
AN14250
Implement LVGL GUI Voice Recognition on Framework
Rev. 1 — 26 March 2024 Application note

Document information
Information Content

Keywords AN14250, smart HMI, smart TLHMI, framework

Abstract This application note describes how to use DSMT or VIT model to enable voice recognition
feature on framework by a simple LVGL GUI example on SLN-TLHMI-IOT board.

https://www.nxp.com

NXP Semiconductors AN14250
Implement LVGL GUI Voice Recognition on Framework

1 Overview

NXP has launched a solution development kit named as SLN-TLHMI-IOT, which focuses on smart HMI
applications. It enables smart HMI with ML vision, voice, and graphics UI implemented on one NXP i.MX
RT117H MCU. Based on the SDK, the solution software is constructed on a design called framework, which
supports flexible designs and customization of vision and voice functions. To help the users to use the software
platform better, some basic documents are provided, for example, the software development user guide. The
guide introduces the basic software design and architecture of the applications covering all components of the
solution including the framework to help the developers more easily and efficiently implement their applications
using the SLN-TLHMI-IOT.

For more details about the solution and relevant documents, visit:

NXP EdgeReady Smart HMI Solution based on i.MX RT117H with ML Vision, Voice and Graphical UI | NXP
Semiconductors

However, it is still not so easy for the developers to implement their smart HMI applications referring to these
basic guides. A series of application notes are planned to help study the development of the framework step by
step from basics. This application note is based on the application note that shows how to enable LVGL GUI on
framework with a simple GUI camera preview example.

This application note describes how to use the DSMT or VIT model with English and Chinese languages to
enable the voice recognition feature on the framework by a simple LVGL GUI example of the SLN-TLHMI-IOT
board.

In the application note, the example presents an LVGL GUI screen with a camera preview and some buttons,
which can be triggered by voice or touch.

At a high level, the application note contains the below contents:

• Enable the voice recognition feature on the framework.
• Implement an LVGL GUI application.

Through the above introductions, this document helps the developers be able to:

• Understand the framework and the smart HMI solution software more deeply.
• Develop their voice recognition on framework with LVGL GUI application.

1.1 Framework overview
The solution software is primarily designed around the use of a framework architecture that is composed of
several different parts:

• Device managers – Core part
• Hardware Abstraction Layer (HAL) Devices
• Messages/Events

As shown in Figure 1, the overview of the mechanism of the framework is:

Device managers are responsible for "managing" devices used by the system. Each device type (input, output,
and so on) has its own type-specific device manager. After registering the devices, a device manager initializes
and starts them, then waits for a message to transfer data to other managers and devices.

The HAL devices are written on top of lower-level driver code, helping to increase code understandability by
abstracting many of the underlying details.

Events are a means by which information is communicated between different devices via their managers. When
an event is triggered, the device that first receives the event sends it to its manager who then notifies other
designated managers.

AN14250 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 March 2024
2 / 20

https://www.nxp.com/design/designs/nxp-edgeready-smart-hmi-solution-based-on-i-mx-rt117h-with-ml-vision-voice-and-graphical-ui:SLN-TLHMI-IOT-RD
https://www.nxp.com/design/designs/nxp-edgeready-smart-hmi-solution-based-on-i-mx-rt117h-with-ml-vision-voice-and-graphical-ui:SLN-TLHMI-IOT-RD

NXP Semiconductors AN14250
Implement LVGL GUI Voice Recognition on Framework

Camera Dev Driver

Camera
Manager

MSG

Dev0

MSG

…

Display
Manager

Input
Manager

Output
Manager

HAL

UI Algorithm Callbacks Feature database Customer specific services

Core

Application

Low Level Driver

Hardware

Software

Framework

IR Camera

Algorithm
Manager

Display Dev Driver Algo Dev Driver Input Dev Driver Output Dev Driver

MSG

Dev0

MSG

…

MSG

Dev0

MSG

…

MSG

Dev0

MSG

…

MSG

Dev0

MSG

…

Low level driver
(MIPI CSI2)

Low level driver
(SPI)

Low level driver
(GPIO)

Low level driver
(USB)

Low level driver
(CSI)

3D Camera LCD GPIO ButtonRGB Camera UART

Figure 1. Smart HMI software architecture on framework

The architectural design of the framework is centered on three primary goals:

• Ease-of-use
• Flexibility/Portability
• Performance

The framework is designed with the goal of speeding up the time to market for vision and other machine-
learning applications. To ensure a speedy time to the market, it is critical that the software itself is easy to
understand and modify. Keeping this goal in mind, the architecture of the framework is easy to modify without
being restrictive, and without coming at the cost of performance.

For more details about the framework, see the Smart HMI Software Development User Guide (document MCU-
SMHMI-SDUG)

1.2 Light and Versatile Graphics Library (LVGL)
LVGL is a free and open-source graphics library. It provides everything that you require to create an embedded
GUI with easy-to-use graphical elements, beautiful visual effects, and a low memory footprint.

1.3 GUI Guider
GUI Guider is a user-friendly graphical user interface development tool from NXP that enables the rapid
development of high quality displays with the LVGL Open-Source Graphics Library. The drag-and-drop editor of
GUI Guider makes it easy to use the many features of LVGL such as widgets, animations, and styles to create a
GUI with minimal or no coding at all.

