independently-Application
decides whether a ring-buffer based streaming scheme is used or not. When this option is disabled, a frame-
based streaming scheme is used with a line-buffer scheme.

• Intra quantization step-Intra Qstep value is configurable by specifying this value greater than 0. Even if rate
control is enabled, the VPU encoder uses this fixed quantization step for all I-frames. This intra quantization
step is re-configurable after creating an instance dynamically.

• Video standard-specific parameters-Specify standard-specific parameters for each video codec standard such
as error resilience tools in MPEG-4, Annexes in H.263, deblocking, and FMO parameters in H.264, source
chroma format and thumbnail parameters and table coefficients in MJPEG and so on.

Using these options, the application receives a well optimized output for the requirements of the target
application. Some output information options such as sliceReport, mbReport, qpReport, and so on, help
application developers satisfy the constraints for target applications.
IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
119 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

For example, for a fixed packet size, an application might need to insert one slice to a certain amount of bits.
If the slice size is given by the number of bits, it does not ensure that the output slice size is smaller than the
given size because of the variable length characteristics of the encoding process. Therefore, the application
divides the slice into two packets which causes an inefficiency in the packetization. To achieve an easy
packetization, the application sets the slice size to (packet_size - N) with a certain margin of N, which allows
the output slice size to be less than the packet size. Then the application easily adds a slice into a packet by
referring to the slice boundary information provided by the VPU as encoder output.

MJPEG can be encoded with various YUV format such as 4:4:4 by setting source format variable. 4:0:0,
4:2:0, 4:2:2 horizontal/vertical and 4:4:4 formats are supported in i.MX 6 MJPEG encoder. i.MX 6 VPU also
supports encoding by using a user-defined Huffman Table and Q matrix. To encode by using a user-defined
Huffman Table and Q matrix, the host must save the coefficients in a pre-defined format and set the pointer to
the area.

After creating an encoder instance with these parameters, the application cannot change these parameters.
If the application wants to change any of these basic parameters, it should close this instance and re-create
another encoder instance with new initial parameters. However, the application may need to change some
of these initial parameters depending on the target application environment. Using the dynamic configuration
command, the VPU API enables the application to configure part of these initial parameters dynamically. For
details, refer to Section 4.7.9.

The API function, vpu_EncOpen(), does not require any operations on the VPU side. Instead, it declares all of
the internal parameters used in later stages as well as the bitstream buffer information.

4.10.2 Configuring VPU for Encoder Instance

4.10.2.1 Sequence Initialization

After registering all of the required information for the new encoder instance, the host application configures
VPU to support the new encoder instance. This procedure is completed by setting the encoder related
information in the VPU host interface registers and giving a command, ENC_SEQ_INIT, to VPU for initiating the
internal configuration operation.

This process is mainly completed by an API function, vpu_EncGetInitialInfo(). This function returns a crucial
output parameter for encoder operations and the minimum number of frame buffers. Normally, this process does
not require much time, and it should be done only once at the beginning of each encoder instance. Therefore,
it is not recommended to use an interrupt signal for this function. Interrupt signaling is allowed, however, after
completion of this operation by enabling the corresponding bit on interrupt enable register.

4.10.2.2 Registering Frame Buffers During Configuration Process

The configuration process is completed by registering the frame buffers in VPU for picture encoding
operations. In this final stage of configuration, the parameter, minimum number of frame buffers, returned from
vpu_EncGetInitialInfo(), has an important meaning. This parameter means that the application should reserve
at least the same number of frame buffers for VPU for proper encoding operation. For MJPEG, the frame buffer
is not necessary, because MJPEG does not need motion compensation. Therefore, only the frame buffer stride
is transferred to VPU in this stage. The stride value is used as the stride of the source image frame buffer.

4.10.2.3 Generating High-Level Header Syntaxes

Automatic header syntax generation (such as VOL in MPEG-4, SPS/PPS in AVC) is not supported.

When the encoder instance has been opened by calling vpu_EncGetInitialInfo(), the application generates
the high-level header syntaxes such as VOS/VO/VOL headers in MPEG-4 and SPS/PPS in AVC from the VPU

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
120 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

using vpu_EncGiveCommand(). These high-level syntaxes can also be used directly for negotiation in the
transport protocol layer of the application.

There are two possible methods for generating these header syntaxes: by PARA_BUF or by the stream buffer.
The recommended way for generating the header syntaxes is to use the ENC_PUT_AVC/MP4 _HEADER
command by the stream buffer. If the application uses this set of commands, the resulting header syntaxes are
stored into the bitstream buffer according to the given endian setting.

If DecBufReset is enabled, the output header syntaxes are written to the bitstream buffer starting from the base
address of the bitstream buffer. If the application does not read out each header syntax one-by-one, they are
overwritten by the following header syntaxes. If the application wants to read out a set of header syntaxes (such
as VOS/VO/VOL or SPS/PPS), then the application should disable DecBufReset and enable the DecBufFlush
bit. After completing the generation of the last header syntax, the application can read out a cascaded set of
header syntaxes together.

The other method for generating header syntaxes, by PARA_BUF, is used when the application wants to
generate header syntaxes in the middle of encoding. It can be accomplished using ENC_GET_XXX_HEADER
for MPEG-4, and ENC_GET_XXX_RBSP for AVC. Regardless of the streaming mode, this command generates
header syntaxes successfully, but the endian setting is always big endian. So for little endian systems, an
endian conversion should be performed.

4.10.3 Running Picture Encoder on VPU

4.10.3.1 YUV Input Loading

Before running a picture encoder operation, the host application should provide a 4:2:0 or 4:2:2 vertical
formatted input YUV image with a pre-defined size for H.263, MPEG-4 and H.264. The host should provide
4:2:0, 4:2:2 vertical/horizontal, 4:4:4 or 4:0:0 formatted input YUV for MJPEG. If the input image is coming
from an external video input device, such as a CMOS sensor, the VPU idles while waiting for completion of the
receiving input picture. To avoid this idling, use a dual buffering scheme for the input image so that the encoder
does not spend any cycles idling before starting operation.

4.10.3.2 Initiating Picture Encoding

When activating picture encoding operations, the application provides the following information to the VPU:

• Source frame address-Base address of each component of input YUV picture
• Quantization step-for the current picture which is ignored when rate control is enabled
• Forced frame skip and forced I-picture options-Forced frame skip is skipping the current frame encoding

unconditionally and force I-picture is encoding current frame as I-frame unconditionally
• Source format-The VPU supports 4:2:2 vertical format source image. The source image is converted to 4:2:0

format automatically

After providing this information to the VPU, the host processor initiates a picture encoding operation by sending
a ENC_PIC_RUN command to the VPU.

These processes can be performed by calling a single API function, vpu_EncStartOneFrame() with the
EncParam structure. This API function initiates a picture encoding operation. Return from this API does not
mean that picture encoding is completed, only that the encoding operation began successfully.

The quantization step size given to the VPU with ENC_PIC_RUN is only meaningful when the rate control
option is disabled. This additional feature is provided to support application-specific VBR encoder operations.

The forced frame skip option is used when encoding a new picture is not allowed temporarily. Automatic frame
skipping in the VPU rate control is used for limiting the output amount of the bitstream under the given target bit-
rate. Also, the forced frame skip can be used by the application when encoding a picture is problematic under
certain external situations, for example, if the channel condition is temporarily unacceptable and transmitting the
IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
121 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

encoded stream is impossible. Then the application can suspend the encoder operation for a while using this
forced frame skip option.

The forced I-frame option is used when the remote receiver side reports an error during decoder operation.
Even though a certain error concealment or error robustness scheme might be implemented on the decoder
side, the best way to recover from a decoder error is to send an I-frame. Using this forced I-frame option, the
application can achieve error-recovery of the remote receiver side very effectively.

4.10.3.3 Completion of Picture Encoding

The application can be completing other tasks while waiting for the completion of picture encoding operation,
such as packetization of the encoded stream for transmission. The application can use two different type
of schemes for detecting completion of the picture encoding operation: polling a status register or interrupt
signaling. When the application is using a polling scheme, the application checks the BusyFlag register of the
BIT processor. Calling vpu_IsBusy() gives the same result.

Interrupt signaling can be the most efficient way to check the completion of a given command. An interrupt
signal for the ENC_PIC_RUN command is mapped on bit 3 of the interrupt enable register. Therefore, the
application can use this dedicated interrupt signal from VPU to determine the completion of the picture encoder
operation.

4.10.3.4 Encoder Stream Handling

When the encoder stream buffer is large enough to store any size of picture stream, the encoder does not need
to retrieve any bitstream data during the picture encoder operation. After the encoder operation is complete, the
host application reads the encoded bitstream according to the requirements of packetization.

When the encoder stream buffer is not large enough to store a complete picture stream, the encoder buffer-full
occurs and until this buffer-full situation is resolved, the encoder task running on the VPU is stalled. Therefore,
while the picture is encoding, the application should continue reading out the encoded bitstream from stream
buffer to avoid this stalling.

When using a ring-buffer scheme with a limited size of encoder stream buffer, stream reading during
encoder operation is recommended. Using two dedicated functions, vpu_EncGetBitStreamBuffer() and
vpu_EncUpdateBitStreamBuffer(), the application can easily handle the read pointer while accessing the
encoder bitstream buffer. If the ring-buffer option is disabled with a stream buffer large enough to store one
encoded picture data, the host can wait to read the encoded bitstream at the end of each picture encoding. In
this case, the application can safely complete other tasks while the picture encoding is running on the VPU. The
vpu_EncGetBitStreamBuffer() and vpu_EncUpdateBitStreamBuffer() functions have no meaning when the
application uses the frame-based streaming option.

4.10.3.5 Acquiring Encoder Results

When picture encoding is complete, the host application retrieves the encoded output such as the encoded
picture type, number of slices, and so on. According to the input parameter settings of the picture encoding, the
slice boundary and MB boundary information can also be acquired from VPU. For H.263/MPEG-4 decoding, the
MB Qstep information can be acquired from VPU. This encoder output information is generally placed on the
parameter buffer with predefined formats (for the predefined formats of the output information, see the following
documents:

• i.MX 6Dual/6Quad Applications Processor Reference Manual (IMX6DQRM)
• i.MX 6Solo/6DualLite Applications Processor Reference Manual (IMX6SDLRM)
• i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM)
• i.MX 7Dual Applications Processor Reference Manual (IMX7DRM)

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
122 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

Therefore, the application can read out this information directly from the parameter buffer using the base
address of each data structure.

VPU API provides a function for retrieving the output results of the picture encoder, VPU_EncGetOutputInfo(),
which has a output data structure that includes the following information:

• Start address of encoded picture and its size
• Number of slices in the encoded picture
• Slice boundary information in the encoded bitstream
• MB boundary information in the encoded bitstream
• Application-specific information for packetization such as MB Qstep information

Some packetization schemes, such as Real-time Transfer Protocol (RTP), require some internal information of
encoded picture depending on the codec standard.

The slice information is useful for packet-based applications which have limitations of the slice start in the video
packet. The slice information is also useful for implementing slice re-ordering on the application side such as
Arbitrary Slice Ordering (ASO) in the H.264 standard.

VPU API includes a constraint on using the encoder initiation function and the encoder result acquisition. When
using VPU API, the application should always use these two functions as a pair. This means that without calling
the result acquisition function, vpu_EncGetOutputInfo(), the next picture encoding operation is not initiated
by calling vpu_EncStartOneFrame(). Most VPU commands are not allowed unless the application calls
VPU_EncGetOutputInfo() after completion of the picture encoding operation. This constraint is used to protect
the encoded results from being overwritten from another thread by mistake in a multi-instance environment.
Therefore, the application should regard the vpu_EncGetOutputInfo() function as a releasing command of the
VPU from the current picture encoding operation.

4.10.4 Terminating an Encoder Instance

When the application finishes with the encoder operation and terminates an encoder instance, the application
releases the handle of this instance to inform the VPU that this instance is terminated by giving the SEQ_END
command to the VPU. This can be accomplished by calling vpu_EncClose() function.

4.10.5 Dynamic Configuration Commands (picture encoding operations)

While running sequential picture encoding operations, the application may need to give special commands to
VPU such as rotating the input pictures before encoding, inserting a high layer header syntaxes, and so on. The
VPU API provides a set of commands to support the following special requests from the host application:

• Rotate and mirror source frame before encoding.
• Extract high layer header syntaxes such as VOS/VO/VOL in MPEG-4, and SPS/PPS in H.264 for external

use.
• Insert high layer header syntaxes such as VOS/VO/VOL in MPEG-4 and SPS/PPS in H.264.
• Change encoder parameters such as bitrate, frame rate, GOP number, and slice mode dynamically between

picture encoding operations.

4.11 Decoder Control

4.11.1 Creating a Decoder Instance

After initialization of VPU, the next step to run a decoder operation is to create a decoder instance and acquire a
handle for specifying that decoder instance. This is accomplished using a single API function, vpu_DecOpen().

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
123 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

When creating a new decoder instance, the application specifies the internal features of this decoder instance
through the DecOpenParam structure. This structure includes the following information about the new decoder
instance:

• Bitstream buffer address and size is a physical address of bitstream buffer start address and its size.
• Codec standard is a video codec standard such as H.263, MPEG-4, H.264 or VC-1.
• MPEG-4 deblocking filter enable is enable or disable MPEG-4 de-blocking filter option.
• ReorderEnable-Enable or disable H.264 display reordering option. This option is ignored for other decoder

standards. It should usually be set to 1.
• SPS/PPS RBSP save buffer address and size is a physical address and size of buffer for SPS and PPS.
• Enable thumbnail decoding of MJPEG-Enable thumbnail decoding. If the host enables thumbnail decoding,

the decoded output is s thumbnail.

For decoding, most information is acquired from the input stream, so there are few required parameters for
creating a decoder instance. VPU API function, VPU_DecOpen(), does not require any operations on VPU side
but declares all the internal parameters to be used in later stage as well as the bitstream buffer information.

4.11.1.1 AVC Display Reordering

The AVC-specific display reordering option should be used carefully, because it drastically varies the behavior
of the AVC decoder. In principle, this option should always be enabled because the flag for this option is
embedded in the header syntax. According to the options in the header, the required frame buffer size is
automatically determined by the VPU.

When creating a decoder instance for H.264, the application should decide if display reordering is used.
In principle, this bit field should be set to 1, because the display reordering option is enabled or disabled
automatically according to the values of the corresponding header fields. But in practice, there are too many
streams which do not actually use display reordering but display reordering option is enabled.

Display reordering generally requires many more decoder buffers, a much longer delay, and some complex
constraints in decoder operations. When display reordering is not used even though the display reordering
option is enabled on the baseline profile stream, the application can force the VPU decoder to ignore this option
and a flag is provided for this case.

When this option is disabled, the minimum number of frame buffers is reference frame number + 2. Whenever
one frame decoding is complete, a display (or decoded) output is provided from the VPU, so the decoder
operation is the same as a normal decoder operation.

But when this option is enabled, the minimum number of frame buffers is MAX(reference frame number, 16) +
2 for the worst case. After decoding one frame, the VPU cannot provide a display output because display order
can be different from the decoding order. In the worst case, the first display output is provided from the VPU
after decoding 17 frames. Because of this characteristic of display reordering, the VPU AVC decoder always
decodes display delay + 1 frames during the first call of the picture decoding when display reordering is enabled
in the stream.

In practice, there are many streams which do not use display reordering, but the flag in the header is enabled.
In this case, the host application must allocate unnecessarily more frame buffers and apply large delays.
Considering this practical cases, this option for forced-disable of display reordering is provided in the VPU API.

4.11.2 Configuring VPU for Decoder Instance

4.11.2.1 Feeding Bitstream into Stream Buffer

For the decoder, sequence initialization performs parsing of high level header syntaxes such as VOS/VO/VOL
in MPEG-4 and SPS/PPS in H.264 for reading out decoder configurations. To start sequence initialization,
the application fills the decoder stream buffers with enough bitstream data. In some applications, the host
IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
124 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

applications cannot guarantee that those kinds of header syntaxes are placed at the beginning of the bitstream.
In this case, until the VPU successfully receives all of the required information from the input stream, the
application should keep feeding the input data stream to the decoder bitstream buffer.

To feed the input bitstream, the host application should know the available space in the bitstream buffer. This is
determined using the read pointer, write pointer and stream buffer size because the stream buffer operates as
a ring-buffer. Getting the available space in the stream buffer, the application can directly download the decoder
input stream to the bitstream buffer. After completing the stream download, the application informs the amount
of downloaded stream data by updating the stream write pointer.

The VPU API provides an API function to get the stream read pointer, write pointer and available space,
vpu_DecGetBitstreamBuffer(). Updating the write pointer is accomplished using the API function,
vpu_DecUpdateBitstreamBuffer().

4.11.2.2 Sequence Initialization when configuring VPU for Decoder Instance

After creating a new instance and feeding the input bitstream to the stream buffer, the application gives
the DEC_SEQ_INIT command to the VPU to get the decoder configuration information from the bitstream.
After parsing the header syntaxes, the decoder returns the following crucial information about the decoder
configuration:

• Picture size-Picture width and height
• Frame rate-Decoder frame rate
• Picture cropping rectangle information-Information about H.264 decoder picture cropping rectangle which is

the offset of top-left point and bottom-right point from the origin of frame buffer
• Minimum number of frame buffers
• MPEG-4 option information-Enable or disable MPEG-4 error resilience options such as data partitioned or

Reversible VLC as well as short video header mode
• Frame buffer delay for display reordering-The number of frame delays for supporting display reordering in

H.264 decoder
• Annex-J (Deblocking) option indication-This flag indicates whether the deblocking option of the H.263 decoder

is enabled or disabled. When the external post-deblocking filter is used for H.263, this flag is used to avoid
repetition of the H.263 in-loop deblocking filter and external post-deblocking filter

• Number of returned next decoded index after decoding one frame-The number of returned indexes which are
used in next decoding after decoding one frame

• Estimated slice save buffer sizes-The size of the slice save buffer. The VPU reports two different sizes:
recommended and worst-case

• MJPEG thumbnail enable information-This flag indicates whether thumbnail image of MJPEG exists or not.
When thumbnail does not exist in the stream, the VPU returns failure if the host application enables the
thumbnail decoding option

• MJPEG image YUV format-Image YUV format. The host must allocate frame buffer by this value

The picture size acquired from the bitstream might not be a multiple of 16x16. However, to perform the decoder
operation properly, frame buffer size should be a multiple of 16x16. Therefore, the returned size is modified
to be a multiple of 16x16 after a ceiling operation. Using the picture size and the minimum number of frame
buffers, the application reserves frame buffers and provides them to the VPU before starting the picture
decoding operation.

The frame buffer delay is an H.264-specific parameter for supporting display reordering. If the application
supports display reordering and reordering requires five additional frame buffers, for example, then the first
display output comes out from decoder after decoding the 6th frame. Theoretically, the maximum delay for
display reordering is a 16-frames.

The VPU API provides a function to handle the DEC_SEQ_INIT operations, vpu_DecGetInitialInfo().
Completion of this function is signaled by a dedicated interrupt or by polling the BusyFlag.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
125 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

An important issue in SEQ_INIT operation is error-handling because any errors in the high layer header
syntaxes cause serious problems in decoding operations. Generally, many marker bits are added to the header
syntaxes to assist error detection. When header syntaxes included in the stream have crucial errors, or when
header syntaxes are not received for a long time, the VPU can be stuck on this task and no other instances
can run on the VPU. Therefore, the VPU API provides a special function which is used in this situation, called
vpu_SetSeqInitEsc(). When this function is called and the stream buffer is empty, the VPU automatically
terminates the SEQ_INIT operation. Then the host application decides whether to close this instance or retry
SEQ_INIT after running a different codec instance. After escaping from this situation, it is highly recommend
to reset the internal ESCAPE flag by calling the vpu_SetSeqInitEsc() function again. This flag affects all the
decoder instances performing a DEC_SEQ_INIT operation.

4.11.2.3 Registering Frame Buffers

This configuring process is completed by registering the frame buffers to the VPU for picture decoding
operations. In this final stage of configuration, the parameter returned from vpu_DecGetInitialInfo(), the
minimum number of frame buffer, has an important meaning. This parameter means that the application should
reserve at least the same number of frame buffers to the VPU for proper decoding operation.

The size of the frame buffers is calculated from the picture width and height. When both the picture width and
height are a multiple of 16, the picture size is the size as the frame buffers. If both the picture width and height
are not a multiple of 16, the application should apply a ceiling operation to the picture width or picture height to
get the smallest multiple of 16 larger than picture width or picture height.

In addition to registering the frame buffers to the VPU, the slice save buffer is also registered in this step. The
recommended buffer size is given by calling vpu_DecGetInitialInfo().

4.11.3 Running Picture Decoder On VPU

4.11.3.1 Initiating Picture Decoding

When activating a picture decoding operation, the application provides the following information to the VPU:

• I-Frame Search Enable is enable or disable I-(IDR for H.264) frame search option.
• Frame Skip Mode is enable or disable skipping bitstream for the next frame decoding.
• DispOrderBuf-Enable or disable the next display output without decoding.