With the click of a button, you can run your application in a simulated environment or export it to a target project.
Generated code from GUI Guider can easily be added to your project, accelerating the development process
and allowing you to seamlessly add an embedded user interface to your application.

GUI Guider is free to use with general purpose of NXP and crossover MCUs, including built-in project templates
for several supported platforms.

To learn more about LVGL and GUI development on GUI Guider, see Light and Versatile Graphics Library and
GUI Guider

AN14250 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 March 2024
3 / 20

https://www.nxp.com/doc/MCU-SMHMI-SDUG
https://www.nxp.com/doc/MCU-SMHMI-SDUG
https://www.nxp.com/design/software/embedded-software/lvgl-open-source-graphics-library:LITTLEVGL-OPEN-SOURCE-GRAPHICS-LIBRARY
https://lvgl.io/
https://www.nxp.com/design/software/development-software/gui-guider:GUI-GUIDER

NXP Semiconductors AN14250
Implement LVGL GUI Voice Recognition on Framework

2 Development environment

Prepare and set up the hardware and software environment for implementing the example on the framework.

• Hardware environment
The hardware environment is set up for verifying the example.
– The smart HMI development kit based on NXP i.MX RT117H (SLN_TLHMI_IOT kit)
– SEGGER J-Link with a 9-pin Cortex-M adapter and V7.84a or newer of driver

• Software environment
The software environment is set up for developing the example:
– MCUXpresso IDE V11.7.0
– GUI Guider V1.6.1 — GA
– lvgl_gui_camera_preview_cm7 — example code of implementing LVGL GUI on framework. Visit:

https://mcuxpresso.nxp.com/appcodehub
– RT1170 SDK V2.13.0 — SDK as the code resource for the development.
– SLN-TLHMI-IOT software V1.1.2 — smart HMI source codes released on NXP GitHub repository as the

code resource for the development. Visit: GitHub - NXP/mcu-smhmi at v1.1.2

For details about the acquirement and setup of the software environment, refer to: Getting Started with the SLN-
TLHMI-IOT.

3 Voice recognition architecture on framework

Figure 2 shows the voice architecture on framework in the current application note.

The process in the framework HALs is:

• The input PDM MIC HAL sends the raw streams of the voice recorded from the microphones to the audio
processing AFE HAL.

• The audio pressing AFE HAL triggers the Voiceseeker algo to preprocess the voice data streams, then send
the clean streams to the voice algo DMST ASR HAL or voice algo VIT ASR HAL.

• The voice algo DMST or VIT ASR HAL triggers the corresponding speech recognition algo and model to
recognize the voice and sends the result to the output UI HAL.

• The output UI HAL acts per the result.

Note: No speaker is supported in the application note. It means that no echo stream is required to be
processed in the application note.

AN14250 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 March 2024
4 / 20

https://mcuxpresso.nxp.com/appcodehub
https://github.com/NXP/mcu-smhmi/tree/v1.1.2
https://www.nxp.com/document/guide/getting-started-with-the-sln-tlhmi-iot:GS-SLN-TLHMI-IOT
https://www.nxp.com/document/guide/getting-started-with-the-sln-tlhmi-iot:GS-SLN-TLHMI-IOT

NXP Semiconductors AN14250
Implement LVGL GUI Voice Recognition on Framework

Raw Streams

AFE
Calibration

Input Manager Audio Manager Voice Algo Manager

Input PDM
MIC HAL

Voice algo VIT ASR
HAL

Voice algo DSMT
ASR HAL

PDM

Output Manager

Clean
Streams

Echo back to AFE Audio devices

Audio
processing

AFE HAL
Output UI HALOutput

ASR
result

Framework
Core

Framework
HAL

Low Level
Drivers DMA/EDMA

MCUXpresso SDK

Echo
Streams

Figure 2. Voice architecture

4 Voice recognition example design on framework

The LVGL GUI voice recognition example (the example for short hereinafter) on framework is implemented
based on the example code lvgl_gui_camera_preview_cm7 (Visit https://mcuxpresso.nxp.com/
appcodehub). This example enables DMST and VIT ASR models with English and Chinese languages for voice
recognition feature.

For demonstrating the feature, design the GUI application as below:

• Add a standby screen presented after startup. A dropdown list widget is presented for English and Chinese
languages selection. The texts on the screen are presented with the selected language and it is required to
speak the wake words in the selected language for voice recognition. After recognizing the wake words or
touching the screen, it enters the home screen. See Figure 3.

AN14250 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 March 2024
5 / 20

https://mcuxpresso.nxp.com/appcodehub
https://mcuxpresso.nxp.com/appcodehub

NXP Semiconductors AN14250
Implement LVGL GUI Voice Recognition on Framework

Figure 3. LVGL GUI standby screen
• Similarly, add a dropdown list widget for language selection on the home screen for the same functions with

the standby screen. The hints for the supported voice commands are presented on the screen as well. See
Figure 4. The voice commands have the same functions with the touch:
– Speak registration or touch the button Registration, showingthe hint Registration… on the status label.
– Speak recognition or touch the button Recognition, showing the hint Recognition… on the status label.
– Speak preview or touch other areas out of buttons, showingpreviewing… on the status label.

• There is a timeout function for the home screen. That is, it goes back to the standby screen when the time (60
s) is up on the home screen.

Figure 4. LVGL GUI home screen

SW Preparations

Prepare the software package for the implementation of the example.

• Clone the base software lvgl_gui_camera_preview_cm7. Change the project name and the main file name to
lvgl_gui_voice_rec_cm7.

• The framework is needed to be updated in the software as the source codes for the framework core have
started to be public on GitHub from the version 1.1.2.
– Replace the framework folder with the copy of V1.1.2 from Github except for the files fwk_log.h and

fwk_common.h under inc\ as they have been modified for the series of application note.

AN14250 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 March 2024
6 / 20

NXP Semiconductors AN14250
Implement LVGL GUI Voice Recognition on Framework

– Delete the folder framework_cm7 under the libs group and remove the library framework_cm7 and its
search path configured in Project > Properties > C/C++ Build > settings > Tool Settings > MCU C++
Linker > Libraries since the source codes of core are provided.

5 Add hardware support

The hardware involved in the voice recognition example is the microphone.

5.1 Add the drivers for microphone
Add the PDM microphone interface and DMA support drivers.

1. Copy fsl_dmamux.c and fsl_dmamux.h, fsl_edma.c and fsl_edma.h, fsl_pdm.c and fsl_pdm.h,
fsl_pdm_edma.c and fsl_pdm_edma.h from SDK_2_13_0_MIMXRT1170-EVK\devices\MIMXRT1176\drivers
\ to the folder drivers of the example.

5.2 Add board support for microphone
1. Copy the function BOARD_InitMicPins() from the [smart HMI]\coffee_machine\cm7\board\pin_mux.

c to pin_mux.c of the example and call it with the macro definition ENABLE_INPUT_DEV_PdmMic in
BOARD_InitBootPins() in pin_mux.c for microphone pins settings.

2. Add the code line #include "board_define.h" as the above macro definition
ENABLE_INPUT_DEV_PdmMic is defined in the file pin_mux.c.

3. Copy the function BOARD_InitEDMA() from the [smart HMI]\coffee_machine\cm4\board\board.c to board
\board.c of the example for EDMA initialization.

4. Add the below code lines in the board.c:

#include "fsl_edma.h"
#include "fsl_dmamux.h"

5. Declare the function BOARD_InitEDMA() in board.h.

6 Enable voice recognition feature on framework

6.1 Add voice algo libraries and engines
The smart HMI solution supports Far-Field voice recognition enabled by phoneme-based Automatic Speech
Recognition (ASR) engine, digital signal processing (DSP), and audio front end (AFE) which are provided by
static libraries. They are used for the example as well. Below are the steps to add the libs and the engines.

1. Copy the folder local_voice containing the libraries for the ASR for DMST and VIT, DSP, and AFE from
smart HMI\coffee_machine\cm7\libs\ into the folder libs of the example software.
Note: The VIT speech model resources with different languages are also included in the header files in the
cloned folder local_voice. They are used for coffee machine application and required to be modified for the
example (to be introduced in Section 6.2.2).
Do the configurations for the new folder:
• Add the libs and their search paths on Project > Properties > C/C++ Build > settings > MCU C++

Linker > Libraries.

VoiceSeekerLight
VIT_CM7_v04_07_07
sln_asr
arm_cortexM7lfdp_math
"${workspace_loc:/${ProjName}/libs/local_voice}"

AN14250 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 March 2024
7 / 20

NXP Semiconductors AN14250
Implement LVGL GUI Voice Recognition on Framework

"${workspace_loc:/${ProjName}/libs/local_voice/vit/RT1170_CortexM7/Lib}"

Note: The VoiceSeekerLight lib is for AFE. The VIT_CM7_v04_07_07 lib is for VIT model. The
sln_asr lib is for the DSMT model. The arm_cortexM7lfdp_math lib is for DSP.
Add the search path for the header file of the libs in Project > Properties > C/C++ Build > settings >
Tool Settings > MCU C compiler > Includes and MCU C++ compiler > Includes.

"${workspace_loc:/${ProjName}/libs/local_voice/vit/RT1170_CortexM7/Lib}"
"${workspace_loc:/${ProjName}/libs/local_voice/vit/RT1170_CortexM7/Lib/Inc}"

2. Copy the folder audio containing the header files for the above algo libs in libs\local_voice, the APIs
to drive the AFE algo VoiceSeeker and the Common public utilities for VoiceSeeker from [smart
HMI]\coffee_machine\cm7\ to the example. And do the configurations for the new folder:
• Uncheck Exclude resource from build to enable the folder for being built into the project by right-clicking

it and choosing the Properties on the pop-up menu.
• Add the search path for the folder in the project settings as Step 1.

"${workspace_loc:/${ProjName}/audio}"
"${workspace_loc:/${ProjName}/audio/RDSP_Includes}"
"${workspace_loc:/${ProjName}/audio/rdsp_utilities_public/include}"
 "${workspace_loc:/${ProjName}/audio/rdsp_utilities_public/
rdsp_memory_utils_public}"

3. Copy the folder local_voice containing the bin files of DSMT model resources with different languages, and
the engines to convert the voices to action commands with the related definitions for DSMT and VIT models
from [smart HMI]\coffee_machine\cm7\ to the example. And do the configurations for the new folder:
• Uncheck Exclude resource from build to enable the folder for being built into the project as the above

step.
• Add the search path for the folder in the project settings as the above step.

"${workspace_loc:/${ProjName}/local_voice}"

Note: The DSMT model resources are used for the coffee machine application that requires to be
modified for the example (to be introduced in Section 6.2.2).