After providing these parameters to VPU, the application starts the picture decoding operation by sending a
DEC_PIC_RUN command.

The pre-scan option is a special option for scanning the bitstream buffer to check if a full picture stream exists
in the stream buffer. This option allows the application to determine whether the bitstream empty and decoder
stalls or not before running the actual decoder operation. When this option is enabled and there is not a full
picture stream in the decoder buffer, the DEC_PIC_RUN command does not initiate the picture decoding
operation and returns immediately. Then, the application decides whether to retry the picture decoding after
feeding more bitstream data or to handle other tasks for a while.

The pre-scan mode is also given as an option for general usage of the pre-scan operation. When this flag is
set to 0 and there is at least one full picture stream in the stream buffer, the decoder operation is automatically
initiated. On the contrary, when this flag is set to 1, the DEC_PIC_RUN command returns immediately with a
return code representing whether a full picture stream exists or not. In this case, no picture decoding is initiated.
To run picture decoding in this case, the application resets this flag to 0 and re-sends the DEC_PIC_RUN
command.

When display reordering in H.264 is enabled, the first decoded output is only available after decoding many
frames. To avoid this, a constraint is added to the H.264 decoder that requires the decoder to fill all the
reordering display buffers at the first time of picture decoding. That means, if the frame buffer delay received

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
126 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

from the stream header is five, the H.264 decoder should decode six frames at once at the first DEC_PIC_RUN
operation. Then, the picture decoding always provides a picture output to be displayed. In this scenario, the
pre-scan might cause problems, because it is designed for the case of one picture decoding. When display
reordering is enabled, it is recommend that the first DEC_PIC_RUN be performed with pre-scan disabled.

To support display reordering in H.264 mode, a special parameter is used to flush the stored decoder output
from the display reorder buffer without picture decoding. This option is designed for flushing out the decoded
picture not yet displayed at the end of the decoding video sequence. When the display reordering option is
enabled and the reordering frame buffer stores five decoded pictures, the first display output is available after
the 6th frame decoding. Therefore, at the end of the stream decoding, there are five decoded pictures which are
not displayed yet even though there is no more available bitstream data to decode. In this case, the application
may ignore these five non-displayed pictures or display them by setting the dispReorderBuf parameter to 1 and
sending the DEC_PIC_RUN command until the VPU returns the decoded picture index of -1.

VPU API provides an API for handling all these complex operations, vpu_DecStartOneFrame(), which initiates
the picture decoding operation and returns as soon as picture decoding has started on the VPU. Completion of
picture decoding is checked using a different method.

4.11.3.2 Frame Skipping Option

When a decoder error is detected, the application might want to hide the corrupted decoder output. Even though
error concealment is applied to that decoder output, some applications would like to the freeze display instead
of showing the corrupted picture. This output-hiding operation should continue until the decoder meets the next
I (or IDR) frame. Considering AV synchronization, skipping one frame can be a good way to hide a sequence of
pictures without affecting the audio decoding operation.

The frame skipping option is supported for the picture decoding command. As well as skip enable or disable,
the skipping option of detecting an I (or IDR in H.264)-frame can be chosen by the application. So when an
error is detected during picture decoding and the application would like to hide the error-defected pictures,
the application can achieve this using the picture skipping option with I-frame detection enabled. By setting
skipframeMode of DecParam to 1, the application easily performs skipping of non-intra (or non-IDR) frames.
While the application enables one frame skipping by setting skipframeNum of DecParam to 1, pre-scan is
automatically enabled and therefore, the frame skip result is translated to a pre-scan result. While doing
one frame skip, the application can detect the results of the frame skipping by checking prescanresult of
DecOutputInfo.

This frame skip feature can be used by the application when the system performance is temporarily degraded
and video decoding is significantly delayed. In this case, it is recommended for the application to use the I-(IDR
in H.264 case) frame detect option. Using this option, the application can only decode I-(or IDR) frame properly
without displaying erroneous frame output.

Multi-frame skipping is also supported by setting skipframeNum of DecParam greater than 1. But multi-frame
skipping is not recommended in normal usage because it may cause problems with AV synchronization.

In the random access case, the I-frame search option can be useful when the keyframe information in the file
container is incorrect.

4.11.3.3 I-Frame Search for Random Access and Trick Mode

When a media player application is designed, trick modes and random access may be desirable features. To
achieve these operations the application, decoder should support a feature for searching the I-frame in the
middle of the decoder bitstream.

The I-frame search option is accomplished by setting the iframeSearchEnable of DecParam. The number of
I-frames skipped is also set by setting skipframeNum of DecParam. (The same skipframeNum of DecParam
is used for specifying the skipped frame number in frame skipping and I-search; however, the meaning of this
value is somewhat different.) If skipframeNum = N, all the intermediate frames before the (N+1)th next I-frame
IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
127 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

are skipped. This multiple I-frame skipping might be used for high-speed playback such as fast forward. By
increasing the number N, the application can increase the speed of the fast forward. This kind of fast forward
operation depends on the frequency of the I-(IDR) frames in the decoder input bitstream. Therefore, this type of
trick mode can be applicable to applications specifying the maximum interval between I-frames.

Random access is generally supported with a form of slide-bar in a graphic user interface of a player. For
supporting this random access, an I-(or IDR in H.264) frame search operation is needed because decoding
intermediate inter-frames causes visual artifacts on displayed pictures. As well as I-frame search functionality,
random access also requires a buffer-reset scheme that does not cause unexpected artifacts in the decoded
output. The steps of random access for the video decoder are as follows:

1. Freeze the display and reset the decoder bit-stream buffer
2. Read the bitstream from the new file read pointer and transfer it into the decoder
3. Enable I-Search and run the picture decoding operation
4. If the buffer empty interrupt is signaled, feed more bitstream and wait for decoding completion
5. If decoding completion is detected, read the decoder results and resume display

Resetting the bitstream buffer in Step 1 can be accomplished by calling vpu_DecBitBufferFlush(). Starting
the decoder operation with I-frame search can also be accomplished by calling vpu_DecStartOneFrame()
with iframeSearchEnable of DecParam set to 1. The number of skipped frames specified by skipframeNum of
DecParam is given by 1 in random access operation. When an interrupt of decoder completion or non-busy
state of the BIT processor is detected, the I-frame is searched and decoded.

When the application uses the I-frame search option, the decoder should skip many bits in the decoder stream
buffer. Therefore, the pre-scan option can be meaningless when used simultaneously with the I-search. In the
VPU firmware; therefore, the pre-scan option is automatically disabled and settings for the pre-scan option are
ignored. The application should handle stream buffer filling until the end of the I-search operation. Larger stream
units are recommended in this case; otherwise, too many stream buffer empty interrupts might occur from the
VPU side.

4.11.3.4 Decoder Stream Handling

When the decoder stream buffer includes a full picture stream, the host application does not need to worry
about streaming in the middle of the decoder operation. Using the pre-scan option, the application can
determine the status of the bitstream buffer in advance. If there is no full picture in the stream buffer, the
application might feed more stream data to the stream buffer and start the picture decoding operation.

The VPU API provides an API function to get the stream read pointer, write pointer and available space in one
function call, vpu_DecGetBitstreamBuffer(). The application can get the information about the available space
in the stream buffer using this API and transfer an amount of stream data to the stream buffer which is less than
or equal to the available size. When transferring the stream data, the application should take care of the end of
the stream buffer to avoid unexpected data corruption. When transferring stream data to the stream buffer and
the write pointer reaches the end of the stream buffer, the application should wrap the write pointer around to
the beginning of the stream buffer and then continue downloading to avoid data corruption.

Updating the write pointer is accomplished using, vpu_DecUpdateBitstreamBuffer(). The write pointer wrap-
around and updating of the write pointer is done by this API function by providing the downloaded stream size.
Before updating the write pointer, the host application must finish transferring the stream data to the stream
buffer. If not, a mismatch in access time may cause problems in the decoder operation.

4.11.3.5 Completion of Picture Decoding

Picture decoder operations take a certain amount of time, and the application can complete other tasks
while calling vpu_WaitForInt() to wait for the completion of the picture decoding operation, such as display
processing of the previously decoded output. The application can use two different schemes for detecting the
completion of the picture decoding operation: polling a status register or waiting for an interrupt signal. When
IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
128 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

the application uses the polling scheme, the application checks the BusyFlag Register of the BIT processor.
Calling vpu_IsBusy() gives the same result.

Interrupt signaling can be the most efficient way to check the completion of a given command. An interrupt
signal for the DEC_PIC_RUN command is mapped to bit 3 of the interrupt enable register. So the application
can easily determine the completion of the picture decoder operation from this dedicated interrupt signal from
the VPU.

4.11.3.6 Acquiring Decoder Results

When picture decoding is complete, the host application retrieves the decoded output, such as the display
frame index, decoded frame index, decoded frame picture type, number of error concealed MBs, Pre-scan
result, and so on. The VPU API provides a function for retrieving the output results of the picture decoder,
vpu_DecGetOutputInfo().

The VPU API includes a constraint on using the decoder initiation function and decoder result acquisition. When
using the VPU API, the application should always use these two functions as a pair. This means that without
calling the result acquisition function, vpu_DecGetOutputInfo(), the next picture decoding operation is not
initiated by calling vpu_DecStartOneFrame(). This constraint is used to protect the decoded results from being
overwritten from other thread by mistake in multi-instance environment. Therefore, the application should regard
vpu_DecGetOutputInfo() function as a releasing command of the VPU from the current picture decoding
operation.

4.11.3.6.1 Reading Display Output

The display frame index, indexFrameDisplay, is used to represent the frame buffer number where the display
output picture is stored. It always equals the frame buffer index to be displayed. It can be different from the
decoded picture index when display ordering control is enabled, such as display reordering of H.264, B-frame in
VC-1, and so on.

At the beginning of sequence decoding, even after decoding several frames, there is no display output from
decoder because of the order of display. For H.264 reordering, worst case scenario, the first display output can
come out after the 17th frame decoding. Therefore, at times there is no proper display buffer index. In this case,
VPU decoder returns a negative frame buffer index for indexFrameDisplay of -3 or -2 depending on the frame
skip option. Only at the end of sequence decoding is this value equal to -1 and the application can terminate the
current decoder instance without any loss in picture display.

The table below shows the display output status based on the indexFrameDisplay values.

indexFrameDisplay
Value

Display Output Status

Non-negative value Output index value points to the frame buffer index of the display output.

-1 Signals the end of sequence decoding, there is no more display output when the stream end is
signaled to VPU.

-2 There is temporarily no display output because of the frame-skip option.

-3 There is temporarily no display output even without any action by the host application. Usually, this
value occurs when an IDR picture is received for H.264 display-reordering mode.