6.2 Implement speech models
The DSMT and VIT speech models are supported in the example. Both support English and Chinese
languages. But note that both models are unable to be supported in one application at the same time. So, it is
required to rebuild the project with enabling the model for switching to it. The default language is English on the
system startup. Below is the process of implementing both models.

6.2.1 Set up the models

The models resources are designed to contain the wake word hey NXP and three pieces of voice commands
registration, recognition, and preview in English, and accordingly, the wake word 你好 恩智浦 and
voice commands 用户注册, 人脸识别, and 预览 in Chinese.

To set up the DMST and VIT models.

• To use the third party of Tool to generate DSMT model, see the Smart HMI Software Development User Guide
(document MCU-SMHMI-SDUG).

• To use the NXP online tool to generate VIT model see the Smart HMI Software Development User Guide
(document MCU-SMHMI-SDUG).

AN14250 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 March 2024
8 / 20

https://www.nxp.com/doc/MCU-SMHMI-SDUG
https://www.nxp.com/doc/MCU-SMHMI-SDUG

NXP Semiconductors AN14250
Implement LVGL GUI Voice Recognition on Framework

6.2.2 Integrate the DMST and VIT models to the example

As introduced, the folder local_voice contains the bin files of DSMT model resources with different languages,
and the engines to convert the voices to action commands depending on the app. So, the modifications for the
files under the folder depend on the current example.

1. Update the DSMT and VIT model resources in the example with the generated ones by tools:
• For DSMT, clone and rename the generated Chinese model bin file to

oob_demo_cn_pack_WithMapID.bin and replace the one under local_voice\oob_demo_cn of the
example. Same to the generated English model bin file.
Considering the compatibility and simplification, clear the contents of the files
oob_demo_fr_pack_WithMapID.bin for French and oob_demo_de_pack_WithMapID.bin for Germany
used originally in the coffee machine application and are unsupported in the example.

• For VIT, replace the files VIT_Model_cn.h and VIT_Model_en.h under \libs\local_voice\vit\RT1170_Cortex
M7\Lib of the example with the ones generated by VIT online tool.
Considering the compatibility and simplification, declare an empty array for Germany used in the coffee
machine application and comment the old declaration in VIT_Model_de.h.

2. Per the example, modify the types of the various actions are defined and the related functions to convert
the voice commands to actions for both models in the file IndexCommands.h dependent with the coffee
machine application:
• Rename the enum _coffee_machine_action and redefine the action types for the voice commands

as below:

enum _voice_rec_demo_action
{
 kVoiceRecDemoActionReg = 0,
 kVoiceRecDemoActionRec = 1,
 kVoiceRecDemoActionPre = 2,
 kVoiceRecDemoActionInvalid
};

• Delete all the code lines related to the case ASR_CMD_USER_REGISTER unsupported in the example in
the functions get_cmd_number() and get_action_index_from_keyword().

• Replace the string COFFEE_MACHINE (case sensitive) with VOICE_REC_DEMO and the
coffee_machine (case sensitive) with voice_rec_demo for the example.

• Change the kCoffeeMachineActionInvalid to kVoiceRecDemoActionInvalid in the function
get_action_index_from_keyword().

3. Modify the functions about getting the VIT model in local_voice_model_vit.h per the example:
• Replace the string COFFEE_MACHINE (case sensitive) with VOICE_REC_DEMO for the example.
• Delete all the code lines related to the case ASR_CMD_USER_REGISTER unsupported in the example.

4. Redefine the specific actions for various languages in IndexCommands_vit.h using the actions type defined
in IndexCommands.h:
• Replace the string coffee_machine (case sensitive) with voice_rec_demo, the COFFEE_MACHINE

(case sensitive) with VOICE_REC_DEMO and the CoffeeMachine with VoiceRecDemo.
• Refine the arrays action_voice_rec_demo_en for English and action_voice_rec_demo_cn for Chinese,

action_voice_rec_demo_de for German (unsupported) and action_voice_rec_demo_fr for French
(unsupported). For example:

unsigned int action_voice_rec_demo_en[] = {
 kVoiceRecDemoActionInvalid, // unknown
 kVoiceRecDemoActionReg, // "registration"
 kVoiceRecDemoActionRec, // "recognition"
 kVoiceRecDemoActionPre, // "preview"
};
unsigned int action_voice_rec_demo_de[] = {

AN14250 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 March 2024
9 / 20

NXP Semiconductors AN14250
Implement LVGL GUI Voice Recognition on Framework

 kVoiceRecDemoActionInvalid, // unknown
};

Note: Same modifications to the file IndexCommands_dsmt.h for the DSMT model.
5. Modify the files IndexToCommand_cn.h for Chinese and IndexToCommand_en.h for English,

IndexToCommand_de.h for German and IndexToCommand_fr.h for French used for the DSMT model:
• Redefine the wake word and voice commands per the designed commands (may refer to the commands

in the files ww.txt and cmd_voice_rec_example.txt generated by DMST tool) for English and Chinese, for
example about the definition of the wake word for English.

char *ww_en[] = {"Hey NXP"};

And remove the definitions of all commands for German and French languages unsupported in the
example. For example, the definition of the wake word for French is as below.

char *ww_fr[] = {};

• Replace the string coffee_machine with voice_rec_demo in all the files.
6. Add the below definition of the command type while reserving the previous in the enum _asr_inference

in the file hal_voice_algo_asr_local.h considering the compatibility.

ASR_CMD_VOICE_REC_DEMO = (1U << 1U)

6.3 Update and enable voice related HALs
To drive the voice recognition, the below HAL drivers are involved: PDM microphone HAL implemented in
hal_input_pdm_mic.c, audio process AFE HAL in hal_audio_processing_afe.c, DSMT voice algo HAL in
hal_voice_algo_dsmt_asr.c and VIT voice algo HAL in hal_voice_algo_vit_asr.c.

The functions implemented in the HALs are common to different applications. Few modifications are required
but do some configurations for the example:

1. No modification is required to the file hal_input_pdm_mic.c for PDM microphone HAL driver but add the
definition to enable it in the board_define.h.

#define ENABLE_INPUT_DEV_PdmMic

2. Do updates for audio process AFE HAL driver:
• Declare the global variable g_MQSPlaying in the file hal_audio_processing_afe.c as it is declared in

audio playing related HALs, which is unsupported in the example and set the variable to false as default.
See below.

#ifdef ENABLE_OUTPUT_DEV_MqsAudio || ENABLE_OUTPUT_DEV_MqsStreamerAudio
extern volatile bool g_MQSPlaying;
#else
volatile bool g_MQSPlaying = false;
#endif

• Add the definition of the memory section for the buffer used in the file hal_audio_processing_afe.c in the
file board_define.h.

#define AT_NONCACHEABLE_SECTION_ALIGN_DTC(var, alignbytes) \
__attribute__((section(".bss.$SRAM_DTC_cm7,\"aw\",%nobits @"))) var
 __attribute__((aligned(alignbytes)))

AN14250 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 March 2024
10 / 20

NXP Semiconductors AN14250
Implement LVGL GUI Voice Recognition on Framework

• Add the definition to enable audio processing HAL driver in the board_define.h.

#define ENABLE_AUDIO_PROCESSING_DEV_Afe

3. Update for DSMT and VIT voice algo HAL drivers.
• Add the definition to use the current supported application as below.

#if ENABLE_VOICE_REC_DEMO
#define CURRENT_DEMO ASR_CMD_VOICE_REC_DEMO

• Add the setup for the current application in the function voice_algo_dev_input_notify() in the file
hal_voice_algo_dsmt_asr.c.

#if ENABLE_VOICE_REC_DEMO
s_AsrEngine.voiceConfig.demo = ASR_CMD_VOICE_REC_DEMO;

• Redefine the active languages for the DSMT model in the file hal_voice_algo_asr_local.h as only two
languages are supported while four are set for the DSMT model in the example.

#ifdef ENABLE_DSMT_ASR
#define DEFAULT_ACTIVE_LANGUAGE (ASR_ENGLISH | ASR_CHINESE)

• To configure DSMT and VIT ASR and AFE HALs, add some definitions in the file board_define.h.
– Add the definitions to enable both algos HALs (currently enable DSMT ASR as default):

#define ENABLE_DSMT_ASR
//#define ENABLE_VIT_AS

– Add the definitions to configure some features for DSMT, VIT, and AFE under the control of the above
enablement. For example, max wake word length.

#elif defined(ENABLE_DSMT_ASR)
/* "Hey NXP" and its corresponding translations in other languages may
 take up to 3s to be spoken. */
#define WAKE_WORD_MAX_LENGTH_MS 3000

– Configure the SRAM memory section used for DSMT and VIT ASR algo HAL.

#define AT_CACHEABLE_SECTION_ALIGN_OCRAM(var, alignbytes) \
__attribute__((section(".bss.$SRAM_OC1,\"aw\",%nobits @"))) var
 __attribute__((aligned(alignbytes)))

• Update the memory setting on Project > Properties > C/C++ Build > MCU Settings to enlarge the size
to 0x100000 for SRAM_OC1 used above and delete the setting for SRAM_OC2 as its space is merged
to the SRAM_OC1.

• Add the search path for the above voice HALs in the project settings.

"${workspace_loc:/${ProjName}/framework/hal/voice}"

6.4 Add and update output UI HAL
The output UI HAL depends on the LVGL GUI app. It notifies the events to the voice algo HAL and responds to
the inference results from the voice algo HAL. With GUI app, the events are generally triggered by the GUI and
the results are shown on the GUI.

To enable the HAL, clone the existed similar HAL driver file where generally the below functions are
implemented:

1. Face algo trigger and result handling with the features: progress bar, face indicator (preview mode).
2. Audio playing with some languages.
3. Coffee machine application related including GUI.

AN14250 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 March 2024
11 / 20

NXP Semiconductors AN14250
Implement LVGL GUI Voice Recognition on Framework

4. Voice algo trigger and result handling with some languages.
5. Standby and wake-up mechanism with a session timer.
6. The callbacks are the APIs for the GUI application callings to communicate to the output UI HAL.
7. The calls of the APIs from the LVGL GUI application to communicate to the LVGL GUI application.

The major works to implement the HAL for the example are:

• Clone the existed similar HAL driver file and change the related names.
• Remove the codes related to 1, 2, and 3.
• Keep and update the above 4, 5, 6, and 7.

The main steps are as below:

1. Clone hal_output_ui_coffee_machine.c. Change the file name to hal_output_ui_ voice_rec.c (The below
updates are all for the file).