Table 5. indexFrameDisplay Values

4.11.3.6.2 Reading Decoded Output

The decoded frame index, indexFrameDecoded, is an optional output to the host application. This index is used
to represent the frame buffer number where the decoded picture is stored. Usually, the host application does not

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
129 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

need to worry about this index. The display index, indexFrameDisplay, is sufficient to handle the output of the
VPU decoder.

When there are not enough frame buffers to be written with decoded image data, this value is equal to -1
(0xFFFF). In this situation, the application re-calls vpu_DecStartOneFrame() after clearing the display flag by
calling vpu_DecClrDispFlag().

When display ordering control is enabled for H.264 display reordering, VC-1 B-frame, and so on, at the end of
sequence decoding, the host application needs to flush out the decoded frames for display. During this flushing
operation, no actual decoding operations are performed. Under this situation, this value is equal to -1 (0xFFFF)
to represent that there is no decoded frame this time. This negative decoded index is also used when picture
decoding is skipped because of skip option or picture header error.

4.11.3.6.3 Reading Pre-Scan Result

The pre-scan result flag represents whether a full picture stream is included in the bitstream buffer before
picture decoding. When this flag is equal to 0, the decoding operation is not performed because there is no full
picture stream in the stream buffer. If application enables pre-scan and sets pre-scan mode to 0 (decoding a
picture when full picture stream exists), the application should check this output parameter first to determine
whether a decoding operation is performed or not.

When pre-scan result is 0 and the stream buffer is full and the current stream buffer is too small to store a
full picture stream. To avoid dead-lock, the host application should disable the pre-scan option and re-run the
picture decoding operation.

4.11.3.6.4 Display Cropping in H.264

The display cropping option in H.264 forces the host application to display part of the frame buffers. The
information about the cropping window is provided by SPS. In SPS, four offset values of cropping rectangles
are presented, and these four offset values are given by the picCropRect structure to the host application. Using
these four offset values, the host application can easily detect the position of the target output window. When
display cropping is off, the cropping window size is 0.

4.11.3.6.5 Next Decoded Frame Index

Next decoded frame index, indexNextFrameDecoded[3], is an optional output to the host application. This
indexes are used to represent the frame buffer index which is used in the next VPU_DecStartOneFrame() call.
The application might not stop calling VPU_DecStartOneFrame() to protect display corruption if some of these
indexes are not displayed yet.

When display ordering control is enabled for H.264 display reordering, VC-1 B-frame, at the end of sequence
decoding, the host application needs to flush out the decoded frames for display. During this flushing operation,
no actual decoding operations are performed. In this situation, this value might be ignored.

4.11.3.6.6 Reading Lack of Additional Work Buffer

The VPU reports the status of the PS (SPS/PPS) save buffer and slice save buffer after it decodes one frame. If
the VPU reports lack of PS save buffer, the VPU cannot properly decode the remaining input stream; therefore,
it is best to close current instance in this situation. If the VPU reports lack of slice save buffer, the VPU can
choose to either close and reopen the current instance or continue picture decoding regardless of display
corruption until the next I-frame.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
130 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

4.11.3.7 Management of Displaying Buffers Decoded

The VPU has flags to indicate if the frame buffer is displayed or not internally. The flag is set after the VPU
returns the display frame index automatically and the VPU never uses the buffer for which the display
flag is set. Before starting the decoding process, the VPU checks if there is a frame buffer available and
returns immediately if there is no frame buffer to be written with decoded image with a current decoded
index of -1. The host application clears the flag after completion of displaying the frame buffers by calling
vpu_DecClrDispFlag().

4.12 Escape from Decoder Hang
Even when pre-scan is used, it is still possible for an application to experience decoder hanging because of a
stream error or lack of available stream at the end of sequence decoding. In the middle of picture decoding,
decoder hanging is signaled to the application through the decoder buffer empty interrupt if this interrupt is
enabled, and the application can avoid decoder hanging by putting more bitstream data to stream buffer.

In some extraordinary cases and at the end of sequence decoding, the application avoids decoder hanging by
means of garbage insertion or sending an end-of-stream command to VPU decoder. This is accomplished by
calling vpu_DecUpdateStreamBuffer() with size of 0. As soon as VPU detects this setting, VPU terminates the
current picture decoding with error concealment if applicable.

4.13 Terminating a Decoder Instance

4.13.1 Stream End and Last Picture in Stream Buffer

After the host application meets the end of stream and sends all of the stream data in the stream buffer, the host
application must determine when the last picture output is coming out. If there is no display delay, this task is
simple. But if display delay exists (reordering of the decoded pictures for display), this task might be difficult for
the host application.

After sending the last byte of the stream data to bitstream buffer, host application must call
vpu_DecUpdateBitstreamBuffer() with "size" = 0 to signal the end of stream to VPU thus prevent VPU from
being stalled due to stream buffer empty, then keep calling vpu_DecStartOneFrame(). After the last display
output picture has come out, the display frame index (indexFrameDisplay) will be changed to -1. When host
application receives this index, it can easily detect the end of the sequence processing.

When display delay exists (display reordering option in H.264, B-frames in other codecs), host application
gets the buffered decoder output frame even after finishing actual decoding operation. In this case, host
application still needs to call vpu_DecStartOneFrame() as usual. Until the delayed display output frames are
completely flushed out, the VPU decoder will provide the display frame index of the newly displayed output to
the host application. And if there is no more available output, the VPU decoder returns a display frame index
(indexFrameDisplay) of -1.

4.13.2 Closing Current Instance

When the application finishes the last picture decoding operation and terminates a decoder instance, the
application releases the handle of this instance and inform the VPU that this instance is terminated by giving the
SEQ_END command to the VPU. This can be accomplished by calling the vpu_DecClose() function.

4.14 Dynamic Configuration Commands
While running sequential picture decoding operations, application may need to give a special command to VPU.
VPU API provides a set of commands to support the following special requests from the host application:

• Rotate and mirror output frame before decoding

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
131 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

• Apply SPS and PPS from the external out-of-band protocol
• Specify the frame buffer address for the MPEG-4 de-blocking filtered output

4.15 Example Applications
This section discusses the example applications provided for i.MX 6 VPU API.

4.15.1 VPU Library

VPU library and header file source code is located under Yocto Project build tmp work tree in imx-lib/*/vpu. The
detailed source code structure of the VPU library and kernel space is presented in the Video Processing Unit
(VPU) Driver chapter of the i.MX Linux® Reference Manual (document IMXLXRM).

The user may optionally configure the following following environment variables:

• VPU_FW_PATH-Directory where the vpu_fw_imx6q.bin or vpu_fw_imx6d.bin file is located. If this variable is
not exported by the user, the vpu_fw_ mx6.bin file must be located in the /lib/firmware/vpu directory.

4.15.2 VPU Example Application

VPU example application is located under Yocto Project build tmp work tree in imx-test/*/test/mxc_vpu_test.
This application gives an example of how to use the VPU API to control the VPU hardware to implement a
decoder or an encoder. The following test cases are included in this test application:

• Decode streams to save to a YUV file or to display on an LCD.
• Encode streams from a YUV file or from camera captured data.
• Loopback-encode camera captured YUV data then decode it to a YUV and display on an LCD simultaneously.
• Network-encode camera captured YUV data and send it to another side to decode by UDP.

Note: Only packet-based streaming mode with ring-buffer is included in this example application.

Refer to the readme file for details about the usage of the application example. Section 4.15.2.1, and
Section 4.15.2.2, describe the example applications usage for decoding streams to display on an LCD and
encoding streams from camera captured data. These two examples are described in detail to illustrate how
proper frame buffer management between VPU and V4L interface improves performance and avoids memory
copy, especially memory for decoded YUV or captured YUV data.

4.15.2.1 Decode Stream to Display on LCD

The application should complete the following steps to decode streams to display on an LCD:

1. Call vpu_Init() to initialize the VPU. If there are multi-instances supported in this application, this function
only needs to be called once.

2. Open a decoder instance using vpu_DecOpen(). Call IOGetPhyMem() before opening the instance to
input oparam.bitstreamBuffer. Call IOGetVirtMem() to get the corresponding virtual address of the bitstream
buffer, then fill the bitstream at this address in user space. Call IOGetPhyMem() for both the physical PS
save buffer and physical slice save memory for H.264.

3. Call vpu_DecGetBitstreamBuffer() to get the bitstream buffer address to provide the proper amount of
bitstream.

4. After transferring the decoder input stream, declare the amount of bits transferred into the bitstream buffer
using vpu_DecUpdateBitstreamBuffer().

5. Get crucial parameters for decoder operations such as picture size, frame rate, required frame buffer size,
and so on using vpu_DecGetInitialInfo(). Set escape to 1 by calling vpu_DecSetEscSeqInit(handle,

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
132 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

1) before this function is called. Set escape to 0 by calling vpu_DecSetEscSeqInit(handle, 0) after
vpu_DecGetInitialInfo() is called.

6. Using the frame buffer requirement returned from vpu_DecGetInitialInfo(), allocate the proper size of the
frame buffers and notify the VPU using vpu_DecRegisterFrameBuffer(). The requested frame buffer in
PATH_V4L2 case to display the stream on the LCD is as follows:
• Add two more buffers than minFrameBufferCount to the frame buffer count: vpu_DecClrDispFlag() is

used to control if the frame buffer can be used for decoder again. One framebuffer dequeue from IPU is
delayed for performance improvement and one framebuffer is delayed for display flag clear. Performance
is better when more buffers are used if IPU performance is bottleneck.

• Call v4l_display_open() to open the v4l device and request v4l buffers for image display. If VPU rotation
or dering is enabled, larger frame buffers are needed. Two extra buffers are added in this example
application. Register the first minFrameBufferCount + 2 buffers as bufY, bufCb, bufCr for the VPU
decoder, and memory transfer is not needed for performance improvement. Call IOGetPhyMem() for
bufMvCol part for VPU decoder usage.

• Inform the VPU to register minFrameBufferCount + 2 buffers by calling vpu_DecRegisterFrameBuffer().
7. Start picture decoder operation picture-by-picture using vpu_DecStartOneFrame().

• If rotation is enabled, the SET_ROTATION_ANGLE, SET_ROTATOR_STRIDE and ENABLE_ROTATION
commands need to be given before starting decoding by calling vpu_DecGiveCommand(). The rotator
stride is the picture height if the rotation angle is 90° or 270°; otherwise, the stride is the picture width.

• If dering is enabled, the ENABLE_DERING command needs to be given before starting decoding.
• If mirror is enabled, the SET_MIRROR_DIRECTION and ENABLE_MIRRORING commands need to be

given.
• Since there are two extra buffers used for rotation or dering, the SET_ROTATOR_OUTPUT commands

need to be set before each picture decoder.
• Start the picture decoder operation by calling vpu_DecStartOneFrame().