2. Replace all strings CoffeeMachine to VoiceRecDemo in the file.
3. Remove the codes related to vision (face rec), audio containing the string prompt and face indicators

including icons and progress related. For example:

#include "hal_vision_algo.h", #include "hal_event_descriptor_face_rec.h"

4. Remove the codes containing GUI related to the coffee machine app. For example, the
variables involved with the coffee type registration: s_IsWaitingAnotherSelection and
s_IsWaitingRegisterSelection.

5. Change the setting for the member .attr.pSurfac from &s_UiSurface to NULL in the structure
s_OutputDev_UiVoiceRecDemo as it is used for face recognition.

6. Update the voice command type in the enum type for the example.

enum
{
 VOICE_CMD_REG = 0,
 VOICE_CMD_REC = 1,
 VOICE_CMD_PRE = 2,
 VOICE_CMD_INVALID
};

7. Change the setting for the member eventInfo from kEventInfo_Remote to kEventInfo_Local in the
output event structure in the function _SetVoiceModel() and _StopVoiceCmd() since only the single
core – cm7 is used.

8. Update the function _InferComplete_Voice() to take the corresponding actions for the inference
results from voice recognition:
• Keep the cases of the screen IDs kScreen_Home and kScreen_Standby for home and standby

screens while removing others.
• Add three voice command types of VOICE_CMD_REG, VOICE_CMD_REC and VOICE_CMD_PRE defined

in the above step as three cases of voice inference results while removing the old ones in the case
kScreen_Home.

• Add the calls of the API gui_show_voice_rec_action() to show the voice interference results on
the GUI screen. The API provided by the LVGL GUI application is implemented in custom.c (introduced in
Section 7).

9. Change the macro definition ASR_CMD_COFFEE_MACHINE to ASR_CMD_VOICE_REC_DEMO in the function
WakeUp().

10. Update UI callback functions to handle the events triggered from GUI.
• Update the function UI_EnterScreen_Callback() used for initializations, such as session timer setup,

voice model setup when entering a screen as following points.
– Keep the cases of the screen IDs kScreen_Home and kScreen_Standby for home and standby

screens while removing others.
AN14250 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 March 2024
12 / 20

NXP Semiconductors AN14250
Implement LVGL GUI Voice Recognition on Framework

• Remove the unneeded function UI_Finished_Callback().
• Add a function UI_GetLanguage_Callback() to convert the current recognized language index to the

language index, which is provided for GUI application.
11. Continue to use the APIs from GUI application: get_current_screen(), gui_set_home(), and

gui_set_standby() (required to be implemented in custom.c and introduced in Section 7) while
removing others.

12. Add the code line #include "custom.h" to use the GUI related APIs.
13. Add the below definitions to enable UI output HAL in board_define.h.

#define ENABLE_OUTPUT_DEV_UiVoiceRecDemo

Note: May do some optimizations for the output UI HAL per your application design as the HAL is much
dependent with the application.

6.5 Update display HAL
The camera preview is enabled anytime in the file hal_display_lvgl_camerapreview.c for display HAL. However,
the camera preview is required on the home screen but not for the standby screen in the example. It is required
to disable camera preview on the standby screen in the function HAL_DisplayDev_LVGLCameraPreview_
Blit().

7 Implement an LVGL GUI application

The development of an LVGL GUI application based on framework is mainly calling the APIs from output UI
HAL and providing the APIs to output UI HAL.

However, the detailed implementation of an LVGL GUI application depends on the requirements and design of
the application. The GUI application in this example is designed as described at the beginning of Section 4.

The below is the implementation introduction for reference.

1. The customized codes are implemented in the files custom.c and custom.h given by GUI Guider as the
interface between the GUI Guider project and the embedded system project.
• Implement the functions get_current_screen(), gui_set_standby() and gui_set_home() and

related sub functions, such as gui_setup_screen() to set up the home and standby screen in the file
custom.c (May refer to the ones in coffee machine application).

• Implement the function gui_show_voice_rec_action() in custom.c to show the results on GUI
screen as the actions of response to the events of the buttons and the voice commands.

• Implement multi-language support for GUI application in the file custom.c:
– Add the functions gui_standby_set_language_UI() and gui_home_set_language_UI() to

display all the texts on the standby and home screens with the selected language. Accordingly, define
all the strings of texts in English and Chinese languages. For example, the title on the home screen is
defined as below.

static const char *s_HomeTitleStr[kLanguage_Ids][1] = {
{"Camera preview",},
{"相机预览",},

};

– Add the functions gui_standby_language_changed_cb() and
gui_home_language_changed_cb() to respond to the triggered events of the language selection
by clicking the dropdown widget on the standby and home screen. They are called in the file event.c for
events handling.

• The UI callback functions and the function WakeUp() implemented in output UI HAL are dependent with
the embedded platform. Meanwhile, they are also required to be called in GUI Guider project to run on

AN14250 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 March 2024
13 / 20

NXP Semiconductors AN14250
Implement LVGL GUI Voice Recognition on Framework

the simulator, which is independent with the embedded platform. So, it is required to do some updates for
being compatible with the embedded platform and the GUI Guider simulator.
– Implement another set of the functions (may be simpler) with the same prototypes under the control

of the macro definition #ifdef LV_USE_GUIDER_SIMULATOR in custom.c for the compatibility. For
example, the function UI_EnterScreen_Callback() can be implemented simply as eblow.