8. Wait for the completion of the picture decoder operation interrupt event by calling vpu_WaitforInt().
vpu_IsBusy() is used to check if the VPU is busy. If the VPU is not busy, go to the next step. Otherwise,
wait again and more bitstream can be filled to the bitstreamBuffer while waiting.

9. Check the results of the decoder operation using vpu_DecGetOutputInfo(). Go to different case as defined
by outputinfo. For example, -1 in outinfo.indexFrameDisplay indicates that the decoder completed. Values
of -2 or -3 in outinfo.indexFrameDisplay indicates that no picture needs to be displayed. A positive value in
outinfo.indexFrameDisplay indicates the displayed buffer index, and v4l_put_data() can be called to display
the image on the LCD.
In the v4l_put_data() function, IOCTL VIDIOC_QBUF is set to queue the buffer to the v4l module for
display. Also, IOCTL VIDIOC_DQBUF is used to get one buffer that image has been displayed and can be
used again for the decoder. Here, one frame buffer dequeue from the IPU is delayed, then the VPU and IPU
operate in an asynchronous method for performance improvement.

10. After displaying the nth frame buffer, clear the buffer display flag using vpu_DecClrDispFlag(). This function
does not need to be called for the STD_MJPG codec. One frame buffer is delayed for display flag clear, that
means, previous dequeued framebuffer index was cleared by the VIDIOC_DQBUF IOCTL.

11. If there is more bitstream to decode, go to step 7, otherwise go to the next step
12. Terminate the sequence operation by closing the instance using vpu_DecClose(). Make sure

vpu_DecGetOutputInfo() is called for each corresponding vpu_DecStartOneFrame() call before closing
the instance although the last output information may be not useful.

13. Free all memory that was allocate by calling IOFreePhyMem() and IOFreeVirtMem(). v4l_display_close()
needs to be called to free all v4l related resource, including v4l buffers.

14. Call vpu_UnInit() to release the system resources before exit. If there are multi-instances supported in this
application, this function only needs to be called once.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
133 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

4.15.2.2 Encode Stream from Camera Captured Data

The application should complete the following steps to encode streams from camera captured data:

1. Call vpu_Init() to initialize the VPU. If there are multi-instances supported in this application, this function
only needs to be called once.

2. Open a encoder instance using vpu_EncOpen(). Call IOGetPhyMem() to input encop.bitstreamBuffer
for the physical continuous bitstream buffer before opening the instance. Call IOGetVirtMem() to get the
corresponding virtual address of the bitstream buffer, then fill the bitstream to this address in user space. If
rotation is enabled and the rotation angle is 90° or 270°, the picture width and height must be swapped.

3. If rotation is enabled, give commands ENABLE_ROTATION and SET_ROTATION_ANGLE. If mirror is
enabled, give commands ENABLE_MIRRORING and SET_MIRROR_DIRECTION.

4. Get crucial parameters for encoder operations such as required frame buffer size, and so on using
vpu_EncGetInitialInfo().

5. Using the frame buffer requirement returned from vpu_DecGetInitialInfo(), allocate the proper size of the
frame buffers and notify the VPU using vpu_EncRegisterFrameBuffer(). The requested frame buffer for
the source frame in PATH_V4L2 to encode camera captured data is as follows:
• Allocate the minFrameBufferCount frame buffers by calling IOGetPhyMem() and register them to the VPU

for encoder using vpu_EncRegisterFrameBuffer().
• Another frame buffer is needed for the source frame buffer. Call v4l_capture_setup() to open the

v4l device for camera and request v4l buffers. In this example, three v4l buffers are allocated. Call
v4l_start_capturing() to start camera capture. Pass the dequeued v4l buffer address by calling
v4l_get_capture_data() as encoder source frame in each picture encoder, then no need to memory
transfer for performance improvement.

6. Generate the high-level header syntaxes using vpu_EncGiveCommand().
7. Start picture encoder operation picture-by-picture using vpu_EncStartOneFrame(). Pass dequeued v4l

buffer address by calling v4l_get_capture_data() as the encoder source frame before each picture encoder
is started.

8. Wait for the completion of picture decoder operation interrupt event calling vpu_WaitforInt(). Use
vpu_IsBusy() to check if the VPU is busy. If the VPU is not busy, go to the next step; otherwise, wait again.

9. After encoding a frame is complete, check the results of encoder operation using vpu_EncGetOutputInfo().
After the output information is received, call v4l_put_capture_data() to the VIDIOC_QBUF v4l buffer for the
next capture usage.

10. If there are more frames to encode, go to Step 7; otherwise, go to the next step.
11. Terminate the sequence operation by closing the instance using vpu_DecClose(). Make sure

vpu_DecGetOutputInfo() is called for each corresponding vpu_DecStartOneFrame() call before closing
the instance although the last output information may be not useful.

12. Free all allocated memory and v4l resource using IOFreePhyMem() and IOFreeVirtMem(). Call
v4l_stop_capturing() to stop capture.

13. Call vpu_UnInit() to release the system resources. If there are multi-instances supported in this application,
this function only needs to be called once.

4.15.3 Other Issues

Some important issues are as follows:

• Performance is better both on the VPU and IPU when chromainterleave mode is enabled.
• To avoid the VPU hanging if there is not enough stream data, enable prescan in networking mode to first

scan the stream buffer. This flag can be disabled if the bitstream buffer is large in real video playback and the
application can guarantee the bitstream buffer is sufficient.

• Since IPU rotation performance is better than the VPU, use IPU rotation and not VPU rotation.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
134 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

5 Note About the Source Code in the Document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

6 Revision History

This table provides the revision history.

Document ID Date Substantive changes

IMXVPUAPI v.LF6.6.3_1.0.0 29 March 2024 Upgraded to the 6.6.3 kernel, removed the i.MX 91P, and
added the i.MX 95 as Alpha Quality.

IMXVPUAPI v.LF6.1.55_2.2.0 12/2023 Upgraded to the 6.1.55 kernel.

IMXVPUAPI v.LF6.1.36_2.1.0 09/2023 Upgraded to the 6.1.36 kernel and added the i.MX 91P.

IMXVPUAPI v.LF6.1.22_2.0.0 06/2023 Upgraded to the 6.1.22 kernel.

IMXVPUAPI v.LF6.1.1_1.0.0 03/2023 Upgraded to the 6.1.1 kernel.

IMXVPUAPI v.LF5.15.71_2.2.0 12/2022 Upgraded to the 5.15.71 kernel.

IMXVPUAPI v.LF5.15.52_2.1.0 09/2022 Upgraded to the 5.15.52 kernel, and added the i.MX 93.

IMXVPUAPI v.LF5.15.32_2.0.0 06/2022 Upgraded to the 5.15.32 kernel, U-Boot 2022.04, and
Kirkstone Yocto.

IMXVPUAPI v.LF5.15.5_1.0.0 03/2022 Upgraded to the 5.15.5 kernel, Honister Yocto, and Qt6.

IMXVPUAPI v.LF5.10.72_2.2.0 12/2021 Upgraded the kernel to 5.10.72 and updated the BSP.

IMXVPUAPI v.LF5.10.52_2.1.0 09/2021 Updated for i.MX 8ULP Alpha and the kernel upgraded to
5.10.52.

IMXVPUAPI v.LF5.10.35_2.0.0 06/2021 Upgraded to 5.10.35 kernel.

IMXVPUAPI v.LF5.10.9_1.0.0 03/2021 Upgraded to 5.10.9 kernel.

Revision history

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
135 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

Document ID Date Substantive changes

IMXVPUAPI v.L5.4.70_2.3.0 01/2021 Updated the command lines in Section "Running the Arm
Cortex-M4 image".

IMXVPUAPI v.L5.4.70_2.3.0 12/2020 i.MX 5.4 consolidated GA for release i.MX boards including i.
MX 8M Plus and i.MX 8DXL.

IMXVPUAPI v.L5.4.47_2.2.0 09/2020 i.MX 5.4 Beta2 release for i.MX 8M Plus, Beta for 8DXL, and
consolidated GA for released i.MX boards.

IMXVPUAPI v.L5.4.24_2.1.0 06/2020 i.MX 5.4 Beta release for i.MX 8M Plus, Alpha2 for 8DXL,
and consolidated GA for released i.MX boards.

IMXVPUAPI v.L5.4.3_2.0.0 04/2020 i.MX 5.4 Alpha release for i.MX 8M Plus and 8DXL EVK
boards.

IMXVPUAPI v.LF5.4.3_1.0.0 03/2020 i.MX 5.4 Kernel and Yocto Project Upgrades.

IMXVPUAPI v.L4.19.35_1.1.0 10/2019 i.MX 4.19 Kernel and Yocto Project Upgrades.

IMXVPUAPI v.L4.19.35_1.0.0 07/2019 i.MX 4.19 Beta Kernel and Yocto Project Upgrades.

IMXVPUAPI v.L4.14.98_2.0.0_ga 04/2019 i.MX 4.14 Kernel upgrade and board updates.

IMXVPUAPI v.L4.14.78_1.0.0_ga 01/2019 i.MX 6, i.MX 7, i.MX 8 family GA release.

IMXVPUAPI v.L4.14.62_1.0.0_beta 11/2018 i.MX 4.14 Kernel Upgrade, Yocto Project Sumo upgrade.

IMXVPUAPI v.L4.9.123_2.3.0_8mm 09/2018 i.MX 8M Mini GA release.

IMXVPUAPI v.L4.9.88_2.2.0_8qxp-
beta2

07/2018 i.MX 8QuadXPlus Beta2 release.

IMXVPUAPI v.L4.9.88_2.1.0_8mm-
alpha

06/2018 i.MX 8M Mini Alpha release.

IMXVPUAPI v.L4.9.88_2.0.0-ga 05/2018 i.MX 7ULP and i.MX 8M Quad GA release.

IMXVPUAPI v.L4.9.51_imx8mq-ga 03/2018 Added i.MX 8M Quad GA.

IMXVPUAPI v.L4.9.51_8qm-beta2/
8qxp-beta

02/2018 Added i.MX 8QuadMax Beta2 and i.MX 8QuadXPlus Beta.

IMXVPUAPI v.L4.9.51_imx8mq-beta 12/2017 Added i.MX 8M Quad.

IMXVPUAPI v.L4.9.51_imx8qm-beta1 12/2017 Added i.MX 8QuadMax.

IMXVPUAPI v.L4.9.51_imx8qxp-alpha 11/2017 Initial release.

Revision history...continued

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
136 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
137 / 141

mailto:PSIRT@nxp.com

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

i.MX — is a trademark of NXP B.V.
MCX — is a trademark of NXP B.V.

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
138 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

Contents
1 Overview ...2
1.1 VPU Wrapper .. 2
1.2 Hantro .. 2
1.3 Amphion VPU RPC ... 2
1.4 i.MX 6 VPU Overview ..2
1.5 i.MX 9 Chips and Media VPU3
2 VPU Wrapper Interface3
2.1 Data Types .. 4
2.1.1 Handle of VPU Encoder and Decoder4
2.1.2 Enumerations ...4
2.1.2.1 VpuEncRetCode and VpuDecRetCode 4
2.1.2.2 VpuDecBufRetCode ...4
2.1.2.3 VpuEncBufRetCode ...5
2.1.2.4 VpuDecCapability .. 5
2.1.2.5 VpuDecConfig ..5
2.1.2.6 VpuEncConfig .. 6
2.1.2.7 VpuMemType ...6
2.1.2.8 VpuDecErrInfo ... 6
2.1.2.9 VpuPicType ..6
2.1.2.10 VpuFieldType ... 7
2.1.2.11 VpuType ...7
2.1.2.12 VpuCodStd ...7
2.1.2.13 VpuDecSkipMode .. 8
2.1.2.14 VpuDecInputType .. 8
2.1.2.15 VpuColorFormat ...8
2.1.2.16 VpuEncMirrorDirection9
2.1.2.17 VpuMemDescType ...9
2.1.3 Enumerations ...9
2.1.3.1 VpuMemSubBlockInfo 9
2.1.3.2 VpuMemInfo ...9
2.1.3.3 VpuVersionInfo ...10
2.1.3.4 VpuWrapperVersionInfo10
2.1.3.5 VpuFrameBuffer ...10
2.1.3.6 VpuRect ... 11
2.1.3.7 VpuHDR10Meta ...11
2.1.3.8 VpuColourDesc ..11
2.1.3.9 VpuChromaLocInfo .. 12
2.1.3.10 VpuDecInitInfo ... 12
2.1.3.11 VpuFrameExtInfo ... 13
2.1.3.12 VpuDecOutFrameInfo 13
2.1.3.13 VpuCodecData ...13
2.1.3.14 VpuRBufferNode ..14
2.1.3.15 VpuMemDesc .. 14
2.1.3.16 VpuDecFrameLengthInfo14
2.1.3.17 VpuEncInitInfo ..14
2.1.3.18 VpuEncOpenParamSimp15
2.1.3.19 VpuEncSliceMode ..16
2.1.3.20 VpuEncOpenParam ... 16
2.1.3.21 VpuEncEncParam ..17
2.2 Decoder API Functions18
2.2.1 Decoder Open and Close18
2.2.1.1 VPU_DecGetVersionInfo 18
2.2.1.2 VPU_DecGetWrapperVersionInfo18
2.2.1.3 VPU_DecGetInitialInfo 19
2.2.1.4 VPU_DecConfig ...19
2.2.1.5 VPU_DecOpen .. 19

2.2.1.6 VPU_DecGetCapability20
2.2.1.7 VPU_DecDisCapability 20
2.2.1.8 VPU_DecGetErrInfo ...20
2.2.1.9 VPU_DecGetNumAvailableFrameBuffers21
2.2.1.10 VPU_DecUnLoad ...21
2.2.1.11 VPU_DecReset ..21
2.2.1.12 VPU_DecClose .. 22
2.2.1.13 VPU_DecFlushAll .. 22
2.2.2 Decode ...23
2.2.2.1 VPU_DecDecodeBuf 23
2.2.2.2 VPU_DecGetOutputFrame 23
2.2.2.3 VPU_DecGetConsumedFrameInfo23
2.2.2.4 VPU_DecOutFrameDisplayed 24
2.2.3 Memory Query and Free 24
2.2.3.1 VPU_DecQueryMem 24
2.2.3.2 VPU_DecGetMem ... 25
2.2.3.3 VPU_DecFreeMem ..25
2.2.3.4 VPU_DecRegisterFrameBuffer 25
2.3 Encoder API Functions26
2.3.1 Encoder Open and Close 26
2.3.1.1 VPU_EncGetVersionInfo26
2.3.1.2 VPU_EncGetWrapperVersionInfo 26
2.3.1.3 VPU_EncGetInitialInfo 26
2.3.1.4 VPU_EncConfig ... 27
2.3.1.5 VPU_EncOpen ...27
2.3.1.6 VPU_EncOpenSimp .. 27
2.3.1.7 VPU_EncLoad ... 28
2.3.1.8 VPU_EncUnLoad ...28
2.3.1.9 VPU_EncReset .. 28
2.3.1.10 VPU_EncClose .. 29
2.3.2 Encode ...29
2.3.2.1 VPU_EncEncodeFrame29
2.3.3 Memory Query and Free 30
2.3.3.1 VPU_EncQueryMem ..30
2.3.3.2 VPU_EncFreeMem .. 30
2.3.3.3 VPU_EncRegisterFrameBuffer 30
2.4 API Calling Sequence31
2.4.1 Decoding Calling Sequence 31
2.4.2 Encoding Calling Sequence32
3 Amphion VPU Interface34
3.1 Amphion RPC Protocol34
3.1.1 RPC Shared Memory Interface 34
3.1.1.1 Sample Code for RPC Decoder Interface

Initialization .. 35
3.1.1.2 Sample Code for Decoder System

Configuration Parameter Initialization 36
3.1.1.3 Sample Code for RPC Encoder Interface

Initialization .. 37
3.1.1.4 Sample Code for Encoder System

Configuration Parameter Initialization 38
3.1.2 RPC Commands ..38
3.1.3 RPC MU .. 38
3.1.4 RPC Message ... 39
3.2 Cortex-M Core Boot .. 40
3.3 Decoder Workflow ... 41
3.3.1 Stream Config ..41

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
139 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

3.3.2 Event Handler ..41
3.3.2.1 VID_API_EVENT_REQ_FRAME_BUFF42
3.3.2.2 VID_API_EVENT_SEQ_HDR_FOUND 43
3.3.2.3 VID_API_EVENT_PIC_DECODED 44
3.3.2.4 VID_API_EVENT_FRAME_BUFF_RDY44
3.3.2.5 VID_API_EVENT_REL_FRAME_BUFF 44
3.3.2.6 VID_API_EVENT_ABORT_DONE44
3.3.2.7 VID_API_EVENT_STR_BUF_RST45
3.3.2.8 VID_API_EVENT_FINISHED45
3.3.2.9 VID_API_EVENT_STOPPED 45
3.3.2.10 VID_API_EVENT_FIRMWARE_XCPT 45
3.3.3 Decoder State Machine 45
3.3.4 Decoder Special Operation 46
3.3.4.1 Seek Mode .. 46
3.3.4.2 Trick Mode ...46
3.3.4.3 Low Latency Mode .. 47
3.3.4.4 Suspend and Resume Mode 47
3.4 Encoder Workflow ..48
3.4.1 Stream Configuration48
3.4.2 Encoder Event Handler 48
3.4.2.1 VID_API_ENC_EVENT_MEM_REQUEST 49
3.4.2.2 VID_API_ENC_EVENT_START_DONE49
3.4.2.3 VID_API_ENC_EVENT_FRAME_INPUT_

DONE ...49
3.4.2.4 VID_API_ENC_EVENT_FRAME_DONE49
3.4.2.5 VID_API_ENC_EVENT_FRAME_

RELEASE .. 49
3.4.2.6 VID_API_ENC_EVENT_STOP_DONE49
3.4.2.7 VID_API_ENC_EVENT_FIRMWARE_

XCPT ... 50
3.4.3 Encoder State Machine 50
3.4.4 Encoder Special Operations50
3.4.4.1 Low Latency Mode .. 50
3.4.4.2 Suspend and Resume50
3.5 Multi-instance Support 51
3.6 Resolution Change .. 51
3.7 Memory Requirements 51
3.7.1 Decoder Buffer ...51
3.7.2 Encoder Buffer ...51
3.7.3 Bitstream Buffer ... 52
3.7.4 YUV Input Frame Buffer 52
3.7.5 RPC Decoder Shared Memory Size 52
3.7.6 RPC Encoder Shared Memory Size 52
3.7.7 Firmware Size ..53
3.7.8 Cortex-M Cores Memory Space 53
3.7.8.1 Memory Map Between Arm Core and

Cortex-M Core ... 53
3.7.8.2 Configuring Cached and Uncached

Regions ..53
3.7.8.3 Buffer Configuration Example53
3.7.9 Platform and Cortex-M Core ID

Configuration ..54
3.7.10 Boot Speedup ..54
4 i.MX 6 VPU Main Features 54
4.1 i.MX 6 VPU Programmability 56
4.1.1 Frame-Based Processing 56
4.1.2 Program Memory Management 56
4.1.3 Multi-Instances ...57
4.2 i.MX 6 VPU Host Interface 57

4.2.1 Communication Models 57
4.2.1.1 Data Handling ..58
4.2.1.2 Host Interface Registers 58
4.2.2 API-Based VPU Control 58
4.3 i.MX 6 VPU API Features59
4.3.1 Simple Software Control59
4.3.1.1 Handling Multi-Instances 59
4.3.1.2 Frame-Based Codec Processing59
4.4 Type Definitions ... 60
4.4.1 Type Definitions (common data types)60
4.4.1.1 PhysicalAddress .. 60
4.4.1.2 VirtualAddress ..60
4.4.1.3 CodStd ...60
4.4.1.4 RetCode ...61
4.4.1.5 CodecCommand .. 62
4.4.1.6 GDI_TILED_MAP_TYPE 63
4.4.1.7 MirrorDirection ... 63
4.4.1.8 Mp4HeaderType .. 64
4.4.1.9 AvcHeaderType ... 64
4.4.1.10 EncHandle ... 64
4.4.1.11 DecHandle ... 64
4.4.2 Data and Structure Definitions65
4.4.2.1 FrameBuffer ... 65
4.4.2.2 DecMaxFrmInfo ... 65
4.4.2.3 Rect ..66
4.4.2.4 EncHeaderParam .. 66
4.4.2.5 EncParamSet ...67
4.4.2.6 EncMp4Param ... 67
4.4.2.7 EncH263Param ..68
4.4.2.8 EncAvcParam .. 68
4.4.2.9 EncMjpgParam .. 69
4.4.2.10 EncSliceMode .. 70
4.4.2.11 EncOpenParam ... 70
4.4.2.12 EncReportBufSize ..73
4.4.2.13 EncInitialInfo .. 73
4.4.2.14 EncParam .. 74
4.4.2.15 EncReportInfo .. 75
4.4.2.16 EncOutputInfo .. 76
4.4.2.17 SearchRamParam ... 77
4.4.2.18 DecParamSet ...77
4.4.2.19 DecOpenParam ... 77
4.4.2.20 DecReportBufSize ... 79
4.4.2.21 DecInitialInfo .. 79
4.4.2.22 ExtBufCfg ...82
4.4.2.23 DecBufInfo ... 82
4.4.2.24 DecParam .. 82
4.4.2.25 DecReportInfo ..83
4.4.2.26 Vp8ScaleInfo ..83
4.4.2.27 Vp8PicInfo ..84
4.4.2.28 AvcFpaSei ..85
4.4.2.29 MvcPicInfo ... 86
4.4.2.30 DecOutputInfo ..86
4.4.2.31 vpu_versioninfo ..89
4.4.2.32 VPUMemAlloc ..89
4.4.2.33 iram_t ...90
4.5 API Definitions Overview 90
4.5.1 Basic Architecture ..90
4.5.1.1 Decoder Operation Flow90
4.5.1.2 Encoder Operation Flow92