#if LV_USE_GUIDER_SIMULATOR
uint8_t UI_EnterScreen_Callback(screen_t screenId)
{
 return 1;
}

– The above macro definition LV_USE_GUIDER_SIMULATOR is originally defined and enabled to 1 in the
file lv_conf.h in the folder lvgl-simulator of GUI Guider. Copy the file to the folder source of the example
software and set the definition to 0 for disabling it on the embedded platform.

• Update the file custom.h to declare the global types and functions:
– Define the enum types about voice recognition action index, language ID, and screen ID.
– Move the enum type _wake_up_source from output UI HAL to custom.h as the button type defined in

the enum is used by the file event.c as well.
– Declare all the global functions like UI_xxx_Callback() and gui_xxx().

2. Develop the GUI on GUI Guider:
• Clone the folder camera preview containing the GUI Guider project software in the folder gui_guider

in the base software package lvgl_gui_camera_preview_cm7. Change the related name
camera_preview to voice_rec for the new example.

• Copy the above updated files custom.c and custom.h to the new GUI Guider project software.
• Open the new voice_rec project on GUI Guider. Update per the design introduced at the beginning of

Section 4. And add the various events handling as below:
– Implement custom C codes for the various events handling on GUI Guider using the APIs, such as
WakeUp() to enter the home screen when clicking on the standby screen.

3. Update the generated codes from GUI Guider to MCUXpresso project.
• Replace the .c and .h files in the folder generated except for the ones in the folder images with the

corresponding ones in the folder generated of GUI Guider project software.
4. Add the GUI image support.

The GUI images in the example are unchanged with the cloned GUI app. However, the name and descriptor
of the images are changed with the new version of GUI Guider used in the example. So, some updates are
required based on the cloned one:
• Clone the image resource folder resource_lvgl_gui_camera_preview and the tool folder resource_build

from the base software package lvgl_gui_camera_preview_cm7 to the example software. Then delete the
generated files resource_information_table.txt and camera_preview_resource.bin.

• Change all the string camera_preview in the name and the contents of the remaining files to voice_rec for
the new example.

• Copy the image files _NxpVoiceRec_alpha_185x55.c and _NxpFaceRec_alpha_185x55.c from the path
of generated\images\ in GUI Guider project software to the path of resource_lvgl_gui_voice_rec\images\.
Remove the old files _NxpVoiceRec_185x55.c and _NxpFaceRec_185x55.c.

• Accordingly, change the names to _NxpVoiceRec_alpha_185x55.c and _NxpFaceRec_alpha_185x55.c in
the file voice_rec_resource.txt.

• Build the image resource by double clicking to execute the script file voice_rec_resource_build.bat
in windows. The binary file voice_rec_resource.bin and the information text file
resource_information_table.txt are generated.

• The size and address information of the image resource are not required to be updated to the
example software since the image data is unchanged. So, only update the image descriptor arrays

AN14250 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 March 2024
14 / 20

NXP Semiconductors AN14250
Implement LVGL GUI Voice Recognition on Framework

_NxpFaceRec_alpha_185x55 and _NxpVoiceRec_alpha_185x55 in the file setup_images.c using the
ones in the files _NxpVoiceRec_alpha_185x55.c and _NxpFaceRec_alpha_185x55.c.

8 Add application level support

The codes and configurations at the application level are in the folder source. The main updates are usually in
the main file lvgl_gui_voice_rec_cm7.cpp containing the hardware board initializations and the framework
setup.

8.1 Update the board initialization
To update the board initialication, perform the following steps:

1. Add the call of the function BOARD_ConfigMPU() in APP_BoardInit() to configure memory MPU.

8.2 Update the framework setup
To set up the enabled voice algo HALs and UI output HAL and their managers on framework, following the
conversions of development as below:

1. Include the header file related to the managers of the enabled HALs as below:

#include "fwk_input_manager.h"
#include "fwk_audio_processing.h"
#include "fwk_voice_algo_manager.h"
#include "fwk_output_manager.h"

2. Declare the enabled HAL devices:

HAL_INPUT_DEV_DECLARE(PdmMic);
HAL_AUDIO_PROCESSING_DEV_DECLARE(Afe);
HAL_VOICEALGO_DEV_DECLARE(Asr);
HAL_VOICEALGO_DEV_DECLARE(Asr_VIT);
HAL_OUTPUT_DEV_DECLARE(UiVoiceRecDemo);

3. Register the enabled HAL devices in the function APP_RegisterHalDevices():

 HAL_INPUT_DEV_REGISTER(PdmMic, ret);
 HAL_AUDIO_PROCESSING_DEV_REGISTER(Afe, ret);
#ifdef ENABLE_DSMT_ASR
 HAL_VOICEALGO_DEV_REGISTER(Asr, ret);
#elif defined(ENABLE_VIT_ASR)
 HAL_VOICEALGO_DEV_REGISTER(Asr_VIT, ret)
#endif /* ENABLE_DSMT_ASR */
 HAL_OUTPUT_DEV_REGISTER(UiVoiceRecDemo, ret);

4. Initialize the related managers in the function APP_InitFramework():

FWK_MANAGER_INIT(InputManager, ret);
FWK_MANAGER_INIT(AudioProcessing, ret);
FWK_MANAGER_INIT(VoiceAlgoManager, ret);
FWK_MANAGER_INIT(OutputManager, ret);