IMXVPUAPI All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Reference manual Rev. LF6.6.3_1.0.0 — 29 March 2024
140 / 141

NXP Semiconductors IMXVPUAPI
i.MX VPU Application Programming Interface Linux Reference Manual

4.6 Control API .. 93
4.6.1 vpu_Init() ..94
4.6.2 vpu_UnInit() ... 94
4.6.3 vpu_IsBusy() .. 94
4.6.4 jpu_IsBusy() ... 95
4.6.5 vpu_WaitForInt() .. 95
4.6.6 vpu_GetVersionInfo() 95
4.6.7 IOGetPhyMem() ...96
4.6.8 IOFreePhyMem() ... 96
4.6.9 IOGetVirtMem() ..96
4.6.10 IOFreeVirtMem() .. 97
4.6.11 IOGetIramBase() ..97
4.6.12 vpu_SWReset() ..97
4.7 Encoder API .. 98
4.7.1 vpu_EncOpen() ..98
4.7.2 vpu_EncClose() ... 98
4.7.3 vpu_EncGetInitialInfo() 99
4.7.4 vpu_EncGetBitstreamBuffer() 100
4.7.5 vpu_EncUpdateBitstreamBuffer() 100
4.7.6 vpu_EncRegisterFrameBuffer() 101
4.7.7 vpu_EncStartOneFrame()102
4.7.8 vpu_EncGetOutputInfo() 103
4.7.9 vpu_EncGiveCommand()103
4.8 Decoder API .. 106
4.8.1 vpu_DecOpen() ..107
4.8.2 vpu_DecClose() ... 107
4.8.3 vpu_DecGetInitialInfo() 108
4.8.4 vpu_DecSetEscSeqInit()109
4.8.5 vpu_DecGetBitstreamBuffer() 109
4.8.6 vpu_DecUpdateBitstreamBuffer() 110
4.8.7 vpu_DecRegisterFrameBuffer() 110
4.8.8 vpu_DecStartOneFrame()111
4.8.9 vpu_DecGetOutputInfo()112
4.8.10 vpu_DecBitBufferFlush()113
4.8.11 vpu_DecClrDispFlag()113
4.8.12 vpu_DecGiveCommand() 114
4.9 i.MX 6 VPU Control 116
4.9.1 VPU Initialization ..116
4.9.1.1 Version Check of BIT Processor Microcode ...117
4.9.1.2 BIT Processor Enable and Disable117
4.9.1.3 BIT Processor Data Buffer Management 117
4.9.1.4 BIT Processor Microcode Management118
4.9.1.5 Stream Buffer Management118
4.9.2 Interrupt Signaling Management118
4.10 Encoder Control ...119
4.10.1 Creating an Encoder Instance 119
4.10.2 Configuring VPU for Encoder Instance 120
4.10.2.1 Sequence Initialization120
4.10.2.2 Registering Frame Buffers During

Configuration Process 120
4.10.2.3 Generating High-Level Header Syntaxes120
4.10.3 Running Picture Encoder on VPU 121
4.10.3.1 YUV Input Loading .. 121
4.10.3.2 Initiating Picture Encoding 121
4.10.3.3 Completion of Picture Encoding 122
4.10.3.4 Encoder Stream Handling 122

4.10.3.5 Acquiring Encoder Results 122
4.10.4 Terminating an Encoder Instance 123
4.10.5 Dynamic Configuration Commands (picture

encoding operations) 123
4.11 Decoder Control .. 123
4.11.1 Creating a Decoder Instance123
4.11.1.1 AVC Display Reordering124
4.11.2 Configuring VPU for Decoder Instance124
4.11.2.1 Feeding Bitstream into Stream Buffer124
4.11.2.2 Sequence Initialization when configuring

VPU for Decoder Instance125
4.11.2.3 Registering Frame Buffers126
4.11.3 Running Picture Decoder On VPU 126
4.11.3.1 Initiating Picture Decoding126
4.11.3.2 Frame Skipping Option127
4.11.3.3 I-Frame Search for Random Access and

Trick Mode ...127
4.11.3.4 Decoder Stream Handling 128
4.11.3.5 Completion of Picture Decoding 128
4.11.3.6 Acquiring Decoder Results 129
4.11.3.7 Management of Displaying Buffers

Decoded ...131
4.12 Escape from Decoder Hang 131
4.13 Terminating a Decoder Instance 131
4.13.1 Stream End and Last Picture in Stream

Buffer ... 131
4.13.2 Closing Current Instance 131
4.14 Dynamic Configuration Commands 131
4.15 Example Applications 132
4.15.1 VPU Library ... 132
4.15.2 VPU Example Application132
4.15.2.1 Decode Stream to Display on LCD132
4.15.2.2 Encode Stream from Camera Captured

Data ... 134
4.15.3 Other Issues .. 134
5 Note About the Source Code in the

Document ... 135
6 Revision History .. 135

Legal information ...137

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com

Date of release: 29 March 2024
Document identifier: IMXVPUAPI

	1 Overview
	1.1 VPU Wrapper
	1.2 Hantro
	1.3 Amphion VPU RPC
	1.4 i.MX 6 VPU Overview
	1.5 i.MX 9 Chips and Media VPU

	2 VPU Wrapper Interface
	2.1 Data Types
	2.1.1 Handle of VPU Encoder and Decoder
	2.1.2 Enumerations
	2.1.2.1 VpuEncRetCode and VpuDecRetCode
	2.1.2.2 VpuDecBufRetCode
	2.1.2.3 VpuEncBufRetCode
	2.1.2.4 VpuDecCapability
	2.1.2.5 VpuDecConfig
	2.1.2.6 VpuEncConfig
	2.1.2.7 VpuMemType
	2.1.2.8 VpuDecErrInfo
	2.1.2.9 VpuPicType
	2.1.2.10 VpuFieldType
	2.1.2.11 VpuType
	2.1.2.12 VpuCodStd
	2.1.2.13 VpuDecSkipMode
	2.1.2.14 VpuDecInputType
	2.1.2.15 VpuColorFormat
	2.1.2.16 VpuEncMirrorDirection
	2.1.2.17 VpuMemDescType

	2.1.3 Enumerations
	2.1.3.1 VpuMemSubBlockInfo
	2.1.3.2 VpuMemInfo
	2.1.3.3 VpuVersionInfo
	2.1.3.4 VpuWrapperVersionInfo
	2.1.3.5 VpuFrameBuffer
	2.1.3.6 VpuRect
	2.1.3.7 VpuHDR10Meta
	2.1.3.8 VpuColourDesc
	2.1.3.9 VpuChromaLocInfo
	2.1.3.10 VpuDecInitInfo
	2.1.3.11 VpuFrameExtInfo
	2.1.3.12 VpuDecOutFrameInfo
	2.1.3.13 VpuCodecData
	2.1.3.14 VpuRBufferNode
	2.1.3.15 VpuMemDesc
	2.1.3.16 VpuDecFrameLengthInfo
	2.1.3.17 VpuEncInitInfo
	2.1.3.18 VpuEncOpenParamSimp
	2.1.3.19 VpuEncSliceMode
	2.1.3.20 VpuEncOpenParam
	2.1.3.21 VpuEncEncParam

	2.2 Decoder API Functions
	2.2.1 Decoder Open and Close
	2.2.1.1 VPU_DecGetVersionInfo
	2.2.1.2 VPU_DecGetWrapperVersionInfo
	2.2.1.3 VPU_DecGetInitialInfo
	2.2.1.4 VPU_DecConfig
	2.2.1.5 VPU_DecOpen
	2.2.1.6 VPU_DecGetCapability
	2.2.1.7 VPU_DecDisCapability
	2.2.1.8 VPU_DecGetErrInfo
	2.2.1.9 VPU_DecGetNumAvailableFrameBuffers
	2.2.1.10 VPU_DecUnLoad
	2.2.1.11 VPU_DecReset
	2.2.1.12 VPU_DecClose
	2.2.1.13 VPU_DecFlushAll

	2.2.2 Decode
	2.2.2.1 VPU_DecDecodeBuf
	2.2.2.2 VPU_DecGetOutputFrame
	2.2.2.3 VPU_DecGetConsumedFrameInfo
	2.2.2.4 VPU_DecOutFrameDisplayed

	2.2.3 Memory Query and Free
	2.2.3.1 VPU_DecQueryMem
	2.2.3.2 VPU_DecGetMem
	2.2.3.3 VPU_DecFreeMem
	2.2.3.4 VPU_DecRegisterFrameBuffer

	2.3 Encoder API Functions
	2.3.1 Encoder Open and Close
	2.3.1.1 VPU_EncGetVersionInfo
	2.3.1.2 VPU_EncGetWrapperVersionInfo
	2.3.1.3 VPU_EncGetInitialInfo
	2.3.1.4 VPU_EncConfig
	2.3.1.5 VPU_EncOpen
	2.3.1.6 VPU_EncOpenSimp
	2.3.1.7 VPU_EncLoad
	2.3.1.8 VPU_EncUnLoad
	2.3.1.9 VPU_EncReset
	2.3.1.10 VPU_EncClose

	2.3.2 Encode
	2.3.2.1 VPU_EncEncodeFrame

	2.3.3 Memory Query and Free
	2.3.3.1 VPU_EncQueryMem
	2.3.3.2 VPU_EncFreeMem
	2.3.3.3 VPU_EncRegisterFrameBuffer

	2.4 API Calling Sequence
	2.4.1 Decoding Calling Sequence
	2.4.2 Encoding Calling Sequence

	3 Amphion VPU Interface
	3.1 Amphion RPC Protocol
	3.1.1 RPC Shared Memory Interface
	3.1.1.1 Sample Code for RPC Decoder Interface Initialization
	3.1.1.2 Sample Code for Decoder System Configuration Parameter Initialization
	3.1.1.3 Sample Code for RPC Encoder Interface Initialization
	3.1.1.4 Sample Code for Encoder System Configuration Parameter Initialization

	3.1.2 RPC Commands
	3.1.3 RPC MU
	3.1.4 RPC Message

	3.2 Cortex-M Core Boot
	3.3 Decoder Workflow
	3.3.1 Stream Config
	3.3.2 Event Handler
	3.3.2.1 VID_API_EVENT_REQ_FRAME_BUFF
	3.3.2.2 VID_API_EVENT_SEQ_HDR_FOUND
	3.3.2.3 VID_API_EVENT_PIC_DECODED
	3.3.2.4 VID_API_EVENT_FRAME_BUFF_RDY
	3.3.2.5 VID_API_EVENT_REL_FRAME_BUFF
	3.3.2.6 VID_API_EVENT_ABORT_DONE
	3.3.2.7 VID_API_EVENT_STR_BUF_RST
	3.3.2.8 VID_API_EVENT_FINISHED
	3.3.2.9 VID_API_EVENT_STOPPED
	3.3.2.10 VID_API_EVENT_FIRMWARE_XCPT

	3.3.3 Decoder State Machine
	3.3.4 Decoder Special Operation
	3.3.4.1 Seek Mode
	3.3.4.2 Trick Mode
	3.3.4.3 Low Latency Mode
	3.3.4.4 Suspend and Resume Mode
	3.3.4.4.1 Limitation for Suspend and Resume

	3.4 Encoder Workflow
	3.4.1 Stream Configuration
	3.4.2 Encoder Event Handler
	3.4.2.1 VID_API_ENC_EVENT_MEM_REQUEST
	3.4.2.2 VID_API_ENC_EVENT_START_DONE
	3.4.2.3 VID_API_ENC_EVENT_FRAME_INPUT_DONE
	3.4.2.4 VID_API_ENC_EVENT_FRAME_DONE
	3.4.2.5 VID_API_ENC_EVENT_FRAME_RELEASE
	3.4.2.6 VID_API_ENC_EVENT_STOP_DONE
	3.4.2.7 VID_API_ENC_EVENT_FIRMWARE_XCPT

	3.4.3 Encoder State Machine
	3.4.4 Encoder Special Operations
	3.4.4.1 Low Latency Mode
	3.4.4.2 Suspend and Resume

	3.5 Multi-instance Support
	3.6 Resolution Change
	3.7 Memory Requirements
	3.7.1 Decoder Buffer
	3.7.2 Encoder Buffer
	3.7.3 Bitstream Buffer
	3.7.4 YUV Input Frame Buffer
	3.7.5 RPC Decoder Shared Memory Size
	3.7.6 RPC Encoder Shared Memory Size
	3.7.7 Firmware Size
	3.7.8 Cortex-M Cores Memory Space
	3.7.8.1 Memory Map Between Arm Core and Cortex-M Core
	3.7.8.2 Configuring Cached and Uncached Regions
	3.7.8.3 Buffer Configuration Example

	3.7.9 Platform and Cortex-M Core ID Configuration
	3.7.10 Boot Speedup

	4 i.MX 6 VPU Main Features
	4.1 i.MX 6 VPU Programmability
	4.1.1 Frame-Based Processing
	4.1.2 Program Memory Management
	4.1.3 Multi-Instances

	4.2 i.MX 6 VPU Host Interface
	4.2.1 Communication Models
	4.2.1.1 Data Handling
	4.2.1.2 Host Interface Registers

	4.2.2 API-Based VPU Control

	4.3 i.MX 6 VPU API Features
	4.3.1 Simple Software Control
	4.3.1.1 Handling Multi-Instances
	4.3.1.2 Frame-Based Codec Processing

	4.4 Type Definitions
	4.4.1 Type Definitions (common data types)
	4.4.1.1 PhysicalAddress
	4.4.1.2 VirtualAddress
	4.4.1.3 CodStd
	4.4.1.4 RetCode
	4.4.1.5 CodecCommand
	4.4.1.6 GDI_TILED_MAP_TYPE
	4.4.1.7 MirrorDirection
	4.4.1.8 Mp4HeaderType
	4.4.1.9 AvcHeaderType
	4.4.1.10 EncHandle
	4.4.1.11 DecHandle

	4.4.2 Data and Structure Definitions
	4.4.2.1 FrameBuffer
	4.4.2.2 DecMaxFrmInfo
	4.4.2.3 Rect
	4.4.2.4 EncHeaderParam
	4.4.2.5 EncParamSet
	4.4.2.6 EncMp4Param
	4.4.2.7 EncH263Param
	4.4.2.8 EncAvcParam
	4.4.2.9 EncMjpgParam
	4.4.2.10 EncSliceMode
	4.4.2.11 EncOpenParam
	4.4.2.12 EncReportBufSize
	4.4.2.13 EncInitialInfo
	4.4.2.14 EncParam
	4.4.2.15 EncReportInfo
	4.4.2.16 EncOutputInfo
	4.4.2.17 SearchRamParam
	4.4.2.18 DecParamSet
	4.4.2.19 DecOpenParam
	4.4.2.20 DecReportBufSize
	4.4.2.21 DecInitialInfo
	4.4.2.22 ExtBufCfg
	4.4.2.23 DecBufInfo
	4.4.2.24 DecParam
	4.4.2.25 DecReportInfo
	4.4.2.26 Vp8ScaleInfo
	4.4.2.27 Vp8PicInfo
	4.4.2.28 AvcFpaSei
	4.4.2.29 MvcPicInfo
	4.4.2.30 DecOutputInfo
	4.4.2.31 vpu_versioninfo
	4.4.2.32 VPUMemAlloc
	4.4.2.33 iram_t

	4.5 API Definitions Overview
	4.5.1 Basic Architecture
	4.5.1.1 Decoder Operation Flow
	4.5.1.2 Encoder Operation Flow

	4.6 Control API
	4.6.1 vpu_Init()
	4.6.2 vpu_UnInit()
	4.6.3 vpu_IsBusy()
	4.6.4 jpu_IsBusy()
	4.6.5 vpu_WaitForInt()
	4.6.6 vpu_GetVersionInfo()
	4.6.7 IOGetPhyMem()
	4.6.8 IOFreePhyMem()
	4.6.9 IOGetVirtMem()
	4.6.10 IOFreeVirtMem()
	4.6.11 IOGetIramBase()
	4.6.12 vpu_SWReset()

	4.7 Encoder API
	4.7.1 vpu_EncOpen()
	4.7.2 vpu_EncClose()
	4.7.3 vpu_EncGetInitialInfo()
	4.7.4 vpu_EncGetBitstreamBuffer()
	4.7.5 vpu_EncUpdateBitstreamBuffer()
	4.7.6 vpu_EncRegisterFrameBuffer()
	4.7.7 vpu_EncStartOneFrame()
	4.7.8 vpu_EncGetOutputInfo()
	4.7.9 vpu_EncGiveCommand()

	4.8 Decoder API
	4.8.1 vpu_DecOpen()
	4.8.2 vpu_DecClose()
	4.8.3 vpu_DecGetInitialInfo()
	4.8.4 vpu_DecSetEscSeqInit()
	4.8.5 vpu_DecGetBitstreamBuffer()
	4.8.6 vpu_DecUpdateBitstreamBuffer()
	4.8.7 vpu_DecRegisterFrameBuffer()
	4.8.8 vpu_DecStartOneFrame()
	4.8.9 vpu_DecGetOutputInfo()
	4.8.10 vpu_DecBitBufferFlush()
	4.8.11 vpu_DecClrDispFlag()
	4.8.12 vpu_DecGiveCommand()

	4.9 i.MX 6 VPU Control
	4.9.1 VPU Initialization
	4.9.1.1 Version Check of BIT Processor Microcode
	4.9.1.2 BIT Processor Enable and Disable
	4.9.1.3 BIT Processor Data Buffer Management
	4.9.1.4 BIT Processor Microcode Management
	4.9.1.5 Stream Buffer Management
	4.9.1.5.1 Ring-Buffer Scheme (Packet Mode)

	4.9.2 Interrupt Signaling Management

	4.10 Encoder Control
	4.10.1 Creating an Encoder Instance
	4.10.2 Configuring VPU for Encoder Instance
	4.10.2.1 Sequence Initialization
	4.10.2.2 Registering Frame Buffers During Configuration Process
	4.10.2.3 Generating High-Level Header Syntaxes

	4.10.3 Running Picture Encoder on VPU
	4.10.3.1 YUV Input Loading
	4.10.3.2 Initiating Picture Encoding
	4.10.3.3 Completion of Picture Encoding
	4.10.3.4 Encoder Stream Handling
	4.10.3.5 Acquiring Encoder Results

	4.10.4 Terminating an Encoder Instance
	4.10.5 Dynamic Configuration Commands (picture encoding operations)

	4.11 Decoder Control
	4.11.1 Creating a Decoder Instance
	4.11.1.1 AVC Display Reordering

	4.11.2 Configuring VPU for Decoder Instance
	4.11.2.1 Feeding Bitstream into Stream Buffer
	4.11.2.2 Sequence Initialization when configuring VPU for Decoder Instance
	4.11.2.3 Registering Frame Buffers

	4.11.3 Running Picture Decoder On VPU
	4.11.3.1 Initiating Picture Decoding
	4.11.3.2 Frame Skipping Option
	4.11.3.3 I-Frame Search for Random Access and Trick Mode
	4.11.3.4 Decoder Stream Handling
	4.11.3.5 Completion of Picture Decoding
	4.11.3.6 Acquiring Decoder Results
	4.11.3.6.1 Reading Display Output
	4.11.3.6.2 Reading Decoded Output
	4.11.3.6.3 Reading Pre-Scan Result
	4.11.3.6.4 Display Cropping in H.264
	4.11.3.6.5 Next Decoded Frame Index
	4.11.3.6.6 Reading Lack of Additional Work Buffer

	4.11.3.7 Management of Displaying Buffers Decoded

	4.12 Escape from Decoder Hang
	4.13 Terminating a Decoder Instance
	4.13.1 Stream End and Last Picture in Stream Buffer
	4.13.2 Closing Current Instance

	4.14 Dynamic Configuration Commands
	4.15 Example Applications
	4.15.1 VPU Library
	4.15.2 VPU Example Application
	4.15.2.1 Decode Stream to Display on LCD
	4.15.2.2 Encode Stream from Camera Captured Data

	4.15.3 Other Issues

	5 Note About the Source Code in the Document
	6 Revision History
	Legal information
	Contents