5. Start the related managers in the function APP_StartFramework():
FWK_MANAGER_START(InputManager, INPUT_MANAGER_TASK_PRIORITY, ret);
FWK_MANAGER_START(AudioProcessing, AUDIO_PROCESSING_TASK_PRIORITY, ret);
FWK_MANAGER_START(VoiceAlgoManager, VOICE_ALGO_MANAGER_TASK_PRIORITY, ret);
FWK_MANAGER_START(OutputManager, OUTPUT_MANAGER_TASK_PRIORITY, ret);

AN14250 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 March 2024
15 / 20

NXP Semiconductors AN14250
Implement LVGL GUI Voice Recognition on Framework

6. Define the priorities of the manager tasks in the above step.

#define INPUT_MANAGER_TASK_PRIORITY 2
#define AUDIO_PROCESSING_TASK_PRIORITY 2
#define VOICE_ALGO_MANAGER_TASK_PRIORITY 3
#define OUTPUT_MANAGER_TASK_PRIORITY 1

Note: For more details about all the modifications introduced above, see the attached example software at
https://mcuxpresso.nxp.com/appcodehub.

9 Verifications with the example project

Visit https://mcuxpresso.nxp.com/appcodehub and get the example software package containing the resources
and tools for this application note.

Open the example project on MCUXpresso IDE. Build and program the .axf file to the address 0x30000000
and program the resource bin file voice_rec_resource.bin to the address 0x30800000.

The LVGL GUI voice recognition example works normally as below:

• Standby screen
With power up, the standby screen is displayed as Figure 3. Say the wake word or touch the screen to enter
the home screen per the hints displayed in the selected language, which can be changed via the dropdown
widget on the screen.

• Home screen
After entering the home screen, the video streams captured by camera shows on the specific area of camera
preview on the GUI screen. As the initial state, the preview state is displayed on the status label and the
supported voice commands are hinted. They are shown in the current language, which can be changed via
the dropdown widget. See Figure 4.
– Preview: Every time clicking the area outside the buttons and images， or say the voice command
preview or 预览 depending on the current selected language, the corresponding text Preview… or 预览…
displays on the status label.

– Registration: Every time clicking the button Registration, or say the voice command registration or
用户注册 depending on the current selected language, the corresponding text Registration… or 注册…
displays on the status label.

– Recognition: Every time clicking the button Recognition，or say the voice command Recognition or
人脸识别 depending on the current selected language, the corresponding text Recognition… or 识别…
displays on the status label.

When the time (60 s) is up on the home screen, it returns to the standby screen automatically.

10 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

AN14250 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 March 2024
16 / 20

https://mcuxpresso.nxp.com/appcodehub
https://mcuxpresso.nxp.com/appcodehub

NXP Semiconductors AN14250
Implement LVGL GUI Voice Recognition on Framework

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

11 Revision history

Table 1 summarizes the revisions to this document.

Document ID Release date Description

AN14250 v.1 26 March 2024 Initial public release

Table 1. Revision history

AN14250 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 March 2024
17 / 20

NXP Semiconductors AN14250
Implement LVGL GUI Voice Recognition on Framework

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AN14250 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 March 2024
18 / 20

mailto:PSIRT@nxp.com

NXP Semiconductors AN14250
Implement LVGL GUI Voice Recognition on Framework

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

i.MX — is a trademark of NXP B.V.
J-Link — is a trademark of SEGGER Microcontroller GmbH.

AN14250 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1 — 26 March 2024
19 / 20

NXP Semiconductors AN14250
Implement LVGL GUI Voice Recognition on Framework

Contents
1 Overview ...2
1.1 Framework overview ..2
1.2 Light and Versatile Graphics Library (LVGL)3
1.3 GUI Guider .. 3
2 Development environment4
3 Voice recognition architecture on

framework ...4
4 Voice recognition example design on

framework ...5
5 Add hardware support 7
5.1 Add the drivers for microphone 7
5.2 Add board support for microphone 7
6 Enable voice recognition feature on

framework ...7
6.1 Add voice algo libraries and engines7
6.2 Implement speech models8
6.2.1 Set up the models ... 8
6.2.2 Integrate the DMST and VIT models to the

example ... 9
6.3 Update and enable voice related HALs 10
6.4 Add and update output UI HAL 11
6.5 Update display HAL ...13
7 Implement an LVGL GUI application 13
8 Add application level support 15
8.1 Update the board initialization 15
8.2 Update the framework setup 15
9 Verifications with the example project16
10 Note about the source code in the

document ..16
11 Revision history ...17

Legal information ...18

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com

Date of release: 26 March 2024
Document identifier: AN14250

	1 Overview
	1.1 Framework overview
	1.2 Light and Versatile Graphics Library (LVGL)
	1.3 GUI Guider

	2 Development environment
	3 Voice recognition architecture on framework
	4 Voice recognition example design on framework
	5 Add hardware support
	5.1 Add the drivers for microphone
	5.2 Add board support for microphone

	6 Enable voice recognition feature on framework
	6.1 Add voice algo libraries and engines
	6.2 Implement speech models
	6.2.1 Set up the models
	6.2.2 Integrate the DMST and VIT models to the example

	6.3 Update and enable voice related HALs
	6.4 Add and update output UI HAL
	6.5 Update display HAL

	7 Implement an LVGL GUI application
	8 Add application level support
	8.1 Update the board initialization
	8.2 Update the framework setup

	9 Verifications with the example project
	10 Note about the source code in the document
	11 Revision history
	Legal information
	Contents

